Tutorial Introduction to Layered Modeling of
Software Performance

Edition 3.0
Murray Woodside, Carleton University
RADSLab....http://sce.carleton.ca/r ads
cmw@sce.car leton.ca
May 2, 2002

1.0 Software Server Concept

We consider layered systems (software systems, and other kinds of systems too) that are made
up of servers (and other resources which we will model as servers); the generic term we will use for
these entitiesis “task”. A server is either a pure server, which executes operations on command (for
instance a processor), or amore complex logical bundle of operations, which include the use of
lower layer services. Such a bundle of operations may be implemented as a software server.

requests for
services el,
e2, etc
reply mes- common
Sage gueue A server entity (“task”):
|r Sy = T h_re;d _____ 7| * acceptsrequests from a
| pool | single queue or mailbox
| | » hasone or moreidentica
| | worker threads
: choose dif- : * executes one or more
| ol ferent serv- | Classesof service,
| \) | « & makes requests to other
| second | servers
| phase’ after |))
| L sending R replies
L ——— = — = reply- — — — — — 4« optional “second phase of

execution after the reply

FIGURE 1. The elements of a softwar e server, including multiple threads, multiple entries, and
second phases, which are all optional

Figure 1 illustrates the elements of a software server, as they might be implemented in a soft-
ware process. The threads are servers to the queue, and the requests take the form of interprocess
messages (remote procedure calls, or the semantic equivalent), and the entries describe or define the
classes of service which can be given. The assumption in this theory isthat each thread has the capa-
bility of executing any entryThe execution of the entry can follow any sequence of operations, and
can include any number of nested requests or callsto other servers. Callsto internal services of the
server are assumed to be included in the entry, so al calls are to other servers. A canonical sequence
of operationsisthe first-phase/second phase sequence shown by the heavy line in the figure, with the
reply sent after the first phase. Software servers often send the reply as early as possible, and com-
plete some operations later a(e.g. database commits).

The execution of the server entity is assumed to be carried out by a single processor, or multi-
processor, called its“host” and not shown in Figure 1. Once the request is accepted, the execution of
the entry is a sequence of requests for service to the host and to other servers, and the essence of lay-
ered modeling isto capture this nesting of requests. Each request requires queueing at the other
server, and then execution of aservice there. The service time of a software server isthe timeto exe-
cute one regeust, and it has two components, a phase 1 time until the reply is generated, and a phase
2time.

The “thread” abstraction in a software server can also model other mechanismsthat allow the
server to operate simultaneously on several requests, including aprocess pool, kernal or user threads,
dunamically created threads or processes, and virtual threads.

The abstract “task” model which applies to a software server can also be applied to other sys-
tem resources, as described later. For instance, a disk device may offer more than one operation with
different service times, modelled by entries; a buffer pool can be modelled by a set of “threads’ each
of which accepts one block of data and then triesto send it to the receiver entry.

In the graphical notation adopted here for layered models, the server entity above isrepre-
sented asin Figure 2. The multiplicity of threadsis shown by a*“stack” of task rectangles, which is
optional. The requests are shown from entry to entry; the queue is not shown explicitly. The host
may be shown as an oval; other devices such as disks are represented by atask to capture the serv-
ices, and ahost. The task part can represent multiple classes of services by the device, as entries.

2.0 Layered queuing concepts

Modelers will be more familiar with non-layered models, so we will consider an example, and
relate it to alayered model of the same system. A flat, non-layered model has only one layer of serv-
ers, and is equivalent to an ordinary queueing model. The following example has N User entities

client
entry

entry entry
el e2

FIGURE 2. Layered modeling notation for the server in Figure 1

making requeststo a set of Server entities, and represents Users at workstations making requeststo a
central Server (file server or database server) with a printer and two disks.

N User Entities
[Z =3 seq]
2 1&\ . 1
N User Workstations [Shared Server CPU Network Printer Disk 2 [
[s=5 msec|] [s=15msec]

FIGURE 3. Model with asingle layer of resources (i.e., a plain queueing model) for a client-server system

The Users are the reference for performance measures, and execute acyclein which they think
for 3secintota (indicated by z = 3 sec.), and also make the indicated average number of requests to
each server. These are the normalized parameters of a queueing network model (requests and think-
ing time per response), normalized to the reference popint of the Users. Each server hasits own serv-
ice time (indicated by s = value, for two of the servers) and discipline for serving requests.

L ayered approach

In the layered view of the same model, shown in Figure 4, there are server tasks (which are not
shown explicitly in aplain queueing model) on the server CPU, which have their own queues of
messages to serve, and which in turn make requests to lower layer servers like the server CPU and
disks. The Network also appears as a server which passes requests through, inserting its own latency
and contention delays into the path. It connects messages to Serverl and Server2 through separate
interfaces called entries, described below.The execution demand of Serverl and Server2 have the
weighted average value of 15 msec shown in Figure 3 for the Server CPU.

N User Entities

[Z =3 se(C]
'/ 13 7¥ ¥5
N User Workstations Network]
NN
Serverl Server2
[s=10 msec.]| [s=22 msec.]
1 8.7
Shared Server CPU Disk 2

FIGURE 4. Layered version of the client-server system

Readers who are familiar with queueing models will recognize this as an extended queueing
model, with simultaneous resource possession. To execute operations at a server task the server task
resource must be obtained, and then a device resource at the bottom. Layered queueing represents
simultaneous resources in asimple canonical way.

Resour ces, authority, layering

Layered modeling describes a system by the sets of resources that are used by its operations.
Every operation requires one or more resources, and the model defines a resource context and an
architecture context for each operation. The architecture context is a software object to execute the
operation, and the resource context is a set of software and hardware entities required by the opera-
tion.

