
s

 of

 com-

mes

of a

ror-

nviron-

er sub-

us. To

N

t is

 a

el is

ists of

 the

 web

ent.
Components In Layered Queueing Network

D. McMullan

1.0 Introduction

Layered queuing networks (LQNs) have been used to model and evaluate performance

many different systems such as web servers[1] and network file systems[2]. Many of these

mon systems may occur as parts of larger systems. If the same subsystem occurs many ti

within a larger system, it must be modeled repeatedly. As a result, building an LQN model

large system that has a number of identical or similar subsystems becomes tedious and er

prone, especially if the subsystems are also large or have complex interactions with their e

ments. Evaluating alternative LQN models where particular subsystems are replaced by oth

systems requires the larger model to be reconstructed for each alternative. This is also tedio

address these concerns, the concept of an LQN component is introduced.

A component is a pre-constructed LQN sub-model that can be plugged into another LQ

model. A component is different from a normal model in that it declares a public interface. I

through its interface that a component is bound to its external environment. In order to plug

component into a larger model, knowledge of the internal structure of the component’s mod

not needed. All that is needed is knowledge of the component’s interface. The interface cons

the services the component provides, the requests it makes to its external environment and

processors that may be replaced by external processors.

Sub-systems of the same type are not necessarily identical. For example, consider two

servers at different sites both running the same server program on the same type of equipm
Components In Layered Queueing Networks October 2, 2001 1

ly run

erver

s. To

,

oriented

 compo-

ing a

his

. Each

d differ-

ex lay-

mpati-

larger

nce

les to

ng

eces-

ses. To

ompo-

med.
One site may be configured to run up to 1000 http daemons at a time while the other may on

up to 50. A model of the larger system containing the web servers would include two web s

components that differ only by a configuration parameter; the maximum number of daemon

allow different configurations of components while still maintaining a single component type

component classes are introduced. Component classes are similar to classes from object-

programming languages. Each component is an instance of a component class. When the

nent is instantiated, it is parameterized to the configuration it has in the external model. By us

component class, many different components may be created from the same template. In t

example, two web servers can be instantiated from the same web server component class

web server component has the same interface as the component class but is parameterize

ently.

Using components in layered queuing models has many advantages. Large and compl

ered queueing networks can be constructed quickly. Model designs stay flexible because co

ble components can be interchanged easily. Components may be unit-tested in isolation of a

model and verified components may be stored in a library for future use.

A tool called Layered Queuing Network Solver (LQNS) is used to estimate the performa

of layered queuing network models[3]. Text files that describe the models are used as input fi

the solver. A model is described using the Stochastic Rendezvous Network (SRVN) modeli

method[4]. However, this modeling method does not include components. Therefore, it is n

sary to extend the grammar of the method to incorporate components and component clas

produce model input files that LQNS can evaluate, a tool was developed that preprocesses c

nent-containing input files to produce standard LQNS input files. Currently this tool is unna
Components In Layered Queueing Networks October 2, 2001 2

t of a

input

n 5

ate

com-

ust be

adable

hich

file

nd in
The rest of the paper is structured as follows. Section 2 outlines the protocol and forma

component class file. Section 3 outlines the protocol for inserting components into a LQNS

file. Section 4 describes some restrictions for binding components into LQN models. Sectio

outlines an additional function of the pre-processor filtering tool that will automatically replic

certain component interface services and the additional change in SRVN grammar that is

required. Finally section 6 illustrates examples of using a Linux Network File System LQN

ponent class as a plug-in of larger LQNs.

2.0 Component Class File Format

2.1 General Description

A component class file contains the description of the component class. The file name m

the same as the component class name. The file and the directory containing it must be re

by the filtering program. A component class file may include any number of comment lines w

are ignored by the filtering program. Comments begin with ‘#’. An example component class

(SimpleMod) along with a graphical representation of the component’s structure can be fou

Figure 1.
Components In Layered Queueing Networks October 2, 2001 3

M SimpleMod ($T1_multi = 1, $T2_multi = 1)

Interface/Export List.

