
LQNS(1) LQNS(1)

NAME
lqns − solve layered queueing network models

SYNOPSIS
lqns [−MnpvV] [−d debug] [−e adiw] [−o output] [−t trace] [−z special] [−P pragma] [filename
. . .]

DESCRIPTION
Lqns is used to solve layered queueing network models using analytic techniques. Refer to ‘‘The Stochas-
tic Rendezvous Network Model for Performance of Synchronous Multi-tasking Distributed Software’’ for
details of the model. Refer to ‘‘SRVN Input File Format’’ for a complete description of the input file format
for the programs. See below for program restrictions and limits.

Lqns reads its input from filename, specified at the command line if present, or from the standard input oth-
erwise. Output for an input file filename specified on the command line will be placed in the file file-
name.out. If sev eral files are named, then each is treated as a separate model and output will be placed in
separate output files. If input is from the standard input, output will be directed to the standard output. The
file name ‘−’ is used to specify standard input.

The −ooutput option can be used to direct all output to the file output regardless of the source of input.
Multiple input files cannot be specified when using this option. Output can be directed to standard output
by using −o− (i.e., the output file name is ‘−’.)

OPTIONS
−d Turn on debugging output.

all Activate all debugging options.

activities
Print out activity service times.

calls Print rendezvous rates from clients to servers during each iteration of the solver.

forks Print out information about forks found in model.

interlock
Print out interlocking tables during initialization.

joins Print out information about joins found in model.

layers Print out construction of layers on standard output during initialization.

overtaking
Print out overtaking probability calculations during each iteration of the solver.

variance
Print out the service time variance during iteration of the solver.

See also -t.

−e adiw
Floating point error disposition. By default, the floating point errors overflow, divide by zero and
invalid operation, will stop the solution of the current model. The default case, −ed, uses the
imprecise exception model of the floating point hardware to permit the fastest possible execution.
The exact exception model, useful when debugging the solver, is used by selecting −ea (see fpset-
defaults(3) (hp) or floating_point(3) (sun)). Selecting −ei causes floating point errors to be
ignored. −ew prints a warning on floating point error (not implemented at present).

−M Do not merge the send-no-reply waiting time with the rendezvous delay in the parseable output.
The default in this release is to merge the results because some tools do not support the new fields
in the parseable output.

−n Read input, but do not solve. The input is checked for validity. No output is generated.

24 November 1998 1

LQNS(1) LQNS(1)

−o output
Direct analysis results to output. A filename of ‘−’ directs output to standard output. If lqns is
invoked with this option, only one input file can be specified.

−p Generate parseable output suitable as input to other programs such as multisrvn and srvndiff(1).
If input is from filename, parseable output is directed to filename.p. If standard input is used for
input, then the parseable output is sent to the standard output device. (In this case, only parseable
output is emitted.) If the -o output option is used, the parseable output is sent to a file whose name
is derived from output by the addition of the suffix .p. If a suffix already exists on output then that
suffix is replaced.

−P pragma
Change the default solution strategy. Refer to the PRAGMAS section below for more information.

-r Rename all of the tasks, entries, activities and processors to generic names starting with t1, e1, a1
and 1. This option is useful for ‘sanitizing’ the output by changing the names of everthing.

−t trace
Tracing options, used to print out various intermediate results while a model is being solved.

activities
Print out results of activity aggregation.

convergence
Print out convergence value after each submodel is solved. This option is useful for
tracking the rate of convergence for a model.

delays Print waiting time for each rendezvous in the model after it has been computed.

delta-wait
Print out difference in entry service time after each submodel is solved.

forks Print out overlap table for forks prior to submodel solution.

idle-time
Print out computed idle time after each submodel is solved.

interlock
Print out interlocking adjustment before each submodel is solved.

joins Print out computed join delay and join overlap table prior to submodel solution.

mva Print out MVA submodel and its solution.

overtaking
Print out overtaking calculations.

print Print out intermediate solutions at the print interval specified in the model. The print
interval field in the input is ignored otherwise.

processor=name
Print out results for processor name after each submodel is solved. Name can be a regular
expression. Not implemented.

task=name
Print out results for task name after each submodel is solved. Name can be a regular
expression. Not implemented.

variance
Print out calculated variances after each submodel is solved.

