Layered Queueing Network Solver and Simulator User Manual
Greg Franks Peter Maly Murray Woodside Dorina C. Petriu Aderobard
Martin Mroz
Department of Systems and Computer Engineering
Carleton University

Ottawa ON K1S 5B6
{cmw,greg }@sce.carleton.ca

January 30, 2013

Revision: 11145

Contents

[1_The Layered Queueing Network Modeél 1
3
3
4
4
5
5
8
9
9
10
11
2.1 Header. e 11

|§,§ NE Eigorlthm for phased multiservers OPEN a,ass.

IQA_OALe_LLa.kmg probabilities are calculated usin =
i sses.

| fonal l

|[A.1 Input File Grammar

...................................... 98
ed ..o e e 98

i i istribution e e e 98

[A.2,13 Throughputs and ULHZAtANS . « « o v o oo e e 98
[A.2.14 Arrival Rates and Waiting TimIes oo oo vt 98
[A.2.15 Utilization and Waiting per Phase for Processor 99

Abstract

The Layered Queuing Network (LQN) model is a canonical foondxtended queueing networks with a lay-
ered structure. The layered structure arises from sertensealevel making requests to servers at lower levels as a
consequence of a request from a higher level. LQN was deeédlégr modeling software systems, but it applies to
any extended queueing network with multiple resource Es$se, in which multiple resources are held in a nested
fashion.

This document describes the elements found in Layered Qugpietwork Model, the results produced when a
LQN model is solved, and the input and output file formatsIdbalescribes the method used to invoke the analytic
and simulation solvers, and the possible errors that cae afien solving a model. The reader is referred to “Tutorial
Introduction to Layered Modeling of Software Performanf&l] for constructing models.

Chapter 1

The Layered Queueing Network Model

Figure[1.1 illustrates the LON notation with an example ofoanline e-commerce system. In an LQN, software
resources are all called “tasks”, have queues and provadses of service which are called “entries”. The demand
for each class of service can be specified through “phase$dranore complex interactions, using “activities”. In
Figure[1.1, a task is shown as a parallelogram, containingllptbgrams for its entries and rectangles for activities
Processor resources are shown as circles, attached tosieetiat use them. Stacked icons represent tasks or pro-
cessors with multiplicity, making it a multiserver. A mérver may represent a multi-threaded task, a collection of
identical users, or a symmetric multiprocessor with a comseheduler. Multiplicity is shown on the diagram with a
label in braces. For example there are five copies of the Gekver’ in Figuré T11.

Entries and activities have directed arcs to other enttiks\er layers to represent service requests (or mesﬂages)
A request from an entry or an activity to an entry may returreply to the requester (a synchronous request, or
rendezvousindicated in Figur€I]1 by solid arrows with closed arroadt& For example, task Administrator makes a
request to task BackorderMgr who then makes a request tartasitoryMgr. While task InventoryMgr is servicing
the request, tasks BackorderMgr and Administrator aredeldcA request may be forwarded to another entry for later
reply, such as from InventoryMgr to CustAccMgr. Finally guest may not return any reply at all (an asynchronous
request osend-no-replyshown as an arrow with an open arrow head, for example, thest from task ShoppingCart
to CustAccMgr.

The first way that the demand at entries can be specified isghrphases. The parameters of an entry are the
mean number of requests for lower entries (shown as labpkranthesis on the request arcs), and the mean total host
demand for the entry (in units of time, shown as a label on ttigyén brackets). An entry may continue to be busy
after it sends a reply, in an asynchronous “second phasesroice [7] so each parameter is an array of values for the
first and second phase. Second phases are a common perferomimgization, for example for transaction cleanup
and logging, or delayed write operations.

The second way that demand can be specified is through adivictivities are the lowest level of granularity in
a performance model and are linked together in a directgghgrmindicate precedence. When a request arrives at an
entry, it triggers the first activity of the activity graphulSsequent activities may follow sequentially, or may fartoi
multiple paths which later join. The fork may take the formamf‘AND’ which means that all the activities on the
branch after the fork can run in parallel, or in the form of &R’, which chooses one of the branches with a specified
probability. In Figurd 111, a request that is received byyetSCES3” of task “ShoppingCart” is processed using an
activity called “SCE3A95” that represents the main threddanmtrol, then the main thread is OR-Forked into two
branches, one of which is later AND-forked into three theedthe three threads, starting with activities ‘AFBA109’,
‘AFBA130’ and ‘AFBA133’ respectively, runin parallel. THest thread replies to the entry through activity ‘OJA110’
then ends. The remaining two threads join into one threadtatity ‘AJA131’. When both ‘OJA110’ and ‘AJA13Y’
terminate, the task can accept a new request.

The holding time for one class of service is the entry sertiice, which is not a constant parameter but is
determined by its lower servers. Thus the essence of lagereuing is a form of simultaneous resource possession. In
software systems delays and congestion are heavily infagblog synchronous interactions such as remote procedure

Irequests may jump over layers, such as the request from tindsdrator task to the InventoryMgr task.

ARE
/ [1e+05] /

Administrator

1)

/

SCE3
y]

ShoppingCart {inf}

0JA110
[2e-06]

AFBA130 | | AFBA133
1 [1

—— =

AJAL31
[2e-06]

[1
@aD) (1) (50) (1D) (1D)
@ ®
X \
IME7 IME6 IME1 IME8 CAME5 | CAME2 CE1
[3e-06] 5] 21 [2] [3] [11 [10]
InventoryMgN:j\CustAchgr Catalogue {inf} ‘

(25)

T
I
I
BookstoreProc :
I
|
I
I

Layer 5
b BookstoreProc ..
Layer 6

- > Forwarded request
—s== Asynchronous request
—= Synchronous request

Figure 1.1: Notation

Layer 1

Layer 2

DE1
[20]

Database

DatabaseProc

DatabaseProc

calls (RPCs) or rendezvous, and the LQN model captures thedags by incorporating the lower layer queueing and
service into the service time of the upper layer server. Tdusive server” featuré [20] is the key difference between
layered and ordinary queueing networks.

1.1 Model Elements

Figure[1.2 shows theeta-modelised to describe Layered Queueing Networks. This modeliguerin that it is
more closely aligned with the architecture of a softwardéesysthat it is with a conventional queueing network model
such as Performance Model Interchange Format (PNIIE)[1]7, T latter consists of stations with queues and visits,
whereas a LQN has processors, tasks and requests.

A Layered Queueing Network is a directed graph. Nodes in thplgconsist of tasks, processors, entries, activi-
ties, and precedence. Arcs in the graph consist of requesisdne node to another. The model objects are described
below.

LayeredQueueing
Network

1.*

«use» 1
fffffffff = Processor
Reference

| / \ Task
| {xor}
: 1*f-—=--=--- 1.%

1.*
Group o Task Semaphore

Task
__invokes ’
0.* [o.x [1.x S 0..* |o.x
0.1 1 L
Fanin FanOut Entry Activity Precedence

1.
1.% ¥ next
src dst 1 sre next
01|Y 0.1

0.1 connects 1

forwards Request Pre ot b Post
calls
0.* ‘ 0.* 0.*
Forward SendNoReply| | Rendezvous OrJoin AndJoin OrFork AndFork

Loop

Figure 1.2: LQN Meta Model

1.1.1 Processors

Processors are used by the activities within a performarmiehto consuméme. They arepure serversn that they
only accept requests from other servers and clients. Theyeactual processors in the system, or may simply be
place holders for tasks representing customers and otfiealaesources.

Each processor has a single queue for requests. Requestsensalieduled using the following queueing disci-
plines:

FIFO First-in, first out (first-come, first-served). Tasks arevsdrin the order in which they arrive.

PPR Priority, preemptive resume. Tasks with priorities higtiean the task currently running on the processor will
preempt the running task.

HOL Head-of-line priority. Tasks with higher priorities wilebserved by the processor first. Tasks in the queue will
not preempt a task running on the processor even though timngitask may have a lower priority.