I

p Pr1 -1 #processors that can be replaced by outside processors

e SimpleE1 -1 #entries that can be bound to outside entries (sources)

r h_request1 h_request2 -1#requests that can be bound to outside entries (sinks)

-1

General Information. This section is used when component is a stand-alone model

G

“Example of Simple Component”

0.00001

100

1

0.9

-1

Definition of component

P 0

p Pr1 f

p Pr2 f

-1

T 0

t SimpleT1 n SimpleE1 -1 Pr1 m $T1_multi

t SimpleT2 n SimpleE2 SimpleE3 -1 Pr2 m $T2_multi

-1

E 0

s SimpleE1 $VAR1 1 0 -1

s SimpleE2 1 0 0 -1

s SimpleE3 1 0 0 -1

y SimpleE1 SimpleE3 2 0 0 -1

y SimpleE1 SimpleE2 1 1 0 -1

y SimpleE3 h_request1 1 0 0 -1

y SimpleE2 h_request2 1 0 0 -1

y SimpleE1 h_request2 1 0 0 -1

-1

Environment Harness. This section is used for defaults when interface connections

are not specified

H

T 0

t h_request1 i h_request1 -1

t h_request2 i h_request2 -1

-1

E 0

s h_request1 1 0 1 -1

s h_request2 1 0 0 -1

a SimpleE1 0.05

-1

-1

Figure 1: Example of Component Class File (SimpleMod)

COMPONENT

HARNESS
Components In Layered Queueing Networks October 2, 2001 4

ter-

ondi-

name

the

iables

differ-

the

ement

ent

vari-
2.2 Component Class File Sections

A component class file contains at least five major sections: Component Declaration, In

face, General Information, Component Definition, and Environment Harness. The file must

include the first four sections but the Environment Harness section is optional under certain c

tions. A component may contain zero or more Binding Sections.

2.2.1 Component Declaration Section

The Component Declaration section consists of a single line:

 ‘M’ <ComponentClass> ‘(‘<VariableList>’)’

The letter M signifies that the file is a component class file. ComponentClass is the class

of the component. It must be the same as the name of the component class file. Following

class name is a list of comma-separated variable definitions enclosed by parentheses. Var

are symbols in the Component Definition section of the component class file that may have

ent numeric values. All variable names begin with ‘$’. Default values for the variables are

defined in the VariableList using an assignment statement.

For example: $T1_multi = 1

When a component is instantiated, the filtering program replaces variables declared in

VariableList either with parameter values assigned to the variables through the binding stat

or if not bound, with the defaults values from VariableList. For a variable found in the compon

but not declared in VariableList, no value is substituted and the variable becomes a model

able.
Components In Layered Queueing Networks October 2, 2001 5

l com-

y

es from

ernal

placed

rs that

ter-

s to

ompo-

ade by

ess
Here is an example of a component declaration:

M SimpleMod($T1_multi=1, $T2_multi=1)

2.2.2 Interface Section

The Interface section specifies the parts of the component that are visible to the externa

ponent or model. Interface entities include component processors which may be replaced b

external processors, entries that provide component services and entries that request servic

external entries. It is through these interface entities that the component is bound to its ext

environment.

The Interface section has the format:

I

<ProcessorInterfaceList>

<ServiceInterfaceList>

<RequestInterfaceList>

-1

The ProcessorInterfaceList is a list of one or more component processors that may be re

by external processors. This accommodates placing certain component tasks on processo

are external to the component when the component is instantiate and bound. ProcessorIn

faceList begins with the letter ‘p’.

The ServiceInterfaceList is a list of one or more component entries that provide service

external entries. These are the component’s services and act as the source entries of the c

nent. ServiceInterfaceList begins with the letter ‘e’.

The RequestInterfaceList is a list of one or more entries that act as sinks to requests m

component entries. It is actually a list of the entries from the component’s environment harn
Components In Layered Queueing Networks October 2, 2001 6

fer-

s with

lists

the G

odel.

LQN

oces-

ctions:

 of

iables

after

the
that provide services to the component. When the component is instantiated and bound, re

ences to these entries may be replaced by external references. RequestInterfaceList begin

the letter ‘r’.

All lists end with ‘-1’. The Interface section must contain at least one of the lists and the

may be in any order.

Here is an example of an Interface section:

I

p Pr1 -1 #processors that can be replaced by outside processors

e SimpleE1 -1 #entries that can be bound to outside entries (sources)

r h_request1 h_request2 -1 #requests that can be bound to outside entries (sinks)

-1

2.2.3 General Information Section

The format of the General Information section of a component class file is the same as

section of an LQN file. It is included so the component can be instantiated as a stand-alone m

This section is ignored if the component instance is being inserted in another component or

model.

2.2.4 Component Definition Section

The Component Definition section contains all the information necessary to define the pr

sors, tasks, entries and activities of the component. The section consists of up to four subse

Processor Information, Task Information, Entry Information, and Activity Information. The

Activity Information section is optional. The format of these sections is similar to the format

the same sections of an LQN file, except that variables may replace numeric values. Any var

not declared in the Component Declaration section will have the component’s name inserted

the “$” character and the variable becomes a variable in the final LQN file. For example, if
Components In Layered Queueing Networks October 2, 2001 7

ot

in the

t be

ot part

mpo-

 the

mpo-

y con-

terface

server

the

 are no

 in the

ce of

he

e filter-
Component Definition section of a component named “T3” has a variable “$VAR1” that is n

assigned a value in the Component Declaration section, the variable becomes “$T3_VAR1”

model.

