
User’s Guide for MultiSRVN Version 4.0

Revision: 4.2

October 9, 2003

Contents

1 Introduction 1

2 Program Usage 3

2.1 Functional Overview . 3
2.2 Invocation Syntax . 4

2.3 Options . 4

3 Experiment File 9

3.1 Experiment File Syntax . 9
3.2 Global Section . 9
3.3 Experiment List . 10

3.4 Set Section . 10
3.5 Initialize Section . 10

3.6 Declare Section . 11
3.7 Vary Section . 11
3.8 Control Section . 12

3.9 Iterate Section . 12
3.10 Observe Section . 13
3.11 Parameter Id . 13

3.12 Result Id . 14
3.13 Miscellaneous . 14

3.13.1 Identifiers . 14

3.13.2 Integers . 17
3.13.3 Reals . 17

4 Result Report File 19

4.1 Standard Format . 19

4.2 MatLab Format . 20
4.3 Gnuplot Format . 21
4.4 Latex Format . 22

5 Other Files 23

5.1 SRVN Description File . 23

5.2 Case File Names . 23
5.3 Case Description File . 23
5.4 Case Result File . 23

5.5 Case Log File . 23

6 Examples 25

6.1 Design Decisions . 25
6.1.1 The Client-Compute SRVN Description File 25
6.1.2 The Experiment File . 27

6.1.3 Solving The Experiments . 28
6.1.4 Examining the Results . 28

6.2 Exploring a Design . 30

6.2.1 The SRVN Description File . 31
6.2.2 The Experiment File . 32

iii

6.2.3 Solving The Experiments . 34
6.2.4 Standard Results . 35
6.2.5 Matlab Results . 37
6.2.6 LATEX Results . 38
6.2.7 Gnuplot Results . 40

7 Error Messages 43

7.1 Warnings . 43
7.2 Runtime Errors . 44
7.3 Fatal Errors . 45

7.3.1 General Errors . 46
7.3.2 Glist Errors . 46
7.3.3 Code Mismatch Errors . 46
7.3.4 Case File Errors . 47
7.3.5 Result Reporting Errors . 47
7.3.6 System Errors . 47

7.4 Experiment File Syntax Errors . 48

8 Support Programs 49

A Release Notes 53

A.1 Bugs and Mis-features . 53
A.2 Release History . 53

List of Figures

1 Experiment examples . 1
2 MultiSRVN files and data flow . 3
3 Example to study workload partitioning. The numbers under the entries are the

mean phase service times and the numbers on the arcs are the mean visit ratios. . . 26
4 Comparison of throughput versus number of clients where functionality is moved

between the clients and the server. 29
5 Pipeline example model . 30
6 Graph of matlab results menu option 1 . 38
7 Graph of matlab results menu option 1 . 39
8 The experiment results in 3-D . 41

List of Tables

1 A list of set items . 9
2 Parameter Id Information . 15
3 Mapping of scheduling flag to integer type code . 16
4 Result Id Information . 16
5 Result table number 1 for experiment pipe3 . 40
6 Result table number 2 for experiment pipe3 . 40

iv

1

1 Introduction

The MultiSRVN program provides a method for solving multiple stochastic rendezvous networks
(SRVN) [1] which allows the software designer to analyze multi-tasking systems and observe trends
in their performance.

The designer develops an SRVN model to represent the multi-tasking software system which is
to be analyzed. One or more parameters of that model are then selected as independent variables of
the analysis and a range for each of these variables is determined. Dependent variables representing
the properties of the system about which information is desired are also selected. MultiSRVN varies
the independent variables throughout their ranges, creating a new data set, or case for each change.
Each case is “solved” using SRVN solution techniques to generate “result values” for the dependent
variables. The results for each case are collected into a report and presented to the designer.

A complete set of cases is called an experiment. A suite of experiments is called a session.
Performing experiments provides the software designer with a powerful method for estimating

the effects of design changes on the performance of the system under study. For example, software
deficiencies such as bottlenecks can be found and solutions proposed.

Currently, experiments are carried out using srvn [3] which requires the user to change the
independent variables manually each time a new case is to be solved. In addition to handling the
cases automatically, MultiSRVN provides a way of isolating which of the many possible dependent
variables is to be examined. Srvn has not got this convenience.

Figure 1 shows two examples of how experiment results can be organized to provide information
on how certain performance criteria vary as functions of system parameters.

-

6

-

6

y

x1

x2 = a

x2 = b

x2 = c

x

y1

y2

y3

a) Multiple independent variables b) Multiple dependent variables

Figure 1: Experiment examples

In Figure 1.a two independent variables, x1 and x2, have been controlled while a single dependent
variable, y, has been observed. Figure 1.b shows a single independent variable, x, being controlled
and three dependent variables, y1, y2 and y3 begin observed.

2 1 INTRODUCTION

3

2 Program Usage

MultiSRVN is invoked from the UNIX command line with such arguments and options as needed
for the desired operation. Input and output is handled by MultiSRVN through files. This section
describes the invocation of MultiSRVN , the syntax and meaning of the various arguments and
options and a brief description of the input and output files. Section 3 describes the various files
in detail.

2.1 Functional Overview

Figure 2 shows the MultiSRVN and srvn programs, their inputs and outputs, and the relationship
between them. The thick-line boxes represent the programs, the thin-line boxes are the data stores.
Arrows show the direction of the flow of data.

MultiSRVN

Srvn

Command Line Options

Experiment Description

SRVN Description

Case Descriptions

Result Report

Case Solutions

?

-

-

?

-

-

�

-

Figure 2: MultiSRVN files and data flow

An SRVN description file [2], as given in the example in Section 6.2.1, is created by the operator
to contain the description of the software system under study. An experiment description file,
containing the specification of the independent and dependent variables as well as some other data
is also created by the operator. The details of this experiment description file are given in section 3
and an example is given in Section 6.2.2.

The operator invokes MultiSRVN from the command line, specifying and desired options. The
command line syntax is described in section 2.2. MultiSRVN reads the experiment description and
the SRVN description and generates several case descriptions as shown in the diagram. Srvn is
invoked by MultiSRVN to process these cases, generating the case solutions. Finally, MultiSRVN
reads the case solutions and prepares its report which is then put into the result report file.

4 2 PROGRAM USAGE

The case files, both descriptions and solutions, are stored in a UNIX subdirectory. If more
than one experiment description is given in the experiment description file, then a subdirectory is
created for each experiment to store that experiment’s case file.

2.2 Invocation Syntax

The UNIX command line syntax for invoking MultiSRVN is as summarized below. The syntax (
option1 || option2) is used to indicate that option1 or option2 may be used, but not both. When
entering the MultiSRVN command, use one of the options and do not type the parentheses.

MultiSRVN [-c] [-d] [-ename] [-f fsep] [-F format] [-I] ([-o rfile] || [-s]) [-O options]
[-R [retries = 〈int〉][, uf = 〈real〉][, if = 〈real〉]] [-S solver] [-v] [efile . . .]

MultiSRVN -r [-d] [-ename] [-f fsep] [-F format] [-I] ([-o rfile] || [-s]) [-v] [efile . . .]

MultiSRVN -n [-c] [-d] [-e name] [-f fsep] [-I] [-v] [efile . . .]

MultiSRVN reads its experiment descriptions from the file efile. This file contains the experi-
ments as defined by the experiment file syntax described in the section 3. If no filename is specified,
the input is read from standard input. The output is written to a file whose name is derived from
filename by appending a suffix of “.res”. Other suffixes are possible depending on the format of the
output selected by the operator. More information about this is given in the option descriptions
below.

MultiSRVN operates in three main modes. The “reuse” mode, activated by the -r option causes
the case description files to be reused, preventing new case description files from being generated.
The “no results” mode, activated by the -n option allows the case description file to be generated
but prevents the solver from being run and the case result files from being created. If neither of
these modes is invoked, MultiSRVN will produce both types of case file. This is the third mode of
operation.

The invokation syntax above describes which options may be used in each of the three modes.
Options which are not listed for a particular mode are incompatible with that mode and will cause
an error if used.

2.3 Options

There are several options available for MultiSRVN . The following are descriptions explaining the
purpose and usage of each option.

-c Cleanup the experiment directory, if one exists, before performing the
experiment. This causes all the old files in the experiment directory to
be deleted. The directory whose contents are deleted by this option is
determined from the experiment name in the experiment description file.
Do not accidently delete the wrong directory.

-d Display debugging information. This option is similar to the v option
except that more information is displayed. Normally, this option should
not be used. Repeated uses of “-d” on the command line increases the
amount of debugging information displayed: “-ddd” or “-d -d -d” displays
the maximum amount.

2.3 Options 5

-e ename This option allows specific experiments to be selected from the experiment
file to be executed. The experiment named ename (see section 3) is
selected. Any number of -e options may be used. The default is that all
experiment descriptions in the experiment file are processed.

-f fsep This option allows the operator to select a string which will be used in
the creation of case file names. The default value for this option is “–”.

-F format This option is used to select the format for the result output. The option
takes an argument, format which is one of the following: standard, matlab,
gnuplot or latex. MultiSRVN will accept certain abbreviations for the
format name.

standard This argument produces an output file having the suffix .res.
The results are provided in the form of tables of numbers. This
is the default output format and is automatically selected when
the F option is omitted. The abbreviation is “sta”.

matlab This format produces a file having the suffix .m. The file
contains scripts which when executed from within the MatLab
program, provides an interactive graphical “back end”. The
abbreviation is “mat”.

gnuplot This format produces a file having the suffix .gnu. The re-
sults are provided in columns representing the independent
and dependent variables. The user must use the plot or splot
commands within gnuplot to make use of the gnuplot format
output. The abbreviation is “gnu”.

latex This format produces a file with the suffix .tex. The file con-
tains LATEX formatted tables suitable for inclusion in LATEX
documents. The abbreviation is “tex”.

-I This option causes the name, date and copyright notice for MultiSRVN
to be displayed. Program execution stops immediately after the data is
displayed, regardless of any other options and arguments used.

-l This option causes MultiSRVN to record diagnostics related to solving
cases into a case log file. The case log files have the same root file name
as the other case files but end with .log. The information recorded in-
cludes user-level iteration status, solver debugging information and other
output. If this option is absent, the information is written to standard
output and standard error.

-n This option puts MultiSRVN into “no results” mode in which the solver
is not used, case results files are not generated and no result report is
produced. This mode is useful for having MultiSRVN generate the case
description files.

-N This option sets the nice(1) level that will be used when running sub-
processes including all remote processes launched by MultiSRVN . Using
“-N” sets the nice level to be 10; “-NN” or “ -N -N” sets it to 20. The
default is 0.

6 2 PROGRAM USAGE

-o rfile The filename results is used as the file in which all the results are written.
If the filename is given as “-” as in “-o-”, then the standard output device
is used for writing results. This option is mutually exclusive with the -s

option.