Every resource includes an aspect of an authority to proceed and use it, which is controlled by
adiscipline and a queue (which may be explicit or implicit). In layered modeling the resources are
ordered into layers (typically with user processes near the top and hardware at the bottom) to provide
a structured order of requesting them. With proper layering, a graph of all possible sequences of
requestsis acyclic, and deadlock among requests is impossible. For this and perhaps for other rea-
sons, layered resources are very common in practice. Layering provides an ordering; notice that in
this view requests may jump over layers.

Tasks, entries, calls, demands
The notation for layered queueing models uses the terms task, host processor, entry, call, and

demand, asfollows.

» Tasks are the interacting entities in the model. Tasks carry out operations and also have the prop-
erties of resources, including a queue, a discipline, and a multiplicity. Tasks that do not receive
any requests are special; they are called reference tasks and represent load generators or users of

the system, that cycle endlessly and create requests to other tasks. Separate classes of users are
modelled by separate reference tasks.

A task has a host processor, which models the physical entity that carries out the operations. This
separates the logic of an operation from its physical execution. Thus adisk is modeled by two
entities, adisk task representing the logic of disk operations (including the difference between say
aread and awrite, and the logic of disk device-level caching), and a disk device. The processor
has a queue and a discipline for executing its tasks, and atask has a priority.

A task has one or more entries, representing different operationsit may perform. If thetask islike
aconcurrent object, then the entries are like its methods (the name comes from the Ada language).
Entries with different workload parameters are equivalent to separate classes in queueing. The
workload parameters of an entry are its host execution demand, its pure delay (or think time), and
its calls to other entries.

Calls are requests for service from one entry to an entry of another task. A call may be synchro-
nous, asynchronous, or forwarding, as discussed below. This gives arich vocabulary of parallel
and concurrent operations, expressed in a manner very closeto that of a software architecture
description language.

Demands are the total average amounts of host processing and average number of callsfor service
operations required to complete an entry. More detailed descriptions, detailing the sequence of
operations, can be given by giving the activity srtructure of an entry, described below.

The most important graphical notation for layered queueing can be captured in the following

diagram

entry E1 Task T1
[Z = pure delay] [m = multiplicity]
[s = hostDemand)] [p = priority]
... by phases, [s1, 2] | [d=disciplin€]
Call

(y = mean no of calls)
...by phases, (y1, y2)

Processor P1
[m = multiplicity]
[d = discipling]
relative speed

entry E2 T2

181 [27] [22]

FIGURE 5. Graphical notation for layered queueing... key elements

Figure 6 shows another example system, representing aweb-based ticket reservation system. It

uses the UML notation for the software in part () and the deployment in part (b). The layered model
in part (c) combines these two.

Browser
UserNode
-interact() {delay = 5 sec}
Browser
WebServer
<<LAN>>
- connect()
- displ a3é8
- reserv
- confirm() ServerNode
‘ WebServer ‘

TickeiDB | TickelDB |
- queryTDB()
- updateTDB()

(&) UML class diagram (b) UML deployment diagram

interact | Browser
[Z2=5¢

connect [display [reserve [confirm [WebServer @

query TDB[UpdateT DB | TicketDB

e

(c) Layered Queueing model

FIGURE 6. Layered system example of a web-based ticket reservation system

3.0 Tools: the LQNS solver, the simulator, and their modeling
language

There are two solvers for layered queues, that take the same input format. One uses analytic
mean-val ue queueing approximations to solve the queues at all the entities, while the other isasimu-
lator. Thereisalso an experiment controller that can execute parameterized experiments over param-
eter ranges.

The analytic solver LQNS can be executed with the command line: | gns infile.lgn

(where the suffix . | gn issuggested, but not mandatory) and it produces an output file with the
default namei nf i | e. out . There are many options, which can be listed by invoking | gns or
I gns - h. The documentation is the manual (“man”) page, aso availablein ASCII as| gns. t xt .

The simulator isinvoked as: parasrvn [run controls] infile.lqgn
o: lgsim|[run controls] infile.lqgn

and also generates an output filei nf i | e. out , which includes confidence intervals on the esti-
mated performance parameters. Documentation is the man page for parasrvn, or the ASCII version
par asrvn. t xt.

The experiment controller SPEX uses an expanded modeling syntax which includes parameter
controls and selectors for performance measures. Itisinvoked as:. spex infile. x|l gn

(where again the suffix . x| qn, standing for “extended Ign file”, is not mandatory) and it generates a
set of casefiles, input and output, asummary calledi nfi | e. r es which tabulates the results over
the cases, and optionally a set of plots of measures against parameter values. There is a documenta-

tionfilecalled spex. t xt .

Model solver codefor thereservation system in Figure 6

Thefiler eserv-tenpl . | gn inthe Appendix contains the reservation system example
coded up for the Igns model solver. It has sections for general information (G), processor definitions
(P), task definitions (T) and entry definitions (E). It is heavily commented to explain the meaning of
each section, and the syntax of each statement. Thisis atemplate file for models based entirely on
entries.

Notice how every task must have a processor, and tasks are used to model many things:
devices other than CPUs, external services that introduce a delay, users and their reaction time, criti-
cal sections and locks, buffers, etc.

Jigndef editor view

The model is more easily edited and viewed with “jlgndef”. It provides windows with labelled
fields for editing parameters and adding structure, and an automatic-layout view window for navigat-
ing the model and observing the structure. Jigndef can be used with models that were created by
manual editing or other means.

4.0 Task resources, queueing, and multiplicity (threads)

An object may exist in asingleinstance, such that only one request can be served at atime; this
is called asingle-threaded task and is identified with atask resource, and atask queue. One task
gueue is used by all requeststo all the task’s entries. Thisis an example of a*“task” with both proper-
ties of an object providing operations, and of a resource.