Tasks that contain entries declared as interface sources in the Interface section may no

defined as reference tasks. Definitions of processors, tasks, entries and activities that are n

of the component proper but are part of its environment harness are not included in the Co

nent Definition section. These entities are used to drive the component and are declared in

Environment Harness section.

2.2.5 Environment Harness Section

The Environment Harness of a component is used to ‘drive’ the component when the co

nent is instantiated as a stand alone model. A environment harness for a component mainl

sists of open arrival rates to the source interface entries and of tasks containing the sink in

entries of the component. These tasks may have their own processors or may be pure delay

tasks.

It is possible for a component to have no environment harness. This would occur when

source interface entries are driven by other component entries or activities and when there

requests for external service. In this case, the Environment Harness section is not included

component class file.

The Environment Harness section is also used when the interface bindings of the instan

the component are not fully specified when it is created. In this case, open arrival rates of t

source entries and sink tasks may be obtained from the environment harness section by th

ing program and inserted into the final model.
Components In Layered Queueing Networks October 2, 2001 8

ation,

n

cessor

l, the

bine

the

ere is

llows

ure that

sed
The Environment Harness section consists of up to four subsections: Processor Inform

Task Information, Entry Information, and Activity Information. The Activity Information sectio

is optional. Because it is possible to have a environment harness with no processors, the Pro

Information section is also optional. If the component is instantiated as a stand-alone mode

filtering program will extract the information from the Environment Harness section and com

it with the Component Definition section to produce a executable LQN model.

The Environment Harness section begins with an ‘H’ and ends with ‘-1’. By convention,

names of all tasks and entries in the Environment Harness section begin with the letter ‘h’. H

an example of a environment harness with no processors or activities:

H

T 0

t h_request1 i h_request1 -1

t h_request2 i h_request2 -1

-1

E 0

s h_request1 1 0 1 -1

s h_request2 1 0 1 -1

a SimpleE1 0.05

-1

-1

2.2.6 Binding Section

Tasks within components may also be replaced by instances of other components. This a

components to be nested. Caution must be exercised when nesting components to make s

circular or recursive references are avoided. Full descriptions of how Binding sections are u

and of the format are given in Sections 3.0 and 3.1.
Components In Layered Queueing Networks October 2, 2001 9

fore a

k. To

f the

d its

ed by

ent. It

ts, ser-

nent.

 name

 LQN

he file

ce of

signed
3.0 LQN File Format

One component is used to replace one task in an LQN with a set of tasks. Therefore be

component is inserted, the LQN model must be constructed so that it includes the original tas

replace the task with a component, a Binding section for that task is appended to the end o

LQN text file description. This Binding section declares and defines the component type an

bindings to the LQN model. There must be a separate Binding section for every task replac

an instance of a component class.

3.1 Binding Section

The Binding section declares and defines the replacement of a single task by a compon

is used to create a new instance of a component class and to define processor replacemen

vice bindings, and request bindings that are declared in the Interface section of the compo

The section begins with the letter ‘B’ and ends with ‘-1’.

The first line has the format:

‘B’ <Taskname> <ComponentClass> ‘(‘ <ParameterList> ‘)’

Taskname is the name of the task in the model that is replaced by the component. This

will become the instantiated component’s name. To ensure unique names in the expanded

model, all names within the instantiated component will be prefixed by the Taskname.

ComponentClass is the name of the component class that replaces the task. It is also t

name of the file containing the component definition.

ParameterList is a list of comma-separated variable definitions to be applied to the instan

the component. The variables in the list must be variables of the component class and the as
Components In Layered Queueing Networks October 2, 2001 10

rtant.

 com-

ther

ng

tion of

the

ce part

tance

rface

nt.
values may be numbers or variables. The order in which the variables are defined is not impo

Any component variables not defined in this list will be assigned their default values in the

instance of the component.

Here is an example of the creation of an instance of SimpleMod to replace task T3. The

ponent part names begin with ‘T3_’ , the component variable ‘$T1_multi’ is set to 2 and all o

variables are assigned their default values:

B T3 SimpleMod($T1_multi = 2)

Following the first line of the Binding section is one or more specific bindings. The bindi

types are the same as the Interface types of a component as described in the Interface sec

the Component Class File Format (Section 2.2.2). The general format of each line is:

<BindingType> <ModelPartName> <ComponentPartName>

BindingType can be ‘e’ for service, ‘r’ for request or ‘p’ for processor. ModelPartName is

name the part has in the model. ComponentPartName is the name the component’s interfa

has in the instantiated component, that is, the part name is prefixed by the component’s ins

name.