-O options This option passes along its argument, options to the SRVN solver. If
white-space or “-” characters are required in the option string to the
solver, then the string must be enclosed in quotation marks (”). This
prevent MultiSRVN from parsing the option string as options to itself.
These options are used in addition to any options specified in the exper-
iment description.

-r This option places MultiSRVN into “reuse” mode. In this mode, the
results from previous computations are reused. The case description files
are preserved and reused. A result file base on the results generated
before is created. This mode reduces the execution time of MultiSRVN .

-R This option controls the retry feature for the SRVN solver. If the solver
reports that the particular case did not converge, it may be possible to
get convergience by reducing the underrelaxation coefficient and increas-
ing the number of iterations. This can be acieved using this option. The
following are the possible sub-options which may be used in any combi-
nation.

retries This suboption controls the number of times the solver is tried
on a case which does not converge. The default is 4.

uf This suboption is the underrelaxation factor. The current under-
relaxation coefficient (See Section 3 for the experiment is multi-
plied by this real valued number prior to each retry. The default
for this suboption is 1.0.

if This suboption id the iteration factor. The current number of
allowed iterations (See Section 3) for the experiment is multiplied
by this real valued number and truncated to an integer prior to
each retry. The defdault for this suboption is 2.

-s Split the output into separate files. This options forces the results to be
output with a unique file for each experiment. This occurs regardless of
the configuration of the input file(s). For example if three files are given
as input and the first two have two experiments each while the third
has one experiment, then five result files will be generated. The output
file names are generated using the the experiment name of the current
experiment and a suffix. This latter is determined by the format of the
output as described below. This option is mutually exclusive with the -o

option.

-S solver This option permits the operator to select a “solver”. The option takes
an argument which is one of the following: lqns, parasrvn, petrisrvn,
srvn, srvnbpg or srvntda. MultiSRVN accepts certain abbreviations for
the solver names.

2.3 Options 7

lqns This argument selects the lqns solver for use with the experi-
ments.

parasrvn This argument selects the parasol srvn simulator to solve the
cases. The simulator requires more time than the other SRVN
solvers and may cause MultiSRVN to take a long time to finish.
Use this argument with caution. The abbreviation is “para”.

petrisrvn This argument selects the petrisrvn solver for use with the
experiments. The abbreviation is “petri”.

srvn When this argument is used, the standard version of the solver
is used to solve each of the cases.

srvnbpg This argument selects the srvn to prolog bounds generator
solver. The abbreviation is “bpg”.

srvntda This argument causes the newer “task directed aggregation”
algorithm to be used. The abbreviation is “tda”.

-v This options turns on verbose mode. While this mode is active, status
information is written to the standard output device. This information
includes the current experiment filename, experiment name and other
such data.

8 2 PROGRAM USAGE

9

3 Experiment File

The BNF description of the Experiment Description File syntax is given in this section. The
notation 〈non-terminal〉 is used to identify the non-terminal tokens of the BNF. Terminal tokens
are given in the “typewriter” style font as in terminal. When a token is optional, it is marked as
such by the use the following notation: optional-tokenopt.

The “non-terminals”, 〈identifier〉, 〈integer〉 and 〈real〉, are common to many sections of this
BNF. They are therefor given their own sub-section at the end of the BNF. The “non-terminals”
〈parameter-id〉 and 〈result-id〉 are sufficiently complex to warrant their own sub-sections as well.

3.1 Experiment File Syntax

The Experiment Description File syntax consists of optional global definitions section followed by
an 〈experiment-list〉.

〈experiment-file〉 → 〈global-section〉
opt

〈experiment-list〉

3.2 Global Section

The global section is optional and allows various program settings to be assigned default values.
The syntax consists of the keyword .global followed by a list of 〈set-statement〉, each terminated
by a semi-colon. These statements associate a string value to a 〈set-item〉. The global section is
terminated by the .end keyword.

〈set-section〉 → .global 〈set-list〉 .end

〈set-list〉 → 〈set-statement〉
| 〈set-list〉 〈set-statement〉

〈set-statement〉 → 〈set-item〉 = 〈string〉 ;

Table 1 contains a complete list of keywords which may be used as 〈set-item〉. The keyword
.directory is used to specify the UNIX path for the directory into which the various case files
placed. The .template keyword provides a way to select the SRVN Description File to be used as
a template.

.boundsopts .directory .format .hosts

.initexpr .lqnsopts .paraopts .petriopts

.sample .seed .solver .srvnopts

.tdaopts .template .title

Table 1: A list of set items

The .solver keyword takes one of ‘‘bpg’’, ‘‘lqns’’, ‘‘petri’’, ‘‘para’’, ‘‘srvn’’, or
‘‘tda’’ as a setting and thus selects a particular solver. The .boundsopts, .lqnsopts, .paraopts,
.petriopts, .srvnopts, and .tdaopts keywords allow command line options to be specified for
the various solvers.

The .hosts keyword takes a string made up of a comma separated list of workstation names
as a setting. The various cases to be solved are then distributed over the workstations so that each
workstation named is used while there are still cases to be solved. Note that if the /hosts setting
is used, then only the named workstations are used – that is, the current workstation on which

10 3 EXPERIMENT FILE

MultiSRVN is running will not be used to solve cases unless its name is included in the .hosts

setting.
The .format keyword allows the format of the experiment output to be selected. The settings

for this keyword are ‘‘standard’’, ‘‘latex’’, ‘‘gnuplot’’, ‘‘matlab’’. The keyword .title

gives a title to the result output.
The .sample keyword is used to select a subset of the test cases. It accepts a numeric argument

ranging from 0.0 to 1.0. This number denotes the probability that a test case is generated. The
.seed keyword is used to seed the random number generator used to select test cases. It accepts
an integral argument.

The .initexpr is used to initialize bc(1) and to declare functions which will be used in control
statement expressions. Any valid bc(1) statements may be placed within the quotes of the set item
string.

Default settings are provided by the tool for settings which are not included from the global
section. In addition, certain command line options can override the global settings.

3.3 Experiment List

Each experiment is started with the keyword .experiment and followed by an experiment identifier.
The body of the experiment consists of several sections, some of which are optional. These sections
are each described in detail below. The end of the experiment is marked by the keyword .end.

〈experiment-list〉 → 〈experiment〉
| 〈experiment〉 〈experiment-list〉

〈experiment〉 → .experiment 〈identifier〉 〈experiment-body〉 .end

〈experiment-body〉 → 〈set-section〉
opt

〈initialize-section〉
opt

〈declare-section〉
〈vary-section〉 〈control-section〉 〈iterate-section〉

opt

〈observe-section〉

3.4 Set Section

The set section is optional and allows various program settings to be altered from their default
values. The syntax consists of the keyword .set followed by a 〈set-list〉 as described in the global
section.

〈set-section〉 → .set 〈set-list〉

Table 1 is a list of the keywords which may be used to identify options to be set. The settings
made local to an experiment override the defaults set in the global section with the exception of
the .initexpr for which the local settings are appended to the global setting. Some command line
options may be used to override the local settings.

3.5 Initialize Section

The initialize section is optional and allows SRVN model parameters to be initialized prior to the
experimentation. This section begins with the keyword .initialize which is followed by a list
of 〈initialize-statement〉, each terminated by a semi-colon. Each 〈initialize-statement〉 associates a
value with a 〈initialize-item〉.

〈initialize-section〉 → .initialize 〈initialize-list〉

〈initialize-list〉 → 〈initialize-statement〉

3.6 Declare Section 11

| 〈initialize-statement〉 〈initialize-list〉

〈initialize-statement〉 → 〈initialize-item〉 = 〈value〉 ;

〈initialize-item〉 → .cl | .il | .uc

| 〈parameter-id〉

The keyword .cl refers to the “convergence limit” and controls the precision of the SRVN
calculations. It takes a 〈value〉 of type real. The keyword .il refers to the “iteration-limit” and
controls the number of iteration allowed in the SRVN calculations. It takes a 〈value〉 of type integer.
The keyword .uc is the underrelaxation-coefficient. This real value can be used to help the SRVN
calculations converge. The 〈parameter-id〉, described below, allows any model parameter that can
be controlled by MultiSRVN to be intialized.

3.6 Declare Section

The declare section associates identifiers with lists of values. These identifiers can then be used in
the following sections. The section begins with the keyword .declare and is followed by a list of
〈declare statements〉. These declare statements bind 〈value-specifications〉 to identifiers. Either a
list or a range may be used as a value specification.

〈declare-section〉 → .declare 〈declare-list〉

〈declare-list〉 → 〈declare-statement〉
| 〈declare-statement〉 〈declare-list〉

〈declare-statement〉 → 〈variable〉 = 〈value-specification〉 ;

| 〈variable〉 = 〈expression〉 ;

| 〈variable〉 = 〈result-id〉 ;

〈variable〉 → 〈identifier〉

〈value-specification〉 → 〈value-list〉 | 〈value-range〉

〈value-list〉 → 〈value〉
| 〈value〉 , 〈value-list〉

〈value-range〉 → [〈value〉 - 〈value〉] , 〈integer〉

A 〈value-list〉 is simply a comma separated list of values. A 〈value-range〉 consists of a start
value and a stop value, located within brackets and separated by “-” followed by a comma and
then the number of values in the range (including the start and stop values). The 〈expression〉 and
〈result-id〉 syntax is explained below.

3.7 Vary Section

The vary section identifies how the variables declared in the 〈declare-section〉 are to be varied. The
section is started with the keyword .vary and is followed by a 〈vary-list〉. A vary list consists of
one or more 〈vary-group〉, each group consisting of one or more variables separated by commas and
terminated by a semicolon.

The variables in a particular vary group are cycled through their various values together. The
first variable in the group is used to determine the length of the cycle. Variables which have fewer
values than the cycle length are cycled again starting at their initial value. Variables which have
more values than the cycle length have their remaining values ignored.

The vary groups are not varied together; they are varied across one another. For each value
in the cycle for the first group, the second group is varied through its cycle. Similarly, for each

12 3 EXPERIMENT FILE

value in the second group, the third group is varied through its cycle. In this way, all the possible
combinations of values for all the vary groups are generated.

〈vary-section〉 → .vary 〈vary-list〉

〈vary-list〉 → 〈vary-group〉
| 〈vary-group〉 〈vary-list〉

〈vary-group〉 → 〈variable-list〉 ;

〈variable-list〉 → 〈variable〉
| 〈variable-list〉 , 〈variable〉

3.8 Control Section

The control section associates expressions involving variables with SRVN model parameters. In this
way, the independent variables of the experiment are selected and values for them are specified.
The section starts with the keyword .control followed a list of 〈control-statements〉. A control
statement takes the form of a 〈parameter-id〉 followed by an equals sign followed by an 〈expression〉.
It describes the mannor in which the value of an srvn parameter is to be controlled.

