
Tutorial Introduction to Layered Modeling of 
Software Performance

Edition 3.0
Murray Woodside, Carleton University
RADS Lab....http://sce.carleton.ca/rads

cmw@sce.carleton.ca
May 2, 2002

1.0  Software Server Concept

We consider layered systems (software systems, and other kinds of systems too) that are made 
up of servers (and other resources which we will model as servers); the generic term we will use for 
these entities is “task”. A server is either a pure server, which executes operations on command (for 
instance a processor), or a more complex logical bundle of operations, which include the use of 
lower layer services. Such a bundle of operations may be implemented as a software server. 

e1
e2

requests for 
services e1, 
e2, etc

common 
queue

Thread   
pool

choose dif-
ferent serv-
ices e1, e2...

“second 
phase” after 
sending 
reply

A server entity (“task”):

• accepts requests from a 
single queue or mailbox

• has one or more identical 
worker threads

• executes one or more 
classes of service, 
labelled e1, e2, ...

• ei makes requests to other 
servers

• ei replies

• optional “second phase of 
execution after the reply

reply mes-
sage

FIGURE 1. The elements of a software server, including multiple threads, multiple entries, and 
second phases, which are all optional
1



Figure 1 illustrates the elements of a software server, as they might be implemented in a soft-
ware process. The threads are servers to the queue, and the requests take the form of interprocess 
messages (remote procedure calls, or the semantic equivalent), and the entries describe or define the 
classes of service which can be given. The assumption in this theory is that each thread has the capa-
bility of executing any entryThe execution of the entry can follow any sequence of operations, and 
can include any number of nested requests or calls to other servers. Calls to internal services of the 
server are assumed to be included in the entry, so all calls are to other servers. A canonical sequence 
of operations is the first-phase/second phase sequence shown by the heavy line in the figure, with the 
reply sent after the first phase. Software servers often send the reply as early as possible, and com-
plete some operations later a(e.g. database commits).

The execution of the server entity is assumed to be carried out by a single processor, or multi-
processor, called its “host” and not shown in Figure 1. Once the request is accepted, the execution of 
the entry is a sequence of requests for service to the host and to other servers, and the essence of lay-
ered modeling is to capture this nesting of requests. Each request requires queueing at the other 
server, and then execution of a service there. The service time of a software server is the time to exe-
cute one reqeust, and it has two components, a phase 1 time until the reply is generated, and a phase 
2 time.

The “thread” abstraction in a software server can also model other mechanisms that allow the 
server to operate simultaneously on several requests, including a process pool, kernal or user threads, 
dunamically created threads or processes, and virtual threads.

The abstract “task” model which applies to a software server can also be applied to other sys-
tem resources, as described later. For instance, a disk device may offer more than one operation with 
different service times, modelled by entries; a buffer pool can be modelled by a set of “threads” each 
of which accepts one block of data and then tries to send it to the receiver entry.

In the graphical notation adopted here for layered models, the server entity above is repre-
sented as in Figure 2. The multiplicity of threads is shown by a “stack” of task rectangles, which is 
optional. The requests are shown from entry to entry; the queue is not shown explicitly. The host 
may be shown as an oval; other devices such as disks are represented by a task to capture the serv-
ices, and a host. The task part can represent multiple classes of services by the device, as entries.

2.0  Layered queuing concepts

Modelers will be more familiar with non-layered models, so we will consider an example, and 
relate it to a layered model of the same system. A flat, non-layered model has only one layer of serv-
ers, and is equivalent to an ordinary queueing model. The following example has N User entities 
2



making requests to a set of Server entities, and represents Users at workstations making requests to a 
central Server (file server or database server) with a printer and two disks. 

The Users are the reference for performance measures, and execute a cycle in which they think 
for 3 sec in total (indicated by z = 3 sec.), and also make the indicated average number of requests to 
each server. These are the normalized parameters of a queueing network model (requests and think-
ing time per response), normalized to the reference popint of the Users. Each server has its own serv-
ice time (indicated by s = value, for two of the servers) and discipline for serving requests.

Layered approach

In the layered view of the same model, shown in Figure 4, there are server tasks (which are not 
shown explicitly in a plain queueing model) on the server CPU, which have their own queues of 
messages to serve, and which in turn make requests to lower layer servers like the server CPU and 
disks. The Network also appears as a server which passes requests through, inserting its own latency 
and contention delays into the path. It connects messages to Server1 and Server2 through separate 
interfaces called entries, described below.The execution demand of Server1 and Server2 have the 
weighted average value of 15 msec shown in Figure 3 for the Server CPU. 

entry 
e1

entry 
e2

host H

Task T

client 
entry

FIGURE 2. Layered modeling notation for the server in Figure 1

N User Entities
[Z = 3 sec]

Disk 2Shared Server CPU
[s = 15 msec.]

Network PrinterN User Workstations
[s=5 msec.]

Disk 2

12 12 0.04 7.1
0.613

FIGURE 3. Model with a single layer of resources (i.e., a plain queueing model) for a client-server system
3



Readers who are familiar with queueing models will recognize this as an extended queueing 
model, with simultaneous resource possession. To execute operations at a server task the server task 
resource must be obtained, and then a device resource at the bottom. Layered queueing represents 
simultaneous resources in a simple canonical way.

Resources, authority, layering

Layered modeling describes a system by the sets of resources that are used by its operations. 
Every operation requires one or more resources, and the model defines a resource context and an 
architecture context for each operation. The architecture context is a software object to execute the 
operation, and the resource context is a set of software and hardware entities required by the opera-
tion. 

Every resource includes an aspect of an authority to proceed and use it, which is controlled by 
a discipline and a queue (which may be explicit or implicit). In layered modeling the resources are 
ordered into layers (typically with user processes near the top and hardware at the bottom) to provide 
a structured order of requesting them. With proper layering, a graph of all possible sequences of 
requests is acyclic, and deadlock among requests is impossible. For this and perhaps for other rea-
sons, layered resources are very common in practice. Layering provides an ordering; notice that in 
this view requests may jump over layers.

