
LQX Users Guide
General Purpose Language for Simulation Modeling
Tuesday, 3 February 2009 - Martin Mroz

Contents

2

1 Introduction to LQX

The LQX programming language is a general purpose programming language used for the control of input
parameters to the Layer Queueing Network Solversystem for the purposes of sensitivity analysis. This
language allows a user to perform a wide range of different actions on a variety of different input sources,
and to subsequently solve the model and control the output of the resulting data.

1.1 Input File Format

The LQX programming language follows grammar rules which are very similar to those of ANSI C and PHP.
The main difference between these languages and LQX is that LQX is a loosely typed language with strict
runtime type-checking and a lack of variable coercion (“type casting”). Additionally, variables need not be
declared before their first use. They do, however, have to be initialized. If they are un-initialized prior to
their first use, the program will fail.

1.1.1 Comment Style

LQX supports two of the most common commenting syntaxes, “C-style” and “C++-style.” Any time the
scanner discovers two forward slashes side-by-side (//), it skips any remaining text on that line (until it
reaches a newline). These are “C++-style” comments. The other rule that the scanner uses is that should it
encounter a forward slash followed by an asterisk (“/*”), it will ignore any text it finds up until a terminating
asterisk followed by a slash (“*/”). The preferred commenting style in LQX programs is to use “C++-style”
comments for single-line comments and to use “C-style” comments where they span multiple lines. This is
a matter of style.

1.1.2 Intrinsic Types

There are 5 intrinsic types in the LQX programming languages:

• Number: All numbers are stored in IEEE double-precision floating point format.

• String: Any literal values between (“) and (”) in the input.

• Null: This is a special type used to refer to an “empty” variable.

• Boolean: A type whose value is limited to either “true” or “false.”

• Object: An semi-opaque type used for storing complex objects. See “Objects.”

• File Handle File handles to open files for writing/appending or reading. See “File Handles.”

LQX also supports a pseudo-intrinsic “Array” type. Whereas for any other object types, the only way to
interact with them is to explicitly invoke a method on them, objects of type Array may be accessed with
operator [] and with operator []=, in a familiar C- and C++-style syntax.

The Object type also allows certain attributes to be exposed as “properties.” These values are accessed with
the traditional C-style object.property syntax. An example property is the size property for an object
of type Array, accessed as array.size Only instances of type Object or its derivatives have properties.
Number, String, Null and Boolean instances all have no properties.

3

1.1.3 Arrays and Iteration

The built-in Array type is very similar to that used by PHP. It is actually a hash table, also known as
a “Dictionary” or a “Map” for which you may use any object as a key, and any object as a value. It is
important to realize that different types of keys will reference different entries. That is to say that integer
0 and string ‘‘0’’ will not yield the same value from the Array when used as a key.

The Array object exposes a couple of convenience APIs, as detailed in Appendix A. These methods are
simply short-hand notation for the full function calls they replace, and provide no additional functionality.
Arrays may be created in three different ways:

• array create(...) and array create map(key,value,...):
The explicit, but long and wordy way of creating an array of objects or a map is by using the standard
functional API. array create(...) takes an arbitrary number of parameters (from 0 up to the
maximum specified, for all practical purposes infinity), and returns a new Array instance consisting of
[0=>arg1, 1=>arg2, 2=>arg3, ...].

The other function, array create map(key,value,...) takes an even number of arguments, from 0
to 2n. The first argument is used as the key, and the second argument used as the value for that key,
and so on. The resulting Array instance consists of [arg1=>arg2, arg3=>arg4, ...]. Both of these
methods are documented in Appendix A.

• [arg1, arg2, ...]: Shorthand notation for array create(...)

• {k1=>v1, k2=>v2, ...}: Shorthand notation for array create map(...)

The LQX language supports two different methods of iterating over the contents of an Array. The first
involves knowing what the keys in the array actually are. This is a “traditional” iteration.