A service binding binds one of the replaced task’s entries to one of the component’s inte

service entries. It has the form:

‘e’ <TaskService> <ComponentServiceInterface>

TaskService is the name of the service entry in the task being replaced by the compone

ComponentServiceInterface is the name of the entry in the component that will satisfy the
Components In Layered Queueing Networks October 2, 2001 11

po-

quest

de to

ompo-

ces-

ding

t’s pro-

Proces-
requests to the replaced TaskService. In other words, <TaskService> ‘is provided by’ <Com

nentServiceInterface>.

A request binding binds one of the model’s entries to one of the component’s interface re

entries. It has the form:

‘r’ <ModelService> <ComponentRequestInterface>

ModelService is the name of the entry in the model that provides service for requests ma

the ComponentRequestInterface. That is, <ModelService> ‘services requests made to’ <C

nentRequestInterface>.

A processor binding binds one of the model’s processors to one of the component’s pro

sors. It has the effect of moving part of the component to the external model. A processor bin

has the form:

‘p’ <ModelProcessor> <ComponentProcessorInterface>

ModelProcessor is the name of the processor in the model that replaces the componen

cessor, ComponentProcessorInterface. That is, <ModelProcessor> ‘replaces’ <Component

sorInterface>.

Here is an example of a Binding section;

B T3 SimpleMod($T1_multi = 2)
e e3 T3_SimpleE1
r e4 T3_h_request1
r e5 T3_h_request2
p P2 T3_Pr1
-1
Components In Layered Queueing Networks October 2, 2001 12

lue of

ir

e

P2

N

nent
The example shows that model task T3 is replaced by a SimpleMod component. The va

the $T1_multi variable of the SimpleMod instance is set to 2. Other variables are set to the

default values. Service provided by model entry e3 is provided by component entry

T3_SimpleE1. Model entries e4 and e5 service requests made to the component’s interfac

request entries T3_h_request1 and T3_h_request2, respectively. Finally, model processor

replaces component processor T3_Pr1.

Example LQN files along with a graphical representation of the model structure of an LQ

file with no component and of an LQN file where T3 is substituted by an instance of a compo

(SimpleMod) can be found in Figures 2 and 3, respectively.

The final LQN file that is produced by the filtering program can be found in Figure 4.
Components In Layered Queueing Networks October 2, 2001 13

G
"Example with no component"
0.00001
100
1
0.9
-1

P 3
p P1 f
p P2 f
p P3 f
-1

T 5
t T1 r e1 -1 P1
t T2 r e2 -1 P2
t T3 n e3 -1 P3
t T4 n e4 -1 P3
t T5 n e5 -1 P3
-1

E 5
s e1 1 0 0 -1
y e1 e3 1 0 0 -1
s e2 1 1 0 -1
y e2 e3 1 0 0 -1
s e3 1 0 0 -1
y e3 e4 1 0 0 -1
y e3 e5 1 0 0 -1
s e4 1 0 0 -1
s e5 1 0 0 -1
-1

Figure 2: LQN file with no component
Components In Layered Queueing Networks October 2, 2001 14

G
"Example with T3 replaced by an instance of SimpleMod"
0.00001
100
1
0.9
-1

P 3
p P1 f
p P2 f
p P3 f
-1

T 5
t T1 r e1 -1 P1
t T2 r e2 -1 P2
t T3 f e3 -1 P3
t T4 f e4 -1 P3
t T5 f e5 -1 P3
-1

E 5
s e1 1 0 0 -1
y e1 e3 1 0 0 -1
s e2 1 1 0 -1
y e2 e3 1 0 0 -1
s e3 1 0 0 -1
y e3 e4 1 0 0 -1
y e3 e5 1 0 0 -1
s e4 1 0 0 -1
s e5 1 0 0 -1

-1

B T3 SimpleMod($T1_multi=2)
e e3 T3_SimpleE1
r e4 T3_h_request1
r e5 T3_h_request2
p P2 T3_Pr1
-1

Figure 3: LQN file where T3 is substituted by an instance of a component (SimpleMod)

COMPONENT T3
Components In Layered Queueing Networks October 2, 2001 15

G
“Example with T3 replaced by an instance of SimpleMod”
1.0E-5
100
1
0.9
-1

P 4
p P1 f
p P2 f
p P3 f
p T3_Pr2 f
-1

T 6
t T1 r e1 -1 P1
t T2 r e2 -1 P2
t T3_SimpleT1 f T3_SimpleE1 -1 P2 m 2
t T3_SimpleT2 f T3_SimpleE2 T3_SimpleE3 -1 T3_Pr2
t T4 f e4 -1 P3
t T5 f e5 -1 P3
-1