Tasks, entries, calls, demands

The notation for layered queueing models uses the terms task, host processor, entry, call, and 
demand, as follows.

• Tasks are the interacting entities in the model. Tasks carry out operations and also have the prop-
erties of resources, including a queue, a discipline, and a multiplicity. Tasks that do not receive 
any requests are special; they are called reference tasks and represent load generators or users of 

N User Entities
[Z = 3 sec]

Disk 2Shared Server CPU

Network

Printer

N User Workstations

Disk 2

7 5

0.04 7.10.6

13

Server2
[s=22 msec.]

Server1
[s=10 msec.]

1 1

8.741

FIGURE 4. Layered version of the client-server system
4



the system, that cycle endlessly and create requests to other tasks. Separate classes of users are 
modelled by separate reference tasks.

• A task has a host processor, which models the physical entity that carries out the operations. This 
separates the logic of an operation from its physical execution. Thus a disk is modeled by two 
entities, a disk task representing the logic of disk operations (including the difference between say 
a read and a write, and the logic of disk device-level caching), and a disk device. The processor 
has a queue and a discipline for executing its tasks, and a task has a priority.

• A task has one or more entries, representing different operations it may perform. If the task is like 
a concurrent object, then the entries are like its methods (the name comes from the Ada language). 
Entries with different workload parameters are equivalent to separate classes in queueing. The 
workload parameters of an entry are its host execution demand, its pure delay (or think time), and 
its calls to other entries.

• Calls are requests for service from one entry to an entry of another task. A call may be synchro-
nous, asynchronous, or forwarding, as discussed below. This gives a rich vocabulary of parallel 
and concurrent operations, expressed in a manner very close to that of a software architecture 
description language.

• Demands are the total average amounts of host processing and average number of calls for service 
operations required to complete an entry. More detailed descriptions, detailing the sequence of 
operations, can be given by giving the activity srtructure of an entry, described below. 

The most important graphical notation for layered queueing can be captured in the following 
diagram 

Figure 6 shows another example system, representing a web-based ticket reservation system. It 
uses the UML notation for the software in part (a) and the deployment in part (b). The layered model 
in part (c) combines these two.  

Task T1
[m = multiplicity]

[p = priority]
[d = discipline]

entry E1
[Z = pure delay]

[s = hostDemand]
... by phases, [s1, s2]

entry E2

[s] [Z1] [Z2]

           Call
(y = mean no of calls)
...by phases, (y1, y2)

Processor P1
[m = multiplicity]

[d = discipline]
[relative speed]

FIGURE 5. Graphical notation for layered queueing... key elements

T2

P2
5



Browser

-interact( ) {delay = 5 sec}

WebServer

- connect( ) 
- display()
- reserve()
- confirm()

TicketDB

- queryTDB( ) 
- updateTDB( )

(a) UML class diagram

UserNode

Browser

ServerNode

WebServer

TicketDB

<<LAN>>

(b) UML deployment diagram

connect display reserve confirm

TicketDBupdateTDBqueryTDB

Browserinteract

[Z = 5 s]

WebServer UserCPU

ServerCPU

(c) Layered Queueing model

FIGURE 6. Layered system example of a web-based ticket reservation system
6



3.0  Tools: the LQNS solver, the simulator, and their modeling 
language

There are two solvers for layered queues, that take the same input format. One uses analytic 
mean-value queueing approximations to solve the queues at all the entities, while the other is a simu-
lator. There is also an experiment controller that can execute parameterized experiments over param-
eter ranges.

The analytic solver LQNS can be executed with the command line:  lqns infile.lqn

(where the suffix .lqn is suggested, but not mandatory) and it produces an output file with the 
default name infile.out. There are many options, which can be listed by invoking lqns or 
lqns -h. The documentation is the manual (“man”) page, also available in ASCII as lqns.txt.

The simulator is invoked as:    parasrvn [run controls] infile.lqn

or:  lqsim [run controls] infile.lqn 

and also generates an output file infile.out, which includes confidence intervals on the esti-
mated performance parameters. Documentation is the man page for parasrvn, or the ASCII version 
parasrvn.txt.

The experiment controller SPEX uses an expanded modeling syntax which includes parameter 
controls and selectors for performance measures. It is invoked as:     spex infile.xlqn

(where again the suffix .xlqn, standing for “extended lqn file”, is not mandatory) and it generates a 
set of case files, input and output, a summary called infile.res which tabulates the results over 
the cases, and optionally a set of plots of measures against parameter values. There is a documenta-
tion file called spex.txt.

Model solver code for the reservation system in Figure 6

The file reserv-templ.lqn in the Appendix contains the reservation system example 
coded up for the lqns model solver. It has sections for general information (G), processor definitions 
(P), task definitions (T) and entry definitions (E). It is heavily commented to explain the meaning of 
each section, and the syntax of each statement. This is a template file for models based entirely on 
entries.

Notice how every task must have a processor, and tasks are used to model many things: 
devices other than CPUs, external services that introduce a delay, users and their reaction time, criti-
cal sections and locks, buffers, etc.

Jlqndef editor view

The model is more easily edited and viewed with “jlqndef”. It provides windows with labelled 
fields for editing parameters and adding structure, and an automatic-layout view window for navigat-
ing the model and observing the structure. Jlqndef can be used with models that were created by 
manual editing or other means.
7



4.0  Task resources, queueing, and multiplicity (threads)

An object may exist in a single instance, such that only one request can be served at a time; this 
is called a single-threaded task and is identified with a task resource, and a task queue. One task 
queue is used by all requests to all the task’s entries. This is an example of a “task” with both proper-
ties of an object providing operations, and of a resource.