〈control-section〉 → .control 〈control-list〉

〈control-list〉 → 〈control-statement〉
| 〈control-statement〉 〈control-list〉

〈control-statement〉 → 〈parameter-id〉 = 〈expression〉 ;

〈expression〉 → { 〈bc-expression〉 }

〈label〉 → 〈string〉

The 〈parameter-id〉 is explained below. A 〈bc-expression〉 may be any expression permitted by
the syntax of the bc(1) program as described in the manual page for bc(1). Expressions include
references to variables declared in the declare section and identified in a particular vary group.
Expression may include references to declarations made in the .initexpr statements of either the
set section or global section.

The optional label following the 〈expression〉 is used in the presentation of the results in the
result report. If this label is missing, a label is formed from the components of the 〈parameter-id〉.

3.9 Iterate Section

The iterate section identifies the maximum number of user-level iterations permitted as well as the
specific model parameters for which convergience tests are to be performed. For each of these, a
convergience limit is specified.

〈iterate-section〉 → .iterate 〈max-count〉 〈iterate-list〉

〈max-count〉 → 〈integer〉

〈itertate-list〉 → 〈iterate-statement〉
| 〈iterate-list〉 〈iterate-statement〉

〈iterate-statement〉 → 〈result-id〉 〈convergience〉 ;

〈convergience〉 → 〈real〉

The integer, 〈max-count〉, gives the maximum number of user-level iterations permitted. The
〈result-id〉 gives the model output for which convergence is to be tested and 〈convergence〉 gives the
limit of the test. An iteration is considered to be “successful” only if all 〈result-ids〉 being tested
varied less than their respective 〈convergences〉 when compared to the last iteration.

3.10 Observe Section 13

3.10 Observe Section

The observe section identifies both the independent and dependent model parameters to be observed
as results in the output.

〈observe-section〉 → .observe 〈observe-list〉

〈observe-list〉 → 〈observe-statement〉
| 〈observe-statement〉 〈observe-list〉

〈observe-statement〉 → .plot 〈expression〉 〈label〉
opt

;

| [observe-statement] 〈parameter-id〉 〈label〉
opt

;

| [observe-statement] 〈result-id〉 〈label〉
opt

;

If there are N vary groups declared in the vary section, then the first N observe statements
must correspond, one-to-one, to each vary group. This is how the particular independent variables
to be reported in the output are identified. Any single variable or expression may be specified
using the .plot command. Alternatively, model parameters may be specified explicitly using the
〈parameter-id〉 syntax. Once the N independent model variables have been given, all subsequent
observe statements are taken to refer to dependent quantities.

The optional label following the 〈result-id〉 is used in the result report. If this label is not
specified, a label is generated automatically.

3.11 Parameter Id

The 〈parameter-id〉 constructions are used to identify SRVN parameters for which new values are
to be used. The initialize and control sections both make use of the 〈parameter-id〉 construction in
their syntax.

〈parameter-id〉 → 〈pcode-3 〉 (〈entity-id〉 , 〈entity-id〉 , 〈entity-id〉)

| 〈pcode-2p〉 (〈entity-id〉 , 〈entity-id〉 , 〈phase〉)

| 〈pcode-2 〉 (〈entity-id〉 , 〈entity-id〉)

| 〈pcode-1p〉 (〈entity-id〉 , 〈phase〉)

| 〈pcode-1 〉 (〈entity-id〉)

〈pcode-3 〉 → .arr | .asr

〈pcode-2p〉 → .rr | .sr | .fi | .fo

〈pcode-2 〉 → .pf | .cd | .acv | .apt | .amst | .ast | .az

〈pcode-1p〉 → .cv | .pt | .st | .ez | .mst

〈pcode-1 〉 → .ar | .pm | .pq | .pr | .ps | .sf | .tm | .tq | .tp |
.tz | .ep

〈entity-id〉 → 〈task-id〉 | 〈entry-id〉 | 〈processor-id〉 | 〈queue-id〉

〈task-id〉 → 〈identifier〉

〈entry-id〉 → 〈identifier〉

〈processor-id〉 → 〈identifier〉

〈queue-id〉 → 〈identifier〉

〈phase〉 → 1 | 2 | 3

Table 2 summarizes the parameter id specification. It lists all the parameters and identifies
their value types, parameter codes, and argument lists. Note that the scheduling flag paramerter
takes an integer argument, not a character as would be suggested by the scheduling policy field

14 3 EXPERIMENT FILE

of the template and case files. The mapping of these integer scheduling policy type codes to the
scheduling policy types (and character flags) is given in Table 3.

3.12 Result Id

The 〈result-id〉 constructions are used to identify SRVN result values for observation. These values
are the dependent variables in the experiment. The observe section makes use of the 〈result-id〉
construction in its syntax.

〈result-id〉 → 〈result-code〉 (〈category〉 , 〈arg-list〉)

〈result-id〉 → 〈plain-rcode〉 (〈ccode-2 〉 , 〈entity-id〉 , 〈entity-id〉
〈opt-phase〉

opt
)

| 〈plain-rcode〉 (〈ccode-1 〉 , 〈entity-id〉 〈opt-phase〉
opt

)

| 〈confidence-rcode〉 (〈ccode-2 〉 , 〈entity-id〉 , 〈entity-id〉 ,

〈confidence-level〉 〈opt-phase〉
opt

)

| 〈confidence-rcode〉 (〈ccode-1 〉 , 〈entity-id〉 ,

〈confidence-level〉 〈opt-phase〉
opt

)

〈plain-rcode〉 → .tb | .tbl | .tbu | .th | .ut | .wt | .dp | .xt

〈confidence-rcode〉 → .tch | .utc | .wtc | .dpc | .xtc

〈ccode-2 〉 → .ee | .et | .tt

〈ccode-1 〉 → .t | .e | .p

〈opt-phase〉 → , 〈phase〉 | 0

〈confidence-level〉 → 〈integer〉

Table 4 summarizes the results which may be observed as dependent variables and identifies
their result codes, valid categories and argument lists. If an optional phase is given as zero or is
omitted the value reported is the sum over all phases.

The categories listed in the BNF for this section as well as Table 4 are used to identify the
type of data to be observed. The category .e indicates that the result to be observed belongs to
an entry whereas .p and .t refer to processors and tasks respectively. The category .ee indicates
that the observation is to be made for the data associated with two entries. Similarly, .et is entry
to task and .tt is task to task.

3.13 Miscellaneous

The non-terminals 〈letter〉 and 〈decimal-digit〉 are not defined in the usual BNF style. Instead,
letters are taken to be any letter in the ranges [a-z] or [A-Z]. Decimal digits include the digits in
the range [0-9].

3.13.1 Identifiers

〈identifier〉 → 〈letter〉
| 〈letter〉 〈alpha-numeric-string〉

〈alpha-numeric-string〉 → 〈alpha-numeric〉
| 〈alpha-numeric〉 〈alpha-numeric-string〉

〈alpha-numeric〉 → 〈letter〉 | 〈decimal-digit〉

3.13 Miscellaneous 15

Parameter Name Type Code Argument List

Processor Parameters

Processor Delay Real .cd 〈processor-id〉, 〈processor-id〉
Scheduling Flag Integer, 0 – 4 .sf 〈processor-id〉
Processor Multiplicity Integer .pm 〈processor-id〉
Processor Quantum Real .pq 〈processor-id〉
Processor Replication Integer .pr 〈processor-id〉
Processor Speed Real .ps 〈processor-id〉

Task Parameters

Task Multiplicity Integer .tm 〈task-id〉
Task Priority Integer .tp 〈task-id〉
Task Replication Integer .tr 〈task-id〉
Task Queue Length Integer .tq 〈task-id〉
Think Time Real .tz 〈task-id〉, 〈phase〉

Entry Parameters

Arrival Rate Real .ar 〈entry-id〉
Coefficient of Variation Real .cv 〈entry-id〉, 〈phase〉
Phase Type Integer .pt 〈entry-id〉, 〈phase〉
Max Service Time Real .mst 〈entry-id〉, 〈phase〉
Entry Priority Integer .ep 〈entry-id〉
Service Time Real .st 〈entry-id〉, 〈phase〉
Think Time Real .ez 〈entry-id〉, 〈phase〉

Call Parameters

Probability of Forwarding Real .pf 〈entry-id〉, 〈entry-id〉
Rendezvous Rate Real .rr 〈entry-id〉, 〈entry-id〉, 〈phase〉
Send-no-reply Rate Real .sr 〈entry-id〉, 〈entry-id〉, 〈phase〉
Fanin Integer .fi 〈entry-id〉, 〈entry-id〉, 〈phase〉
Fanout Integer .fo 〈entry-id〉, 〈entry-id〉, 〈phase〉
Probability Forwarding Real .pf 〈entry-id〉, 〈entry-id〉

Activity Parameters

Coefficient of Variation Real .acv 〈task-id〉 〈activity-id〉
Phase Type Integer .apt 〈task-id〉 〈activity-id〉
Max Service Time Real .amst 〈task-id〉 〈entry-id〉
Service Time Real .ast 〈task-id〉 〈entry-id〉
Think Time Real .az 〈task-id〉 〈entry-id〉

Activity Call Parameters

Rendezvous Rate Real .arr 〈task-id〉, 〈activity-id〉, 〈entry-id〉
Send-no-reply Rate Real .asr 〈task-id〉, 〈activity-id〉, 〈entry-id〉

Table 2: Parameter Id Information

16 3 EXPERIMENT FILE

Scheduling Policy Type Code Scheduling Flag

First Come First Served 0 f

Head Of the Line 1 h

Preemptive Priority 2 p

Random 3 r

Processor Sharing 4 s

Table 3: Mapping of scheduling flag to integer type code

Result Name Code Category Argument List

Throughput Bounds .tb .e 〈entry-id〉
.tbu .e 〈entry-id〉
.tbl .e 〈entry-id〉

Throughput .th .t 〈task-id〉
.e 〈entry-id〉

Throughput Confidence .thc .e 〈entry-id〉

Utilization .ut .t 〈task-id〉, 〈phase〉
.e 〈entry-id〉, 〈phase〉
.p 〈processor-id〉

Utilization Confidence .utc .e 〈entry-id〉, 〈phase〉
.p 〈processor-id〉

Waiting Time .wt .p 〈processor-id〉, 〈phase〉
.ee 〈entry-id〉, 〈entry-id〉, 〈phase〉

Waiting Time Confidence .wtc .p 〈processor-id〉, 〈phase〉

Drop Probability .dp .ee 〈entry-id〉, 〈entry-id〉, 〈phase〉

Service Time .xt .e 〈entry-id〉

Service Time Confidence .xtc .e 〈entry-id〉

Table 4: Result Id Information

3.13 Miscellaneous 17

3.13.2 Integers

〈integer〉 → 〈decimal-digit-string〉

〈decimal-digit-string〉 → 〈decimal-digit〉
| 〈decimal-digit〉 〈decimal-digit-string〉

3.13.3 Reals

〈real〉 → 〈decimal-digit-string〉 . 〈decimal-digit-string〉
opt

〈exponent-string〉
opt

| 〈decimal-digit-string〉
opt

. 〈decimal-digit-string〉
〈exponent-string〉

opt

| 〈decimal-digit-string〉 〈exponent-string〉

〈exponent-string〉 → 〈exponent-flag〉 〈sign〉
opt

〈decimal-digit-string〉

〈exponent-flag〉 → D | d | E | e

〈sign〉 → + | -

18 3 EXPERIMENT FILE

19

4 Result Report File

This sections describes the format of the result report file. Several different formats are possible for
this file. The format used for particular instance of this file depends on the command-line options
selected by the operator and/or the experiment settings provided in the experiment description file.
See Sections 2.2 and 2.3 as well as Section 3 for more information on these options.