−v Print out statistics about the solution on the standard output device.

−V Print out version and copyright information.

24 November 1998 2

LQNS(1) LQNS(1)

−z special-opts
This flag is used to select special options. Arguments of the form nn are integers while arguments
of the form nn.n are real numbers.

convergence=nn.n
Set the convergence value to nn.n.

iteration-limit=nn
Set the maximum number of iterations to nn. nn must be greater than 0. The default
value is 50.

generate=file
Generate MVA submodel C++ input files, one for each submodel. The filename ...

mol-underrelaxation

overtaking
Print out overtaking probabilities.

print-interval=nn
Set the printing interval to nn. The −d or −v options must also be selected to display
intermediate results. The default value is 10.

skip=n Ignore submodel n during solution.

step Stop after each MVA submodel is solved. Any character typed at the terminal except
end-of-file will resume the calculation. End-of-file will cancel single-stepping altogether.

underrelaxation=nn.n
Set the underrelaxation to nn.n. The default value is 0.9.

If any one of convergence, iteration-limit, or print-interval are arguments used, the corresponding value
specified in the input file for general information, ‘G’, is ignored.

PRAGMAS
Pragmas are used to alter the behaviour of the solver in a variety of ways. They can be specified in the
input file with ‘‘#pragma’’, on the command line with the −P option, or through the environment variable
LQNS_PRAGMAS. Command line specification of pragmas overrides those defined in the environment
variable which in turn override those defined in the input file. The following pragmas are supported.
Invalid pragma specification at the command line will stop the solver. Inv alid pragmas defined in the envi-
ronment variable or in the input file are ignored as they might be used by other solvers.

cycles={disallow,allow}

disallow
Disallow cycles in the call graph. Cycles may indicate the presence of dead locks.

allow Allow cycles in the call graph.
The default is disallow.

interlocking={none,throughput}

none Do not perform interlock adjustment.

throughput
Perform interlocking by adjusting throughputs.

The default is throughput.

layering={batched,batched-back,loose,squashed,strict,strict-back}

batched
Batched layering -- solve layers composed of as many servers as possible from top to bot-
tom.

24 November 1998 3

LQNS(1) LQNS(1)

batched-back
Batched layering with back propagation -- solve layers composed of as many servers as
possible from top to bottom, then from bottom to top to improve solution speed.

loose Loose layers -- solve layers composed of only one server. This method of solution is
comparable to the technique used by the srvn solver. See also -Pmva.

squashed
Squashed layers -- All the tasks and processors are placed into one layer. Solution speed
may suffer because this method generates the most number of chains in the MVA solu-
tion. See also -Pmva.

strict Strict layers -- solve layers using the Method of Layers. Layer spanning is performed by
allowing clients to appear in more than one layer.

strict-back
Strict layers -- solve layers using the Method of Layers. Software submodels are solved
top-down then bottom up to improve solution speed.

The default layering technique is batched-back.

multiserver={default,conway,reiser,reiser-ps,rolia,rolia-ps,bruell,schmidt}

default The default multiserver calculation uses the the Conway multiserver for multiservers with
less than five servers, and the Rolia multiserver otherwise.

conway
Use the Conway multiserver calculation for all multiservers.

reiser Use the Reiser multiserver calculation for all multiservers.

reiser-ps
Use the Reiser multiserver calculation for all multiservers. For multiservers with multi-
ple entries, scheduling is processor sharing, not FIFO.

rolia Use the Rolia multiserver calculation for all multiservers.

rolia-ps
Use the Rolia multiserver calculation for all multiservers. For multiservers with multiple
entries, scheduling is processor sharing, not FIFO.

schmidt
Use the Schmidt multiserver calculation for all multiservers.

bruell Use the Bruell multiserver calculation for all multiservers.

mva={exact,schweitzer,linearizer,fast,one-step,one-step-linearizer}

exact Exact MVA. Not suitable for large systems.

schweitzer
Bard-Schweitzer approximate MVA.

linearizer
Linearizer.

one-step
Perform one step of Bard Schweitzer approximate MVA for each iteration of a submodel.
The default is to perform Bard Schweitzer approximate MVA until convergence for each
submodel. This option, combined with -Playering=loose most closely approximates the
solution technique used by the srvn solver.

one-step-linearizer
Perform one step of Linearizer approximate MVA for each iteration of a submodel. The
default is to perform Linearizer approximate MVA until convergence for each submodel.