Some software objects are fully re-entrant, they can exist in any number of copies, each with 
its own context. These are often called multi-threaded, however because there is no limit to the 
number of threads we will term them infinite-threaded. This is an example of a “task” which  
imposes no resource constraint. An infinite resource is one which we do not have to consider as a 
resource at all, since it does not limit its authority to proceed.

Some software objects exist as a pool of instances of a certain size. Requests are given a thread 
as long as there is one free; beyond this, requests must queue. These will be termed multi-threaded. 
Such a task models an object providing operations, and a homogeneous set of resource units that are 
dispatched from a single queue, like a multiserver. 

Multiple instances may be provided in different ways, for instance by process forking, by  
lightweight threads or kernel threads, by re-entrant procedure calls. A special case which is modeled 
as multiple instances is a single carefully written process that accepts all requests, and saves the con-
text of uncompleted requests in data tables (this is virtual threading, or data threading).

Multiplicity also applies to processors (single, multiple, infinite).

TicketDBupdateTDBqueryTDB

connect display reserve confirm WebServer

Queue for the
Webserver task

All requests

ServerCPU

queryTDB updateTDB TicketDB
TicketDBupdateTDBqueryTDB

A multithreaded task run-
ning on a multiple processorA task has a single queue, for messages to all 

its entries

ServerCPU

(not usually shown)

FIGURE 7. A Task queue, and multiple resources
8



4.1  Pseudo-tasks to represent modules (objects or subsystems)

While an LQN task is used to model the resource aspects of a concurrent process as well as its 
workload, it can also be used to model just the workload aspects of an object or subsystem which is 
just part of a concurrent process, and which has no attached resource significance (we will call this a 
module). This can be helpful to structure the workload description around the software structure. If a 
task called T1 representing the overall container process makes a synchronous call (see below) to a 
task T2 representing a module which is part of the process, the model captures the fact that the proc-
ess resources are held while executing the module. Sometimes a task representing a module will be 
called a pseudo-task, just to emphasize the fact that it does not have resources of its own. The 
pseudo-task is infinite threaded (see below), and is allocated to the same processor as the task that 
executes it.

5.0  Blocking calls and other styles of interaction

Layered modeling in LQNS recognizes three kinds of interactions between entries:

• asynchronous call: the sender does not wait and receives no reply. The receiving entry operates 
autonomously and handles the request.

• synchronous call, with a reply. The sender waits (blocked) for the reply, and the receiving entry 
must provide replies. This is the pattern of a standard remote procedure call (RPC). The sending 
object task resource or thread is regarded as busy during the wait. 

Replies without blocking are modelled by introducing extra sender threads (these are model 
constructs), one for each potential outstanding reply. In the model these threads do block and wait for 
the reply, and they accumulate the total time to complete a response. These threads need not exist 
explicitly in the software (e.g. they may be virtual threads).

• forwarding interaction: the first sender sees a synchronous interaction, and waits for a reply. How-
ever the receiver does not reply, but rather forwards the request to a third party, which either 
replies, or forwards it further. This gives an asynchronous chain of operations for a waiting client.

Additional styles of interaction may be constructed using activities, including an asynchronous or 
delayed remote procedure call in which the sender continues at first, and eventually waits to get a 
reply.

In each interaction there is a calling party, taking a “client” role and a called party, in a “server” 
role. A deeply layered system will have middle-level tasks that act both as servers, accepting calls 
from above, and as clients, making calls to lower-level servers. There may be tasks representing sys-
tem users, that only originate requests. These pure client tasks act as sources of work, cycling 
between their own execution or delays, and requests into the system.

The system may also receive an arrival flow of requests from outside; these are treated as asyn-
chronous requests from the environment (there is no reply). To capture the response delay, we may 
introduce an artificial infinite threaded “response” task which serves the arrival stream, makes a syn-
chronous request into the remainder of the system and waits for the completion of the activity.
9



5.1  Workload parameters of an activity: summary so far

An entry has one or more activities (so far we have only seen entries with a single activity), 
and the activities have workload parameters. The ones described so far are:

• execution demand: the time demand on the CPU or other device (indicated by the token “s” in the 
modeling code)

display

TktDBqueryTDB

Browserinteract

[Z = 5 s]

WebSrvr

display

TktDBqueryTDB

LogSrvr  log

[Z = 3 s]

WebSrvr

display

TktDBqueryTDB

Browserinteract

[Z = 5 s]

WebSvr

 Browser  TktDB WebSrvr WebSrvr  TktDB  LogSrvr Browser WebSrvr  TktDB

Think Z=5 Think Z=5
display

queryTDB

log

display

display
queryTDB

queryTDB

Forwarded query, reply-
ing directly to the client

External arrivals,  and an 
asynchronous invocation

Nested synchronous calls

synchronous synchronous

asynchronoussync

external

forwardedsynchronous

Layered Queueing notation for the three styles of interaction

FIGURE 8. Three styles of interaction in layered queueing models: LQNs and Sequence Diagrams

UML Sequence Diagrams showing the messages passed. In this notation, the solid arrow-
head shows a synchronous message, with a dashed arrow for the reply.

Think Z=3
10



• wait delay (also called a think time) (optional... it can be used to model any pure delay that does 
not occupy the processor) (token is Z)

• mean synchronous requests to another entry (token is y)

• mean asynchronous requests to another entry (token  is z)

Additional optional parameters, not discussed before, are:

• the probability of forwarding the request to another entry, rather than replying to it, when serving 
a synchronous request (token is F)

• the squared coefficient of variation of the execution demand requests. This is the ratio of the vari-
ance to the square of the mean; for a deterministic demand its value is 0 (token is c)

• a binary parameter to identify a stochastic sequence in which the number of nested requests is 
random, with a geometric distribution and the stated mean, versus a deterministic sequence in 
which the number is exactly the stated number (which must be an integer). (token is f, with value 
0 for stochastic (the default) or 1 for a deterministic sequence)

To add detail to a model, we can introduce additional structure within an entry, called activities 
or phases. In the cases described so far each entry has just one activity or phase, with the parameters 
listed above. In the more general cases the same set of parameters can be used for each activity or 
each phase. 