4.1 Standard Format

In this format, the experiment result report is presented as an ASCII file containing tables of num-
bers and some comments. For each experiment result-set in the report file, a header is generated.
This header identifies the experiment name, the SRVN description file name and the number of
independent and dependent variables. The following is an example of this header.

1: Experiment Results

2:
3: Experiment: designc

4: SRVN description file: cmpdesign.lqn

5: Independent variables: 1

6: Dependent variables: 1

To make the tables consistent, “standard” identifiers such as x1 and y2 are used to mark the rows
and columns. For example, in an experiment with two independent variables, the first independent
variable is known as x1 and the second is x2. The mapping of these standard names to the names
given in the experiment description file is given for each table. If, for example, the first independent
variable is named (by default) to “.rr (client, get, 1)” then the mapping would be

x1 -> .rr (client, get, 1)

For experiments which have only one independent variable, a single table is generated. In
this table, the left-most column contains the values of the independent variable. To the right of
this column are the columns of dependent variable values. There is a column for each dependent
variable. The following is a sample for this type of result.

8: x -> N_{users}

9: y -> $f_Client1$

10: x y

11: 1 0.070043

12: 2 0.129662

13: 3 0.175577

14: 4 0.208075

15: 5 0.229080

16: 6 0.241031

17: 7 0.246707

18: 8 0.248776

19: 9 0.249405

20: 10 0.249187

Experiments which have two independent variables have multiple tables, one for each dependent
variable. The left-most column of each table contains the values of the independent variable x1.
The top-most row contains the values of the dependent variable x2. The remainder of the table
consists of the values of the dependent variable located such that the row and column positions

20 4 RESULT REPORT FILE

identify the corresponding independent variable values. The following is a typical table for this
type of result.

41: x1 -> beta

42: x2 -> gamma

43: y1 -> X

44:
45: x2 0.1 .48 .86 1.24 1.62 2

46: x1

47: 0.1 0.419980 0.395980 0.369120 0.342340 0.317600 0.287990

48: .48 0.396280 0.369810 0.339680 0.321280 0.293530 0.275020

49: .86 0.363360 0.345170 0.313970 0.297450 0.269140 0.255400

50: 1.24 0.336000 0.319530 0.293920 0.273020 0.253550 0.235530

51: 1.62 0.313260 0.292840 0.270080 0.249690 0.234240 0.219760

52: 2 0.284810 0.269400 0.246430 0.236150 0.217480 0.208290

If three or more independent variables with the standard format, many tables are generated.
The tables will have a header giving the name and values for n − 1 of the independent variables.
The last independent variable provides the left-most column of the tables. The remainder of the
columns are filled by the values of the dependent variables.

4.2 MatLab Format

In this format, the result report consists of a MatLab script suitable for execution in MatLab. The
file consists of a comment header, followed by a series of MatLab commands.

The comment header contains information similar to that of the standard format: the ex-
periment name and SRVN description file are identified. In addition to this information, a menu
consisting of plot options is also given. The following is an example of this portion of the matlab
result file.

1: %% Experiment Results

2: %%

3: %% Experiment: designc

4: %% SRVN description file: cmpdesign.lqn

5: %% Independent variables: 1

6: %% Dependent variables: 1

7: %%

8: % 1) Plot $X_{Clients}$ against N_{users}

9: % 2) Set capturing of graphs to files

10: % 0) Stop

The MatLab commands provide MatLab with the information it needs to plot the result data.
First, a clear command is given to erase any previous data stored in MatLab memory. Then, the
tables of result data are given in matrix form. Along with the numerical data, the labels and titles
are given as well. Finally, a short MatLab program is given which displays the menu mentioned
above and performs the plotting. The following is an example of the matlab commands for a simple
table (only one independent variable).

11:
12: clear

13: x = [1 2 3 4 5 6 7 8 9 10];

4.3 Gnuplot Format 21

14: xl = ’N_{users}’;

15: y1 = [0.070043 0.129662 0.175577 0.208075 0.229080 0.241031 0.246707 0.248776 0.\

249405 0.249187];

16: yl1 = ’$X_{Clients}$’;

17:
18: n = 0;

19: p = 0;

20: while 1

21: clc

22: help cmpdesign.m

23: n = input(’Select an option number: ’);

24: if ((n <= 0) | (n > 2))

25: break

26: elseif (n == 1)

27: plot(x,y1, x,y1,’o’)

28: title(’designc -- $X_{Clients}$ vs N_{users}’)

29: xlabel(xl)

30: ylabel(yl1)

31: if (p == 1)

32: print -deps designcg1.eps

33: end;

34: else

35: p = input(’Capture output to file? (1 for yes, 0 for no): ’);

36: end

37: end

In order to run a matlab script for a particular experiment, the script for that experiment must
be isolated in a file with a .m suffix. This means that result files with multiple experiments should
be split, either manually or with the -s option such that each experiment is in a separate file.
Aternatively, individual experiments may be selecrted using the -e option. This option is described
in Sections 2.2 and 2.3.

The matlab format should not be used for experiments which have more than two indepen-
dent variables. The standard format tables are used instead of matlab script if more than two
independent variables are used.

An example of the usage of MatLab is given in Section 6.2.5.

4.3 Gnuplot Format

This format allows the gnluplot program to be used to dislpay the result data in the form of graphs.
A data file having a filename formed by the concatenation of the experiment name and the suffix

.dat is created for each experiment, regardless of whether or not the -s option is selected. The data
in the .dat file is organized into columns. For simple experiments having only one independent
variable, the first column contains the values of the indendent variable. Each subsequent column
contains the values for one of the dependent variables. When two independent variables are used,
the first two columns correspond to the independent variables and the remaining columns are the
dependent variable values. The following is a sample of a .dat file for a simple experiment with
two dependent variables.

0.1 0.404224 0.040422

0.575 0.378937 0.217889

1.05 0.349995 0.367494

1.525 0.319965 0.487947

22 4 RESULT REPORT FILE

2 0.291062 0.582125

The usual result report file is generated in addition to the .dat files. The result report file has
the usual header identifying the experiment name, srvn description filename, and the number of
independent and dependent variables.

After the header, the result report file contains gnuplot script commands which cause gnuplot
to display the experiment data in the data files as graphs. The following is a gnuplot script for an
experiment having one independent variable and two dependent variables.

1: # Experiment Results

2: #

3: # Experiment: designs

4: # SRVN description file: cmpdesign.lqn

5: # Independent variables: 1

6: # Dependent variables: 1

7: #

8: set nokey

9:
10: #set output "designs-1.ps"

11: set nolabel

12: set title "Plot of $X_{Clients}$ versus N_{users}"

13: set xlabel "N_{users}"

14: set ylabel "$X_{Clients}$"

15: plot "designs.dat" using 1:2 with points, "designs.dat" using 1:2 with lines

16: pause -1 "Hit return to continue"

4.4 Latex Format

The format provides a result report which is formatted for use with LATEX. This file consists of
a comment header followed by the LATEX table description. The comment header identifies the
experiment name and the SRVN description file name.

For experiments with a single independent variable, only one table is generated. Experiments
with two independent variables will have result files containing a table for each dependent variable.
These tables are of the same design as the tables described in the standard format section above.
However, LATEX macros have been used to allow the tables to be included into a document.

Each table is centered in a \table environment. The caption for the table provides the map-
ping between the experiment description file names for variables and the standard names used in
the tables. Each table is given a symbolic label of the form “tab:enamen” where ename is the
experiment name and n is the number of the table. Tables are numbered starting at 1. These
labels may be used to reference the tables.

The result file may be included directly into a LATEX document. An example of this is given in
Section 6.2.6.

23

5 Other Files

This section describes the other files used by MultiSRVN . These files include the SRVN description
files as well as the case description and case solution files. In particular, the naming convention for
case files is discussed.

5.1 SRVN Description File

This file is described completely in [2]. The file may either be created by hand or by a tool such as
lqndef or TimeBench. An example of this type of file is given in Section 6.2.1.

MultiSRVN should function successfully with any srvn description file which can be used with
the current version of srvn, the task directed aggregation version of srvn or the current version of
parasrvn.

5.2 Case File Names

The filenames for the case description files and for the case solution files are derived from various
elements of the experiment description. The file name consists of the root case, a component for
each independent variable, and the suffix “.in”.

The file name components associated with the independent variables are formed by appending
-n to the name for each independent variable, where n is the index of the value for that variable.
For example, suppose an experiment with two independent variables was being performed where
the first variable varies of ten values and the second variable varies over 5 values. The case file name
for the case where the first independent variable was on its fifth value and the second independent
variable was on its second value would be case-05-02.in.

5.3 Case Description File

The case description file is generated by MultiSRVN from the SRVN description file. MultiSRVN
places a comment at the top of the file which identifies exactly the values of the independent
variables responsible for the generation of this case.

The case may be solved independantly of all the other case by the invokation of the srvn
program. This can be acomplished by the syntax such as:

lqns -o case-05-02.out case-05-02.in

The results can be found in the file “case-05-02.out”.

5.4 Case Result File

This file is generated by the solver, for example lqns. The file will have the name, following the above
examples, “case-05-02.out”. This file has the same comment as the corresponding case description
file. The comment information identifies the values of the independent variables.

5.5 Case Log File

This file is generated by MultiSRVN when the “-l” option is used. The file will have the name,
following the above examples, “case-05-02.log”. The file will contain any MultiSRVN or solver diag-
nostic messages that otherwise are printed to standard output and standard error. The information
reported in the log file includes user-level convergence tests.

24 5 OTHER FILES

25

6 Examples

In this section, two complete examples are given of sessions using MultiSRVN . The first exam-
ple demonstrates how MultiSRVN can be used to help a designer make design decisions to best
use available resources. The second example shows how MultiSRVN can be used to explore the
parameter space of a model.

6.1 Design Decisions

The example consists of a set of clients which make requests to a common application server and
to a common file server. The file server is also used directly by the application server. All tasks
run on their own processors.

