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Abstract—It is generally accepted that performance charac-
teristics, such as response time and throughput, are an integral
part of the factors defining the quality of software products.
The relationship between quality and system responsiveness is
especially strong in the case of distributed application using
various kind of software servers (name servers, application
servers, database servers, etc.) In order to meet the performance
requirements of such systems, the developers should be able to
assess and understand the effect of various design decisions on
system performance at an early stage, when changes can be made
easily and effectively. Performance analysis should then continue
throughout the whole life cycle, becoming one of the means of
assuring the quality of software products. For this to become a
practical reality, we need appropriate modeling techniques.

I. INTRODUCTION

System users are increasing their reliance on distributed

applications (including client-server systems) to accomplish

their business tasks. In such systems there is a strong rela-

tionship between their responsiveness and their quality. As is

the case with mainframe environments, it is essential that the

performance behaviour of these applications be well designed

and managed. Predictive modeling tools are needed to help

support performance oriented design and management. Such

tools have been available for mainframe environments for

almost two decades [1], [10]. Unfortunately, these tools are

not able to characterize and model the behaviour of distributed

applications. In this paper we present a new model for

distributed applications. The application may be distributed

across processors on a common bus, or across a wide area

network, exploiting new midware technology such as DCE [4],

CORBA [6] and Encina. The model is based on queueing

network models and has relatively few parameters but is

able to characterize many of the features that affect the

behaviour of distributed applications. Analytic performance

evaluation techniques have been developed for the model and

are demonstrated with a sample application.

One of the most interesting performance aspects of dis-

tributed systems is that software processes can act as both

clients and servers to other processes. Figure 1 illustrates sev-

eral user processes sharing a file server process. The processes

are shown as parallelograms, an arc shows requests for service

and circles represent devices. Since the server process can have

many client processes, it is possible for queueing delays to

arise at the server process. Our model calculates the service

time of a process, seen as a server, from its own execution

and its requests to other processes, including queueing delays.

The fact that this service time is not known a priori is a

major difficulty in the design and understanding of software
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Fig. 1. File server application

server systems. A server may become a software bottleneck,

thus limiting the potential throughput of the system. This can

occur even if the devices used by the process are not fully

utilized. Workload characterization for distributed applications

must capture these effects.

A Layered Queueing Network (LQN) model [5], [11], [13]

is an extended queueing network model that also specifies

visits between processes so that their layered requests for

service and hence layered contention effects are represented.

The parameters of the layered queueing network model are

those of the queueing network model:

• customer classes, and their associated arrival rates or

populations;

• devices, and their scheduling disciplines;

• for each process seen as a customer to a device:

– the average number of visits to each device;

– and the average service time at the device;

with additional parameters to capture software interactions:

• for each process seen as a customer to another process:

– the average number of visits.

Predictive analytic modeling techniques based on approximate

mean value analysis are then used to provide performance

estimates for the behaviour of the system being studied.

There are many performance issues that can be considered

using the model. These include studying the impact on re-



sponse times of:

• using different algorithms for implementing a server’s

functionality;

• balancing loads across servers and/or changing device

service rates;

• replicating (making copies) or threading a server;

• and having different numbers of customers.

The model and the evaluation technique are appropriate during

the design of software as well as for system sizing, tuning, and

capacity planning.

In section II, software performance engineering techniques

are described that can be used to characterize customer classes

in layered queueing network models. Section III describes

the features of LQN’s. Sections IV and V give an example

of a distributed application architecture that is modeled as

a LQN model and explore its performance behaviour using

the analytic modeling techniques. A summary is given in

Section VI.

II. SOFTWARE PERFORMANCE MODEL OF A SERVER

To give informal insights into the layered model we will

examine a typical server process in the configuration shown in

Figure 2. The Client process executes repeatedly, periodically

making a request to Server1, and waiting for the reply. While

Server1 is carrying out its service, it makes use of two other

processes called Server2 and Server3. We assume that these

simply execute and return a result to Server1. Server1 will

be considered in more detail, and model parameters will be

derived from a behaviour description. For each request made

to Server1, we want to know the total service time S for each

device used by Server1 and the mean number of requests V

made to each other server.

The analysis approach described by Smith [12] is adapted

here to the case of layered software. It can be applied before

the software is written. It uses an execution graph as shown

in Figure 2b to describe the flow of operations followed in

giving a service. The figure describes a generic sort of service,

with no particular application in mind, but it illustrates the

power of the analysis technique and the meaning of the model

parameters. The initiation of the service begins at the top of the

graph, with an activity which accepts the request, and follows

downwards. The only difference from Smith’s treatment is

that we regard a request from Server1 for a service from

Server2 or Server3 as a primitive resource request, that needs

no further analysis. The number of these requests becomes the

V parameter in the layered model, defined below.