The default MVA solver is linearizer.

24 November 1998 4

LQNS(1) LQNS(1)

overtaking={markov,simple}

markov
Markov phase 2 calculation.

simple Simpler, but faster approximation.
The default overtaking calculation is markov.

processor={default, fcfs, hol, ppr, ps, ps-hol, ps-ppr}
Force the scheduling type of all uni-processors to the type specfied.

default The scheduling type is determined by the input file.

fcfs All uni-processors are scheduled first-come, first-served. hol All uni-processors are
scheduled using head-of-line priority. ppr All uni-processors are scheduled using prior-
ity, pre-emptive resume. ps All uni-processors are scheduled using processor sharing.
ps-hol Use high variability servers for processor where warranted. ps-ppr Use high vari-
ability servers for processor where warranted.

stop-on-message-loss={false,true}
Determine the action if messages are lost at servers with open arrivals or send-no-reply interac-
tions.

true Stop if messages are lost.

false Ignore lost messages. Waiting times are reported as infinite.
The default is true.

reschedule={slice,call}
Reschedule the CPU after each slice (default) or call (not implemented).

threads={none,default,hyper,mak}

none Do not perform overlap calculation for forks.

default Use three-point approximation for join delays.

hyper Inflate overlap probabilities based on arrival instant estimates.

mak Use Mak-Lundstrom approximations for join delays.

variance={mol,mol-entry,none,srvn}

mol Use mol variance calculation.

mol-entry
Use mol variance calculation. Do not blend variances for final waiting time calculation.

none Disable variance adjustment. All stations in the MVA submodels are either delay or first-
come-first-served.

srvn Use srvn variance calculation. This pragma must be used if deterministic phases are used
in the model.

The default variance calculation is mol.

MODEL LIMITS
The following table lists the acceptable parameter types for lqns, petrisrvn(1), and parasrvn(1). An error
will be reported if an unsupported parameter is supplied except when the value supplied is the same as the
default.

24 November 1998 5

LQNS(1) LQNS(1)

Parameter lqns parasrvn petrisrvn

Phases 3 3 3
Scheduling F FH FHPR
Open arrivals yes yes no
Phase type SD SD S

yes yes noCoefficient of variation
yes yes yesThink Time
no yes yesInterprocessor-delay
yes yes noAsynchronous connections

Forwarding yes yes yes
Multi-servers yes yes yes
Infinite-servers yes yes no

1000 -- 30Max Entries
1000 1000 15Max Tasks
1000 1000 15Max Processors
-- -- --Max Entries per Task

Scheduling: F: FIFO, H: Head-of-Line, P: Priority, R: Random
Phase type: S: Stochastic, D: Deterministic

DIAGNOSTICS
Most diagnostic messages result from errors in the input file. If the solver reports errors, then no solution
will be generated for the model being solved. Models which generate warnings may not be correct. How-
ev er, the solver will generate output.

BUGS
XML input and output is not implemented.

SEE ALSO
C. M. Woodside et. al., ‘‘The Stochastic Rendezvous Network Model for Performance of Synchronous
Multi-tasking Distributed Software’’, IEEE Trans. Comp., Vol. 44, No. 8, Aug 1995, pp. 20-34.

J. A. Rolia and K. A. Sevcik, ‘‘The Method of Layers’’, IEEE Trans. SE, Vol. 21, No. 8, Aug. 1995, pp
689-700.

‘‘LQNS User Guide’’ (not available).

‘‘SRVN Input File Format’’ by Dorina Petriu et al.

parasrvn(1), petrisrvn(1), srvn(1), srvn2eepic(1), srvntda(1), srvndiff(1), egrep(1), floating_point(3)

24 November 1998 6