Suppose that during the development process, it was determined that one of the system’s
functions could be performed either at the client tasks, or at the application server. The clients
run input and screen management for the users, and can optionally also do a substantial amount
of pre-processing of each request (checking, breakdown into file requests, etc.). Alternatively, the
pre-processing could be executed by the application task, which would then continue to process the
request and make the file accesses. However, the processors used by the Clients are significantly less
powerful (say by a factor of ten) than the processor employed by the common application server.
Both configurations are shown in Figure 3 complete with their parameters. The parameters of the
pre-processing module are aggregated into the task which executes it. For instance, in the case of
the “Server Compute” case, the phase execution times of the “Rqst” entry after aggregation are
1.4, 0.5, and 0. The pre-processing work is done by the module shown as a rectangle which is called
from the Client task in the left-hand “Client Compute” case, and by the Application task in the
“Server Compute” case.

6.1.1 The Client-Compute SRVN Description File

The following is the SRVN Description File, cmpdesign.lqn, for the model described above. The
comments included in the file attempt to illuminate some of the syntax. A tool such as TimeBench
or lqndef is useful in generating such files.

1: # General Information

2: G "Design Comparison"

3: 0.000010 # Convergience limit

4: 50 # Iteration limit

5: 10 # Print interval

6: 0.500000 # Coefficient of variation

7: -1

8:
9: # Processor Information

10: P 0

11: p Application f # Processor Application FCFS

12: p Clients f i # Infinite server processor Clients FCFS

13: p FileServer f # Processor FileServer FCFS

14: -1

15:
16: # Task Information

17: T 0

18: t Clients r # Reference task Clients

19: Clients -1 # with entry Clients

26 6 EXAMPLES

Application

Rqst

Clients

FileServer

Screen Data

Screen

Data

Rqst

Application

Rqst

Clients

FileServer

Screen Data

Screen

Data

Rqst

Client Compute Server Compute

[0, 10]

[0.7, 0.3]

[0.4, 0.1][0.4, 0.1]

[0, 1]

[1.4, 0.5]

[0.4, 0.1][0.4, 0.1]

(0, 2)
(0, 5)

(1, 0)

(0, 2)
(0, 5)

(1, 0)

Figure 3: Example to study workload partitioning. The numbers under the entries are the mean
phase service times and the numbers on the arcs are the mean visit ratios.

20: Clients # on processor Clients

21: 0 m 4 # having priority 0 and 4 instances

22:
23: t Application n # Non-reference task Application

24: Application_Rqst -1 # with entry Application_Rqst

25: Application # on processor Application

26: 0 # having priority 0.

27:
28: t FileServer n # Non-reference task FileServer

29: FileServer_Screen # with entry FileServer_Screen

30: FileServer_Data -1 # and entry FileServer_Data

31: FileServer # on processor FileServer

32: 0 # having priority 0.

33: -1

34:
35: # Entry Information

36: E 0

37: # Phase Service Times P 1 P 2 P 3

38:
39: s Application_Rqst 0.7 0.3 0.0 -1 # Design C

40: # s Application_Rqst 1.4 0.5 0.0 -1 # Design S

41: s Clients 0.0 10.0 0.0 -1 # Design C

42: # s Clients 0.0 1.0 0.0 -1 # Design S

43: s FileServer_Data 0.4 0.1 0.0 -1

44: s FileServer_Screen 0.4 0.1 0.0 -1

45:

6.1 Design Decisions 27

46: # Call rates per phase P 1 P 2 P 3

47:
48: y Application_Rqst

49: FileServer_Data 1.0 0.0 0.0 -1

50: y Clients

51: Application_Rqst 0.0 2.0 0.0 -1

52: y Clients

53: FileServer_Screen 0.0 5.0 0.0 -1

54: -1

6.1.2 The Experiment File

The design comparison requires two MultiSRVN experiments, one in which the preprocessing com-
putations are performed by the client and on in which these computations are done by the server. In
both cases the number of clients is varied from 1 to 10. The following is the Experiment Description
File, cmpdesign.exp, for these experiments.

1: .global

2: .solver = "lqns";

3: .template = "cmpdesign.lqn";

4: .end

Both experiments use the same solver and have the same template file. This is most easily
accomplished through settings in the globals section as listed above.

The first experiment places the preprocessing responsibility on the clients. The following is the
experiment description. Note that the labels are all given in LATEX notation. This is so that later,
when the gnuplot result format is used to produce a LATEX graph, the labels will appear correctly
formatted.

6: .experiment designc

7: .declare

8: users = [1-10], 10;

9: .vary

10: users;

11: .control

12: .tm (Clients) = { users };

13: .observe

14: .plot { users } "N_{users}";

15: .th (.t, Clients) "$X_{Clients}$";

16: .end

The first experiment places the preprocessing responsibility on the clients. The following is
the experiment description. Note that in this experiment, there is an initialization section. This
section redefines the services times of the entries of the client and server tasks. This is how the
preprocessing responsibility is shifted from the client to the server. In the previous experiment
description, this section was not required since the template file already had these parameters
correctly specified.

18: .experiment designs

19: .initialize

20: # s Application_Rqst 1.4 0.5 0.0 -1 # Design S

21: .st (Application_Rqst, 1) = 1.4;

28 6 EXAMPLES

22: .st (Application_Rqst, 2) = 0.5;

23: # s Clients 0.0 1.0 0.0 -1 # Design S

24: .st (Clients, 2) = 1.0;

25: .declare

26: users = [1-10], 10;

27: .vary

28: users;

29: .control

30: .tm (Clients) = { users };

31: .observe

32: .plot { users } "N_{users}";

33: .th (.t, Clients) "$X_{Clients}$";

34: .end

6.1.3 Solving The Experiments

The experiments were solved using the following MultiSRVN command.

MultiSRVN -v -F gnuplot cmpdesign.exp

6.1.4 Examining the Results

A gnuplot data file is generated for each experiment in the experiment description file. In this case,
the data files are named designc.dat and designs.dat (the data files are not shown here). A
single gnuplot commands file, cmpdesign.gnu, is also generated. It contains the gnuplot commands
needed to make graphs from the gnuplot data files. The command

gnuplot cmpdesign.gnu

plots the designc data followed by designs data. Perhaps the best way to really compare these
two data sets is to plot the client throughput for both designs on the same graph. To do this,
the gnuplot commands files need to be edited by hand. The resulting file, called cmpdesign2.gnu,
follows:

1: # Experiment Results

2: #

3: # Experiment: designc

4: # SRVN description file: cmpdesign.lqn

5: # Independent variables: 1

6: # Dependent variables: 1

7: #

8:
9: set title "Plot of $X_{Clients}$ vs N_{users}"

10: set term eepic

11: set output "cmpdesign-graph.tex"

12: set xlabel "N_{users}"

13: set ylabel "$X_{Clients}$"

14: plot "designc.dat" using 1:2 title "Client Compute" with linespoints 1 1,\

15: "designs.dat" using 1:2 title "Server Compute" with linespoints 1 2

16: #pause -1 "Hit return to continue"

The eepic gnuplot output option was selected here so that the gnuplot output could be encor-
porated directly in this document.

6.1 Design Decisions 29

The performance characteristics plotted in the graph produced by this script are shown in
Figure 4. Clearly, the optimal placement of the pre-processing workload is dependent upon the
number of clients, and that with more than three clients, the “Client Compute” alternative is
better. This analysis also suggests that some intermediate partitioning of the pre-processing may
be optimal for systems with three to six clients.

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

1 2 3 4 5 6 7 8 9 10

XClients

Nusers

Plot of XClients versus Nusers

Client Compute 3

3

3

3

3

3

3
3 3 3 3

Server Compute +

+

+
+ + + + + + + +

Figure 4: Comparison of throughput versus number of clients where functionality is moved between
the clients and the server.

30 6 EXAMPLES

6.2 Exploring a Design

This example session with MultiSRVN begins with the presentation of a description of a model for
which a performance study is to be done. The model is converted into the a SRVN description file.
Next, an experiment description file is created to contain the experiments of the performance study
and the experiments are solved. The standard, matlab, latex and gnuplot formats are examined
in their respective result files and then MatLab and gnuplot are used to graph the results.

The example model being used here is a split pipeline having two branches. In addition, a
server is used by some of the tasks in the pipline. Figure 5 represents the pipeline model.

T2e2 T3e3 T4e4

T5

e5

T6e6

T7

e7

T1
[0,1,0] [v,a,v] [v,b,v] [v,c,v]

[v,d,v] [v,e,v]

[f ,g]

(0,α,0)

(0,β,0)

(0,γ,0)
Data given in brackets, [a,b,c],
refers to the phase service times
for the task on which the
annotation is located.

Data given in parentheses, (a,b,c),
refers to the call ratios per phase
for the arc on which the
annotation is located.

Phase 3 is deterministic
for the pipeline tasks,

Requests to the server
are in phase 2 and are
stochastic.

Main pipeline

Pipeline branch

Server Task

Client

with exactly one message
to each successor.

Figure 5: Pipeline example model diagram

The model consists of a reference task, T1, which drives a pipeline. The pipeline is a “split”
pipeline in that there are two branches. One branch is formed by the tasks T2, T3 and T4 while the
second branch consists of tasks T2, T5 and T6. In addition, the tasks T2, T3, and T5 each makes
use of the server, T7.

The SRVN parameters associated with the various tasks and arcs are shown on their respective
icons in Figure 5. In order to make the example easier to follow, some of the more important
model parameters are named. Let the phase 1 and 3 service times for each of the pipeline tasks,
T2 through T6, be represented by v. Let the phase 2 service times for tasks T2, T3, T4, T5 and T6

be represented by a, b, c, d, and e respectively. Let the call ratios in phase 2 to the server, T7, from
T2, T3 and T5 be α, β, and γ. Let the phase 1 and phase 2 service times for the server, T7, be f

and g respectively. Finally, let the throughput of task T1 be X and the utilization for the processor
for task T7 be U .

In this example, three experiments are to be explored. The first experiment has the main branch
of the pipeline balanced so that a, b and c are all 1. The server is not used in this experiment and

6.2 Exploring a Design 31

so α, β and γ are all 0. The independent variables in this experiment are d and e which are each
to be varied from 0.1 to 10 in 6 steps. The dependent variables are X and U .

In the second experiment, both branches of the pipeline are balanced. Therefore, a through e

are all 1. The server is used in this example in such a way that tasks T3 and T5 compete for its
use. This is accomplished by leaving α as 0, and varying the independent variables, β and γ, from
0.1 to 2 in 6 steps each. The server service times, f and g are both 0.5. The dependent variables
are again X and U .

For the third experiment, the pipeline is again balanced with a through e being 1. The call
ratios are α = 0, β and γ both equal 0.5. Here, the independent variables are the service times of
the server, f and g which are varied from 0.1 to 2 in six steps each. As before, X and U are the
dependent variables.