E 7
s e1 1.0 0.0 0.0 -1
y e1 T3_SimpleE1 1.0 0.0 0.0 -1
s e2 1.0 1.0 0.0 -1
y e2 T3_SimpleE1 1.0 0.0 0.0 -1
s T3_SimpleE1 $T3_VAR1 1.0 0.0 -1
y T3_SimpleE1 T3_SimpleE2 1.0 1.0 0.0 -1
y T3_SimpleE1 T3_SimpleE3 2.0 0.0 0.0 -1
y T3_SimpleE1 e5 1.0 0.0 0.0 -1
s T3_SimpleE2 1.0 0.0 0.0 -1
y T3_SimpleE2 e5 1.0 0.0 0.0 -1
s T3_SimpleE3 1.0 0.0 0.0 -1
y T3_SimpleE3 e4 1.0 0.0 0.0 -1
s e4 1.0 0.0 0.0 -1
s e5 1.0 0.0 0.0 -1
-1

Figure 4: Final LQN file produced by filtering program
Components In Layered Queueing Networks October 2, 2001 16

ment

a com-

odel

gs

nt

ivities

ested,

model

to an

com-

may

efini-

ed by

 them

 a num-
4.0 Binding Compatibility

It is important to ensure that the bindings of a component are compatible with the environ

of the task it is replacing. Therefore, some requirements must be met before an instance of

ponent can be installed to its external model.

A component must be bound to the same number of sources and sinks in the external m

that there are for the original task. In other words, the number of component service bindin

must equal the number of entries in the task that have callers and the number of compone

request bindings must equal the number of different call destinations of the entries and act

of the task.

To prevent ambiguity between call destinations that could occur when components are n

there must be a one-to-one binding ratio between component interface items and external

items. In other words, each component interface item can only have one binding definition

external model item and any external model item can only have one binding definition to a

ponent item.

While a component may not have more bindings than the number of its interface items, it

have fewer. If a component interface item other than a processor does not have a binding d

tion, the appropriate part of the component’s environment harness is used. A warning is issu

the filtering program for each unbound component service or request.

5.0 Automatic Replication of Component Interface Services

Occasionally, it is desirable to replicate parts of the interface of a component and place

on resources external to the component. Consider a task representing a file server that has
Components In Layered Queueing Networks October 2, 2001 17

of the

te the

e, the

on-

to the

service

t task

the cli-

st be

vide

he

tomati-

erface

xternal

 the ser-

 as

roces-

r.
ber of heterogeneous clients. If the task is replaced by a file server component where part

component’s service interface should reside on each of its clients, it is necessary to replica

component services so that each client interacts with its own copy of the service. Otherwis

server component can only serve one client. One way to accommodate this situation is to c

struct the component so that the number of component service interface entries corresponds

number of heterogeneous clients. Processor interface bindings can be defined so that each

interface task’s processor is replaced by a client’s processor. This will move the componen

with the service interface entry and any other task that uses the same interface processor to

ent’s processor.

While the above method is useful, it is not very flexible because the number of clients mu

known at the time the component class file is constructed. A more flexible method would pro

a way of indicating that the component’s service interface should be replicated at the time t

component is instantiated and bound and that each external client’s processor should be au

cally assigned to the tasks of each replica. As a result, a unique copy of the component’s int

would be located on each client.

Because other non-interface component tasks may also have to be relocated on each e

client’s processor, those tasks should also be assigned to the same interface processor as

vice interface tasks. By replicating the interface processor, both sets of tasks are replicated

well. Because the component processor replicas are automatically replaced by the client p

sors, a unique copy of each set of component tasks are relocated to each client’s processo
Components In Layered Queueing Networks October 2, 2001 18

 to

proces-

ould

ts that

tivities

a. The

ased

on the

d but

ces-

repli-

re

T1_2

 be
To indicate that the service interface of an instantiated component should be replicated

accommodate as many clients as necessary and that the replicas be moved to the clients’

sors, an asterisk(*) should be inserted after the ‘B’ marker of the Binding Section. The line w

have the format:

‘B*’ <Taskname> <ComponentClass> ‘(‘ <ParameterList> ‘) ’

The number of replicas created is equal to the number of unique processors of the clien

use services of the original task (Taskname). To keep the names of the tasks, entries and ac

of each replica unique, a one-based index number is appended to every name in the replic

clients of the original task are redirected to their copy of the component interface services b

on the alphabetical order of their processor’s name and all the tasks in the replica are placed

client’s processor.