The behaviour described in Figure 2 shows a generic

service, which we shall assume is the only service offered

by Server1. There is a sequence of activities (the boxes), a

loop (indicated by the arrow and the circle showing the mean

loop count) and inside the loop another sequence including a

set of alternatives or cases, set off by triangles and including

a probability for each case. (This notation is slightly different

from Smith’s for cases, but has the identical significance.) At

the end of the service there is an activity for sending the

reply to the requester, and a final “clean-up” activity for an

operation which is performed after sending the reply but before

accepting the next request.

Table I gives the activities in Figure 2b and shows the

resource loadings. There is a line for each activity, and lines

for the control overheads for the loop and for the cases.

There is a column for each resource used by the activities,

and resources can be physical or logical. A reduction process

is described below which determines the total loadings to

physical resources and software servers.

The use of a physical or logical resource is measured in

terms of its operations. In the case of the CPU, a unit of a

million operations (MOp) has been used. The use of Server2

or the disk (at a logical level) is measured in terms of requests,

called a “Server2 request”, meaning a request to Server2 sent

over the network, or a “disk access”, meaning a logical,

program-level operation on a disk file. One program-level

file operation may lead to several physical disk operations,

depending on the amount of information being read or written,

or may lead to none, if there is an effective disk cache.

Therefore we first define the logical operations which we see

in the software design, and then convert to physical operations.

To obtain a performance model the table is reduced in four

steps:

• The logical operation requests are reduced to physical

demands by substituting estimates of the physical oper-

ations per logical operation. For example, a logical disk

operation may give rise to sever disk device operations

and some CPU time. In this reduction, requests to other

software servers are treated as physical demands since

they are not resolvable by the physical resources used

directly by this server process.

• The mean repetitions are multiplied through each row, to

give total demands for that activity.

• The physical operation counts are reduced to time esti-

mates, by substituting the expected time per operation

(e.g., the operation time for the CPU). The service

requests are untouched at this step.

• The time estimates for each resource are added up to

give a total demand for one invocation of the service.

Two sums are formed for each resource, one sum for the

activities between receiving the request and sending the

response, called “phase 1”, and one sum for the activities

after that, called “phase 2”. The service requests to other

servers are also summed, once for phase 1 and once for

phase 2.

In this way, for each of phase 1 and phase 2 we obtain a

set of immediate resource demands by this server (Server1)

for the devices it uses, in average seconds of work per input

request, and the average number of requests to other servers.

We can write these as:

• S(server, device, phase) seconds, for “server”, using “de-

vice”, in phase “phase”;

• V(server, OtherServer, phase) requests, for “server” re-

questing to “OtherServer”, in phase “phase”.

In the example above, for instance, V(Server1, Server2, 1)
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Fig. 2. A software server and its execution graph.

Activities Repetitions Resource Loadings (per repetition)
CPU Disk Server2 Server3 IPC

(MOp/S) accesses requests requests rqsts.

AcceptInput 1 0.3 1
Init 1 0.7 3
LoopControl(2.9) 3.9 0.05
ActivityA 2.9 6.5 2
Choose 2.9 0.02

.2 ActivityB 0.58 12.0 11

.3 Server2 0.87 1

.4 Server3 1.16 1
endChoose
ActivityC 1 4 1.5
SendResponse 1 0.2 1
Cleanup 1 2.4 5

TABLE I
PERFORMANCE PARAMETERS OF THE EXECUTION GRAPH IN FIGURE 2B

= 0.87 since on average there will be 0.87 requests to Server2

per invocation of this service, and the requests are in phase 1,

before sending the response. S(Server1, CPU, 2) is the CPU

time demand of the Cleanup activity, which (from the Figure)

is the time demand of 2.4 million operations plus the CPU

demand required for 5 disk accesses.

The layered model derived this way includes a number

of assumptions which may not be perfectly satisfied by the

software. The system performance is assumed to depend only

on the average execution time values on devices, and the

average number of requests made to other servers by each

process.

III. LAYERED QUEUEING CONCEPTS

Layered Queueing Networks can be used to model a va-

riety of different types of system behavior and inter-process

communication styles. A standard RPC can be modeled by a

server with a zero second phase of service. The send-receive-

reply cycle of inter-process communication supported by the

V [3] and Amoeba [8] operating systems is also modeled by

an LQN. For certain classes of systems the second phase of

service can be aptly used to model housekeeping operations

or operating system overheads associated with the service that

was provided in the first phase.

Distinguishing features of the layered model are:

• diversity in modeling: the processes in a LQN can be used

to model hardware devices such a processors, disks, and



communication links as well as software processes.

• nested service: a server during its response to a client re-

quest may request service from another server processes.