Some software objects are fully re-entrant, they can exist in any number of copies, each with
its own context. These are often called multi-threaded, however because there is no limit to the
number of threads we will term them infinite-threaded. Thisis an example of a*“task” which
imposes no resource constraint. An infinite resource is one which we do not have to consider as a
resource at al, since it does not limit its authority to proceed.

Some software objects exist as a pool of instances of acertain size. Requests are given athread
aslong asthereis one free; beyond this, requests must queue. These will be termed multi-threaded.
Such atask models an object providing operations, and a homogeneous set of resource unitsthat are
dispatched from a single queue, like a multiserver.

Multiple instances may be provided in different ways, for instance by process forking, by
lightweight threads or kernel threads, by re-entrant procedure calls. A special case which is modeled
as multipleinstancesis asingle carefully written process that accepts all requests, and saves the con-
text of uncompleted requestsin datatables (thisisvirtual threading, or data threading).

Multiplicity also applies to processors (single, multiple, infinite).

All requests

\\\‘ query TDB [updaieTDB | TicketDB
Queue for the Bﬂ

Webserver task | | [
(not usually shown) | | |

connect |display confirm [WebServer '

A multithreaded task run-

A task has a single queue, for messages to all ning on a multiple processor
its entries

FIGURE 7. A Task queue, and multipleresour ces

4.1 Pseudo-tasksto represent modules (objects or subsystems)

While an LON task is used to model the resource aspects of a concurrent process aswell asits
workload, it can also be used to model just the workload aspects of an object or subsystem which is
just part of a concurrent process, and which has no attached resource significance (we will call thisa
module). This can be helpful to structure the workload description around the software structure. If a
task called T1 representing the overall container process makes a synchronous call (see below) to a
task T2 representing a module which is part of the process, the model captures the fact that the proc-
ess resources are held while executing the module. Sometimes a task representing a module will be
called a pseudo-task, just to emphasize the fact that it does not have resources of its own. The
pseudo-task isinfinite threaded (see below), and is allocated to the same processor as the task that
executes it.

5.0 Blocking callsand other stylesof interaction

Layered modeling in LQNS recognizes three kinds of interactions between entries:

» asynchronous call: the sender does not wait and receives no reply. The receiving entry operates
autonomously and handles the request.

» synchronous call, with areply. The sender waits (blocked) for the reply, and the receiving entry
must provide replies. Thisisthe pattern of a standard remote procedure call (RPC). The sending
object task resource or thread is regarded as busy during the wait.

Replies without blocking are modelled by introducing extra sender threads (these are model
constructs), one for each potential outstanding reply. In the model these threads do block and wait for
the reply, and they accumulate the total time to complete a response. These threads need not exist
explicitly in the software (e.g. they may be virtual threads).

» forwarding interaction: the first sender sees a synchronous interaction, and waitsfor areply. How-
ever the receiver does not reply, but rather forwards the request to a third party, which either
replies, or forwardsit further. This gives an asynchronous chain of operations for awaiting client.

Additional styles of interaction may be constructed using activities, including an asynchronous or
delayed remote procedure call in which the sender continues at first, and eventually waitsto get a

reply.

In each interaction thereisacalling party, taking a“client” roleand acalled party, ina“server”
role. A deeply layered system will have middle-level tasks that act both as servers, accepting calls
from above, and as clients, making callsto lower-level servers. There may be tasks representing sys-
tem users, that only originate requests. These pure client tasks act as sources of work, cycling
between their own execution or delays, and requests into the system.

The system may also receive an arrival flow of requests from outside; these are treated as asyn-
chronous requests from the environment (there is no reply). To capture the response delay, we may
introduce an artificial infinite threaded “response” task which servesthe arrival stream, makes a syn-
chronous request into the remainder of the system and waits for the completion of the activity.

Nested synchronouscalls Forwarded query, reply- External arrivals, and an

ing directly to theclient asynchronous invocation
interact [Browser Interact [Browser external
[Z=5¢] [Z=5¢ display [WebSrvr
synchronous synchronous
syng \ asynchronous
display [WebSrvr display [WebSvr Y
| query TDB [TKIDB
|
synchronous ' forwarded N
queryTDB [TKIDB queryTDB [TKiDB Tog CogSIvr
[Z2=39

Layered Queueing notation for the three styles of interaction

| Browser | [WebSrvr | [TktDB | |Browser| WebSIvr | [TkiDB | WebSrvr | [TktDB | [LogSrvr |
m | | o | | |
Thinkz=5 | inkiz= i ' '
Moy : Thme. 5 display.__, |
; i display._ !

I\

|

|

|

l I
| |

ueryTDB : :
| |

| |

- | :
| |

| |

| |

| |

|

|

|

|

|

|

|

|

|
quenTDB | |

| | I .

: : : Thih(k=3

I T I I

UML Sequence Diagrams showing the messages passed. In this notation, the solid arrow-
head shows a synchronous message, with a dashed arrow for the reply.

o

FIGURE 8. Three styles of interaction in layered queueing models: L QNs and Sequence Diagrams

5.1 Workload parametersof an activity: summary so far

An entry has one or more activities (so far we have only seen entries with a single activity),
and the activities have workload parameters. The ones described so far are:

» execution demand: the time demand on the CPU or other device (indicated by the token “s” in the
modeling code)

10

» wait delay (also called athink time) (optional... it can be used to model any pure delay that does
not occupy the processor) (token is Z)

* mean synchronous requests to another entry (token isy)

* mean asynchronous requests to another entry (token is z)

Additional optional parameters, not discussed before, are:

* the probability of forwarding the request to another entry, rather than replying to it, when serving
a synchronous request (token isF)

 the squared coefficient of variation of the execution demand requests. Thisistheratio of the vari-
ance to the square of the mean; for a deterministic demand itsvalue is O (token is c)

» abinary parameter to identify a stochastic sequence in which the number of nested requestsis
random, with a geometric distribution and the stated mean, versus a deterministic sequence in
which the number is exactly the stated number (which must be an integer). (token isf, with value
0 for stochastic (the default) or 1 for a deterministic sequence)

To add detail to amodel, we can introduce additional structure within an entry, called activities
or phases. In the cases described so far each entry has just one activity or phase, with the parameters
listed above. In the more general cases the same set of parameters can be used for each activity or
each phase.