PS Processor sharing. The processor runs all tasks “simwtesty’. The rate of service by the processor is inversely
proportional to the number of executing tasks. Esim, processor sharing is implementedrasnd-robin— a
guantunmust be specified.

RAND Random scheduling. The processor selects a task at random.

CFS Completely fair scheduling [9]. Tasks are scheduled wigrimups using round-robin scheduling and groups are
scheduled according to their shareg@antunmust be specified. This scheduling discipline is implemeote
the simulator only at present.

Priorities range from zero to positive infinity, with a piityrof zero being the highest. The default priority for all
tasks is zero.

1.1.2 Groups

Groups[9] are used to divide up a processor’s executiontimietoshares The tasks within a group divide the share
up among themselves evenly. Groups can only be created cagsars running the scheduling disciplewampletely
fair scheduling. .

Shares may either lpuaranteedr capped Guarantee shares act as a floor for the share that a groupaecé
surplus CPU time is available (i.e., the processor is ndy futilized), tasks in a guaranteed group can exceed their
share. Cap shares act as a hard ceiling. Tasks within thespgwill never receive more than their share of CPU
time.

Note: Completely fair scheduling is a form of priority scluéidg. With layered models, calls made by tasks within
groups to lower level servers can cayserity inversion Cap scheduling tends to behave better than guaranteed
scheduling for these cases.

1.1.3 Tasks

Tasks are used in layered queueing networks to represeniroes. Resources include, but are not limited to: actual
tasks (or processes) in a computer system, customersrguefal hardware devices. In essence, whenever some entity
requires some sort of service, requests between taskvé@u.ol

Atask has a queue for requests and runs on a processor. iteseraed from the queue in a first-come, first-served
manner. Different classes of service are specified ummges(c.f. {1.1.4). Tasks may also have internal concurrency,
specified usingctivities(c.f. 1.1.5).

Requests can be served using the following scheduling rdstho

FIFO First-in, first out (first-come, first-served). Requestssaeved in the order in which they arrive. This schedul-
ing discipline is the default for tasks.

PPR Priority, preemptive resume. Requests arriving at entidls priorities higher than entry that task is currently
processing will preempt the execution of the current entry.

HOL Head-of-line priority. Requests arriving at entries witgtrer priorities will be served by the task first. Requests
in the queue will not preempt the processing of the curretryday the task.

Priorities range from zero to positive infinity, with a piityrof zero being the highest. The default priority for all
entries is zero.
The subclasses tdskare:

Reference Task:Reference tasks are used to represent customers in thedageeueing network. They are like
normal tasks in that they have entries and can make requdsisever, they can never receive requests and
are always found at the top of a call graph. They typicallyegate traffic in the underlying closed queueing
model by making rendezvous requests to lower-level seniReserence tasks can also generate traffic in the
underlying open queueing model by making send-no-replyests instead of rendezvous requests. However,
open class customers are more typically represented ugemarrivals which is simply encoded as a parameter
to an entry.

Burstyreference tasks are a special case of reference tasks viteeservice time for the slices are random
variables with a&Paretodistribution (c.f.§1.1.3).

Semaphore Task:Semaphore tasks are used to model passive resources sutfees G hey always have two entries
which are used tgsignalandwait the semaphore. The wait entry must be called using a synchsorequest
whereas the signal entry can be called using any type of stq@mce a request is accepted by the wait entry,
no further requests will be accepted until a request is e by the signal entry. The signal and wait entries
do not have to called from a common task. However, the twaemitnust share a common call graph, and the
call graph must be deterministic. The entries themselvedeadefined using phases or activies and can make
requests to other tasks. Counting semaphores can be machahgda multiserver.

Synch Task: Synchronization tasks are used... Cannot be a multiserver.

1.1.4 Entries

Entries service requests and are used to differentiateahace provided by a task. An entry can accept either
synchronous, or asynchronous requests, but not both. Bymulis requests are part of thl®sedqueueing model
whereas asynchronous requests are part abpleemodel. Message types are described in Se€fion|1.1.7 below.

Entries also generate the replies for synchronous requdstsically, a reply to a message is returned to the
client who originally sent the message. However, entrieg atsoforward the reply. The next entry which accepts
the forwarded reply may forward the message in turn, or mplydeack to the originating client. For example, in
Figure[1.1, entry ‘IMES8’ on task ‘IventoryMgr’ forwards thequest from entry ‘BME2’ on task ‘BackorderMgr’ to
entry ‘CAMES’ on task ‘CustAccMgr’. The reply from ‘CAME2’ vl be sent directly back to ‘BME2'.

The parameters for an entry can be specified using eitheeprmsactivitielg. The activity method is typically
used when a task has complex internal behaviour such asdokpins, or if its behaviour is specified as an activity
graph such as those used by Smith and Willidms [18]. The phatieod is simply a short hand notation for specifying
a sequence of one to three activities, with the reply beimergted by the first activity in the sequence. Fiduré 1.3
shows both methods for specifying a two-phase client gabitwo-phase server.

Regardless of the specification method used for an entityehiaviour as a server to its clients isfilyase shown
in Figure[1.4. Phases consume time on processors and makestedo entries. Phase one isavice phasand
is similar to the service given by a station in a queueing petw Phase one ends after the server sends a reply.
Subsequent phases aretonomouphases which are launched by phase one. These phases apgatallel with
the clients which initiated them. The simulator and analgtlver limit the number of phases to three.

1.1.5 Activities

Activities are the lowest-level of specification in the merhance model. They are connected together using “Prece-
dence” (c.f1.1.8) to form a directed graph to represent more than jugtesgtial execution scenarios.

Activities consume time on processors. Begvice timas defined by a mean and variance, the latter thraog-
ficient of variation squareﬁ. The service time between requests to lower level servassismed to be exponentially
distributed (with the exception dfursty reference taskso the total service time is the sum of a random number of
exponentially distributed random variables.

2The meta-model in Figufed.2 only shows activities, phases aotational short-hand.
3The squared coefficient of variation is variance dividedhsygquare of the mean.

el sell2-1 Aelal
L.2] yelell?2 el Ae2al
se212-1

Atl
sall

1.2) sa22

yale21

. y S
(12 al->a2

-1

At2
sall
sa22

fl[ez} o

1 @

(a) Phases (b) Activities

Figure 1.3: Entry Specification

sd Phases)

_client:Task _server.:Task_

entry() |

***** r 1 Phase 1

«re ply» A Z

***** r 1 Phase 2

|
I
A N r 1 Phase 3
|
I

Figure 1.4: Phases for an Entry.

Activities also make requests to entries on other tasks.didtabution of requests to lower level servers is set by
the call order for the activity which is eithestochasticor deterministic If the call order is deterministic, the activity
makes the exact number of requests specified to the lowdrdemeers. The number of requests is integral; the order
of requests to different entries is not defined. If the callevris stochastic, the activity makes a random number of
requests to the lower level servers. The mean number of sexjisespecified by the value specified. Requests are
assumed to be geometrically distributed.

For entries which accept rendezvous requests, repliesheugtnerated. If the entry is specified using phases, the
reply is implicit after phase one. However, if the entry igsified using activities, one or more of the activities must
explicitly generate the reply. Exactly one reply must beegated for each request.

Slices

Activities consume time by making requests to the proceassociated with the task. The service time demand
specified for an activity is divided intslicesbetween requests to other entries, shown in the UML SequRiacgam

in Figure[I.b. The mean number of slices is always Y whereY is total total number of requests made by the
activity.

sd Slices)

N
«compute» N

Figure 1.5: Slices. Thslice timeis shown using the labél

By default, the demand of sliceis assumed to be exponentially distributed [20] but a vasamay be specified
through thecoefficient of variation squarettVv’ = o2 /3%) parameter for the entry or activity. The method used to
solve the model depends on the solver being used:

Analytic Solver: All servers withcv? # 1 use the HVFCFS MVA approximation from [11.3].