Using the previous LQN file example where T3 is replaced by an instance of SimpleMo

now with service interface replication, the Binding Section would appear as follows:

B* T3 SimpleMod($T1_multi = 2)
e e3 T3_SimpleE1
r e4 T3_h_request1
r e5 T3_h_request2
-1

In the LQN model, task T3 has two different clients, e1 and e2, located on separate pro

sors, P1 and P2. The interface service of SimpleMod, SimpleE1, and its task, SimpleT1, are

cated once. Calls from e1 to e3 are redirected to T3_SimpleE1_1 and calls from e2 to e3 a

redirected to T3_SimpleE1_2. Task T3_SimpleT1_1 is on processor P1 and task T3_Simple

is on processor P2. The LQN file with the binding section and the final filtered LQN file can

found in Figures 5 and 6, respectively.
Components In Layered Queueing Networks October 2, 2001 19

G
"Example with T3 replaced by an instance of SimpleMod with replication"
0.00001
100
1
0.9
-1

P 3
p P1 f
p P2 f
p P3 f
-1

T 5
t T1 r e1 -1 P1
t T2 r e2 -1 P2
t T3 f e3 -1 P3
t T4 f e4 -1 P3
t T5 f e5 -1 P3
-1

E 5
s e1 1 0 0 -1
y e1 e3 1 0 0 -1
s e2 1 1 0 -1
y e2 e3 1 0 0 -1
s e3 1 0 0 -1
y e3 e4 1 0 0 -1
y e3 e5 1 0 0 -1
s e4 1 0 0 -1
s e5 1 0 0 -1

-1

B* T3 SimpleMod($T1_multi=2)
e e3 T3_SimpleE1
r e4 T3_h_request1
r e5 T3_h_request2
-1

Figure 5: LQN file where T3 is substituted by an instance of a component (SimpleMod)
with service interface replication

COMPONENT T3
Components In Layered Queueing Networks October 2, 2001 20

G
“Example with T3 replaced by an instance of SimpleMod with replication”
1.0E-5
100
1
0.9
-1

P 4
p P1 f
p P2 f
p P3 f
p T3_Pr2 f
-1

T 7
t T1 r e1 -1 P1
t T2 r e2 -1 P2
t T3_SimpleT1_1 f T3_SimpleE1_1 -1 P1 m 2
t T3_SimpleT1_2 f T3_SimpleE1_2 -1 P2 m 2
t T3_SimpleT2 f T3_SimpleE2 T3_SimpleE3 -1 T3_Pr2
t T4 f e4 -1 P3
t T5 f e5 -1 P3
-1

E 8
s e1 1.0 0.0 0.0 -1
y e1 T3_SimpleE1_1 1.0 0.0 0.0 -1
s e2 1.0 1.0 0.0 -1
y e2 T3_SimpleE1_2 1.0 0.0 0.0 -1
s T3_SimpleE1_1 $T3_VAR1 1.0 0.0 -1
y T3_SimpleE1_1 T3_SimpleE2 1.0 1.0 0.0 -1
y T3_SimpleE1_1 T3_SimpleE3 2.0 0.0 0.0 -1
y T3_SimpleE1_1 e5 1.0 0.0 0.0 -1
s T3_SimpleE1_2 $T3_VAR1 1.0 1.0 -1
y T3_SimpleE1_2 T3_SimpleE2 1.0 0.0 0.0 -1
y T3_SimpleE1_2 T3_SimpleE3 2.0 0.0 0.0 -1
y T3_SimpleE1_2 e5 1.0 0.0 0.0 -1
s T3_SimpleE2 1.0 0.0 0.0 -1
y T3_SimpleE2 e5 1.0 0.0 0.0 -1
s T3_SimpleE3 1.0 0.0 0.0 -1
y T3_SimpleE3 e4 1.0 0.0 0.0 -1
s e4 1.0 0.0 0.0 -1
s e5 1.0 0.0 0.0 -1
-1

Figure 6: Final LQN file with service interface replication produced by filtering
program
Components In Layered Queueing Networks October 2, 2001 21

e net-

d and

wn in

f read,

s to a

calls to

rvice

origi-

twork

twork

nt

e. The
6.0 Example of a Network File System Component

A layered queuing network model of the Linux Network File System (NFS) service was

developed[2]. The model has four parts: the client, the server, the disk on the server, and th

work. To convert this model into an NFS component the reference task, nfsstone, was delete

the component interface was declared. The resulting component class file (LinuxNFS) is sho

Figure 8.