6.0  Performance measures: Service time and utilization values for an 
entry or a task.

The service time of an entry is the time it is busy, in response to a single request. It includes its 
execution time and all the time it spends blocked, waiting for its processor and for nested lower serv-
ices to complete. The service time in a layered model is a result rather than a parameter, except for 
pure servers.

Since a task may have entries with different service times, the entries define different classes of 
service by the task. The overall mean service time of a task is the average of the entry service times 
(weighted by frequency of invocation).

The utilization of a single-threaded task is the fraction of time the task is busy (executing or 
blocked), meaning not idle. A multi-threaded or infinite-threaded task may have several services 
under way at once and its utilization is the mean number of busy threads.

A saturated task has all its threads busy almost all the time.

Software Bottleneck

A task which is fully utilized, when the resources it uses are not fully utilized, is called a “soft-
ware bottleneck”. A typical example is a single-threaded task which blocks for I/O, and the typical 
cure is to multi-thread the task, making it a multiserver. Then when one thread is blocked another 
one can proceed. (See 1995 Software Bottleneck paper for more discussion).
11



7.0  Adding detail with activities within an entry

Detailed description of the sequence of operations, when a task accepts a request at an entry, 
can be defined by describing activities with a precedence graph. The notation used  in LQNS is:

• Sequence: activity1 -> activity2 activity 1 precedes activity 2

• AND-fork: activity1 -> activity2 & activity3 & activity 1 precedes activities 2, 3... in 
parallel (an AND-list of any length)  

• AND-join: activity1 & activity2 &.... -> activity3(predecessors are an AND-list of any 
length)

• OR-fork: activity1 -> (prob2) activity2 + (prob3) activity3 +......means activity 1 precedes 
one of 

• activity2 (with probability prob2) or 

• activity3 (with probability prob3) or ... (this is an OR-list of any length)

•  OR-join: activity1 + activity2 -> activity3..... (predecessors may be an OR-list of any 
length)

• JOIN-FORK: any OR or AND list -> any OR or AND list

• LOOP: predecessor join-list -> (average-repeat-count)*activity1  activity2  ..... a 
repeated activity1, followed afterwards by activity2

display

TktDBqueryTDB

Browserinteract

[Z = 5 s]

WebSrvr

 Browser  WebSrvr

Think 
display

queryTDB

(1)

(2)
queryTDB

Z=5

 TktDB

Service 
time of 
the entry 
display of 
WebSrvr

FIGURE 9. The service time of an entry includes any nested service times while it is 
blocked, waiting for a reply
12



If the repeated part is a sequence, the rest of the sequence is defined as preceded by activity1. If it 
is a complex structure of activities it can be packaged into a separate pseudo-task (as described in 
Section 2.1), called by activity1. This pseudo-task can contain forks and joins and other behaviour 
structure nested within the loop.

If a request to an entry (say, entry1) generates a reply, then some activity in the graph triggers 
the reply. This is indicated by attaching the entry name to the activity, where it appears on the right of 
the arrow:

• ...-> activity2[entry1] ...... activity2 is a reply-activity. When it is finished it sends a reply to the 
requester that initiated the execution of the entry.

LQN code for the activity section

The entries which use activities are identified in the entry list, along with the first activity in 
the entry. In a separate activity section for each task, the workload parameters of the activities and 
their precedence relationships are defined for all the entries that have activities. The template file 
activity-templ.lqn, repesenting a server with OR and AND forks, is commented to docu-
ment to additional syntax for activities. 

a1

a6

a2 a3

a4

a5 [E1]

a7 a11 [E2]
a8

(p3)

(p4)

*7.3

Entry E1
a9

a10

a12

Entry E2
Task with activities

replies to E1

replies to E2 after the join

AND-join

AND-fork

OR-fork OR-join

LOOP: a8 is
repeated an average
of 7.3 times, then go to a11

FIGURE 10. A task with activities

Service Entry SERV Task SERVT

a6 makes an average
of 3.2 calls (synchronous
messages) to SERV

(3.2)

a12 follows the reply
13



(Often there is a separate sub-graph for each entry. However, occasionally one may wish to 
define a single graph with multiple starting points at two or several entries, for instance to define a 
task which joins flows from two different tasks. For this reason each activity graph is defined for a 
given task rather than a given entry, and replies are indicated by entry name.)

As well as the precedence graph definition, just discussed, the workload of each activity must 
be defined, using the parameters defined in Section 3.1. The template file template.lqn documents 
the syntax of the input file, including activities.  

serverStart

seqInit

parInit

parA

parB

parReply[server]

LOOP seqReply[server]

loopOperation

(0.4) (0.6)

*3.5

Entry server

loop2

LOOPloopEnd

Task with activities

replies to call to server

AND-fork

OR-fork

LOOP: loopOperation and loop2 are
repeated an average
of 3.5 times, then go to loopEnd

FIGURE 11. A server task with parallel and alternative activities, as defined in activity-templ.lqn

disk1write Disk1

Users {50}

bigLoopDriver

disk1read

*1.2

disk2write Disk2disk2read

first

third

fourth
second

bigLoopStart Task BigLoop, entry bigLoop

replies to call to server
14



The activity diagram notation in UML is somewhat more general than the LQN notation, in 
that it allows a single graph to span multiple concurrent tasks, but it can be used to describe LQN 
activity graphs. However our purpose is focussed on defining performance models.

Examples of activity notation are given in the document “Parallel Activity Notation in LQNS” 
by Franks (1999), which is also Chapter 6 in Franks thesis.