During this nested service both the client and the first

server are blocked. This models simultaneous resource

possession which is difficult to handle by conventional

techniques.

• entries: an “entry” identifies a particular service offered

by a process, when the process offers more than one type

of service. Entries are associated with server processes to

handle these situations. A database server, for example,

may be represented by a process with two entries: one

that corresponds to a query operation and the other for

an update operation. The performance parameters may be

different for different entries.

• Multithreading: Multi-threading may be an important way

to remove software bottlenecks, and will be shown in

section IV. A server process, with multiple identical

threads is modeled as a multi-server in a LQN.

IV. LQN MODEL OF A TRANSACTION PROCESSING

SYSTEM

This section presents a LQN model of a transaction pro-

cessing system based on a distributed relational database,

NonStopSQL, running on a Tandem multiprocessor system

(see Figure 3). The hardware is a “share-nothing” architecture

designed for scalability that minimizes the contention for

common resources. The processors are interconnected by dual

high-speed buses, and each processor has its private memory

and I/O buses. The NonStopSQL software integrates the SQL

functions with operating system functions in order to achieve

a better performance [2]. The software architecture is based

on concurrent processes communicating through messages in

a client-server fashion. Because the processors are linked only

by a communications subnet, and the data is partitioned and

distributed, the model has all of the features of a distributed

system; only the communications delays are relatively short.

The workload considered in this example is a simplification

of the Debit-Credit transaction described in [7]. The Users,

represented by the processes at the top of the graph, think for

a given time, then send their queries to an Interface process

(one for each user) which manages terminal I/O, validates the

input data, translates the queries, and routes the requests to

the application process.

The application process decomposes a query into simple

SQL operations, sends these to another software server called

the DiskProcess for execution, then assembles the final re-

sponse and replies to the user. More than one instance of the

Application process can be active at the same time, processing

different user queries from a common queue and running on

the same processor. Therefore, we represent the Application

process in the LQN model as a multi-server with a finite

number of server instances.

A Disk Process is a software server that manages a disk

unit. It integrates several important operating system and

database management functions to improve performance [2].
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Fig. 3. Distributed Database Example System

For example, it implements simple SQL operations, performs

logical and physical disk I/O, and manages the disk cache.

More than one instance of a disk process can be active

simultaneously on the same CPU managing the same disk

unit and serving requests from a common queue. Thus, a disk

process is represented in the LQN model as a multi-server with

a finite number of servers, each one able to offer a range of

services using a number of entries. All instances of the disk

process are competing for the same hardware servers (i.e.,

CPU and disk).

The system supports data distribution with local autonomy

thus increasing the potential for parallelism: both data and

index files can be partitioned horizontally across several disks.

We consider a database consisting of three SQL tables with

vastly different sizes:

ACCOUNT: a table of bank accounts containing

hundreds of thousands of records; each record holds

the account number (also the primary key) and the

balance.

TELLER: a table describing bank tellers, containing

hundreds of records.

BRANCH: a table describing the cash positions of

each bank branch, containing tens of records.

Our simplified Debit-Credit transaction reads the input data

from the terminal, then updates the three tables in sequence.

We did not model here the logging activity for simplicity

reasons. This does not change significantly the workload in this

model, since the logging is handled by a separate subsystem

with its own CPU and disks.

We consider that the ACCOUNT file (by far the largest)

and its primary index file are each partitioned into three

fragments allocated on Disk1, Disk2 and Disk3, respectively

(represented by circles at the bottom of the figure). The file



TELLER and its primary index are allocated on Disk1, and

BRANCH and its primary index on Disk2. In terms of software

servers, the model contains three DiskProcess multi-servers

(one for each disk unit), an Application multi-server and an

Interface infinite server. Due to the way the files are allocated

on disks, DiskProcess1 offers two services (i.e. entries) with

different workload requirements: one to update the ACCOUNT

fragment, the other to update the BRANCH file. DiskProcess2

is in a similar situation.

The software components are allocated on two processors:

the Interface, Application and DiskProcess1 on CPU1, and

DiskProcess2 and DiskProcess3 on CPU2 (see Figure 3).

V. EXPERIMENTAL RESULTS

In this section the transaction processing model described

in Section IV will be used to illustrate how capacity can

be estimated and the performance effects caused by varying

degrees of server multithreading and disk caching.

Since the model is closed in the sense that it has a fixed

number, N, of Users, we will estimate the mean response time

for a number of N values. Each user is modeled with a simple

operational cycle involving a mean “think” time of 10 seconds

preceding each data base request. Other model parameters

were estimated in the manner described in Section II. Disk

service request rates were estimated taking cache hit ratios

into account.