The processor interface consists of the client processor. The service interface consists o

write and other. In the original NFS model, the reference task made read and write request

task on the client processor and all other NFS requests by the reference task were made by

the network and server directly. To encapsulate these requests within the component, a se

entry called ‘other’ was placed in the ‘clientcache’ task. This entry makes the calls that the

nal reference task made but has no CPU demand. The request interface consists of the ne

service.

The environment harness consists of open arrival rates for the service interface and a ne

representing a 100 Mb Ethernet.

The values for the multiplicity of the client buffer cache, the server buffer cache, the clie

biod daemon, and the server nsfd daemon were made variables in the component class fil

default values of all variables were set to one.
Components In Layered Queueing Networks October 2, 2001 22

M LinuxNFS($CLIENT_CACHE_MULTI =1,

 $NFS_IOD_MULTI = 1,

 $RPC_NFSD_MULTI = 1,

 $SERV_CACHE_MULTI = 1)

I

 p client -1

 e read write other -1

 r ether -1

-1

G “Linux NFS Component, 8K Writes, 4K NW reads” 1e-04 300 5 0.200000 -1

 P 0

 p client s 10000

 p server s 10000

 p disk f

-1

T 0

 t clientcache n read write other -1 client m $CLIENT_CACHE_MULTI

 t nfsiod n b_read -1 client m $NFS_IOD_MULTI

 t rpcnfsd n lookup n_read n_write -1 server m $RPC_NFSD_MULTI

 t servercache n s_read s_write -1 server m $SERV_CACHE_MULTI

 t disk n d_read_4k d_read d_write_4k d_write -1 disk

-1

E 0

 s read 50.9 -1

 s write 76.1 2.0 -1

 s other 0.0 -1

 s b_read 11.8 -1

 s lookup 415.9 -1

 s n_read 410.4 -1

 s n_write 410.4 -1

 s s_read 20.8 2.0 -1

 s s_write 39.1 2.0 -1

 s d_read_4k 10560 -1

 s d_read 6910 -1

 s d_write_4k 2440 -1

 s d_write 11780 -1

#

 y read b_read 0.11 -1

 y read n_read 0.124 -1

 y read ether 0.496 -1

 y write ether 0.0 7.0 -1

 y write n_write 0.0 1.0 -1

 y other lookup 1.0 -1

 y other ether 2.0 -1

 y b_read n_read 1.0 -1

 y b_read ether 4.0 -1

 y lookup s_read 0.5 -1

 y n_read s_read 1.0 -1

 y n_write s_write 1.0 -1

 y s_read d_read_4k 0.00133 0.0350 -1

 y s_read d_read 0.00084 0.0222 -1

 y s_write d_write_4k 0 0.0558 -1

 y s_write d_write 0 0.0061 -1

-1

H

P 0

 p network f i

-1

T 0

 t network n ether -1 network

-1

E 0

 a read 0.00001

 a write 0.000001

 a other 0.0000005

 s ether 208.0 -1

-1

-1

Figure 8: Linux NFS Component Class File
Components In Layered Queueing Networks October 2, 2001 23

parate

e LQN

own

 these

nd

ers and

ee ser-

tion,

erface

 in
Two examples are used to demonstrate the use of the LinuxNFS component.

The first example uses two instances of the LinuxNFS component that represent two se

NFS servers. One is used by an application and the other is used by a database server. Th

file before filtering is shown in Figure 9 and a graphical representation of the final model is sh

in Figure 10. Tasks NFS1 and NSF2 are replaced by instances of LinuxNFS. In this model,

tasks simply act as place holders for the components. The specific attributes of the tasks a

entries are not important except that each task must have three entries that are called by us

must make calls to a single destination. This enables each component instance to have thr

vice bindings and one request binding. In this example, the attributes of the Client, Applica

DBserver, and Network were chosen arbitrarily.

The second example uses one instance of the LinuxNFS component with its service int

replicated to accommodate four different client tasks. The LQN file before filtering is shown

Figure 11 and a graphical representation of the final model is shown in Figure 12.
Components In Layered Queueing Networks October 2, 2001 24