The concurrency semantics of parallel activities assumes that a separate sub-thread (or its 
equivalent) exists for each parallel path. These sub-threads all compete for processing resources, and 
can block separately. Thus if one parallel path is blocked on a server, another one can run.

Use activities for modeling detailed sequences:  A basic use of activities is to described a particu-
lar deterministic sequence of execution steps of different lengths, and single requests to servers. Each 
step is modeled by its own activity. This provides a second level of detail, after making a model 
using average demands.

Use activities for modeling parallel service: As shown in Figure 11, if a task makes two or more 
service requests (to other tasks) in parallel, so that it waits for both of them to complete before pro-
ceeding, this can modeled by using activities:

• fork to parallel activities, one to make each request, 

• each parallel activity makes a blocking call for the service to one of the other tasks, and waits for 
the return, 

• join the parallel activities.

This is discussed in the WOSP98 paper on modeling parallel service. 

Modeling Asynchronous RPC, and Prefetching: An asynchronous RPC is modeled by forking an 
activity to make the RPC, and joining at the point where the result is picked up by the main flow. 
Prefetches are modeled similarly, as are “futures” operations (which do a speculative computation in 
parallel). 

8.0  Service with a Second Phase

A wide variety of software services give a reply to the requester before they are entirely fin-
ished, in order to release the requester from the synchronous call delay as soon as possible. The 
remaining operations after the reply are done under sole control of the server task, and they form the 
second phase. A special shorthand is used to represent this common case.  

Entries with phase one and phase two can be represented by two activities, one performed 
before the reply and one after. Because they all have this simple structure they can be defined 
directly for the entry, without an explicit precedence graph. Each entry has a vector for each work-
load parameter, with a value for each phase. Thus the execution demand for the entry queryTDB 
above would be defined by a line beginning with code “s” for execution demand:

“s queryTDB 0.3 0.5 -1”
15



The host demands are 0.3 for phase 1, 0.5 for phase 2. Note that the separator -1 is used in many 
places in the definition language.

Second phases are common. An example is seen in a write operation to the Linux NFS file 
server; the write operation returns to the requester once the file is buffered in the server, and the 
actual write to disk is performed later, under sole congtrol of the server. Doing the writes in first 
phase would be safer, because the client would be told if the write failed, and this is how the NFS 
protocol was originally defined. Other NFS implementations allow second-phase or delayed writes 
only if the server has  a battery-powered buffer to provide security of the data, in case of a power 
failure.

Second phases improve performance; they give less delay to the client, and they increase 
capacity because there can be some parallel operation between the client and the server. The amount 
of gain depends on circumstances (real parallelism needs separate processors, and a saturated server 
cannot increase its capacity).

The extreme case of all execution being in second phase is a kind of acknowledged handover 
of data from the client to the server. Thus it is similar to an asynchronous message, except that the 
sender waits for the acknowledgement. One important advantage of this is that the sender cannot 
over-run the receiver; the sender is throttled by the waiting for acknowledgements.

Results for second phase at a single server, and at two layered servers : to come

If some of a task’s work can be put into the second phase, the task can return more quickly to 
its clients. However if the task is already saturated the clients have to wait for many other services 
anyway and the advantage is small or even nil. The degree of improvement thus depends on the 

display

TktDBqueryTDB
  [0.3, 0.5]

WebSrvr

 WebSrvr

display

queryTDB

(1)

 TktDB

First phase,

Second phase,
demand 0.5 s

demand 0.3 s

display

TktDBqueryTDB

WebSrvr

(1)

phase1 [0.3]

[queryTDB]

phase2 [0.5]

FIGURE 12. A second phase of service lets the client of the interaction 
proceed

Behaviour                                   LQN with phases in TktD   LQN with activities in TktDB
    (activities shaded)
16



degree of saturation,and where the saturation is. Table 1 shows how a group of users with a 5-sec 
thinking time are affected when the server service time is split between phase 1 and phase 2 in differ-
ent ratios (LQNS approximate results). At low utilizations, more phase 2 is uniformly better, but as 
utlization increases, the best split moves towards the middle.

 

Modeling finite buffers: A finite buffer space, which blocks its senders when it is full, can be mod-
eled by a multi-threaded buffer task with second-phase interactions going into and coming out of the 
buffer. Each buffer space is modeled by a “thread” which immediately replies (releasing the sender) 
and then sends to the receiver (and waits until the receiver replies, to acknowledge receipt).

Modeling pipelines, using a third phase:  In a software pipeline each task has three parts to its 
processing; input, processing and output to the next stage. Because LQN workloads are described by 
average values for each activity, it may be important to separate these three rather than lumping them 
together.

TABLE 1. The impact of dividing a unit server demand between phase 1 and phase 2

Response time (sec) for different values of demand s = [phase 1, phase 2]

nusers s = [0,1.0] [0.2, 0.8] [0.4, 0.6] [0.6, 0.4] [0.8, 0.2] [ 1.0, 0]

1

4

7

10

15

20

0.166

1.125

3.066

4.8474

 9.9096

14.9381

 0.310

 0.726

 2.694

4.2741

9.4738

14.541

 0.464

 0.827

1.5087

3.8951

9.2281

14.323

 0.629

 0.996

 1.7928

3.98149

 9.2289

 14.318

 0.807

 1.269

 2.269

4.4927

9.5048

14.548

  0.999

 1.6420

 2.9256

5.221

 10.037

15.0120

store

Receiver    receive
   [0, work]

Sendersender

Buffer

 Sender  Buffer

store

receive

 Receiver

Receiver 
is busy

(0,1)

(2,0)

FIGURE 13. Modeling a finite buffer with blocking by a pool of B threads.  The buffer is full at the time 
of the second store.