6.0 Performance measures. Service time and utilization values for an
entry or atask.

The service time of an entry isthetime it isbusy, in response to asingle request. It includes its
execution time and all the time it spends blocked, waiting for its processor and for nested lower serv-
icesto complete. The servicetimein alayered model is aresult rather than a parameter, except for
pure servers.

Since atask may have entrieswith different service times, the entries define different classes of
service by the task. The overall mean service time of atask isthe average of the entry service times
(weighted by frequency of invocation).

The utilization of a single-threaded task is the fraction of time the task is busy (executing or
blocked), meaning not idle. A multi-threaded or infinite-threaded task may have several services
under way at once and its utilization is the mean number of busy threads.

A saturated task has al its threads busy aimost all the time.
Softwar e Bottleneck

A task which isfully utilized, when the resources it uses are not fully utilized, is called a * soft-
ware bottleneck”. A typical exampleis asingle-threaded task which blocks for /O, and the typical
cure is to multi-thread the task, making it a multiserver. Then when one thread is blocked another
one can proceed. (See 1995 Software Bottleneck paper for more discussion).

11

Interact |Browser | Browser | [WebSrvr | [TKiDB |
- L I I
[2=59 Think 1 [; |
(1) Z=5 | displgy | |
| | |
! ' queryTDB
display [WebSrvr : a
Service | |
time of : -
©) the entry : | |
S\I/Sepi)lg of | ' lqueryTDB
queryTDB [TKDB Vi |
| I<_ - — -
| | |
- |
| |

FIGURE 9. The servicetime of an entry includes any nested servicetimeswhileit is

blocked, waiting for a reply

7.0 Adding detail with activitieswithin an entry

Detailed description of the sequence of operations, when atask accepts a request at an entry,
can be defined by describing activities with a precedence graph. The notation used in LONSIs:

Sequence:
AND-fork:

AND-join:

OR-fork:
one of

activityl -> activity2 activity 1 precedes activity 2

activityl -> activity2 & activity3 & activity 1 precedes activities 2, 3... in
paralel (an AND-list of any length)

activityl & activity2 &.... -> activity3(predecessors are an AND-list of any
length)

activityl -> (prob2) activity2 + (prob3) activity3 +......means activity 1 precedes

* activity2 (with probability prob2) or

* activity3 (with probability prob3) or ... (thisis an OR-list of any length)

OR-join:
length)
JOIN-FORK:
LOOP:

activityl + activity2 -> activity3..... (predecessors may be an OR-list of any
any OR or AND list -> any OR or AND list

predecessor join-list -> (average-repeat-count)* activityl activity2 a
repeated activityl, followed afterwards by activity2

12

If the repeated part is a sequence, therest of the sequence is defined as preceded by activityl. If it
isacomplex structure of activities it can be packaged into a separate pseudo-task (as described in
Section 2.1), called by activityl. This pseudo-task can contain forks and joins and other behaviour
structure nested within the loop.

Task with activities
Entry E1 Entry E2

AND-fprk
% repliesto E1

a5 [ET]

thejoin

LOOP: a8is
repeated an average
a6 makes an average of 7.3 times, then go to all
of 3.2 calls\(synchronous al2 followsthe reply
messages) ta SERV
Service Entry SERV Task SERVT

FIGURE 10. A task with activities

If arequest to an entry (say, entryl) generates areply, then some activity in the graph triggers
thereply. Thisisindicated by attaching the entry name to the activity, where it appears on the right of
the arrow:

o ..->activity2[entryl] activity2 isareply-activity. When it isfinished it sends areply to the
requester that initiated the execution of the entry.

L QN code for the activity section

The entries which use activities are identified in the entry list, along with the first activity in
the entry. In a separate activity section for each task, the workload parameters of the activities and
their precedence relationships are defined for all the entries that have activities. The template file
activity-tenpl .| gn, repesenting aserver with OR and AND forks, is commented to docu-
ment to additional syntax for activities.

13

(Often there is a separate sub-graph for each entry. However, occasionally one may wish to
define asingle graph with multiple starting points at two or several entries, for instance to define a
task which joins flows from two different tasks. For this reason each activity graph is defined for a
given task rather than a given entry, and replies are indicated by entry name.)

Asweéll asthe precedence graph definition, just discussed, the workload of each activity must
be defined, using the parameters defined in Section 3.1. The template file template.lgn documents
the syntax of the input file, including activities.

Users{ 50}

i Task with activities
Entry server

e
OR—forlig

repliesto call to server
parReply[server] ‘

repliesto call to server
seqRreply|server] |

*35 *1.2
‘IoopOperatlon IoopZ‘ ‘ bigLoopDriver ‘
LOOP: loopOperation

loop2-are
repeated an average

of 3.5 times, then goto loopEnd

pred
‘ piIgL oopStart ‘ Task BigLoop, entry biglL.oop

disklread|diskIwrite | DIsK1 | [diskZread|disk2wriie | Disk2

FIGURE 11. A server task with parallel and alter native activities, as defined in activity-templ.lgn

14

The activity diagram notation in UML is somewhat more general than the LQN notation, in
that it allows a single graph to span multiple concurrent tasks, but it can be used to describe LQN
activity graphs. However our purpose is focussed on defining performance models.

Examples of activity notation are given in the document “Parallel Activity Notationin LQNS’
by Franks (1999), which is also Chapter 6 in Franks thesis.

The concurrency semantics of parallel activities assumes that a separate sub-thread (or its
equivalent) existsfor each parallel path. These sub-threads all compete for processing resources, and
can block separately. Thusif one parallel path isblocked on a server, another one can run.