Simulator: The simulator uses the following distributions for genier@tandom variates for slice times provided that
the task imota bursty reference task.
cV? = 0: deterministic.
0 <cV? < 1: gamma.
¢V’ = 1. exponential.
c\v? > 1: bizarro...
If the task is a bursty reference task, then the simulatoeggas random variates for slice times according to

the Pareto distribution. The scalg, > 0 and shapé& > 0 parameters for the distribution are derived from the
service times and coefficient of variation squares? parameters for the corresponding activity (or phase).

1
ko= 4—+1+1
o T

7

Tym = SX

On-off behaviour can simulated by using two or more phaséiseatlient, where on phase corresponds to the
on period and makes requests to other servers, while the gitlase corresponds to the off period.

1.1.6 Precedence

Precedencés used to connect activities within a task to fromaamivity graph Referring to Figurg]2, precedence is
subclassed intdPre’ (or ‘join’) and Post (or ‘fork’). To connect one activity to another, the source activityraxts

to apre-precedence (or @in-list). Thepreprecedence then connects tp@stprecedence (or ork-list) which, in
turn, connects to the destination activity. Tabld 1.1 sunirea the precedence types.

| Name | Icon | Description |

Sequence ‘ Transfer of control from an activity to a join-list.

And-Join '/ A Synchronization point for concurrent activities.

Quorum-Join N A Synchromzaupn point for concurrent activities wherdyon
branches must finish.

Or-Join \QD/

Sequence l Transfer of control from fork-list to activity

And-Fork Start of concurrent execution. There can be any number of
forked paths.

Or-Fork /G.)\ A branching point where one of the paths is selected withprob

D L-p ability p. There can be any number of branches.
Loop m'/%>\ Repeat the activity an averagermofimes.
n2

Table 1.1: Activity graph notation.

The semantics of an activity graph are as follows. For ANEk$p AND-joins and QUORUM-joins, each branch
of a join must originate from a common fork, and each brandhefoin must have a matching branch from the fork.
Branches from AND-forks need not necessarily join, eithglietily by a “dangling” thread not participating in a jgin
or implicitly through a quorum join, where only a subset of iranches must join while ignoring the rest. However,
all threads started by a fork must terminate before the tallkaecept a new message (i.e., there is an implied join
collecting all threads at the end of a task’s cycle). Brasdhean AND-join do not necessarily have to originate from
a fork — for this case each branch must originate from a unéigy. This case is used to synchronize two or more
clients at the server.

For OR-forks, the sum of the probabilities of the branchestraum to one —there is no “default” operation. AND-
forks may join at OR-joins. The threads from the AND-fork iliafily join when the task cycle completes. OR-joins
may be called directly from entries. This case is analogousrining common code for different requests to a task.

LOOPs consist of one or more branches, each of which is rundora number of times with the specified mean,
followed by an optional deterministic branch exit whichafléwed after all the looping has completed.

Replies can only occur from activities preprecedenceand-join) lists. Activities cannot reply to entries from a
loop branch because the number of times that a branch is exkisua random number.

1.1.7 Requests

Service requests from one task to another can be one of ffpes: trendezvous, forwarded, and send-no-reply, shown
in Figure[1.6. A rendezvous request is a blocking synchremequest — the client is suspended while the server
processes the request. A send-no-reply request is an asyiatts request — the client continues execution after the
send takes place. A forwarded request results when the teplyclient is redirected to a subsequent server which,
may forward the request itself, or may reply to the origingttlient.

[BuE2] [MEs | [oaves|

| | | | |
Send ﬂ Send | \ Send
|
> m ‘ >
T |

Forward
<
Reply | I
| | Reply | |

(a) Rendezvous (b) Forwarding (c) Send-no-reply

Figure 1.6: Request Types.

1.2 Multiplicity and Replication

One common technique to improve the performance of a systeémadd copies of servers. The performance model
supports two techniques: multiplicity and replication. Ikflicity is the simpler technique of the two as a single gee

is served by multiple servers. Replication requires a miadecgate specification because the queues of the servers are
also copied, so requests must be routed to the various quklugis-servers can be replicated. Figlirel1.7 shows the
underlying queueing models for each technique.

i

(a) Multi-server (b) Replicated

Figure 1.7: Multiple copies of servers.

Replication reduces the number of nodes in the layered gugusodel by combining tasks and processors with
identical behaviour into a single object, shown in Figur@. 1The left figure shows three identical clients making
requests to two identical servers. The right figure is theesarndel, but specified using replication. Labels within
angle brackets in Figufe1.8(b) denote the number of replica

Replication also introduces the notionfah-in andfan-in, denoted using th®=n andl= n labels on the request
from t1 to t2 in Figuré_118(b). Fan-out represents the nunobeeplicated servers that a client task calls. Similarly,
fan-in represents the number of replicated clients thdtacakrver. The product of the number of clients and the
fan-out to a server must be the same as the product of the mah&ervers and the fan-in to the server. Further, both
fan-in and fan-out must be integral and non-zero.

The total number of requests that a client makes to a sertfee isroduct of the mean number of requests and the
fan-out. If the performance of a system is being evaluate¢hlnying the replication parameter of a server, the number
of requests to the server must be varied inversely with thebar of server replicas in order to retain a constant
number of requests from the client.

el 1 el 2 el 3

/ [1] / / [1] / f [1]
4.46 4.46 4.46
t1 1 t1 2

_ | 1.3
A=0.224,p=1 | A20.224,u=1 |~ A=0.224,u=1
(1) 1) (1) (6] (1), 0=2, 1=3
0728 (10728 _0.728(y) 0728 0.646
0728 0.728
e2 1 e2 2 e2
[1] [1] [1]
1 1 1
t2_1 t2_2 12 <2>
\=0.673,u=0.673 \=0.673,u=0.673 A=0.699,p1=0.699
(a) Flat (b) Replicated

Figure 1.8: Replicated Model

1.3 A Brief History

LON [€] is a combination of Stochastic Rendezvous Netwd pnd the Method of Layers [114].

10

Chapter 2

Results

Both the analytic solver and the simulator calculate:

throughput bounds (Igns only),

e mean delay for rendezvous and send-no-reply requests,

e variances for the rendezvous and send-no-reply requestgi@tisim only),

e mean delay for joins,

e entry service times and variances,

e distributions for the service time Igsim
e task throughputs and utilizations,

e processor utilizations and queueing delays.

Figure[2Z:1 shows some of these results for the model showiyirdf11, after solving the model analytically using
Igns(1) The interpretation of these results are describe belove@i@{2.1.D.
Results can be saved in three different formats:

1. in a human-readable form.

2. in a “parseable” form suitable for processing by othergpaons. The grammar for the parseable output is
described in Sectidn]A on pafgel91.

3. in XML (again suitable for by processing by other programshe schema for the XML output is shown in
Sectior 8 on pade 21.

Ifinput to the solver is in XML, then output will be in XML. Huan-readable output will be produced by default except
if outputis redirected using the outputflag and either XML or parseable output is being generatedv&wsion from
parseable output to XML, and from either parseable or XMlpatito the human-readable form, can be accomplished
usinglgn2ps(1)

2.1 Header

The human-readable output from the the analytic solver @andlator consists of three parts. Part 1 of the output
consists of solution statistics and other header inforwnadind is described in detail in Sectiéns 2.1.1[andP.1.2xbelo
Part 2 of the output lists the input and is not described &rrtiPart 3 contains the actual results. These results are
described in Sectidn 2.1.2, starting on pagk 13. The seb#adings here correspond to the section headings in the
output file.