The response time characteristics, as computed by the

analytic LQN solver described in [5], are shown in Figure 4

for several values of the degree of multithreadedness of the

Application Server, parameter K. Each curve exhibits the

familiar nearly constant response time for light loads with

a relatively sharp transition to a steeply sloping relationship

when the loading is high. The position of the “knee” of these

curves is often taken as a measure of the capacity of the

system. For example, if mean response times of the order

of one second were considered to be satisfactory for this

system, system capacity in terms of the number of users would

be approximately 225 users for the case of K = 16. This

translates to a transaction processing rate of approximately

20.41 transactions per second.

Transitions in response time curves are associated with

the saturation of one or more resources when its utilization

approaches unity. This is often referred to as bottlenecking.

The universal remedy is to increase the capacity of the limiting

resource or server and thereby reduce its utilization. With

systems such as the one modeled, one must not to ignore the

possibility that a limiting resource may be an intermediate or

“software” server. Notice that such servers are “busy” in the

sense that they are occupied and unable to handle subsequent

requests even while they await the completion of service from

subordinate servers. High utilizations of software servers may

result with significant embedded service, i.e., when service is

supplied by sub-ordinate servers while the server in question

is blocked awaiting results. In part, this effect arises from the

synchronous nature of the interprocess communication used

here and prevalent in systems using RPC’s.
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To increase the capacity of a software server we can increase

its number of threads. This effect is clearly demonstrated

in Figure 4. Consider the case when K = 1, i.e., there is

a single instance of the application server. Performance is

poor with the response time knee well to the left. As the

capacity of the application resource is increased by raising

K, the performance is greatly improved. Note that this is

accomplished without adding to the capacity of any other

resource including the processor and disk devices. What is

witnessed here, for small K values, is a phenomenon known

as software bottlenecking [9]. Our example demonstrates that

its effect can be very significant — more than a factor of 4 in

system capacity from K = 1 to K = 16.

To understand the software bottlenecking phenomenon bet-

ter, consider Figure 5. Shown are the utilizations of several

of the servers, of both the hardware and software types, as

functions of the parameter K. When K is small, say K < 4,

the utilization of each instance of the Application Server is

essentially unity. All other servers are comparatively lightly

loaded with utilizations less than 0.7. For larger values of K,

Application Server utilizations fall, eventually below those of

CPU1 — the processor on which instances of the Application

Server execute, as well as below those of DiskProcess1,

another “software” server. Note that the cross over point

between the utilizations of the Application Server instances

and CPU1 occurs at a K value of approximately 11. For

larger K values, it is the hardware server CPU1 that dominates

in limiting performance. This explains the small performance

gain when K is increased from 12 to 16 in Figure 4.

One may ask: Why limit the degree of multithreading

of software servers? One answer is the cost in terms of

memory as each thread requires an execution stack that is

often significant in size. Also, threads typically require syn-

chronization mechanisms, e.g., locks, mutexes, or semaphores

for use with shared data. These can limit the “effective” degree

of multithreading. Thus, a sensitivity check on the degree of

multithreading is useful to guide design.

Use of LQN models to provide sensitivity analysis is partic-

ularly important in the early stages of design when parameters
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are not well known. For example, in the transaction processing

model, disk caching is used to improve performance. Estimates

of cache hit ratios were necessary to provide disk service

request parameters for the DiskProcesses. If these cache hit

ratio estimates were questionable, the sensitivity of the system

performance to cache hit ratios would be useful to know.

Figure 6 shows the effect, on the “base” case response time

characteristic, as cache hit ratios are varied. “Base” case cache

hit ratios ranged from 0.72, for the Teller File, to 0.9, for the

Branch file. In this study, disk cache misses were increased by

50% for the “low” cache hit cases and halved for the “high”

cache hit cases. Notice that slightly dropping the disk cache hit

ratios from their relatively high values had a very significant

effect on shifting the response “knee”. The difference between

the low and the high hit rations is worth about 50 users in

system capacity!

These experiments illustrate the power of a LQN perfor-

mance model in helping to answer design questions. Often

these questions are associated with resource allocation but

performance-resource relationships are non-trivial. The anal-

ysis given for this example could be used to best apportion

memory between thread stacks and disk caches.

VI. SUMMARY

This paper has introduced a performance model which

represents software resources and queueing of requests for

software servers explicitly. It can be used throughout different

life cycle stages, from early design to maintenance, to insure

that performance is built into the systems and is effectively

managed. The model captures the important features of nested

service at subordinate servers. The model parameters can be

derived by conventional methods as shown in Section II.

A transaction processing example has illustrated the use of

multithreading to increase performance.

The analytic model solver has been found to be fast, typi-

cally more than an order of magnitude faster than comparably

accurate simulations, and sufficiently accurate for planning and

design purposes.
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