1 /∗ Trad i t i ona l Array I t e r a t i o n ∗/
2 for (idx = 0 ; key < array . s i z e ; idx=idx+1) {
3 pr in t ("Key " , idx , " => " , array [idx]) ;
4 }

In the above code snippet, we assume there exists an array which contains n values, stored at indexes 0
through n-1, continuously. However, the language provides a more elegant method for iterating over the
contents of an array which does not require prior knowledge of the contents of the array. This is known as
a “foreach” loop. The statement above can be rewritten as follows:

1 /∗ More modern array i t t e r a t i o n ∗/
2 f o r each (key , va lue in array) {
3 pr in t ("Key " , key , " => " , va lue) ;
4 }

This method of iteration is much cleaner and is the recommended way of iterating over the contents of an
array. However, there is little guarantee of the order of the results in a foreach loop, especially when keys
of multiple different types are used.

4

1.1.4 Type Casting

The LQX programming language provides a number of built-in methods for converting between variables
of different types. Any of these methods support any input value type except for the Object type. The
following is a non-extensive list of use cases for each of the different type casting methods and the results.
Complete documentation is provided in Appendix A.

str(...)
str() “”
str(1.0) “1”
str(1.0, "+", true) “1+true”
str([1.0, "t"]) “[0=>1, 1=>t]”
str(null) “(null)”

double(?)
double(1.0) 1.0
double(null) 0.0
double("9") 9.0
double(true) 1.0
double([0]) null

boolean(?)
boolean(1.0) true

boolean(17.0) true

boolean(-9.0) true

boolean(0.0) false

boolean(null) false

boolean("yes") true

boolean(true) true

boolean([0]) null

1.1.5 User-Defined Functions

The LQX programming language has support for user-defined functions. When defined in the language,
functions do not check their arguments types so every effort must be taken to ensure that arguments are
the type that you expect them to be. The number of arguments will be checked. Variable-length argument
lists are also supported with the use of the ellipsis (...) notation. Any arguments given that fall into the
ellipsis are converted into an array named (va list) in the functions’ scope. This is a regular instance of
Array consisting of 0 or more items and can be operated on using any of the standard operators.

User-defined functions do not have access to any variables except their arguments and External ($-prefixed)
and Constant (@-prefixed) variables. Any additional variables must be passed in as arguments, and all
values must be returned. All arguments are in only. There are no out or inout arguments supported. All
arguments are copied, pass-by-value. The basic syntax for declaring functions is as follows:

1 f unc t i on <name>(<arg1>, <arg2>, . . .) {
2 <body>
3 return (va lue) ;
4 }

You can return a value from a function anywhere in the body using the return function. A function which
reaches the end of its body without a call to return will automatically return NULL. return() is a function,
not a language construct, and as such the brackets are required. The number of arguments is not limited,
so long as each one has a unique name there are no other constraints.

5

1.2 Writing Programs in LQX

1.2.1 Hello, World Program

A good place to start learning how to write programs in LQX is of course the traditional Hello World
program. This would actually be a single line, and is not particularly interesting. This would be as follows:

1 p r i n t l n ("Hello , World!") ;

The “println()” function takes an arbitrary number of arguments of any type and will output them (barring
a file handle as the first parameter) to standard output, followed by a newline.

1.2.2 Fibonacci Sequence

This particular program is a great example of how to perform flow control using the LQX programming
language. The Fibonacci sequence is an extremely simple infinite sequence which is defined as the following
piecewise function:

fib(X) =

{

1 x = 0, 1
fib(x− 1) + fib(x− 2) otherwise

(1)

Thus we can see that the Fibonacci sequence is defined as a recursive sequence. The naive approach would
be to write this code as a recursive function. However, this is extremely inefficient as the overhead of even
simple recursion in LQX can be substantial. The best way is to roll the algorithm into into a loop of some
type. In this case, the loop is terminated when we have reached a target number in the Fibonacci sequence
{ 1, 1, 2, 3, 5, 8, 13, 21, ...}.

1 /∗ I n i t i a l Values ∗/
2 f ib n minus two = 1 ;
3 f i b n minus one = 1 ;
4 f i b n = 0 ;
5

6 /∗ Loop un t i l we reach 21 ∗/
7 while (f i b n < 21) {
8 f i b n = f ib n minus one + f ib n minus two ;
9 f ib n minus two = f ib n minus one ;

10 f i b n minus one = f i b n ;
11 p r i n t l n ("Currently: " , f i b n) ;
12 }

As you can see, this language is extremely similar to C or PHP. One of the few differences as far as expressions
are concerned is that pre-increment/decrement and post-increment/decrement are not supported. Neither
are short form expressions such as +=, -=, *=, /=, etc.