11

SET SE3 SEG
[4e-06] | [6e-06] | [8e-06] Entry demand
127 21.7 97.2
Sefrver (5} Task multiplicity

A=0.0016,4=0.189

SE1 w=0.0611 () 1) «——Request rate
3§3e-10~—)
Queueing delay

Queueing delay
to processor = SE3w=00767
SE6 w=(/0511

Entry service time

Task throughput
and utilization

A ShoppingCart {inf}
: 2=0.000135,=0.026

SCE3A95| -
[2e-06] | :
0.0255 |
Branch probability-
0. 95
OFBA146 OFBA97 ctivity demand
[1] [1] <7 . L
1.03 11.1 Activity service time
AFBA109 | | AFBA112
[1] [4e-06]
1.03 197
OJATI0 | [AFBAL30| [AFBA133
[2e-06] [1] [1]
0.0255 1.03 1.03
Join delay
(&)153
AJAL3I
[2e-06]
0.0256
[
(1D) D)
3.83e-1Q 53>

SCE3A95 w=0.0255

CE1 CAME5S | CAME2
/ [10] / / [3] / (1] /
10 79.7 52.7

Catalogue {inf} CustAccMgr
A=0.000359,=0.025

=0.000263,u=0.00264

FBA146 w=0.0255
OJA110 w=0.0255

ookstorePrts

p=0.00797/<— —
Processor utilization

Figure 2.1: Results.

12

2.1.1 Analytic Solver (Igns)

Figure[2.2 shows the header information output by the aicadptver. The first line of the output shows the version of
the solver and where it was run. This information is ofterfulsghen reporting problems with the solver. The lines
labeledinput andOutput are the input and output file names respectively. The linelletd Command line
shows all the arguments used to invoke the solver.Gtimmentfield contains the information found in the comment
field of the general information field of the input file (JA.1.2, 43.2.1). Next, optionally, the output lists any pragma
used. Much of this information is also present if the simui@ used to solve the model. The remainder of the header
lists statistics accumulated during the solution of the etahd is solver-specific.

conver gence test val ue: Theconvergence test value is the root of the mean of the squares of the
difference in the utilization of all of the servers from tlast two iterations of the solver. If this value is less than
theconvergence value (c.f. 3.2 1[A.1.2) specified in the input file, then the resultscanesidered valid.

nunber of iterations: Thenumber of iterations shows the number of times the solver has per-
formed its “outer iteration”. If the number of iterationsa®eds the iteration limit set by the model file, the
results are considered invalid.

MA sol ver infornmation: This table shows the amount of effort the solver expendeadrspkeach submodel.
The first column lists the submodel number. Next, the coluatelled ‘n’ indicates the number of times the
MVA solver was run on the submodel. The columns labelled #d ésrv’ show the number of chains and
servers in the submodel respectively. The next three cadishow the number of times the core Mééep()
function was called. The following three columns show thenber of time thewait() function, responsible
for computing the queueing delay at a server, is called. IKirthe last three columns list the time the solver
spends solving each submodel.

Finally, the solver lists the name of the machine the it wasam, the time spent executing the solver code, the time
spent by the system on behalf of Igns, and the total elapsed ti

2.1.2 Simulator (Igsim)

Figure[2.3 shows the header information output by the sitoulkfter execution is completed. The first line of the
output shows the version of the simulator and where it was Tine lines labelethput andOutput are the input
and output file names respectively. TBemmentfield contains the information found in the comment field o th
general information field of the input file (c§A1.2, §3.2.1). Next, optionally, the output lists any pragma uséte
remainder of the header lists statistics accumulated dguini@ solution of the model and is specific to the simulator.

Run ti nme: The total run time in simulation time units.

Nunber of Statistical Bl ocks: The number of statistical blocks collected (when produdcogfidence
intervals).

Run time per bl ock: The run time in simulation units per block. This value, npligd by the number of
statistical blocks and the initial skip period will total tiee run time.

Seed Val ue: The seed used by simulator.

Finally, the simulator lists the name of the machine thatiswun on, the time spent executing the simulator code, the
time spent by the system on behalf of Igsim, and the totalseldpime.

2.2 Type 1 Throughput Bounds

Igns
The Type 1 Throughput Boundse the “guaranteed not to exceed” throughputs for theemnlisted. The value is
calculated assuming that there is no contention delay tenlyidg servers.

13

14

Generated by Igns, version 3.9 (Darwin 6.8.Darwin Kernel Ve

Copyright the Real-Time and Distributed Systems Group,
Department of Systems and Computer Engineering
Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Input: bookstore.lgn
Output: bookstore.out
Command line: Igns -p
Tue Nov 1 21:37:54 2005

Comment: Ign2fig -Lg bookstore.lgn

rsion 6.8: Wed Sep 10 15:20:55 PDT 2003; Power Macintosh)

#pragma multiserver = conway
Convergence test value: 7.51226e-07
Number of iterations: 5
MVA solver information:
Submdl n k srv step() mean stddev wait() mean stddev User Syst em Elapsed
1 5 2 4 44 8.8 1.4697 4776 955.2 299.82 0:00:00.01 0:00:00.00 O :00:00.00
2 9 1 1 51 5.6667 0.94281 594 66 22.627 0:00:00.00 0:00:00.00 O :00:00.00
3 9 8 3 240 26.667 9.4751 4.0365e+05 44850 32163 0:00:00.19 O0: 00:00.00 0:00:00.21
4 9 10 3 271 30.111 7.0623 7.7481e+05 86090 40554 0:00:01.15 O :00:00.00 0:00:01.19
5 9 2 1 70 7.7778 1.6178 3408 378.67 181.73 0:00:00.00 0:00:00 .00 0:00:00.00
6 5 0 O 0 0 0 0 0 0 0:00:00.00 0:00:00.00 0:00:00.00
Total 46 0 O 676 14.696 12.464 1.1872e+06 25809 41253 0:00:01 .35 0:00:00.00 0:00:01.40

greg-frankss-Computer.local. Darwin 6.8
User: 0:00:01.35
System: 0:00:00.00
Elapsed: 0:00:01.40

Figure 2.2: Analytic Solver Status Output.

Generated by Igsim, version 3.9 (Linux 2.4.20-31.9 i686),

Copyright the Real-Time and Distributed Systems Group,
Department of Systems and Computer Engineering,
Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Wed Nov 2 11:42:25 2005

Input: bookstore.lgn
Output: bookstore.out
Comment: Ign2fig -Lg bookstore.lgn

Run time: 4.34765E+09

Number of Statistical Blocks: 15
Run time per block: 2.89651E+08
Max confidence interval: 7.32
Seed Value: 1130948006

epsilon-13.sce.carleton.ca Linux 2.4.20-31.9
User: 0:04:47.78
System: 0:00:00.07
Elapsed: 0:14:27.66

Figure 2.3: Simulator Status Output.

2.3 Mean Delay for a Rendezvous

The Mean Delay for a Rendezvoissthe queueing time for a request from a client to a servelodis not include the
time the customer spends at the server (see Figule 2.4). dohresidence timeresidence timadd the queueing
time to thephase one service tintd the request’s server.

2.4 Variance of Delay for a Rendezvous

Igsim
The Variance of Delay for a Rendezvoigsghe variance of the queueing time for a request from a tlethe server.
It does not include the variance of the time the customerdpean the server (see Figurel2.4). This result is only
available from the simulator.

2.5 Mean Delay for a Send-No-Reply Request

The Mean delay for a send-no-reply requésthe time the request spends in queue and in service in jpinasat the
destination. Phase two is treated as a ‘vacation’ at theeserv

2.6 Variance of Delay for a Send-No-Reply Request
Igsim
2.7 Arrival Loss Probabilities

TheArrival Loss Probabilities..

15

2.8 Mean Delay for a Join

The Mean Delay for a Joiris the maximum of the sum of the service times for each bramehfork. The source
activity listed in the output file is the first activity prioo the fork (e.g., AFBA112 in Figurg2.1). Similarly, the
destination activity listed in the output file is the firstigity after the join (AJA131). The variance of the join time i
also computed.

td: join time components /

idle
ready —| join time f—o
running

blocked 4 fork join send

AFBA112

idle
ready L
running
blocked

AFBA130

idle
ready i
running {aq}

blocked

AFBA133

idle receii reply

ready

running L
blocked

IME6

idle 7
ready
running L

blocked

CAME2

Figure 2.4: Service Time Components for Join.