B
threads
17



This is particularly clear in a pipeline with acknowledged handovers. Part 1 takes the message and 
acknowledges it to release the sending stage. Part 2 does the processing. Part 3 sends the output mes-
sage and may have to wait for the acknowledgement. If the output message were averaged into the 
Part 2 workload, then on average it would occur in the middle, and this would give an error in the 
stage delay of a factor of nearly 2.

In order to facilitate pipeline modeling with phases, a third phase has been made permissible, to 
model the output activity.

9.0  Logical resources (critical sections, locks, buffers)

The task entity in layered modeling is used to model any resource whatever. Buffers have been 
discussed above. Consider a critical section shared by processes on the same processor, in which all 
the processes execute the same code in the critical section (this is like a monitor); it can be modeled 
exactly as a task. the critical section code and workload, including I/O operations and messaging, is 
associatetd with the critical section task rather than the caller process.

If the processes execute different operations in the critical section, then the critical section 
“task” is an empty shell with no execution of its own, and with an entry for each caller... this entry 
calls a sort of shadow task defined for each process, which represents the critical section workload of 
that process. Only one of these shadow tasks can be active at once, and a queue of requests forms 
before the criticial section “task”. Effectively the calling processes are split into a component for the 
workload outside the critical section, and acomponent inside. If a caller is a multithreaded processes, 
or asynchronous (infinite-threaded) processes, the shadow task for it has the same number of threads.

The same approach can be applied to locking a table. A full lock system, with many separate 
locks, and read and write locks, requires special treatment. The queuing disciplines are somewhat 
arcane, and there are too many locks to represent each one separately. This is a subject of current 
research.

Memory and buffer resources can be modeled similarly, with a multiple “task” (the same des-
ignation as a multi-threaded task) to represent the resource, and with entries to activate the workload 
for each user.

10.0  Limitations

This is not a complete list, but notes some limitations that have come up:

• recursive calls are excluded (a task calling its own entries)... the approach for dealing with recur-
sive calls is to aggregate the demand into the first entry. Possibly this should be accommodated, 
but it requires an assumption that the same thread handles the recursive request (to avoid deadlock 
when threads are limited), which limits the behaviour of an entry.

• replication of subsystems (without defining all the replicas separately) is handled but only with 
restrictions; a thesis is available (Amy Pan).
18



• activity sequences which fork in one task and join in another can be solved by the simulation 
solver (parasrvn) but the analytic solver lqns has been inadequately tested for these cases, and 
may fail in various ways.

• external arrival flows may be specified into an entry, however a system with only external arrivals 
causes problems for the analytic solver. It is reccommended to define sources of traffic as tasks 
which make requests and block; this has the advantage that it never overruns the system. To 
obtain a source with a given throughput define a very large source population (size N) with a long 
thinking time Z between requests, and it will generate an arrival rate of roughly N/Z per sec. If it 
deviates greatly, this indicates that the system is heavily loaded.

• message loss is not modeled; current research may cure this.

• exceptions and timeouts are also not modeled, similar comment.

11.0  Reference material

See the web pages

• www.sce.carleton.ca/rads... for material on the larger project (RADS is the Real-time And Dis-
tributed Systems group at Carleton), and for software download.

• www.sce.carleton.ca/rads/lqn/documentation

• www.sce.carleton.ca/faculty/woodside for my bibliography material

Particularly recommended are:

•the Quality conference paper in 97, for an overview,

•the database modeling paper at ICDCS97, for a complete and rather complex case 
study,

•the software bottleneck paper in 95 for a discussion of saturation effects,

•the parallel service paper at WOSP98, regarding parallel services

•Examples of activity notation are given in the document “Parallel Activity Notation in 
LQNS” by Franks (1999).

12.0  Running the tools

LQNS has been compiled for Solaris, HP-UX and Linux, and for NT (actually, for GNU tools 
under DOS), It has a comprehensive manual page describing many options for diferent solver algo-
rithms, for tracing solutions and for printing more or less detail. The best reference on the many 
solver options is Greg Franks’ PhD thesis (1999).

The LQNS  input language is essentially documented by the comments in the example files ... 
. There is a BNF definition included in the more extensive discussion of acivity notation, in “Parallel 
Activity Notation in LQNS” by Franks.

Jlqndef is a graphical and text-window-based editor which shows a simple diagram of the 
model. It requires Java 1.1.3 or higher, with the “swing components”.
19



There is a useful tool called SPEX which is included in  the distribution, for running experi-
ments over sets of parameters. SPEX is a Perl script. You have to edit the textual version of the input 
model,and add specifications for control, for extraction of results, and for reporting results. Sets of 
runs can be done over any combination of parameter variations, and results are automatically tabu-
lated or plotted in Matlab. SPEX is documented in the spex.txt.

13.0  Questions

• Throughput refuses to increase when I introduce more resources. Search for a saturated resource; 
it may represent a modeling error. For instance, if one introduces more users, one must also intro-
duce more processors for them to run on. A simple expedient is to make any resource which 
should not be a limt, infinite. This is also solver-friendly, a infinite resources are easy.

• Convergence: what if my LQNS solution does not converge? The symptom is that the convergence 
value for the iterations is greater than the set value, typically 10^-6. Sometimes, especially in 
heavily loaded systems, the iterative solver will cycle and not converge. One cure which is some-
times effective is to reduce the value of the under-relaxation coefficient in the solver controls, 
from a typical value of 0.9 or 0.7 to a low value, of say 0.1. This is intended to force convergence 
by reducing the step size. If this does not succeed, then as long as the convergence value is less 
than 0.1, the solution found has some reasonable relationship to the correct value. (The size of the 
convergence value is the largest relative change from one iteration to the next, of any of the vari-
ables in the model; it does not directly indicate the size of errors, but if the solution is in fact 
cycling around the correct solution then all relative errors are probably smaller than this). A 
method which is ususally not effective is to increase the number of iteration steps. The basic 
recourse for greater accuracy is to simulate.