Use activitiesfor modeling detailed sequences. A basic use of activitiesisto described a particu-
lar deterministic sequence of execution steps of different lengths, and single requeststo servers. Each
step is modeled by its own activity. This provides a second level of detail, after making a model
using average demands.

Use activitiesfor modeling parallel service: Asshown in Figure 11, if atask makes two or more
service requests (to other tasks) in parallel, so that it waits for both of them to complete before pro-
ceeding, this can modeled by using activities:

» fork to parallel activities, one to make each request,

» each paralld activity makes ablocking call for the service to one of the other tasks, and waits for
the return,

* jointhe paralel activities.
Thisis discussed in the WOSP98 paper on modeling parallel service.

M odeling Asynchronous RPC, and Prefetching: An asynchronous RPC is modeled by forking an
activity to make the RPC, and joining at the point where the result is picked up by the main flow.
Prefetches are modeled similarly, as are “futures’ operations (which do a speculative computation in
paralld).

8.0 Servicewith a Second Phase

A wide variety of software services give areply to the requester before they are entirely fin-
ished, in order to release the requester from the synchronous call delay as soon as possible. The
remaining operations after the reply are done under sole control of the server task, and they form the
second phase. A specia shorthand is used to represent this common case.

Entries with phase one and phase two can be represented by two activities, one performed
before the reply and one after. Because they all have this simple structure they can be defined
directly for the entry, without an explicit precedence graph. Each entry has a vector for each work-
load parameter, with avalue for each phase. Thus the execution demand for the entry queryTDB
above would be defined by aline beginning with code “s’ for execution demand:

“squeryTDB 0.30.5-1"

15

[WebSrvr | [TKIDB | display [WebSrvr

E

display [WebSrvr (1)
! gueryTQB
] '] First phase, o query DB TKIDB
L __ || demand03s phasel [0.3]
| : query DB [TKIDB [queryTDB]
| | Second phase, [0.3, 0.5]
- - -1 | demand0.5s ’
: : ‘ phaseZ [0.5] ‘
| R
Behaviour LQN with phasesin TktD LQN with activitiesin TktDB
(activities shaded)

FIGURE 12. A second phase of service letsthe client of the interaction
proceed

The host demands are 0.3 for phase 1, 0.5 for phase 2. Note that the separator -1 is used in many
places in the definition language.

Second phases are common. An example is seen in awrite operation to the Linux NFSfile
server; the write operation returns to the requester once the file is buffered in the server, and the
actual writeto disk is performed later, under sole congtrol of the server. Doing the writesin first
phase would be safer, because the client would be told if the write failed, and thisis how the NFS
protocol was originally defined. Other NFS implementations allow second-phase or delayed writes
only if the server has abattery-powered buffer to provide security of the data, in case of a power
failure.

Second phases improve performance; they give less delay to the client, and they increase
capacity because there can be some parallel operation between the client and the server. The amount
of gain depends on circumstances (real parallelism needs separate processors, and a saturated server
cannot increase its capacity).

The extreme case of all execution being in second phase is akind of acknowledged handover
of datafrom the client to the server. Thusit is similar to an asynchronous message, except that the
sender waits for the acknowledgement. One important advantage of thisis that the sender cannot
over-run the receiver; the sender is throttled by the waiting for acknowledgements.

Resultsfor second phase at a single server, and at two layered servers: to come

If some of atask’swork can be put into the second phase, the task can return more quickly to
its clients. However if the task is already saturated the clients have to wait for many other services
anyway and the advantage is small or even nil. The degree of improvement thus depends on the

16

degree of saturation,and where the saturation is. Table 1 shows how a group of users with a 5-sec
thinking time are affected when the server servicetimeis split between phase 1 and phase 2 in differ-
ent ratios (L QNS approximate results). At low utilizations, more phase 2 is uniformly better, but as
utlization increases, the best split moves towards the middle.

TABLE 1. Theimpact of dividing a unit server demand between phase 1 and phase 2

Response time (sec) for different values of demand s = [phase 1, phase 2]
nusers s=[0,1.0] [0.2,0.8] [04,06] [06,04 [08,02 [10,Q]

1 0.166 0.310 0.464 0.629 0.807 0.999
4 1.125 0.726 0.827 0.996 1.269 1.6420
7 3.066 2.694 1.5087 1.7928 2.269 2.9256
10 4.8474 4.2741 3.8951 3.98149 4.4927 5.221
15 9.9096 9.4738 9.2281 9.2289 9.5048 10.037
20 14.9381 14.541 14.323 14.318 14.548 15.0120

Modeling finite buffers. A finite buffer space, which blocksits senders when it is full, can be mod-
eled by amulti-threaded buffer task with second-phase interactions going into and coming out of the
buffer. Each buffer space is modeled by a“thread” which immediately replies (releasing the sender)
and then sends to the receiver (and waits until the receiver replies, to acknowledge receipt).

sender | Sender [Sender | [Buffer | |Receiver]
N ; n
1 | 1
| | |
(2,0 : store ! :
s || Receiver
receive
store [Buffer B | | | is busy
threads | \;’ |
| | R |
(0,1 :4_] 1\ :
I
T - - - |4
recalve [Receaver | |
! L1]
I |

[0, work]

FIGURE 13. Modeling a finite buffer with blocking by a pool of B threads. The buffer isfull at thetime
of the second store.

Modeling pipelines, using a third phase: In a software pipeline each task has three partsto its
processing; input, processing and output to the next stage. Because L QN workloads are described by
average valuesfor each activity, it may beimportant to separate these three rather than lumping them
together.