2.9 Service Times

Theservice times the total time a phase or activity uses processing a réqlies time consists of four components,
shown in Figurg&214:

1. Queueing for the processor (shown as items 1, 4, 6 and &imdf2.5.(b)).
2. Service at the processor (items 2, 5 and 9)

3. Queueing for serving tasks (item 6), and

4. Phase one service time at serving tasks (items 3 and 7).

Queuing at processors and tasks and can occur because efitomtfrom other tasks (items 1, 6, and 8), or from
second phases from previous requests. For example, en&ysSfueued at the processor because the processor is
servicing the second phase of entry SCE3.

Using the results shown in Figure P.1, the service time foryeBE3 21.7) is the sum of:

16

td: service time components)

idl service time _— >

re; d?l 1 receive 4 8

phase 1 2 s N

blocked 3 ’
send

SE3

receive

idle
ready reply
phase 1
phase 2

SCE3

receive reply

idle
ready
phase 1 *11

phase 2

SE3
SCE3
CE1
Other

Idle

CE1

BookstoreProc

Figure 2.5: Service Time Components for Entry ‘SCE3'.

the processor wait)(767),

it's own service time x 10~°),

e the queueing time to entry SCE®)(

the phase one service time at entry SCEB(),

the queueing time to entry CE2.83 x 10~1Y), and

e the phase one service time at entry CEQ)(

Queueing time for serving tasks is shown in Mean Delay for a Rendezvoasction of the output. (c.ff2.3).
Queueing time for the processor is shown in théization and Waiting per Phase for Processoir the output (c.f.

§2.18).

2.10 Service Time Variance

The Service Time Variancgection lists the variance of the service time (§£3) for the phases and activities in the
model.

2.11 Probability Maximum Service Time Exceeded

Igsim
Theprobability maximum service time exceededutput by the simulator for all phases and activities \ailinax-service—(%ime
This result is the probability that the service time is geedlhan the value specified. In effect, it is a histogram with
two bins.

17

2.12 Service Time Distributions for Entries and Activities

Igsim
Service Time Distributionare generated by the simulator by settinggbevice-time-distribution param-
eter (c.f.43.2.9,9A.1.9, JA.1.7) for an entry or activity. A histogram @fumber-bins bins betweemin andmax
is generated. Samples that fall either under or over thigeate stored in their own under-flow or over-flow bins
respectively. The optionatsamples parameter can be used to set the sampling behaviour to one of:

linear Each bin is of equal width, found by dividing the histogramga by the number of bins. If thesamples
is not set, this behaviour is the default.

log The logarithm of the range specified is dividedraymber-bins . This has the effect of making the width of the
bins small neamin, and large neamax. A minimum value of zero isot allowed.

sqrt The square root of the range specified is dividechbynber-bins . Bins are smallest nedain are smaller
than those neanax.

The results of the histogram collection, shown in Fiduré 2dhsist of the mean, standard deviation,, skew and
kurtosis of the sampled range, followed by the histograedfité€ach entry of the histogram contains the probability
of the sample falling within the bucket, and, if availableg tonfidence intervals of the sample.

The statistics for the histogram are found by multiplying thid-point of the range defined bggin andend, not
counting either the overflow or underflow bins. If the mearuealeported by the histogram is substantially different
than the actual service time of the phase or activity, themainge of the histogram is not sufficiently large.

2.13 Semaphore Holding Times

The Semaphore Holding Timegction lists the average time a semaphore token is heddéitvice time), the variance
of the holding time, and the utilization of semaphore. FeRirT shows how these values are found.

2.14 Throughputs and Utilizations per Phase

The Throughputs and Utilizations per Phasection lists the throughput by entry and activity, and thikzation by
phase and activity. The utilization is thask utilization i.e., the reciprocal of the service time for the task (c.8)2
The processor utilization for the task is listed undéilization and Waiting per Phase for Process@eed2.18).

2.15 Arrival Rates and Waiting Times

TheArrival Rates and Waiting Timesection is only present in the output whepen arrivalsare present in the input.
This section shows the arrival rateambdg and the waiting time. The waiting time includes the sertioe at the
task.

2.16 Utilization and Waiting per Phase for Processor

The Utilization and Waiting per Phase for Procesdlists the processor utilization and the queueing time fargv
entry and activity running on the processor.

18

6T

Service time distributions for entries and activities:

SCE3
Mean =
Begin

©CoOo~NOoOOUhr~,WNEO

PHASE 1.
11.58, Stddev = 8.457, Skew = 0.8501, Kurtosis = -0.249
End Prob. +/-95% +/-99%
1 0.03355 0.001048 0.001412 |
2 0.03786 0.001605 0.002163 |
3 0.05406 0.002026 0.002731 |
4 0.06333 0.002031 0.002737 |
5 0.06545 0.001631 0.002199 |
6 0.06369 0.001578 0.002127 |
7 0.06049 0.001692 0.00228 |
8 0.05591 0.001822 0.002456 |
9 0.05133 0.001272 0.001714 |
10 0.0472 0.001767 0.002382 |
11 0.04318 0.001618 0.002181 |
12 0.03931 0.001185 0.001597 |
13 0.03579 0.001073 0.001446 |
14 0.03231 0.001654 0.002229 |
15 0.02952 0.001033 0.001392 |
16 0.02677 0.001189 0.001603 |
17 0.0243 0.001058 0.001425 [
18 0.02214 0.001087 0.001466 |
19 0.02001 0.001122 0.001512 |
20 0.01806 0.001016 0.001369 |
21 0.01653 0.0009079 0.001224 | *
22 0.01499 0.001018 0.001372 | *
23 0.01365 0.0007152 0.0009639 | *
24 0.01229 0.000955 0.001287 | *
25 0.0112 0.0008691 0.001171 | *
26 0.009997 0.0006182 0.0008331 | *
27 0.009227 0.0007344 0.0009898 | *
28 0.008282 0.0006896 0.0009293 | *
29 0.007444 0.0005936 0.0007999 | *
30 0.006802 0.0005752 0.0007751 | *
overflow 0.06532 0.001561 0.002104 | *

Figure 2.6: Histogram output

td: holding time components)

\
o - holding time *Afﬂ
[2] |
= ide , - ev |
95)_ ready receive recelve ‘
=1 wait }
=
g signal-={{ g} | reply
& blocked optreply

Figure 2.7: Time components of a semaphore task.

20

Chapter 3

XML Grammar

The definition of LON models using XML is an evolution of theginal SRVN file format (c.f§8 and AppendikAlL).
The new XML format is based on the work done[in][22], with fetmefinement for general usage. There are new
features in the XML format to support new concepts for buigdand assembling models using components. The
normal LQN tool suite (likdgns(1)andlgsim(1) do not support these new features, however other toolsdeutse
suite are being written to utilize the new parts of the XMLrft.

3.1 Basic XML File Structure

In XML, layered models are specified in a bottom-up order,chitis the reverse of how layered models are typically
presented. First, a processor is defined, then within thegssor block, all the tasks than run on it are defined.
Similarly, within each task block all the entries that arecasated with it are defined, etc. A simplified layout of an
incomplete LQN model written in XML is shown in Figure 8.1.

Activity graphs (specified by task-activities) belong task, and hence are siblings to entry elements. The element
entry-activity-graph specifies an activity graph contdimégthin one entry, but is not supported by any of the LQN
tools. The concept of phases still exists, but now each pkaseactivity, and is defined in the entry-phase-activities
element.

3.2 Schema Elements

The XML definition for layered models consists of three files:

I gn. xsd: Ign.xsd is the root of the schema.

I gn- sub. xsd ...

I gn- cor e. xsd Ign-core is the actual model specfication and is includedjhyxkd.

All three files should exist in the same location. If the solvannot located thigin.xsd file, it will emit an errof]
and stop.

Figure[3.1 shows the schema for Layered Queueing Netwoikg umified Modeling Language notation. The
model is defined starting frogn-model . Unless otherwise specified in the figure, the order of elésienthe
model is from left to right, i.e.<solver-params> always preceedsprocessor> in the input file. Optional
elements are shown using a multiplicity of zero for an asgam. Note that results (optional, shown in blue) are part
of the schema.