6.2.1 The SRVN Description File

The srvn description file for this model may be created using lqndef , TimeBench, or by hand. The
SRVN description file syntax is described in detail in [2]. The following is the contents of the SRVN
description file, pipeline.lqn, for the pipeline example described above.

1: # General Information Section

2:
3: G "This is a model representing a two-branch pipeline."

4: 0.000010 # Convergience limit

5: 50 # Iteration limit

6: 1 # Print interval

7: 0.500000 # Coefficient of variation

8: -1

9:
10: # Processor Information

11: P 7

12: p P_T1 f # Processor P_T1 FCFS

13: p P_T2 f # Processor P_T2 FCFS

14: p P_T3 f # Processor P_T3 FCFS

15: p P_T4 f # Processor P_T4 FCFS

16: p P_T5 f # Processor P_T5 FCFS

17: p P_T6 f # Processor P_T6 FCFS

18: p P_T7 f # Processor P_T7 FCFS

19: -1

20:
21: # Task Information

22: T 7

23: t T1 r T1 -1 P_T1 # Reference task T1, Entry T1, Processor P_T1

24: t T2 n T2_e2 -1 P_T2 # Non-reference task T2, Entry T2_e2, Processor P_T2

25: t T3 n T3_e3 -1 P_T3 # Non-reference task T3, Entry T3_e3, Processor P_T3

26: t T4 n T4_e4 -1 P_T4 # Non-reference task T4, Entry T4_e4, Processor P_T4

27: t T5 n T5_e5 -1 P_T5 # Non-reference task T5, Entry T5_e5, Processor P_T5

28: t T6 n T6_e6 -1 P_T6 # Non-reference task T6, Entry T6_e6, Processor P_T6

29: t T7 n T7_e7 -1 P_T7 # Non-reference task T7, Entry T7_e7, Processor P_T7

30: -1

31:
32: # Entry Information

33: E 7

34: # Phase 1 Phase 2 Phase 3

32 6 EXAMPLES

35: f T2_e2 0 0 1 -1 # Phase type: sto. sto. det.

36: f T3_e3 0 0 1 -1 # Phase type: sto. sto. det.

37: f T4_e4 0 0 1 -1 # Phase type: sto. sto. det.

38: f T5_e5 0 0 1 -1 # Phase type: sto. sto. det.

39: f T6_e6 0 0 1 -1 # Phase type: sto. sto. det.

40: s T1 0 1 0 -1 # Phase service times: 0 1 - NA -

41: s T2_e2 0.05 1 0.05 -1 # Phase service times: v a v

42: s T3_e3 0.05 1 0.05 -1 # Phase service times: v b v

43: s T4_e4 0.05 1 0.05 -1 # Phase service times: v c v

44: s T5_e5 0.05 1 0.05 -1 # Phase service times: v d v

45: s T6_e6 0.05 1 0.05 -1 # Phase service times: v e v

46: s T7_e7 0.5 0.5 0 -1 # Phase service times: f g - NA -

47: y T1 T2_e2 0 1 0 -1 # Calls T1, T2_e2: 0 1 0

48: y T2_e2 T3_e3 0 0 1 -1 # Calls T2_e2, T3_e3: 0 0 1

49: y T3_e3 T4_e4 0 0 1 -1 # Calls T3_e3, T4_e4: 0 0 1

50: y T2_e2 T5_e5 0 0 1 -1 # Calls T2_e2, T5_e5: 0 0 1

51: y T5_e5 T6_e6 0 0 1 -1 # Calls T5_e5, T6_e6: 0 0 1

52: y T2_e2 T7_e7 0 0 0 -1 # Calls T2_e2, T7_e7: 0 alpha 0

53: y T3_e3 T7_e7 0 0 0 -1 # Calls T3_e3, T7_e7: 0 beta 0

54: y T5_e5 T7_e7 0 0 0 -1 # Calls T6_e6, T7_e7: 0 gamma 0

55: -1

6.2.2 The Experiment File

Once the model has been designed and the SRVN description file created, the experiments must
be written into the experiment description file. In this example, the experiment description file
is named pipeline.exp. The experiment description file consists of a global definitions section
followed by a list of one or more experiments. The following is the global definitions section for
this example.

1: # Set the MultiSRVN variables which apply to all the experiments to

2: # be performed.

3:
4: .global

5: .solver = "parasrvn"; # Use the simulator

6: .template = "pipeline.lqn"; # Layered queue network description file

7:
8: # The following is the list of workstations on which the cases

9: # are to be solved.

10:
11: .hosts = "aries, sunset, sunrise, kosmos, tiros, arcturus, voyageur";

12:
13: .end

The following is the experiment description for the first experiment outlined above.

15: # This experiment features a balanced main pipeline where the phase

16: # two service times of the main branch are all 1. The service times

17: # of the extra branch are to be varied. The server is disconnected.

18:
19: .experiment pipe1

20: .declare

21: d = [0.1 - 10], 5; # Vary d from 0.1 to 10 in 5 steps.

6.2 Exploring a Design 33

22: e = [0.1 - 10], 5; # Vary e from 0.1 to 10 in 5 steps.

23:
24: .vary

25: d; # Independent variable

26: e; # Second independent variable

27:
28: .control

29: .st (T5_e5, 2) = { d };

30: .st (T6_e6, 2) = { e };

31:
32: .observe

33: .plot { d } "d";

34: .plot { e } "e";

35: .th (.t, T1) "X"; # Dependent variables

36: .ut (.p, P_T7) "U";

37: .end

Note the independent variables in the control section, the service times in phase 2 for tasks
T5 (entry T5 e5) and T6 (entry T6 e6). The identifiers d and e have been associated with these
controls.

Similarly, s and t have been associated with the dependent variables, the throughput for task
T1 and the utilization for processor T7.

The experiment description for the second experiment outlined above is as follows:

39: # This experiment has both branches of the pipeline balanced where the

40: # pipeline members’ phase two service times are all 1. Here, the

41: # server is introduced.

42:
43: .experiment pipe2

44: .declare

45: beta = [0.1 - 2.0], 5; # Vary beta from 0.1 to 2 in 5 steps.

46: gamma = [0.1 - 2.0], 5; # Vary gamma from 0.1 to 2 in 5 steps.

47:
48: .vary

49: beta; # Independent variable

50: gamma; # Second independent variable

51:
52: .control

53: .rr (T2_e2, T7_e7, 2) = { beta };

54: .rr (T3_e3, T7_e7, 2) = { gamma };

55:
56: .observe

57: .plot { beta } "beta";

58: .plot { gamma } "gamma";

59: .th (.t, T1) "X"; # Dependent variables

60: .ut (.p, P_T7) "U";

61: .end

Here, the call ratios or “rendezvous rates” for tasks T2 (entry T2 e3) and T3 (entry T3 e3) are
the independent variables. These have been named beta and gamma. The dependent variables are
the same as for the previous experiment.

The third experiment defined above can be described as follows:

34 6 EXAMPLES

63: # In this experiment, we vary the service times of the server, keeping

64: # the rendezvous rates of the pipeline to server links at 0.5

65:
66: .experiment pipe3

67: .initialize

68: .rr (T2_e2, T7_e7, 2) = 0.5; # Initialize the call rates for

69: .rr (T3_e3, T7_e7, 2) = 0.5; # e2 and e3, beta and gamma, also.

70:
71: .declare

72: f = [0.1 - 2], 5; # Vary f from 0.1 to 2 in 5 steps.

73: g = [0.1 - 2], 5; # Vary g from 0.1 to 2 in 5 steps.

74:
75: .vary

76: f;

77: g;

78:
79: .control

80: .st (T7_e7, 1) = { f };

81: .st (T7_e7, 2) = { g };

82:
83: .observe

84: .plot { f } "f";

85: .plot { g } "g";

86: .th (.t, T1) "X"; # Dependent variables

87: .ut (.p, P_T7) "U";

88: .end

This description is similar to the previous two. Note that in this case, the SRVN description
file is not quite what’s needed for this experiment. The phase 2 call ratios to the server T7 from
tasks T2 and T3 must be set to 0.5. This can be accomplished by the first and second lines in the
initialization section in this experiment description. The naming of parameters here is the same as
with the previous two experiments.

These three experiments may be each placed in a separate experiment description file, or they
may all be put into the same file. The latter option was selected for this example and file name
given was “pipeline.exp”.

6.2.3 Solving The Experiments

Solving the experiments is simply a matter of executing the MultiSRVN tool. This can be done
with may different options to achieve several different outputs.

First, a standard format result file is generated which contains the results of each of the three ex-
periments. Had each experiment been in a separate file, then three files would have been generated.
The syntax for invoking MultiSRVN to obtain the desired results is as follows:

MultiSRVN -vlNN pipeline.exp

The -v option is used here so that the progress of the tool can be monitored; the -l option
causes a log file to be generated for each case, one of which is shown below; the -NN option
makes the solver run at priority 20. The simulator, parasrvn, is used in this example which takes
approximately 90 minutes on an HP9000 735. The results may be found in the file “pipeline.res”.
Here is the log file for the pipe1/case-01-01 case:

6.2 Exploring a Design 35

1: parasrvn -p -o ./pipe1/case-01-01.out ./pipe1/case-01-01.in

2: ---------------------------[Solver Output]----------------------------

3: --

Suppose that the results for the second experiment, pipe2, are desired in the matlab format.
Then the following syntax could be used:

MultiSRVN -rv -e pipe2 -F matlab pipeline.exp

Since the case result files already exist, and no new controls are being manipulated, the -r

option may be used. This causes MultiSRVN to reuse the existing data rather than recalculate it.
The -e pipe2 option selects the experiment named “pipe2” to be solved. The other experiments in
the experiment file are ignored. Finally, the matlab format is selected using the option -F matlab.
The result outputs are located in the file “pipeline.m”.

Suppose further that the results for the third experiment are to be included in a LATEX document.
This can be achieved using the latex format as follows:

MultiSRVN -rv -e pipe3 -F latex pipeline.exp

As above, the -r and -v options are used to reuse the data and display the tool’s progress.
Using -e pipe3 causes the third experiment to be solved in isolation. The -F latex option selects
LATEX output. The result outputs may be found in the file “pipeline.tex”.

Now perhaps the results for the pipe2 experiment would be interesting in a three dimensional
plot. The format to use for this is the gnuplot format.

MultiSRVN -rv -e pipe2 -F gnuplot pipeline.exp

As above, the -r and -v options cause the data to be reused and the status of the run to be
monitored. Here, the -e pipe2 option and argument select the pipe2 experiment for execution. The
format is selected with -F gnuplot. The numeric results are located in the file “pipe2.dat” and the
gnuplot commands for displaying the data are put into the file “pipeline.gnu”.

6.2.4 Standard Results

Having “solved” the experiments as described above, the result reports may now be analyzed. The
following is the result file “pipeline.res” generated by the first of the three invocations of MultiSRVN
described above.