6

1.2.3 Re-using Code Sections

Many times, there will be code in your LQX programs that you would like to invoke in many places, varying
only the parameters. The LQX programming language does provide a pretty standard functions system as
described earlier. Bearing in mind the caveats (some degree of overhead in function calls, plus the inability
to see global variables without having them passed in), we can make pretty ingenious use of user-defined
functions within LQX code.

When defining functions, you can specify only the number of arguments, not their types, so you need to
make sure things are what you expect them to be, or your code may not perform as you expect. We will
begin by demonstrating a substantially shorter (but as described earlier) much less efficient implementation
of the Fibonacci Sequence using functions and recursion.

1 f unc t i on f i b (n) {
2 i f (n == 0 | | n == 1) { return (1) ; }
3 return (f i b (n−2) + f i b (n−1)) ;
4 }

Once defined, a function may be used anywhere in your code, even in other user defined functions (and itself
— recursively). This particular example functions very well for the first 10-11 fibonacci numbers but becomes
substantially slower due to the increased number of relatively expensive function invocations. Remember,
return() is a function, not a language construct. The brackets are required.

A much more interesting use of functions, specifically those with variable length argument lists, is an imple-
mentation of the formula for standard deviation of a set of values:

1 f unc t i on average (/∗Array<double>∗/ i nputs) {
2 double sum = 0 . 0 ;
3 f o r each (v in inputs) { sum = sum + v ; }
4 return (sum / inputs . s i z e) ;
5 }
6

7 f unc t i on stdev (/∗ boolean ∗/ sample , . . .) {
8 x bar = average (v a l i s t) ;
9 s um o f d i f f = 0 . 0 ;

10

11 /∗ Figure out the d i v i s o r ∗/
12 d i v i s o r = v a l i s t . s i z e ;
13 i f (sample == true) {
14 d i v i s o r = d i v i s o r − 1 ;
15 }
16

17 /∗ Compute sum of d i f f e r e n c e ∗/
18 f o r each (v in v a l i s t) {
19 s um o f d i f f = s um o f d i f f + pow(v − x bar , 2) ;
20 }
21

22 return (pow(s um o f d i f f / d i v i s o r , 0 . 5)) ;
23 }

You can then proceed to compute the standard deviation of the variable length of arguments for either
sample or non-sample values as follows, from anywhere in your program after it has been defined:

1 stdev (true , 1 , 2 , 5 , 7 , 9 , 1 1) ;
2 stdev (false , 2 , 9 , 3 , 4 , 2) ;

7

1.2.4 Using and Iterating over Arrays

As mentioned in the “Arrays and Iteration” under section 1.1 of the Manual, LQX supports intrinsic arrays
and foreach iteration. Additionally, any type of object may be used as either a key or a value in the array.
The following example illustrates how values may be added to an array, and how you can iterate over its
contents and print it out. The following snippet creates an array, stores some key-value pairs with different
types of keys and values, looks up a couple of them and then iterates over all of them.

1 /∗ Create an Array ∗/
2 array = array \ c r e a t e () ;
3

4 /∗ Store some key−value pa i r s ∗/
5 array [0] = "Slappy" ;
6 array [1] = "Skippy" ;
7 array [2] = "Jimmy" ;
8

9 /∗ I t e r a t e over the names ∗/
10 f o r each (index , name in array) {
11 pr in t ("Chipmunk #" , index , " = " , name) ;
12 }
13

14 /∗ Store v a r i a b l e s o f d i f f e r e n t types , shorthand ∗/
15 array = {true => 1 . 0 , fa l se => 3 . 0 , "one" => true , "three" => fa l se }
16

17 /∗ Shorthand indexed c r e a t i on with i t e r a t i o n ∗/
18 f o r each (va lue in [1 , 1 , 2 , 3 , 5 , 8 , 1 3]) {
19 pr in t ("Next fibonacci is " , va lue) ;
20 }

1.3 Program Input/Output and External Control

The LQX language allows users to write formatted output to external files and standard output and to read
input data from external files/pipes and standard input. These features may be combined to allow LQNX to
be controlled by a parent process as a child process providing model solving functionality. These capabilities
will be described in the following sections.