1See the error message “The primary document entity could@opened” o 88.

21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Listing 3.1: XML file layout.

<lgn-model>
<solver-params>
<pragma/>
</solver-params>
<processor>
<task>
<entry>
<entry-phase-activities>
<activity>
<synch-call/>
<asynch-call/>
</activity>
<activity> ... </activity>
</entry-phase-activities>
</entry>
<entry> ... </entry>
<task-activities>
<activity/>
<precedence/>
</task-activities>
</task>
<task> ... </task>
</processor>
<processor> ... </processor>
</lgn-model>

22

Ign-model

? {ordered}

0.1 0.1 1 1.0 0.1 0.1
run-control plot-control solver-params processor slot lgx
{ordered} ? {ordered} ’
0.1 0. 0. pon 1.
result-general pragma result-processor group
{ordered} ’
0.x 1.* 1.*
result-group task
{ordered} ?
0.1 0.1 [0. urordered] 0. kR 1.0 %
It-task service-time- fan-in fan-out entr i k-activiti
result-tas distribution y service task-activities
{ordered} ’ ’
0.1 0. 0.1 0.1
. entry-phase- entry-activity-
result-entry forwarding activities graph
’ {ordered} ’
1.3 1l [0] Jor 0.*
activity precedence | | reply-entry
{ordered} ? ?{ordered}
0. 0. [0. {unbidered] 0. Ik Jo.1 1.0 o
.. |[service-time- oo reply-
result-activity distribution synch-call | ||asynch-call L ;7)r7e7) J B 7pfOft7) J activity
o | | | | | | |
result-call pre pre-or pre-and post post-or post-and || post-loop
0. . 70i.{bfdéréa}i 1 1.x
result-join- service-time- activit
delay distribution v

Figure 3.1: Top-level LQN Schema. Elements showblireare results found in the output. Elements showreit
are not implemented. Unless otherwise indicated, all efesnare ordered from left to right.

23

3.2.1 LgnModelType

The first element in a layered queueing network XML input fédgn-model , which is of typeLgnModel-
Type and is shown in Figure_3.2.qnModelType has five elements, namelyun-control , plot-control ,
solver-params ,processor andslot .Run-control andplot-control are not notimplemented@rocessor
is described under Sectibn 3R3ot is described in[22]. The attributes fognModelType are shown in Table 3] 1.

LgnModelType

name: string
description: string
Ign-schema-version: float

1

Ign-model
{ordered}
0.1 0.1 1 1.7 0.* 0.1
run-control plot-control solver-params processor slot lgx

comment: string
conv_val: float

it_limit: unsigned
print_int: unsigned
underrelax_coeff: float

{ordered}
0.1 0.*
result-general pragma
param: string
value: string

Figure 3.2: Top-level LQN Schema.

Name Type Use Default | Comments

name string optional The name of the model.

description string optional A description of the model.
Ign-schema-version integer | fixed 1.0 The version of the schema (used by the solver

in case of substantial schema changes |for
model conversion.)

Igncore-schema-version integer | fixed 1.0
xml-debug boolean| optional | false

Table 3.1: Attributes for elements of tyhenModelType from Figure 3.2.

The elemensolver-params is used to set various operating parameters for the analgher, and to record

various output statistics after a run completes. It costdire elementsesult-general andpragma. The
attributes forsolver-params are shown in TablEZ3/2. These attributes are mainly usedntraiche analytic
solver. Refer to Section 8.3 for more information. The htités forresult-general are shown in TablE—3.3.

Refer to Sections 2.1.1 abhd 2]1.2 for the interpretationeaidler information. The attributes fpragma are show in
Table[3.3. Refer to Sectidn 6.2 for the pragmas supportedsy &and to Sectidn 4.3 for the pragmas supported by
lgsim.

24

Name Type Use Default | Comments

conv _val float optional | 1 Convergence value for Igns (cg6.3). Ignored by
Igsim.

it _limit integer | optional | 50 Iteration limit for Igns (c.f§6.3). Ignored by Igsim.

print _int integer | optional | 0O Print interval for intermediate results. The print

must be specified to Igns to generate output after
it_limit iterations. Blocked statistics must be specified
to Igsim using theA n, -B n, or-Cnflags.

underrelax _coeff float optional | 0.5 Under-relaxation coefficient for Igns (cge.3). Ig-
nored by Igsim.

Table 3.2: Attributes of elemesblver-params from Figure 3.

Name | Type | Use | Default | Comments |
conv-val float required Convergence value (c[f. 2.1.1)
valid enumeration| required EitherYESor NQ
iterations float optional The number of iterations of the analytic solver jor
the number of blocks for the simulator.
elapsed-time string optional The wall-clock time used by the solver.
system-cpu-time string optional The CPU time spent in kernel-mode.
user-cpu-time string optional The CPU time spent in user mode.
platform-info string optional The operating system and CPU type.
solver-info string optional The version of the solver.
Table 3.3: Attributes of elemengsult-general from Figurd 3.2.
| Name | Type | Use | Default | Comments
param | string | required The name of the parameter. (€.1.164Z.3)
value string | required the value assigned to the pragma.

Table 3.4: Attributes of elemepragma from Figurd 3.P.

25

3.2.2 ProcessorType

Elements of typd’rocessorType shown in Figuré€ 313 are used to define the processors in tldelm®hey contain

an optionalresult-processor element and elements of eith@&roupType or TaskType. Thescheduling

attribute must by set tofs , for completely fair scheduling, iBroupType elements are present and to any other type

if GroupType are not foundGroupType andTaskType elements may not be both be defined in a processor.
Elementresult-processor is of typeOutputResultType and is described in Sectién 3.2112. Elemiask

is described in Sectidn 3.2.4. The attribute®obcessorType described il A 113, are shown in Table]3.5.

ProcessorType

name: string

speed-factor: float
scheduling: SchedulingType
multiplicity: unsigned
replication: unsigned
quantum: float

T

processor
{ordered} fxor)
X T -
result-processor GroupType
name: string
cap: boolean
share: float
Z% ?1 “* 1 “*
group TaskType
task

Figure 3.3: Processor Schema.

Name Type Use Default | Comments

name string required

multiplicity integer optional | 1 Seefl.2

speed-factor float optional | 1.0 Scaling factor for the processor.

scheduling enumeration| optional | fcfs The allowed scheduling types afefs , hol , pp,
rand ,inf , ps-hol ,ps-pp andcfs . SeefI.1.1.

replication integer optional | 1 Seefl1.2

guantum float optional | 0.0 Mandatory for processor sharing scheduling when|us-
ing lgsim.

Table 3.5: Attributes for elements of typeocessorType

26

3.2.3 GroupType

Optional elements of typ&roupType, shown in Figur€3]3, are used to define groups of tasks fagssors running
completely fair scheduling. Each group must contain a mimnof one task. The attributes GroupType are shown

in Table[3.6.

Name | Type Use Default | Comments

name | string required

share | float required The fraction of the processor allocated to this
group.

cap boolean| optional | false If true, shares areaps (ceilings). Otherwise
shares are guarantees (floors)

Table 3.6: Attributes for elements of ty@oupType

3.2.4 TaskType

Elements of typdaskType, shown in Figuré 314, are used to define the tasks in the maddhelse elements contain
an optionatesult-task element, one or more elementsaitry Type, and optionally, elements service and

task-activities . Elementresult-task is of type OutputResultType, and is described in Sectién 3.2.12.
Elemententry is described in Sectidn 3.2.6. The attributeSaskType, described in Sectidn'A.1.5, are shown in

Table3.7.