G ““ 1.0E-4 300 5 0.2 -1

P 5

p ClientP s 10000.0

p DBServerP s 10000.0

p NFS1P s 10000.0

p NFS2P s 10000.0

p Network f i

-1

T 6

t Application f main -1 ClientP m 60

t Client r client -1 ClientP m 120

t DBServer f DBmain -1 DBServerP m 60

t NFS1 f read1 write1 other1 -1 NFS1P

t NFS2 f read2 write2 other2 -1 NFS2P

t Network f ether -1 Network

-1

E 10

s DBmain 95.7 -1

y DBmain other2 0.31 -1

y DBmain read2 0.63 -1

y DBmain write2 0.06 -1

s client 0.01 -1

y client DBmain 0.5 -1

y client ether 3.0 -1

y client main 0.5 -1

s ether 208.3 -1

s other1 1.0 -1

s other2 1.0 -1

s main 95.7 -1

y main other1 0.31 -1

y main read1 0.63 -1

y main write1 0.06 -1

s read1 4.0 -1

y read1 ether 1.0 -1

s read2 4.0 -1

y read2 ether 1.0 -1

s write1 1.0 -1

s write2 1.0 -1

-1

B NFS1 LinuxNFS($CLIENT_CACHE_MULTI = 4000,

 $NFS_IOD_MULTI = 4,

 $SERV_CACHE_MULTI = 4000)

e other1 NFS1_other

e read1 NFS1_read

e write1 NFS1_write

r ether NFS1_ether

p ClientP NFS1_client

-1

B NFS2 LinuxNFS($CLIENT_CACHE_MULTI = 4000,

 $NFS_IOD_MULTI = 4,

 $SERV_CACHE_MULTI = 4000)

e other2 NFS2_other

e read2 NFS2_read

e write2 NFS2_write

r ether NFS2_ether

p DBServerP NFS2_client

-1

Figure 9: Example of Model with Two NFS Servers
Components In Layered Queueing Networks October 2, 2001 25

Figure 10: Expanded Version of Model with Two NFS Servers
Components In Layered Queueing Networks October 2, 2001 26

G

“NFS, 8K Writes, 4K NW reads, 100MB ethernet, 4 client processors” 0.0010 200 50.0

5

-1

P 6

p client1 s 10000.0

p client2 s 10000.0

p client3 s 10000.0

p client4 s 10000.0

p server s 10000.0

p network f i

-1

T 6

t Client1 r main1 -1 client1 m 60

t Client2 r main2 -1 client2 m 60

t Client3 r main3 -1 client3 m 60

t Client4 r main4 -1 client4 m 60

t NFS f other read write -1 server

t network f ether -1 network

-1

E 8

s main1 95.7 -1

y main1 other 0.31 -1

y main1 read 0.63 -1

y main1 write 0.06 -1

s main2 95.7 -1

y main2 other 0.31 -1

y main2 read 0.63 -1

y main2 write 0.06 -1

s main3 95.7 -1

y main3 other 0.31 -1

y main3 read 0.63 -1

y main3 write 0.06 -1

s main4 95.7 -1

y main4 other 0.31 -1

y main4 read 0.63 -1

y main4 write 0.06 -1

s other 415.9 -1

s read 410.4 -1

y read ether 1.0 -1

s write 410.4 -1

s ether 235.2 -1

-1

B* NFS LinuxNFS($CLIENT_CACHE_MULTI = 1000,

 $NFS_IOD_MULTI = 4,

 $SERV_CACHE_MULTI = 1000)

e other NFS_other

e read NFS_read

e write NFS_write

r ether NFS_ether

-1

Figure 11: Example of NFS Model with replication for 4 clients
Components In Layered Queueing Networks October 2, 2001 27

Figure 12: Expanded Version of NFS Model with replication for 4 clients
Components In Layered Queueing Networks October 2, 2001 28

 mod-

nux

ood-
ms.

y,
7.0 References

[1] J. Dilley, R. Friedrich, T. Jin and J. Rolia. Web server performance measurement and
eling techniques.Performance Evaluation, 33:5-26, 1998.

[2] Greg Franks and Murray Woodside. A Re-Usable Plug-in Performance Model of the Li
2.0 Network File System. CarletonUniversity, December 1999.

[3] R.G. Franks, A. Hubbard, S. Majumdar, J.E. Neilson, D.C. Petriu, J. Rolia and C.M. W
side. A Toolset for Performance Engineering and Software Design of Client-Server Syste
Performance Evaluation, vol. 24, no. 1-2, pp 117-135, November, 1995.

[4] D.C. Petriu, R.G Franks and A. Hubbard. SRVN Input File Format. Carleton Universit
November 24, 1998.
Components In Layered Queueing Networks October 2, 2001 29

	Components In Layered Queueing Networks
	D. McMullan
	1.0 Introduction
	2.0 Component Class File Format
	2.1 General Description
	2.2 Component Class File Sections
	2.2.1 Component Declaration Section
	2.2.2 Interface Section
	2.2.3 General Information Section
	2.2.4 Component Definition Section
	2.2.5 Environment Harness Section
	2.2.6 Binding Section

	3.0 LQN File Format
	3.1 Binding Section

	4.0 Binding Compatibility
	5.0 Automatic Replication of Component Interface Services
	6.0 Example of a Network File System Component
	7.0 References