1.3.1 File Handles

The LQX language allows users to open files for program input and output. Handles to these open files are
stored in the symbol table for use by the print() functions for file output and the read data() function for
data input. Files may be opened for writing/appending or for reading. The LQX interpreter keeps track of
which file handles were opened for writing and which were opened for reading.

The following command opens a file for writing. If it exists it is overwritten. It is also possible to append to
an existing file. The three options for the third parameter are write, append, and read.

file open(output file1, "test output 99-peva.txt", write);

To close an open file handle the following command is used.

file close(output file1);

8

1.3.2 File Output

Program output to both files and standard output is possible with the print functions. If the first parameter
to the functions is an existing file handle opened for writing output is directed to that file. If the first
parameter is not a file handle output is sent to standard output. Standard output is useful when it is desired
to control LQNX execution from a parent process using pipes. If the given file handle has been opened for
reading instead of writing a runtime error results.

There are four variations of print commands with two options. One option is a newline at the end of the
line. It is possible to specify additional newlines with the endl parameter. The second option is controlling
the spacing between columns either by specifying column widths in integers or supplying a text string to be
placed between columns.

The basic print functions are print() and println() with the ln specifying a newline at the end.

println(output file1, "Model run #: ", i, " t1.throughput: ", t1.throughput);

print(output file1, "Model run #: ", i, " t1.throughput: ", t1.throughput, endl);

It should be noted that with the extra endl parameter both of these calls will produce the same output. The
acceptable inputs to all print functions are valid file handles, quoted strings, LQX variables that evaluate
to numerical or boolean values (or expressions that evaluate to numerical/boolean values) as well as the
newline specifier endl. Parameters should be separated by commas.

To print to standard output no file handle is specified as follows:

println("subprocess lqns run #: ", i, " t1.throughput: ", t1.throughput);

To specify the content between columns the print functions print spaced() and println spaced() are
used. The first parameter after the file handle (the second parameter when a file handle is specified) is used
to specify either column widths or a text string to be placed between columns. If no file handle is specified
as when printing to standard output then the first parameter is expected to be the spacing specifier. The
specifier must be either an integer or a string.

The following println spaced() command specifies the string ", " to be placed between columns. It
could be used to create comma separated value (csv) files.

println spaced(output file2, ", ", $p1, $p2, $y1, $y2, t1.throughput);

Example output: 0, 2, 0.1, 0.05, 0.0907554

The following println spaced() command specifies the integer 12 as the column width.

println spaced(output file3, 12, $p1, $p2, $y1, $y2, t1.throughput);

1.3.3 Reading Input Data from Files/Pipes

Reading data from input files/pipes is done with the read data() function. Data can either be read from
a valid file handle that has been opened for reading or from standard input. Reading data from standard
input is useful when is useful when it is desired to control LQNX execution from a parent process using
pipes. If the given file handle has been opened for writing rather than reading a runtime error results. The
first parameter is either a valid file handle for reading or the strings stdout or - specifying standard input.
The data that can be read can be either numerical values or boolean values.

9

There are two forms in which the read data() function can be used. The first is by specifying a list of LQX
variables which correspond to the expected inputs from the file/pipe. This requires the data inputs from the
pipe to be in the expected order.

read data(input file, y, p, keep running);

The second form in which the read data() function can be used is much more robust. It can go into a
loop attempting to read string/value pairs from the input pipe until a termination string STOP READ is
encountered. The string must corespond to an existing LQX variable (either numeric or boolean) and the
corresponding value must be of the same type.

read data(stdin, read loop);

Sample input:

y 10.0 p 1.0 STOP READ

continue processing false STOP READ

1.3.4 Controlling LQNX from a Parent Process

The file output and data reading functions can be combined to allow an LQNX process to be created and
controlled by a parent process through pipes. Input data can be read in from pipes, be used to solve a
model with those parameters and the output of the solve can be sent back through the pipes to the parent
process for analysis. A LQX program can easily be written to contain a main loop that reads input, solves
the model, and returns output for analysis. The termination of the loop can be controlled by a boolean flag
that can be set from the parent process.

This section describes an example of how to control LQNX execution from a parent process, in this case a
perl script which uses the open2() function to create a child process with both the standard input and
output mapped to file handles in the perl parent process. This allows data sent from the parent to be read
with read data(stdin, ...) and output from the LQX print statements sent to standard output to be received
for analysis in the parent.