1: Experiment Results

2:
3: Experiment: pipe1

4: SRVN description file: pipeline.lqn

5: Independent variables: 2

6: Dependent variables: 2

7:
8: x1 -> d

9: x2 -> e

10: y1 -> X

11:
12: x2 0.1 2.575 5.05 7.525 10

13: x1

36 6 EXAMPLES

14: 0.1 0.484710 0.336780 0.190890 0.131630 0.099650

15: 2.575 0.310420 0.241640 0.165600 0.119770 0.094230

16: 5.05 0.179950 0.158510 0.126810 0.101040 0.082710

17: 7.525 0.128010 0.117870 0.101430 0.088210 0.074630

18: 10 0.095950 0.093910 0.084240 0.073680 0.068170

19:
20: x1 -> d

21: x2 -> e

22: y2 -> U

23:
24: x2 0.1 2.575 5.05 7.525 10

25: x1

26: 0.1 0.000000 0.000000 0.000000 0.000000 0.000000

27: 2.575 0.000000 0.000000 0.000000 0.000000 0.000000

28: 5.05 0.000000 0.000000 0.000000 0.000000 0.000000

29: 7.525 0.000000 0.000000 0.000000 0.000000 0.000000

30: 10 0.000000 0.000000 0.000000 0.000000 0.000000

31:
32: Experiment Results

33:
34: Experiment: pipe2

35: SRVN description file: pipeline.lqn

36: Independent variables: 2

37: Dependent variables: 2

38:
39: x1 -> beta

40: x2 -> gamma

41: y1 -> X

42:
43: x2 0.1 0.575 1.05 1.525 2

44: x1

45: 0.1 0.419480 0.385850 0.358550 0.319180 0.292810

46: 0.575 0.388540 0.351230 0.322050 0.294830 0.267100

47: 1.05 0.347340 0.325420 0.293620 0.267120 0.245800

48: 1.525 0.320190 0.289940 0.266660 0.242420 0.221380

49: 2 0.284040 0.263010 0.241950 0.218560 0.205800

50:
51: x1 -> beta

52: x2 -> gamma

53: y2 -> U

54:
55: x2 0.1 0.575 1.05 1.525 2

56: x1

57: 0.1 0.084977 0.263226 0.408481 0.526153 0.619321

58: 0.575 0.259408 0.408291 0.529903 0.617047 0.689484

59: 1.05 0.405143 0.523852 0.613504 0.687881 0.742064

60: 1.525 0.515732 0.608446 0.683911 0.743041 0.788012

61: 2 0.600213 0.676060 0.738108 0.785529 0.817346

62:
63: Experiment Results

64:
65: Experiment: pipe3

66: SRVN description file: pipeline.lqn

67: Independent variables: 2

6.2 Exploring a Design 37

68: Dependent variables: 2

69:
70: x1 -> f

71: x2 -> g

72: y1 -> X

73:
74: x2 0.1 0.575 1.05 1.525 2

75: x1

76: 0.1 0.419560 0.401660 0.377100 0.338750 0.302860

77: 0.575 0.371660 0.353790 0.328490 0.299690 0.271140

78: 1.05 0.318490 0.310900 0.291300 0.269370 0.241710

79: 1.525 0.286260 0.271120 0.257940 0.238060 0.224190

80: 2 0.253550 0.242880 0.232090 0.213400 0.202370

81:
82: x1 -> f

83: x2 -> g

84: y2 -> U

85:
86: x2 0.1 0.575 1.05 1.525 2

87: x1

88: 0.1 0.085165 0.271735 0.433073 0.555460 0.645858

89: 0.575 0.251501 0.409977 0.534712 0.630741 0.706023

90: 1.05 0.373792 0.506215 0.603408 0.681603 0.744176

91: 1.525 0.465581 0.573748 0.657660 0.721022 0.772795

92: 2 0.532383 0.628942 0.697990 0.756564 0.794724

6.2.5 Matlab Results

Using MatLab is easy. To start a session with MatLab enter matlab at the UNIX command line;
a console interface to MatLab is started. At the prompt, type in the name of the experiment to
start the script. In this case enter “pipeline”. The experiment name and a bit of other experiment
related information is shown along with a menu of options as follows:

% Experiment Results

%

% Experiment: pipe2

% SRVN description file: pipeline.lqn

% Independent variables: 2

% Dependent variables: 2

%

1) Plot X vs gamma with beta

2) Plot U vs gamma with beta

3) Set capturing of graphs to files

0) Stop

Select a plot number:

The operator is requested to make a selection by entering a number. Enter a “1” to see the
first graph, and a “2” to see the second graph. Option “3” controls the destination of the graphs.
When this option is selected, the matlab script prompts with

Capture output to file? (1 for yes, 0 for no):

38 6 EXAMPLES

If “yes” is selected by typing in a “1”, the next plots made using menu items “1” and “2” are
recorded. The graph files are in the Encapsulated PostScript format and are named namegn.eps
where name is the experiment name and n is the menu item number, in this case 1 or 2. Figures
6 and 7 show the graphs as produced by MatLab.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.25

0.3

0.35

0.4

0.45
pipe2 −− X vs beta

beta

X

Figure 6: Graph of matlab results menu option 1

6.2.6 LATEX Results

The third invocation of MultiSRVN given above generates the latex format result file. The fol-
lowing is the contents of the “pipeline.tex” file.

1: %% Experiment Results

2: %%

3: %% Experiment: pipe3

4: %% SRVN description file: pipeline.lqn

5: %% Independent variables: 2

6: %% Dependent variables: 2

7: %%

8: \begin{table}[htbp]

9: \begin{center}

10: \begin{tabular}{|r|rrrrr|} \hline

11: & \multicolumn{5}{c|}{g} \\ \cline{2-6}

12: \multicolumn{1}{|c|}{f} & 0.1 & 0.575 & 1.05 & 1.525 & 2 \\ \hline

13: 0.1 & 0.419560 & 0.401660 & 0.377100 & 0.338750 & 0.302860 \\

14: 0.575 & 0.371660 & 0.353790 & 0.328490 & 0.299690 & 0.271140 \\

15: 1.05 & 0.318490 & 0.310900 & 0.291300 & 0.269370 & 0.241710 \\

16: 1.525 & 0.286260 & 0.271120 & 0.257940 & 0.238060 & 0.224190 \\

17: 2 & 0.253550 & 0.242880 & 0.232090 & 0.213400 & 0.202370 \\

18: \hline

19: \end{tabular}

20: \end{center}

6.2 Exploring a Design 39

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
pipe2 −− U vs beta

beta

U

Figure 7: Graph of matlab results menu option 2

21: \caption[Result table number 1 for experiment pipe3]{\label{tab:pipe31}

22: Experiment results for experiment pipe3, observation of X }

23: \end{table}

24:
25: \begin{table}[htbp]

26: \begin{center}

27: \begin{tabular}{|r|rrrrr|} \hline

28: & \multicolumn{5}{c|}{g} \\ \cline{2-6}

29: \multicolumn{1}{|c|}{f} & 0.1 & 0.575 & 1.05 & 1.525 & 2 \\ \hline

30: 0.1 & 0.085165 & 0.271735 & 0.433073 & 0.555460 & 0.645858 \\

31: 0.575 & 0.251501 & 0.409977 & 0.534712 & 0.630741 & 0.706023 \\

32: 1.05 & 0.373792 & 0.506215 & 0.603408 & 0.681603 & 0.744176 \\

33: 1.525 & 0.465581 & 0.573748 & 0.657660 & 0.721022 & 0.772795 \\

34: 2 & 0.532383 & 0.628942 & 0.697990 & 0.756564 & 0.794724 \\

35: \hline

36: \end{tabular}

37: \end{center}

38: \caption[Result table number 2 for experiment pipe3]{\label{tab:pipe32}

39: Experiment results for experiment pipe3, observation of U }

40: \end{table}

The LATEX tables in this report file may be inserted into a document or the macro \input{file}

may be used to include the file. Each table has a label associated with it. The label is formed
by the concatenation of the experiment name, in this case, “pipe3”, and the number of the table
(in this case there is only one table and so the table number is absent). See Tables 5 and 6 for
examples of what the tables look like.

40 6 EXAMPLES

g
f 0.1 0.575 1.05 1.525 2

0.1 0.419560 0.401660 0.377100 0.338750 0.302860
0.575 0.371660 0.353790 0.328490 0.299690 0.271140
1.05 0.318490 0.310900 0.291300 0.269370 0.241710

1.525 0.286260 0.271120 0.257940 0.238060 0.224190
2 0.253550 0.242880 0.232090 0.213400 0.202370

Table 5: Experiment results for experiment pipe3, observation of X

g
f 0.1 0.575 1.05 1.525 2

0.1 0.085165 0.271735 0.433073 0.555460 0.645858
0.575 0.251501 0.409977 0.534712 0.630741 0.706023
1.05 0.373792 0.506215 0.603408 0.681603 0.744176

1.525 0.465581 0.573748 0.657660 0.721022 0.772795
2 0.532383 0.628942 0.697990 0.756564 0.794724

Table 6: Experiment results for experiment pipe3, observation of U

6.2.7 Gnuplot Results

The fourth invocation of MultiSRVN given above generates the gnuplot format result files. The
results consist of a data file for each experiment and a gnuplot command file. In this case, the files
are pipe2.dat and pipeline.gnu. The pipe2.dat consists of columns of data, one column for
each dependent variable. There are sets of rows separated by a blank line. There is one such set
for value of the second independent variable (if there are two independent variables) and one row
within each set for each value of the first independent variable. The contents of the “pipeline.gnu”
file are commands to gnuplot causing it to graph the data of the .dat file(s). The contents of these
files are not shown here.

Using gnuplot is easy. Type gnuplot as a command to a shell as follows:

gnuplot pipeline.gnu

Each graph is shown in turn as the Enter is pressed. The gnuplot commands file, pipeline.gnu,
may be edited to make gnuplot print the graphs into files. This is done by removeing the comment
characters from the lines containing the output statements. In this example, lines 9 and 23 are
affected:

9: #set output "pipe2-1.ps"

23: #set output "pipe2-2.ps"

A three-dimensional plot may be made for experiments with two independent variables. This
may be done for the pipeline example as follows. Start gnuplot is a shell and then enter the following
commands:

set parametric

6.2 Exploring a Design 41

0.5
1

1.5
2

0.5
1

1.5
2

0.2
0.25
0.3

0.35
0.4

0.45

Figure 8: The experiment results in 3-D

splot "pipe2.dat" with lines

If you then wish to have a LATEX printout of the plot use the following commands:

set ouput "pipe2.tex"

set terminal eepic

set nokey

splot "pipe2.dat" with lines

Then, in a LATEX document, use the LATEX commands

\begin{figure}

\begin{center}

\input{pipe2}

\end{center}

\end{figure}

The results of these efforts gets you the graph depicted in Figure 8.