17

Thisis particularly clear in a pipeline with acknowledged handovers. Part 1 takes the message and
acknowledgesit to release the sending stage. Part 2 does the processing. Part 3 sends the output mes-
sage and may have to wait for the acknowledgement. If the output message were averaged into the
Part 2 workload, then on average it would occur in the middle, and thiswould give an error in the
stage delay of afactor of nearly 2.

In order to facilitate pipeline modeling with phases, athird phase has been made permissible, to
model the output activity.

9.0 Logical resources(critical sections, locks, buffers)

The task entity in layered modeling is used to model any resource whatever. Buffers have been
discussed above. Consider acritical section shared by processes on the same processor, in which all
the processes execute the same code in the critical section (thisislike a monitor); it can be modeled
exactly as atask. the critical section code and workload, including I/O operations and messaging, iS
associatetd with the critical section task rather than the caller process.

If the processes execute different operations in the critical section, then the critical section
“task” is an empty shell with no execution of its own, and with an entry for each caller... this entry
callsasort of shadow task defined for each process, which represents the critical section workload of
that process. Only one of these shadow tasks can be active at once, and a queue of requests forms
before the criticial section “task”. Effectively the calling processes are split into acomponent for the
workload outside the critical section, and acomponent inside. If acaller isamultithreaded processes,
or asynchronous (infinite-threaded) processes, the shadow task for it has the same number of threads.

The same approach can be applied to locking atable. A full lock system, with many separate
locks, and read and write locks, requires special treatment. The queuing disciplines are somewhat
arcane, and there are too many locks to represent each one separately. Thisis a subject of current
research.

Memory and buffer resources can be modeled similarly, with a multiple “task” (the same des-
ignation as amulti-threaded task) to represent the resource, and with entries to activate the workload
for each user.

10.0 Limitations

Thisisnot acomplete list, but notes some limitations that have come up:

» recursive cals are excluded (atask calling its own entries)... the approach for dealing with recur-
sive callsis to aggregate the demand into the first entry. Possibly this should be accommodated,
but it requires an assumption that the same thread handles the recursive request (to avoid deadlock
when threads are limited), which limits the behaviour of an entry.

 replication of subsystems (without defining all the replicas separately) is handled but only with
restrictions; athesisis available (Amy Pan).

18

* activity sequences which fork in one task and join in another can be solved by the simulation
solver (parasrvn) but the analytic solver Igns has been inadequately tested for these cases, and
may fail in various ways.

» externa arrival flows may be specified into an entry, however a system with only external arrivals
causes problems for the analytic solver. It is reccommended to define sources of traffic as tasks
which make requests and block; this has the advantage that it never overruns the system. To
obtain a source with a given throughput define avery large source population (size N) with along
thinking time Z between requests, and it will generate an arrival rate of roughly N/Z per sec. If it
deviates greatly, thisindicates that the system is heavily |oaded.

* message lossis not modeled; current research may cure this.
» exceptions and timeouts are al'so not modeled, similar comment.

11.0 Reference material

See the web pages

» www.sce.carleton.calrads... for material on the larger project (RADS is the Real-time And Dis-
tributed Systems group at Carleton), and for software download.

» www.sce.carleton.ca/rads/lgn/documentation

» www.sce.carleton.calfaculty/woodside for my bibliography material

Particularly recommended are:
« the Quality conference paper in 97, for an overview,

* the database modeling paper at ICDCS97, for a complete and rather complex case
study,

« the software bottleneck paper in 95 for a discussion of saturation effects,
* the parallel service paper at WOSP98, regarding parallel services

» Examples of activity notation are given in the document “Parallel Activity Notation in
LONS’ by Franks (1999).

12.0 Runningthetools

L QNS has been compiled for Solaris, HP-UX and Linux, and for NT (actually, for GNU tools
under DOS), It has a comprehensive manual page describing many options for diferent solver algo-
rithms, for tracing solutions and for printing more or less detail. The best reference on the many
solver optionsis Greg Franks' PhD thesis (1999).

The LQNS input language is essentially documented by the commentsin the examplefiles...
. ThereisaBNF definition included in the more extensive discussion of acivity notation, in “Parallel
Activity Notation in LQNS’ by Franks.

Jlgndef is agraphical and text-window-based editor which shows a simple diagram of the
model. It requires Java 1.1.3 or higher, with the “swing components’.

19

Thereisauseful tool called SPEX whichisincluded in the distribution, for running experi-
ments over sets of parameters. SPEX isaPerl script. You have to edit the textual version of the input
model,and add specifications for control, for extraction of results, and for reporting results. Sets of
runs can be done over any combination of parameter variations, and results are automatically tabu-
lated or plotted in Matlab. SPEX is documented in the spex.txt.

13.0 Questions

» Throughput refuses to increase when | introduce more resources. Search for a saturated resource;
it may represent a modeling error. For instance, if one introduces more users, one must also intro-
duce more processors for them to run on. A simple expedient isto make any resource which
should not be alimt, infinite. Thisis also solver-friendly, ainfinite resources are easy.

» Convergence: what if my LQNS solution does not converge? The symptom isthat the convergence
value for theiterationsis greater than the set value, typicaly 107-6. Sometimes, especialy in
heavily loaded systems, the iterative solver will cycle and not converge. One cure which is some-
times effective is to reduce the value of the under-relaxation coefficient in the solver controls,
from atypical value of 0.9 or 0.7 to alow value, of say 0.1. Thisisintended to force convergence
by reducing the step size. If this does not succeed, then as long as the convergence value isless
than 0.1, the solution found has some reasonabl e relationship to the correct value. (The size of the
convergence value is the largest relative change from one iteration to the next, of any of the vari-
ables in the model; it does not directly indicate the size of errors, but if the solution isin fact
cycling around the correct solution then al relative errors are probably smaller than this). A
method which is ususally not effective isto increase the number of iteration steps. The basic
recourse for greater accuracy isto simulate.