This also provides synchronization between the parent and the child LQNX processes. The read data()
function blocks the LQNX process until it has received its expected data. Similarly the parent process can
be programmed to wait for feedback from the child LQNX process before it continues.

The following is an example perl script that can be used to control a LQNX child process.

1 #!/ usr / bin / p e r l −w
2 # s c r i p t to t e s t the c r e a t i on and con t r o l o f an lqns s o l v e r subproces s
3 # using the LQX language with synchron i za t i on
4

5 use Fi leHandle ;
6 use IPC : : Open2 ;
7

8 @phases = (0 . 0 , 0 . 25 , 0 . 5 , 0 . 75 , 1 . 0) ;
9 @ca l l s = (0 . 1 , 3 . 0 , 10 .0) ;

10

11 # run lqnx as subproces s r e c e i v i n g data from standard input
12 open2 (∗ lqnxOutput , ∗ lqnxInput , "lqnx 99-peva -pipe.lqnx") ;
13

14 for $ c a l l (@ca l l s) {
15 for $phase (@phases) {

10

16 print (lqnxInput "y " , $ c a l l , " p " , $phase , " STOP_READ ") ;
17 while ($response = <lqnxOutput>) ! ˜ m/ subproces s lqns run/){}
18 print ("Response from lqnx subprocess: " , $ re sponse) ;
19 }
20 }
21

22 # send data to terminate lqnx proce s s
23 print (lqnxInput "continue_processing false STOP_READ") ;

The above program invokes the lqnx program with its input file as a child process with open2(). Two file
handles are passed as parameters. These will be used to send data over the pipe to the LQNX process to
be received as standard input and to receive feedback from the LQX program which it sends as standard
output.

The while loop at line 17 waits for the desired feedback from the model solve before continuing. This
example uses stored data but a real application such as optimization would need to analyze the feedback
data to decide which data to send back in the next iteration therefore this synchronization is important.

When the data is exhausted the LQNX process needs to be told to quit. This is done with the final print
statement which sets the continue processing flag to false. This causes the main loop in the LQX program
which follows to quit.

1 <lqx ><![CDATA[
2

3 i = 1 ;
4 p = 0 . 0 ;
5 y = 0 . 0 ;
6 c on t i nu e p r o c e s s i n g = true ;
7

8 while (c on t i nu e p r o c e s s i n g) {
9

10 read data (std in , r ead loop) ; /∗ read data from input pipe ∗/
11

12 i f (c on t i nu e p r o c e s s i n g) {
13

14 $p1 = 2 .0 ∗ p ;
15 $p2 = 2 .0 ∗ (1 − p) ;
16 $y1 = y ;
17 $y2 = 0 .5 ∗ y ;
18 s o l v e () ;
19

20 /∗ send output o f s o l v e through stdout through pipe ∗/
21 p r i n t l n ("subprocess lqns run #: " , i , " t1.throughput: " , t1 . throughput) ;
22 i = i + 1 ;
23 }
24 }
25]]></ lqx>

The variables p, y, and continue processing all need to be initialized to their correct types before the loop
begins as they need to exist when the read data() function searches for them in the symbol table. This is
necessary as they are all local variables. External variables that exist in the LQN model such as $p and $y

don’t need initialization.

11

1.4 Actual Example of an LQX Model Program

The following LQX code is the complete LQX program for the model designated peva-99. The model itself
contains a few model parameters which the LQX code configures, notably $p1, $p2, $y1 and $y2. The
LQX program is responsible for setting the values of all model parameters at least once, invoking solve and
optionally printing out certain result values. Accessing of result values is done via the LQNS bindings API
documented in Section 3.

The program begins by defining an array of values that it will be setting for each of the external variables.
By enumerating as follows, the program will set the variables for the cross product of phase and calls.

1 phase = [0 . 0 , 0 . 25 , 0 . 5 , 0 . 75 , 1 . 0] ;
2 c a l l s = [0 . 1 , 3 . 0 , 10 .0] ;
3 f o r each (idx , p in phase) {
4 f o r each (idx , y in c a l l s) {

Next, the program uses the input values p and y to compute the values of $p1, $p2, $y1 and $y2. Any
assignment to a variable beginning with a $ requires that variable to have been defined externally, within
the model definition. When such an assignment is made the value of the right-hand side is effectively put
everywhere the left-hand side is found within the model.