TaskType

name: string

multiplicity: unsigned
replication: unsigned
scheduling: SchedulingType
think-time: float

priority: unsigned
queue-length: unsigned
activity-graph: bool

intially: unsigned

FaninType FanOutType Z% ’
source: string dest: string .
value: unsigned | | value: unsigned EntryType task TaskActivityGraph
{ordered}
0.* 0.* [0. urordered] d.. 1. 1. 0.
service-time- fan-in fan-out entr i iviti
result-task distribution y service task-activities

Figure 3.4: TaskType

3.2.5 FanInType and FanOutType
3.2.6 EntryType

Elements of typ&ntryType, shown in Figur& 315, are used to define the entries of tasksiek can be specified one
of three ways, based on the attribtijgpe of anentry element, namely:

27

Table 3.7: Attributes for elements of typaskType

Name Type Use Default | Comments
source | integer| required (Seed1.2)
value integer | required (Seed1.2)
Table 3.8: Attributes for elements of typ@aninType.
Name | Type Use Default | Comments
dest integer | required (Seed1.2)
value | integer| required (Seedl.2)

Table 3.9: Attributes for elements of typ@anOutType.

28

of
ber

Name Type Use Default Comments

name string required

multiplicity integer optional | 1 Seefl.2.

priority integer optional | O The priority used by the processor for scheduling.
Seef1.1.1.

gqueue-length integer optional | O Maximum queue size (for open-class requests
only). Seed1.1.3.

replication integer optional | 1 Seef1.2

scheduling enumeration| optional | FCFS The scheduling of requests at the task. The allowed
scheduling types amef , fcfs , hol ,pri ,inf ,
burst , andpoll andsemaphore . SeeJ1.1.3.

activity-graph enumeration| required yes orno

| think-time | float | optional | 0 | Reference tasks only. Customer think time. |

initially integer optional | multiplicity | Semaphore tasks only. Set the initial number|
semaphore tokens to zero. By default, the num
of tokens is set to the multiplicity of the task.

MakingCallType

EntryType

dest: string
fanout: unsigned
fanin: unsigned

name: string
open-arrival-rate: float
priority: integer

semaphore: SemaphoreType L Activity
type: enumeration ActivityDefBase GraphBase
name: string ’
host-demand-mean: float
EntryMaking host-demand-cvs: float
Collfype Phase tmhgxﬁgméz?t?ée' float EntryActivity
- entry . . . Graph
prob: float Activities call-order: CallOrderType ’
0.* 0.* 0.1 0.1
result-entry forwarding entry-phase- Activity entry-activity-
activities PhasesType graph
—— <@ phase: 1.3
ActivityMaking * * *
CallType 1.3 I 0. 0.
calls-mean: float activity activity precedence | | reply-entry
{unordered}
0. 0.
synch-call asynch-call

Figure 3.5: Schema for tydentryType.

29

phlph2 The entry is specified using phases. The phases are spedfiagl anentry-phase-activities
element which is of théctivityPhasesTypetype. Activities defined within this element must have a ueiq
phase attribute.

graph The entry is specified as an activity graph defined within titeye The demand is specified using elements
of type ActivityEntryDefType . This method of defining an entry is not supported currently.

none The entry is specified using an activity graph defined witlia task. Atask-activities element
of type ActivtyDefType must be present and one of the activities defined within tlament must have a
bound-to-entry attribute. TheTaskActivityGraph type is defined in Sectidn 3.2.8.

ActivityPhasesType ActivityEntryDefType andActivtyDefType are all based or\ctivityDefBase, described in
Sectior 3.29. They only differ in the way the start of thepirés identified, and in the case AttivityPhasesType
the way the activities are connected.

The attributes foEntry Type, described in Sectidn A.1.6, are shown in TableB.10. Thienakelementesult-entry
is of typeOutputResultType, and is described in Sectibn 3.2.12. The optional elefemtarding is used to de-
scribe the probability of forwarding a request to anothenerit is described in Sectidn 3.2J10.

Name Type Use Default | Comments

name string required The entry name

type enumeration| required PH1PH2 GRAPHor NONE
open-arrival-rate float optional

priority integer optional (c.f.113)

sempahore enumeration| optional signal orwait (c.f.[1.1.3)

Table 3.10: Attributes for elements of tygatryType.

3.2.7 ActivityGraphBase

Elements of typd\ctivityGraphBase, shown in Figur& 316, are used to define activities [C.TH).And their relation-
ships to each other. They are used by elements of Biotty Type andTaskActivityGraph types.

Elements of theActivityGraphBase consist of a sequence of one or maivity elements followed by
a sequence gfrecedence elements.Activity elements are used to store the demand for an activity and re-
guests to other servers (through thetivityDefType) and, optionally, results through elementsAativityDefType.
Precedence elements are defined by tReecedenceTypén Sectiorf 3.2.711.

3.2.8 TaskActivityGraph

Task Activity Graphs, defined using elements of tfpskActivityGraph and shown in Figurle 3.6, are used to specify
the behaviour of a task using activities. This type is alniostsame aEntryActivityGraph , except that the activity
that replies to an entry must explicitly specify the entry ¥dhich the reply is being generated. The actual activity
graph is defined using elements of tyfetivityGraphBase, described in Sectidn 3.2.7. The attributes for elements

reply-entry andreply-activity are shown in Tablds 3.11 ahd 3.12 respectively.
Name | Type | Use Default | Comments
name | string | required The name of the entry for which the list of
reply-activity elements generate replies.

Table 3.11: Attributes of elemengply-entry from Figurd 3.6.

30

ActivityDefBase

—
] name: string Activity
MakingCallType host-demand-mean: float > GraphBase
I host-demand-cvsq: float
dest: string think-time: float
fanin: unsigned max-service-time: float
fanout: unsigned call-order: CallOrderType
TaskActivity EntryActivity
Graph Graph
ActivityMaking Activity ActivitvDefTvpe EntryActivity Z%
CailType PhasesType yoertyp DefType —| ["entry-activity-
calls-mean: float phase: 1.3 bound-to-entry: string | | first-activity: siring ||| task-activities graph
? ﬁ {ordered}
| {ordered} | | orderedf |
{) ‘1 * {) 0.x 0.
activity activity precedence reply-entry
name:string
{unordered}
.- fordered) 4 « ‘ 0.* ‘ 0.*
- service-time- 0.”
result-activity - synch-call asynch-call .
distribution reply-activity
name:string

Figure 3.6: Schema diagram for the tyfetivityGraphBase

Name | Type

Use

Default

Comments

name | string

required

The name of the activity which generates a reply. T
entry is either implicitly defined if this element is de
fined within anEntryType, or part of list defined
within areply-element

'he

U
]

Table 3.12: Attributes of elemengply-activity

31

from Figure 3.6.

3.2.9 ActivityDefBase

The typeActivityDefBase, shown in Figuré€_316, is used to define the parameters fortantgcsuch as demand and
call-order. This type is extended ctivityPhasesType EntryActivityDefType , and ActivityDefType to define
the requests from an activity to an entry, and to connect thigity graph to the requesting entry. Talhle 3.13 lists
the parameters used as attributes and the attributes usbe byree sub-types. Refer to Section Al.1.7 for more in-

formation on these parameters. RefeMakingCallType (§3.2.10) for theActivity-CallGroup used to make
requests to other entrRefer toOutputResultForwardingANDJoinDelay (§3.2.13) forresult-join-delay
andresult-forwarding for join-delay and forwarding results respectively. RefeOutputDistributionType
(§3:2.12%) forservice-time-distribtion . Finally, refer toOutputResultType (§3.2.12) foresult-activity
This element contains most of the results for an activitylwasge.
Name Type Use Default Comments
name string required
host-demand-mean float required The mean service time demand fpr
the activity.
host-demand-cvsq float optional | 1.0 The squared coefficient of varia-
tion for the activity.
think-time float optional | 0.0
max-service-time float optional | 0.0
call-order enumeration| optional | STOCHASTIC | STOCHASTIC or
DETERMINISTIC
ActivtyPhasesType
phase | integer | required| |1,2,0r3
ActivtyEntryDefType
first-activity | string | required| |
ActivtyDefType
bound-to-entry string optional If set, this activity is the start of an
activity graph.

Table 3.13: Attributes for elements of typetivityDefBase.