42 6 EXAMPLES

43

7 Error Messages

This section provides listings of the error messages and descriptions of what they mean. There are
two basic types of error message in MultiSRVN : file input errors and runtime errors.

File input error have the following format:

“source”: line num: error message text

The source field is the source of the error message. This is the name of the source file, for example
the experiment description file, being read when the error occurred. The num field is the line
number of the line in the file on which the error is located. The error message text indicates the
cause of the error and may suggest a means of fixing the problem.

Runtime errors have a the following format:

“MultiSRVN ”: (severity) error message text

The severity field indicates, indirectly, the type of error that occurred. Three possible severity
levels exist, warning, runtime error, fatal error. The error message text explains the nature of the
error and in some cases tries to suggest a means of fixing the problem.

7.1 Warnings

Warnings result from minor errors or problems which are not serious enough to warrant the termi-
nation of the program. A message is reported to the operator and if necessary, the current operation
is terminated. However, pending operations are continued where possible.

Unsupported data type in srvn description -- file

A data type was used in a control specification in the given experiment description file, file,
which is not currently supported. It is intended that the type eventually be supported but for now,
it must be avoided.

Results may not be valid for srvn description -- file

An error may have occurred reading the SRVN description file. As a result, the results for this
experiment may be invalid. Normally, if this warning occurs, it will be preceded by other warnings
indication the nature of the problem with the SRVN description file.

Observation request not supported -- observation description

The observation specification made in the experiment description file is not currently supported.
It is intended that the feature eventually be included but for now it should be avoided. The
observation description indicates the type of unsupported observation requested.

Unable to locate experiment -- experiment name ‘‘name’’

The experiment named name specified using the -e ename option was not located. This means
that the experiment was not in the given experiment description file. Check for errors in the spelling
of the experiment name.

Option option not available

The option, option, specified on the command line is not yet supported. It is intended that it
will eventually be available but for now should be avoided.

44 7 ERROR MESSAGES

7.2 Runtime Errors

These errors occur as a result of bad data, errors in the input files, errors in the command line
options, etc. An occurrence of this type of error may cause the termination of the program. If
recovery from the error is possible, pending operations will be continued.

Symbol table full

This error occurs if the SRVN description file is too large. Try to reduce the number of symbols
in the SRVN description file is possible.

Number of item is outside of program limits of (1,n)

The SRVN description file contained a specification in which the number of instances of the
entity item was outside of the program limits for that quantity. The limits are given as (1,n) where
n is the maximum number allowed for instances of item.

Processor proc id for task task id has not been defined

In the SRVN description file, the processor proc id must be defined before it can be used in the
task declaration for task task id.

No entries have been defined for task task id

In the SRVN description file, a task declaration for task task id was found in which the task
had no entries defined. All tasks, reference or non reference must have at least one entry defined.

Reference task task id has more than one entry defined

In the SRVN description file, the task declaration for task task id was found to have more than
one entry defined. Reference tasks may only have one entry.

Argument to option option is missing

The argument for the command line option, option, was omitted. To fix the problem, supply
the option argument.

Unable to open file ‘‘file’’ -- UNIX file error message

The file named file could not be opened. The text UNIX file error message is the error message
supplied by the Unix operating system indicating the reason that the file could not be opened.
Usually, the file name was misspelled.

Invalid srvn description file -- ‘‘file’’

The SRVN description file, file, contained an error and was therefore found to be invalid. This
message is usually preceded by error messages which indicate the nature of the flaw within the file.

Errors occurred -- num experiments not completed

7.3 Fatal Errors 45

This message indicates that num experiments were aborted as a result of one kind of error
or another. This message will be preceded by other error messages indicating the nature of the
problems with the various experiments.

Unable to find item ‘‘item name’’ to set property value to value

An error occurred while attempting to set a controlled variable (independent variable) to a
particular value. The item item, for example processor, having the name item name could not be
located in order to set the property property, for example scheduling, to the value, value.

Unable to find item ‘‘(first item, second item)’’ to set property value to value

This is the same error as the previous one except that in this case, the item, item, has two
identifiers to specify it. This could be the rendezvous rate, or queue capacity, for example. The
names first item and second item could not be found for the given item.

Unable to open directory ‘‘name’’ -- UNIX error message

The directory named name could not be opened for one reason or another. The message UNIX
error message is the Unix error message which explains the error.

Solver ‘‘solver’’ stopped -- signal num received.

The solver program named solver was stopped, returning the signal num.

Error occurred in solver ‘‘solver’’ -- error description

The solver names solver stopped with a non-zero exit code. The text error description explains
the reason for the error.

Invalid case description file -- file

The case description file file, generated by MultiSRVN was found to be invalid. Typically, other
error messages will precede this one to indicate why the file is invalid.

Unable to locate observation data -- property for item ‘‘item name’’

The results for property property for item item with name item name could not be found. For
example, the throughput bound for task “task id” could not be found. This error can occur if the
“item name” is invalid.

7.3 Fatal Errors

The error messages here are related to errors involving problems encountered with the UNIX library
routines, interface errors between components of MultiSRVN as well as serious user related errors.
These errors cause immediate termination of the MultiSRVN program.

46 7 ERROR MESSAGES

7.3.1 General Errors

Unable to open file ‘‘file’’ -- UNIX error message

The file file could not be opened. The text UNIX error message explains why this error occurred.
This error is similar to the “Unable to open file” message in Section 7.2 except that this one is used
for cases where MultiSRVN cannot complete without the use of file.

Invalid experiment file -- ‘‘name’’

The experiment file named name was found to be invalid. This means that some sort of syntax
error was found in the experiment description file. Other error messages will precede this message
and will indicate what the error was.

7.3.2 Glist Errors

These next few errors deal with interaction between the various modules of MultiSRVN and the
glist abstract data type.

Unable to add node to data list ‘‘list name’’

This message concerns the addition of data to the abstract data type glist. If the addition of
data to the glist fails, this message results. The identifier list name indicates the use to which the
glist was being put.

Unable to remove node from data list ‘‘list name’’

This message results from a failed attempt to retrieve data from the abstract data type glist.
The identifier list name indicates the use to which the glist was being put.

Data node in list is bad -- list ‘‘list name’’, position num

This message is displayed when a node within an instance of the abstract data type glist is
discovered to be invalid. The identifier list name indicates which list contained the invalid node
and num indicates the position of the bad node within the list.

Index into data list is bad -- list ‘‘list name’’, position num

This message is displayed when an attempt is made to access a node within an instance of the
abstract data type glist at a position which is invalid. The identifier list name identifies the list
and num gives the invalid position.

7.3.3 Code Mismatch Errors

These next few errors deal with mismatches in either initialization codes, control codes or scheduling
flag characters between the experiment description file parser and the experiment manager modules.

Bad initialization code -- code code, experiment ‘‘name’’, position pos

The code code received as an initialization code for experiment name at position pos was not
recognized. This error indicates that a code which passed the parsing phase of the experiment
description file was not recognized during the execution of the experiment manager.

7.3 Fatal Errors 47

Bad control code -- code code, experiment ‘‘name’’, position pos

The control code code, found in experiment name at position pos and passed by the parsing
phase of the experiment manager, was rejected by the experiment manager. This message indicates
a mismatch between the parser and manager modules.

Bad scheduling flag character -- ‘‘em char’’

The character char intended as a scheduling flag in the experiment description file was not a
member of the allowed characters for this purpose. However, the parsing phase of the experiment
description file was passed so the experiment description file parser and experiment manager are
mismatched.

7.3.4 Case File Errors

These next errors occur in connection with the generation of case file names or the case files
themselves.

Position number in filename is too big -- filename ‘‘file’’, position pos

This error indicates that the iteration number to to create unique identifiable case filenames
was found to be too large. The number of iteration allowed is 999.

Model comment is too large -- comment text

The comment given as comment text was too large. This is the comment which is placed in the
case description files by MultiSRVN . The maximum allowed size is 1024 characters. It is unlikely
that this limit will be stretched.

7.3.5 Result Reporting Errors

Dimension too large for list -- list name

This error is generated in the result report generator module if an attempt is made to write to
the list of independent variables values at a dimension position which is larger than the number of
independent variables.

7.3.6 System Errors

These errors occur when some vital system resource such as memory is unavailable.

Library function ‘‘strdup()’’ failed

The strdup() library call returned (char *)0 which means that no memory was available for the
duplication of the string.

No more memory

An attempt was made to allocate memory which has failed. The cause could be that the
requested memory block was unreasonably large or that the system has insufficient memory left as
a result of competing processes.

48 7 ERROR MESSAGES

7.4 Experiment File Syntax Errors

When a syntax error occurs during the reading of the experiment description file, a message of a
similar format to the format used in the file input error described above in Section 7 is emitted. In
addition to displaying the source and line number, these messages also display the expected input
text and the actual received text.

It is possible for the error routines to display the line number for the next line after the line on
which the error occurred. Since the expected and actual text are displayed, this should not cause
too much trouble.

49

8 Support Programs

MultiSRVN ’s interface to the operator is through files and command line argument and options.
This permits the use of pre and post processing.

For example, it would be possible to create a SunView or OpenLook interface which would
provide an interactive way for the operator to create the experiment file. Similarly, the TimeBench
program could be modified to include an interface to MultiSRVN .

50 8 SUPPORT PROGRAMS

REFERENCES 51

References

[1] C.M. Woodside, J.E. Neilson, D.C. Petriu, S. Majumdar, The Stochastic Rendezvous Network
Model for Performance of Synchronous Multi-Tasking Distributed Software, March 1991.

[2] Dorina Petriu, SRVN Input File Format, Real Time and Distributed Systems Group, Carleton
University, Ottawa, Canada, March 1988.

[3] J.E. Neilson, C.M. Woodside, D.C. Petriu, J.W. Miernik, A Short Tutorial on Stochastic
Rendezvous Network Models, Report CSM-7.1m Communication Software-Modelling Project,
Carleton University, Ottawa, Canada, May 1988.

52 REFERENCES

53

A Release Notes

A.1 Bugs and Mis-features

1. The .ET, and .TT sub-categories are not implemented. The output generated by the solver
programs is not complete enough to use these sub-categories as yet.

A.2 Release History

1.0 This was the initial release of the program.

1.1 Some command line options were added.

1.2 The following changes were made for this release:

1. Some options were added.

2. The syntax of experiment description file was changed. Specifically, the queue capacity
and queue rate material was added and the range and list specifications changed.

1.3 The following changes were made for this release:

1. The -s option was added to allow the output to be split into a separate file for each
experiment.

2. The -c option was added to delete unwanted case files before new case files are generated.

3. The -O option to allow options to be passed to the solver utilities was put into the
command line syntax.

4. The queue initial size information was put into the experiment description language.

5. The output generated by the gnuplot format was enhanced.

6. Some repairs to the matlab format output were made.

54 A RELEASE NOTES