5 $p1 = 2 .0 ∗ p ;
6 $p2 = 2 .0 ∗ (1 − p) ;
7 $y1 = y ;
8 $y2 = 0 .5 ∗ y ;

Since all variables have now been set, the program invokes the solve function with its optional parameter, the
suffix to use for the output file of the current run. This particular program outputs in.out-$p1-$p2-$y1-$y2
files, so that results for a given set of input values can easily be found. As shown in the documentation in
Section 3, solve(<opt> suffix) will return a boolean indicating whether or not the solution converged,
and this program will abort when that happens, although that is certainly not a requirement.

9 i f (s o l v e (s t r ($p1 , "-" , $p2 , "-" , $y1 , "-" , $y2)) == fa l se) {
10 p r i n t l n ("peva -99.xml:LQX: Failed to solve the model properly.") ;
11 abort (1 , "Failed to solve the model.") ;
12 } else {

The remainder of the program outputs a small table of results for certain key values of interest to the person
running the solution using the APIs in Section 3.

13 t0 = task ("t0") ;
14 p0 = proc e s s o r ("p0") ;
15 e0 = entry ("e0") ;
16 ph1 = phase (e0 , 1) ;
17 ctoe1 = c a l l (ph1 , "e1") ;
18 p r i n t l n ("+-------------------------------------+") ;
19 p r i n t l n ("t0 Throughput: " , t0 . throughput) ;
20 p r i n t l n ("t0 Utilization: " , t0 . u t i l i z a t i o n) ;
21 p r i n t l n ("+ ----- +") ;
22 p r i n t l n ("e0 Throughput: " , e0 . throughput) ;
23 p r i n t l n ("e0 TP Bound: " , e0 . throughput bound) ;
24 p r i n t l n ("e0 Utilization: " , e0 . u t i l i z a t i o n) ;
25 p r i n t l n ("+ ----- +") ;
26 p r i n t l n ("ph Utilization: " , ph1 . u t i l i z a t i o n) ;
27 p r i n t l n ("ph Svt Variance:" , ph1 . s e r v i c e t ime v) ;
28 p r i n t l n ("ph Service Time:" , ph1 . s e r v i c e t ime) ;

12

29 p r i n t l n ("ph Proc Waiting:" , ph1 . p roc wa i t ing) ;
30 p r i n t l n ("+ ----- +") ;
31 p r i n t l n ("call Wait Time: " , c toe1 . wa i t t ime) ;
32 p r i n t l n ("+-------------------------------------+") ;
33 }
34 }
35 }

13

2 API Documentation

2.1 Built-in Class: Array

Summary of Attributes
numeric size The number of key-value pairs stored in the array.

Summary of Constructors
object[Array] array create(...) This method returns a new instance of the Ar-

ray class, where each the first argument to the
method is mapped to index numeric(0), the second
one to numeric(1) and so on, yielding [0=>arg0,

1=>arg1, ...]

object[Array] array create map(k,v,...) This method returns a new instance of the Array
class where the first argument to the construc-
tor is used as the key, and the second is used
as the value, and so on. The result is a n array
[arg0=>arg1, arg2=>arg3,...]

Summary of Methods
null array set(object[Array] a,

? key, ? value)

This method sets the value value of any type
for the key key of any type, for array a. The
shorthand notation for this operation is to use the
operator [].

ref<?> array get(object[Array] a,

? key)

This method obtains a reference to the slot in the
array a for the key key. If there is no value de-
fined in the array yet for the given key, a new slot
is created for that key, assigned to NULL, and a
reference returned.

boolean array has(object[Array] a,

? key)

Returns whether or not there is a value defined on
array a for the given key, key.

14

2.2 Built-in Global Methods and Constants

2.2.1 Intrinsic Constants

Summary of Constants
double @infinity IEEE floating-point numeric infinity.
double @type un The type id for an Undefined Variable.
double @type boolean The type id for a Boolean Variable.
double @type double The type id for a Numeric Variable.
double @type string The type id for a String Variable.
double @type null The type id for a Null Variable.