• Replication: how can I model a system with many repetitions of a subsystem within it? Provided 
the replications are identical in every respect, and divide all their interactions with the rest of the 
system equally, the replication feature of LQNS can give efficient solutions. The full documenta-
tion of this feature is in the Master’s thesis of Amy Pan. Briefly, any task can have a replication 
factor r, which means that multiple copies are created. If its processor has the same r, then each 
cophy has a separate processor. If it communicates with other tasks with the same r, it communi-
caties with just one of them, and the interactions are assumed to form r subsystems. Messages 
between tasks with different r must have values of fan-in (f) and fanout (o) such that the product 
of source (r times fanout) = destination (r times fan-in). These factors f and o describe the replica-
tion of the message arcs. Unfortunately replication does not work for models with activities, only 
with phases.

• Odd results for multiple servers: if I run for a series of values of m for server multiplicity, I may 
see rising throughput; then for m= infinity, the throughput drops a bit. How come? The waiting 
time calculation for a multiserver is an approximation, and errors of a few percent are to be 
expected. The infinite server queue is solved exactly (no waiting). If the anomaly is worrying, try 
a more exact multiserver algorithm by using “pragma -Pmultiserver=conway”, but it will take 
longer.

• Non-blocking systems: in my model the servers are asynchronous. A server processes each mes-
sage, whether a request or a reply, and then takes whatever message comes next. I never blocks to 
wait for a reply. How to model it? Such a server is modeled with infinite threads, allowing one 
active thread for each uncompleted request it is processing. This may be called virtual threads or 
data threads, since the request context, if any , is managed by user data.
20



• Solution Time: my LQNS solution takes a long time (a minute is long for a few tasks; 10 minutes 
is long for any model). Possible reasons are: (1) poor convergence (see below)... you may want to 
reduce the iterations or simulate; (2) a huge number of classes, generated by having a lot of sepa-
rate source tasks (“reference tasks” and lots of entries on worker tasks.... you could get faster 
results if the sources were combined into fewer tasks, with random splits to generate the requests 
they make into the service layers.(3) do you have a multiserver (not a reference task) with a large 
m (say, m> 20?)... or layered multiservers one above the other, with moderate m... multiserver 
solutions are only moderately expensive by the default algorithm, but the others cost more. You 
might consider whether it could as easily be infinite (if, say, its usage is well below the limit so the 
limit is not a factor). In any of these cases, you might try to simulate; there have been models that 
solved faster by simulation.

• Cycles: what do I do if my model has a synchronous messaging cycle? LQNS will refuse to solve 
a model, however it can be instructed to ignore the cycle checker with the pragma -Pcycles=allow. 
It then solves the model with an implicit assumption that if deadlocks are possible, they do not 
occur or are resolved. The simulator (parasrvn) will take a model with cycles at any time, how-
ever if a deadlock occurs as a result of a cycle, the simulation stops without any diagnostic.

• Delay: how can I get the result for delay from an input at one point, to a response completion 
somewhere else in the model? The cleanest approach is to introduce some special model elements: 
first, at the start of the response, introduce a pseudo-task R to capture the delay as its service time. 
It has zero demands (s = 0), has infinite multiplicity (code i) runs on its own processor or an infi-
nite processor, has deterministic phases (f = 1) and makes one synchronous call to the input point 
to start the response. Second, create a forwarding chain through the model along the path of the 
response, so that the reply is created at the completion point; the reply goes back to the pseudo-
task R, and ends its blocking state. 

• Simulation accuracy: how can I tell how accurate my simulation is? It is essential to get confi-
dence intervals out of the simulation. If you don’t know about these, you will have to consult a 
statistics text. Parasrvn will calculate confidence intervals for you, for all its results, if you run 
with the -A (automatic) or -B (batched) run options. These have the form -A,a,p,b or -B,n,b where 
b is a batch length in model time units, which should be say 100 times longer than the longest ser-
vice time in your model, and n is the number batches (suggest 30, which is the max allowed). For 
A, a is the accuracy target in 5 of mean values, p is the confidence leveel

14.0  Appendix: Model files

Model File reserv-templ.lqn

G
#Comments between quotes, as many lines as necessary
“Layered Queueing Network for a Web-based Reservation System”
#Convergence criterion, iteration limit, print interval, under-
relaxation
#Under-relaxation coefficient stabilizes the algorithm if less than 
1
0.0001
500
1

21



0.5
# End of General Information
-1

# Processor Information (the zero is necessary; it may also give the 
number of processors)
P 0
#SYNTAX: p ProcessorName SchedDiscipline [multiplicity, default = 
1]
# SchedDiscipline = f fifo|r random|p premptive|
# h hol or non-pre-empt|s proc-sharing
# multiplicity = m value (multiprocessor)|i (infinite)
p UserP f i
p ReservP f
p DBP f
p DBDiskP f
p ReservDiskP f
p CCReqP f i
# End of Processor Information
-1

# Task Information: (the zero is necessary; it may also give the 
number of tasks)
T 0
#SYNTAX: t TaskName RefFlag EntryList -1 ProcessorName [multiplic-
ity]
# TaskName is any string, globally unique among tasks
# RefFlag = r (reference or user task)|n (other)
# multiplicity = m value (multithreaded)|i (infinite)
t Users r users -1 UserP m 100
t Reserv n connect interact disconnect -1 ReservP m 5
t DB n dbupdate -1 DBP
t Netware n netware -1 ReservP
t DBDisk n dbDisk -1 DBDiskP
t ReservDisk n reservDisk -1 ReservDiskP
t CCReq n ccreq -1 CCReqP i
# End of Task Information
-1

#Entry Information: (the zero is necessary; it may also give the 
total number of entries)
E 0
# SYNTAX-FORM-A: Token EntryName Value1 [Value2] [Value3] -1
# EntryName is a string, globally unique over all entries
# Values are for phase 1, 2 and 3 (phase 1 is before the reply)
# Tokens indicate the significance of the Value:
# s HostServiceDemand for EntryName
# c HostServiceCoefficientofVariation
22