» Replication: how can | model a system with many repetitions of a subsystem within it? Provided
the replications are identical in every respect, and divide all their interactions with the rest of the
system equally, the replication feature of LQNS can give efficient solutions. The full documenta-
tion of thisfeatureisin the Master’s thesis of Amy Pan. Briefly, any task can have areplication
factor r, which means that multiple copies are created. If its processor has the samer, then each
cophy has a separate processor. If it communicates with other tasks with the samerr, it communi-
caties with just one of them, and the interactions are assumed to form r subsystems. Messages
between tasks with different r must have values of fan-in (f) and fanout (0) such that the product
of source (r times fanout) = destination (r timesfan-in). These factorsf and o describe the replica-
tion of the message arcs. Unfortunately replication does not work for models with activities, only
with phases.

* Odd resultsfor multiple servers: if | run for a series of values of mfor server multiplicity, | may
see rising throughput; then for m= infinity, the throughput drops a bit. How come? The waiting
time calculation for amultiserver is an approximation, and errors of afew percent are to be
expected. Theinfinite server queue is solved exactly (no waiting). If the anomaly isworrying, try
amore exact multiserver algorithm by using “ pragma -Pmultiserver=conway”, but it will take
longer.

» Non-blocking systems: in my model the servers are asynchronous. A server processes each mes-
sage, whether a request or a reply, and then takes whatever message comes next. | never blocks to
wait for a reply. How to model it? Such a server is modeled with infinite threads, allowing one
active thread for each uncompleted request it is processing. This may be called virtual threads or
datathreads, since the request context, if any , is managed by user data.

20

Solution Time: my LQNS solution takes a long time (aminute islong for afew tasks; 10 minutes
islong for any model). Possible reasons are: (1) poor convergence (see below)... you may want to
reduce the iterations or smulate; (2) a huge number of classes, generated by having alot of sepa-
rate source tasks (“reference tasks” and lots of entries on worker tasks.... you could get faster
resultsif the sources were combined into fewer tasks, with random splits to generate the requests
they make into the service layers.(3) do you have a multiserver (not areference task) with alarge
m (say, m> 20?)... or layered multiservers one above the other, with moderate m... multiserver
solutions are only moderately expensive by the default algorithm, but the others cost more. You
might consider whether it could as easily beinfinite (if, say, itsusageiswell below thelimit so the
limit isnot afactor). In any of these cases, you might try to ssimulate; there have been models that
solved faster by simulation.

Cycles: what do | do if my model has a synchronous messaging cycle? LQNS will refuse to solve
amodel, however it can be instructed to ignore the cycle checker with the pragma -Pcycles=allow.
It then solves the model with an implicit assumption that if deadlocks are possible, they do not
occur or are resolved. The simulator (parasrvn) will take a model with cycles at any time, how-
ever if adeadlock occurs as aresult of a cycle, the simulation stops without any diagnostic.

Delay: how can | get the result for delay from an input at one point, to a response compl etion
somewhere else in the model ? The cleanest approach isto introduce some special model elements:
first, at the start of the response, introduce a pseudo-task R to capture the delay asits servicetime.
It has zero demands (s = 0), has infinite multiplicity (codei) runs on its own processor or an infi-
nite processor, has deterministic phases (f = 1) and makes one synchronous call to the input point
to start the response. Second, create a forwarding chain through the model along the path of the
response, so that thereply is created at the completion point; the reply goes back to the pseudo-
task R, and ends its blocking state.

Simulation accuracy: how can | tell how accurate my smulation is? It is essential to get confi-
dence intervals out of the simulation. If you don’t know about these, you will have to consult a
statistics text. Parasrvn will calculate confidence intervals for you, for all itsresults, if you run
with the -A (automatic) or -B (batched) run options. These havetheform -A,a,p,b or -B,n,b where
b isabatch length in model time units, which should be say 100 times longer than the longest ser-
vice timein your model, and n is the number batches (suggest 30, which is the max allowed). For
A, aisthe accuracy target in 5 of mean values, p is the confidence leveel

14.0 Appendix: Model files

Model Filereserv-templ.lgn

G

#Comment s between quotes, as many |ines as necessary

“Layered Queueing Network for a Wb-based Reservati on Systent
#Convergence criterion, iteration limt, print interval, under-

rel axati on

#Under -rel axation coefficient stabilizes the algorithmif |ess than

1

0.

0001

500

1

21

0.5
End of General |nformation
-1

Processor Information (the zero is necessary; it may al so give the
nunber of processors)

PO

#SYNTAX: p ProcessorNanme SchedDi scipline [nultiplicity, default =
1]

SchedDiscipline = f fifo|r randonip prenptive|
h hol or non-pre-enpt|s proc-sharing
multiplicity = mvalue (nmultiprocessor)|i (infinite)
p UserP f i

p ReservP f

p DBP f

p DBDi skP f

p ReservDi skP f

p CCRegP f i

End of Processor Information

-1

Task Information: (the zero is necessary; it may also give the
nunmber of tasks)

TO

#SYNTAX: t TaskNane Ref Flag EntryList -1 ProcessorNane [nultiplic-
ity]

TaskNane is any string, globally unique anong tasks

Ref Flag = r (reference or user task)|n (other)

multiplicity = mvalue (nultithreaded)|i (infinite)
t Users r users -1 UserP m 100

t Reserv n connect interact disconnect -1 ReservP m5
t DB n dbupdate -1 DBP

t Netware n netware -1 ReservP

t DBDi sk n dbDisk -1 DBD skP

t ReservDi sk n reservDi sk -1 ReservDi skP

t CCReq n ccreq -1 CCReqP i

End of Task Information

-1

#Entry Information: (the zero is necessary; it may also give the
total nunber of entries)