2.2.2 General Utility Functions

Summary of Methods
null abort(numeric n, string r) This call will immediately halt the flow of the pro-

gram, with failure code n and description string r.
This cannot be “caught” in any way by the pro-
gram and will result in the interpreter not execut-
ing any more of the program.

null copyright() Displays the LQX copyright message.
null print symbol table() This is a very useful debugging tool which output

the name and value of all variables in the current
interpreter scope.

null print special table() This is also a useful debugging tool which outputs
the name and value of all special (External and
Constant) variables in the interpreter scope.

numeric type id(? any) This method returns the Type ID of any variable,
including intrinsic types (numeric, boolean, null,
etc.) and the result can be matched to the con-
stants prefixed with @type (@type null, @type un,
@type double, etc.)

null return(? any) This method will return any value from a user-
defined function. This method cannot be used in
global scope.

2.2.3 Numeric/Floating-Point Utility Functions

Summary of Methods
numeric abs(numeric n) Returns the absolute value of the argument n
numeric ceil(numeric n) Returns the value of n rounded up.
numeric floor(numeric n) Returns the value of n rounded down.
numeric pow(numeric bas, numeric x) Returns bas to the power x.

15

2.2.4 Type-casting Functions

Summary of Methods
string str(...) This method will return the same value as the

function print(...) would have displayed on the
screen. Each argument is coerced to a string and
then adjacent values are concatenated.

numeric double(? x) This method will return 1.0 or 0.0 if provided a
boolean of true or false respectively. It will re-
turn the passed value for a double, 0.0 for a null
and fail (NULL) for an object. If it was passed a
string, it will attempt to convert it to a double.
If the whole string was not numeric, it will return
NULL, otherwise it will return the decoded nu-
meric value.

boolean bool(? x) This method will return true for a numeric value
of (not 0.0), a boolean true or a string “true” or
“yes”. It will return false for a numeric value 0.0,
a NULL or a string “false” or “no”, or a boolean
false. It will return NULL otherwise.

16

3 API Documentation for the LQNS Bindings

3.1 LQNS2 Class: Processor

Summary of Attributes
double utilization The utilization of the Processor

Summary of Constructors
Processor processor(string name) Returns an instance of Processor from the current

LQNS2 model with the given name.

3.2 LQNS2 Class: Task

Summary of Attributes
double throughput The throughput of the Task
double utilization The utilization of the Task
double proc utilization This Task’s processor utilization
Array phase utilizations Individual phase utilizations

Summary of Constructors
Task task(string name) Returns an instance of Task from the current

LQNS2 model with the given name.

3.3 LQNS2 Class: Entry

Summary of Attributes
double throughput Entry throughput
double throughput bound Entry throughput bound
double utilization Entry utilization
double proc utilization Entry processor utilization
double coeff variation sq Squared coefficient of variation
double open wait time Entry open wait time
boolean has phase 1 Whether the entry has a phase 1 result
boolean has phase 2 Whether the entry has a phase 2 result
boolean has open wait time Whether the entry has an open wait time
double ph 1 service time Phase 1 Service Time
double ph 1 service time v Phase 1 Service Time Variance
double ph 1 proc waiting Phase 1 Processor Wait Time
double ph 2 service time Phase 2 Service Time
double ph 2 service time v Phase 2 Service Time Variance
double ph 2 proc waiting Phase 2 Processor Wait Time

Summary of Constructors
Entry entry(string name) Returns the Entry object for the model entry

whose name is given as name

17

3.4 LQNS2 Class: Phase

Summary of Attributes
double service time Phase service time
double service time v Phase service time variance
double utilization Phase utilization
double proc waiting Phases’ processor waiting time

Summary of Constructors
Phase phase(object entry,

numeric int nr)

Returns the Phase object for a given entry’s phase
number specified as nr

3.5 LQNS2 Class: Call

Summary of Attributes
double wait time Call waiting time

Summary of Constructors
Call call(object phase, string

destinationEntry)

Returns the call from an entry’s phase (phase) to
the destination entry whose name is (dest)

3.6 LQNS2 Class: Activity

Summary of Attributes
double service time Activity service time
double service time v Activity service time variance
double utilization Activity utilization
double proc waiting Activities’ processor waiting time
double cv squared The square of the coefficient of variation
double throughput The activity throughput
double proc utilization The activities’ share of the processor utilization

Summary of Constructors
Activity activity(object task,

string name)

Returns an instance of Activity from the current
LQNS2 model, whose name corresponds to an ac-
tivity in the given task.

18