# f PhaseTypeFlag
# SYNTAX-FORM-B: Token FromEntry ToEntry Value1 [Value2] [Value3] -
1
# Tokens indicate the Value Definitions:
# y SynchronousCalls (no. of rendezvous)
# F ProbForwarding (forward to ToEntry rather than replying)
# z AsynchronousCalls (no. of send-no-reply messages)
# o Fanout (for replicated servers)(ignore this)
# i FanIn (for replicated servers)(ignore this)
# This example only shows use of host demands and synchronous 
requests
s users 0 56 0 -1
y users connect 0 1 0 -1
y users interact 0 6 0 -1
y users disconnect 0 1 0 -1
s connect 0.001 0 0 -1
y connect netware 1 0 0 -1
s interact 0.0014 0 0 -1
y interact netware 1 0 0 -1
y interact ccreq 0.1 0 0 -1
y interact dbupdate 1.15 0 0 -1
s disconnect 0.0001 0.0007 0 -1
y disconnect netware 1 0 0 -1
y disconnect dbupdate 1 0 0 -1
s netware 0.0012 0 0 -1
y netware reservDisk 1.5 0 0 -1
s dbupdate 0.0085 0 0 -1
y dbupdate dbDisk 2 0 0 -1
s ccreq 3 0 0 -1
s reservDisk 0.011 0 0 -1
s dbDisk 0.011 0 0 -1
#End of Entry Information
-1

Model File activity-templ.lqn

#This template documents the use of activities in depth
#It assumes familiarity with other features documented in reserv-
template.lqn
# or in template.lqn
G “Activity template” 1e-06 50 5 0.9 -1

P 0
  p UserP f i
  p ServerP s#processor sharing at the server
  p Disk1P f
  p Disk2P f
-1
23



T 0
  t User r  user -1 UserP  z 50 m 50
  t Server n server -1 ServerP  m 4#4 threads with activities
  t BigLoop n bigLoop -1 ServerP i  #pseudo-task for a complex loop 
pattern
  t Disk1 n disk1read disk1write -1 Disk1P 
  t Disk2 n disk2read disk2write -1 Disk2P 
-1

E 0
  s  user  1.0 -1
  f user 1 -1
  y  user server 1 -1#one request to the server per cycle
  A  server  serverStart#entry server is defined by
#activities, with the first one being serverStart
  A  bigLoop  bigLoopStart
  s  disk1read  0.04 -1#operation time of this entry
  s  disk1write 0.04 -1
  s  disk2read  0.03 -1
  s  disk2write 0.03 -1
-1

#Optional sections for definition of activities
# One section for each task that has activities, beginning A 
TaskName
# list of activity parameters, using the syntax for entry parame-
ters, but
# with just one value and no terminator -1
# : (separator), then a section for precedence among activities
# Syntax for precedence:
# a1 -> a2 for sequence
# a1 -> a2 & a3 ... AND-fork (any number)
# a1 & a2 ... -> a3   AND join
# a1 & a2 ... -> a3 & a4 ... AND join followed by AND fork
# a1 -> (prob2)a2 + (prob3)a3 ... OR fork (any number, with prob-
abilities)
# a1 -> meanCount*a2,a3....for a repeated activity a2, followed 
by a3
# (notice that activities that follow a2 are inside the loop)
# a6[entryName] indicates that after a6, a reply will be sent
# to entryName

A  Server
  s  serverStart  0.0#every activity that is used must have a host 
demand
  s  seqInit  0.3
  s  parInit  0.1
24



  s  parA  0.05
  y  parA disk1read 1.3#average of 1.3 read operations
  s  parB  0.08
  y  parB disk2read 2.1
  s  parReply  0.01
  s  loopOperation  0.1
  y loopOperation disk1read 0.7
  s  loop2 0
  f  bigLoopDriver 1#exactly one call operation (deterministic)
  y bigLoopDriver bigLoop 1#trigger the pseudo-task for the complex 
loop
  s seqReply 0.005
  s loopEnd 0
:
  serverStart -> (0.4)seqInit + (0.6)parInit;
  parInit -> parA & parB;
  parA & parB -> parReply;
  parReply[server];#reply for the parallel branch
  seqInit -> 3.5* loopOperation, loopEnd;
  loopOperation -> loop2;#this activity is also in the loop
  loopEnd -> 1.2* bigLoopDriver, seqReply;#big loop is executed 
avge 1.2times
  seqReply[server]#reply for the sequential branch
-1

A BigLoop#activities for the loop pseudo-task
# (a loop pseudo-task is needed if there is a fork-join within a 
loop)
s first 0.01#execute
f second 1#deterministic sequence in this activity
y second disk1write 1 #exactly one file write on this branch
y third disk2write 1#average of one write on this branch
s fourth 0.13#execute only
:
bigLoopStart -> first;
first -> second & third;
second & third -> fourth;
fourth[bigLoop]#generate the reply from the pseudo task, ending the 
loop op
-1
25


	1.0 Software Server Concept
	2.0 Layered queuing concepts
	3.0 Tools: the LQNS solver, the simulator, and their modeling language
	4.0 Task resources, queueing, and multiplicity (threads)
	4.1 Pseudo-tasks to represent modules (objects or subsystems)

	5.0 Blocking calls and other styles of interaction
	5.1 Workload parameters of an activity: summary so far

	6.0 Performance measures: Service time and utilization values for an entry or a task.
	7.0 Adding detail with activities within an entry
	8.0 Service with a Second Phase
	9.0 Logical resources (critical sections, locks, buffers)
	10.0 Limitations
	11.0 Reference material
	12.0 Running the tools
	13.0 Questions
	14.0 Appendix: Model files