EO

SYNTAX- FORM A: Token EntryNane Val uel [Val ue2] [Value3d] -1

EntryNanme is a string, globally unique over all entries

Values are for phase 1, 2 and 3 (phase 1 is before the reply)
Tokens indicate the significance of the Val ue:

s Host Servi ceDemand for EntryNane

c Host Servi ceCoefficientofVari ati on

22

f PhaseTypeFl ag
SYNTAX- FORM B: Token FrontEntry ToEntry Val uel [Val ue2] [Val ue3]

Tokens indicate the Value Definitions:
y SynchronousCalls (no. of rendezvous)
F ProbForwarding (forward to ToEntry rather than replying)
z AsynchronousCalls (no. of send-no-reply nessages)
o Fanout (for replicated servers)(ignore this)
I Fanln (for replicated servers)(ignore this)
This exanple only shows use of host demands and synchronous
requests
s users 0 56 0 -1
users connect 0 1 0 -1
users interact 0 6 0 -1
users disconnect 0 1 0 -1
connect 0.001 0 O -1
connect netware 1 0 0 -1
interact 0.0014 0 O -
interact netware 1 0
interact ccreq 0.1 0
i nteract dbupdate 1.1 0
di sconnect 0.0001 0.0007 O -
di sconnect netware 1 0 0 -1
di sconnect dbupdate 1 0 O -1
netware 0.0012 0 O -1
netware reservbDisk 1.5 0 0 -1
dbupdate 0.0085 0 0 -1
dbupdate dbDisk 2 0 0 -1
ccreq 300 -1
reservDisk 0.011 0 O -1
dbDisk 0.011 0 0 -1
#End of Entry Information
-1

HFHEFHFH-HH

1
0 -1
0 -1
50 -1
7 1

NN NIK NIKK KKK nNK ok

Model File activity-templ.lgn

#Thi s tenpl ate docunents the use of activities in depth

#lt assunes famliarity with other features docunented in reserv-
tenpl ate.lgn

or in tenplate.lqgn

G “Activity tenplate” 1le-06 50 5 0.9 -1

PO
p UserP f i
p ServerP s#processor sharing at the server
p Disk1P f
p D sk2P f
-1

23

User r user -1 UserP z 50 m50
Server n server -1 ServerP m4#4 threads with activities
t BigLoop n bigLoop -1 ServerP i #pseudo-task for a conpl ex | oop
pattern
t Diskl n disklread disklwite -1 D sklP
t Disk2 n disk2read disk2wite -1 Di sk2P
-1

TO
t
t

EO
s user 1.0 -1
f user 1 -1
y user server 1 -1#one request to the server per cycle
A server serverStart#entry server is defined by
#activities, with the first one being serverStart
A bigLoop biglLoopStart
s disklread 0.04 -1#operation time of this entry
s disklwite 0.04 -1
s disk2read 0.03 -1
s disk2wite 0.03 -1
-1

#Optional sections for definition of activities

One section for each task that has activities, beginning A
TaskNane

list of activity paraneters, using the syntax for entry parane-
ters, but

wth just one value and no termnator -1

. (separator), then a section for precedence anbng activities

Syntax for precedence:

al -> a2 for sequence

al -> a2 & a3 ... AND-fork (any nunber)

al & a2 ... -> a3 AND join

al &a2 ... ->a3 &a4 ... ANDjoin followed by AND fork

al -> (prob2)a2 + (prob3)a3 ... OR fork (any nunber, w th prob-
abilities)

al -> neanCount*a2,a3....for a repeated activity a2, foll owed
by a3

(notice that activities that follow a2 are inside the |oop)
a6l entryNane] indicates that after a6, a reply will be sent

to entryNane

A Server
s serverStart 0.O#every activity that is used nust have a host
demand
s seqglnit 0.3
s parlnit 0.1

24

s parA 0.05
y parA disklread 1. 3#average of 1.3 read operations
s parB 0.08
y parB disk2read 2.1
s parReply 0.01
s loopQperation 0.1
y loopQOperation disklread 0.7
s loop2 O
f bigLoopDriver 1l1l#exactly one call operation (determnistic)
y bi gLoopDriver bigLoop 1#trigger the pseudo-task for the conpl ex
| oop
s segReply 0.005

s loopEnd 0O

serverStart -> (0.4)seqglnit + (0.6)parlnit;

parlnit -> parA & parB

parA & parB -> parReply;

par Repl y[server];#reply for the parallel branch

seqlnit -> 3.5* | oopOperation, |oopEnd,

| oopOperation -> | oop2;#this activity is also in the |oop

| oopEnd -> 1.2* bigLoopDriver, seqReply;#big |oop is executed
avge 1. 2tines

seqRepl y[server] #reply for the sequential branch
-1

A Bi gLoop#activities for the | oop pseudo-task

(a |l oop pseudo-task is needed if there is a fork-join within a
| oop)

s first 0.0Ol#execute

f second 1#determ nistic sequence in this activity

y second disklwite 1 #exactly one file wite on this branch

y third disk2wite 1#average of one wite on this branch

s fourth 0. 13#execute only

bi gLoopStart -> first;

first -> second & third;

second & third -> fourth;

fourt h[bi gLoop] #generate the reply fromthe pseudo task, ending the
| oop op

-1

25

	1.0 Software Server Concept
	2.0 Layered queuing concepts
	3.0 Tools: the LQNS solver, the simulator, and their modeling language
	4.0 Task resources, queueing, and multiplicity (threads)
	4.1 Pseudo-tasks to represent modules (objects or subsystems)

	5.0 Blocking calls and other styles of interaction
	5.1 Workload parameters of an activity: summary so far

	6.0 Performance measures: Service time and utilization values for an entry or a task.
	7.0 Adding detail with activities within an entry
	8.0 Service with a Second Phase
	9.0 Logical resources (critical sections, locks, buffers)
	10.0 Limitations
	11.0 Reference material
	12.0 Running the tools
	13.0 Questions
	14.0 Appendix: Model files