3.2.10 MakingCallType

The typeMakingCallType, shown in Figur&317, is used to define the parameters folestgto entries. This type is
extended byActivityMakingCallType andEntryMakingCallType to defined requests from activities to entries and
for forwarding requests from entry to entry respectivelggRests from activities to entries can be either synchranou
(i.e., arendezvous through async-call element, or asynchronous (i.e send-no-reply, through aasync-call
element. Section 1.1.7 defines the parameters for a redadse[3.14 lists the attributes for the types.

Name Type | Use Default | Comments
dest string | required The name of the entry to which the requests are made.
| ActivityMakingCallType |
| calls-mean | float | required] | The mean number of requests. |
| EntryMakingCallType |
| prob | float | required] | The probability of forwarding requests. |

Table 3.14: Attributes for elements of typakingCallType .

2Call-List-Group is not defined at present.

32

MakingCallType

dest: string
EntryMaking ActivityMaking i
CallType entry CallType activity
prob: float calls-mean: float ’
0.7 {unordered}
forwarding ‘ 0.* 0.*
synch-call asynch-call

Figure 3.7: Schema diagram for the grddpkingCallType.

3.2.11 PrecedenceType

The typePrecedenceTypeshown in Figuré 318, is used to connect one activity to agrothithin an activity graph.

Each element of this type contains exactly qme element and, optionally, ongost element. The pre elements

are referred to a@in-lists as all of the branches associated with the activitighe join-list must finish (i.e. “join”)

before the activities in the subsequent post element cain $tee post element itself is referred to afoek-list.
Elements oPrecedenceType&an be of one of five types:

SingleActivityListType: Elements of this type have no attributes and a sequence cffgraeactivity element
of Activity Type .

ActivityListType: Elements of this type have no attributes and a sequence on®i@activity elements of
Activity Type .

AndJoinListType: Elements of this type have an optiomgiorum element and a sequence of one or more or more
activity elements ofActivity Type . Tabld3.1b show the attributes AhdJoinListType.

OrListType: Elements of this type have no attributes and a sequence aneregctivity elements ofActivity-
OrType. These elements specify an activity name and a branch pitipabable[3.16 show the attributes of
ActivityOrType .

ActivityLoopListType: Elements of this type have one optional attribute and a sesuene or moractivity
elements ofActivityLoopType. These elements specify an activity name and a loop count optional
attribute is used to specify the activity that is executeelrafll the loop branches complete. TaljlesB.17and 3.18
show the attributes dhctivityLoopListType andActivityLoopType respectively.

Name Type Use Default | Comments
name string | required
quorum | integer| optional | O The number of branches which must complete for the

join to finish. If this attribute is not specified, then all
of the branches must finish, which makes this object
an AND-Join

Table 3.15: Attributes for elements of typedJoinListType.

33

PrecedenceType

precedence
{ordered}
AndJoin J 1 J 0.1 ActivityLoop
SingleActivity ListType T r; oo ositi [Activity or ListType
ListType quorum: unsigned |! f o 7pi > 1| ListType || ListType
pre pre-AND pre-OR post post-AND post-OR post-LOOP
{ordered}
ENEAER
ActivityType T w
name: string ActivityOr ActivityLoop
Type Type
‘ prob: float count: float
0. 0.
result-join- service-time activit
delay distribution v ‘ ‘
activity activity
Figure 3.8: Schema diagram for the typecedenceType
Name | Type | Use Default | Comments
name | string | required
prob | float | optional | 1.0 The probability that the branch is taken, on average
(c.f. 1.1.8)
Table 3.16: Attributes for elements of typetivityOrType .
Name | Type | Use Default | Comments
end string | required
Table 3.17: Attributes for elements of typetivityL oopListType .
Name | Type | Use Default | Comments
count | float | optional | 1.0 The number of times the loop is executed, on averpge
(c.f. 41.1.8)

Table 3.18: Attributes for elements of typetivityLoopType .

34

3.2.12 OutputResultType

The typeOutputResultType, shown in Figuré 319, is used to create elements that stetdtsedescribed earlier in
Section[2. OutputResultType is a subtype oResultContentType This latter type defines the result element’s
attributes. Elements of thidutputResultType can contain two elements of tyesultContentTypg which contain
the £95% and +99% confidence intervals, provided that these results areablail The attributes for elements of
ResultContentTypeare listed in Table_3.19 and are used to store the actuatsgsaduced by the solver. Note that
all the attributes are optional: elements of this type willyohave those attributes which are relevant.

Result
ContentType

Output
ResultType

¢
| |

result-processor | | result-group result-task result-entry result-activity result-call
0.1 0.1
result-95-conf result-99-conf

Figure 3.9: Schema diagram for tyPaitputResultType

3.2.13 OutputResultJoinDelayType

The typeOutputResultJoinDelayTypeis similar to OutputResultType. The attributes of this type are shown in
Table[3.2D.

3.2.14 OutputDistributionType

Elements of typeutputDistributionType , shown in Figuré¢ 3.11, are used to define and store histogpapisase
and activity service times. The optionahderflow-bin , overflow-bin andhistogram-bin elements, all
the elements are of tygeéistogramBinType, are used to store results.

The attributes oDutputDistributionType elements are used to both store the parameters for the tasipgnd
output statistics. Refer to Talile 3121

3.2.15 HistogramBinType

3.3 Schema Constraints

The schema contains a set of constraints that are checkd betrces XML parset]1] to ensure that the model file
is valid. XML editors can also enforce these constraintdhab the model is somewhat correct before being passed to
the simulator or analytic solver. The constraints are deviol

e All processor must have a unique name.

e All tasks must have a unique name.

35

| Name | Type | Comments | (xref) |
proc-utilization float | Processor utilization for a task, entry, or dc-42.16
tivity.
proc-waiting float | Waiting time at a processor for an activity. | §2.16
phaseX-proc-waiting float | Waiting time at a processor for phageof an | §2.18)
entry.
open-wait-time float | Waiting time for open arrivals. §2.18
service-time float | Activity service time. 2.9
loss-probability float | Probability of dropping an asynchronous §2.3
message.
phaseX-service-time float | Service time for phase X of an entry. 42.9
service-time-variance float | Variance for an activity. §2.10
phaseX-service-time-variance float | Variance for phasX of an entry. §2.10
phaseX-utilization float | Utilization for phaseX of an entry. §2.14
prob-exceed-max-service-time float §2.12
squared-coeff-variation float | Squared coefficient of variation over gll §2.10
phases of an entry
throughput-bound float | Throughput bound for an entry. q2.2
throughput float | Throughput for a task, entry or activity. 42.14
utilization float | Utilization for a task, entry, activity. §2.14
waiting float | Rendezvous delay 42.3
waiting-variance float | Variance of delay for a rendezvous 42.4

Table 3.19: Attributes for elements of tyResultContentType

' ContentType |

e

'ResultJoinDelay

OutputResult
ayType

JoinDel

0.*

result-join-

delay

0.1

0.1

result-95-conf

result-99-conf

Figure 3.10: Schema diagram for tyPeitputResultJoinDelayType

| Name | Type | Comments | (xref) |
join-waiting float | Join delay 42.9
join-variance float | Join delay variance 42.8

Table 3.20: Attributes for elements of ty@aitputResultJoinDelay Type

36

task

activity

!

Output
DistributionType
min: float
Lr]ax:'floagl t Histogram
in-size: floa i
number-bins: unsigned BinType
mean: float begin: float
std-dev: float end: float
prob: float
conf-95: float
conf-99: float
pre-AND
¢
0.* 0.1 o0.r 0.1
service-time- . . . :
distribution underflow-bin histogram-bin overflow-bin

Figure 3.11: Schema for tyg@utputDistributionType .

Name Type Use Default | Comments

min float required The lower bound of the collected histogram data.
max float required The upper bound of the collected histogram datg.
number-bins integer | optional | 20 The number of bins in the distribution.

mid-point float optional

bin-size float optional

Table 3.21: Attributes for elements of ty@atputDistributionType .

| Name | Type | Comments | (xref) |
begin float | Lower limit of the bin.
end float | Upper limit of the bin.
prob float | The probability that the measured value lies
within begin andend.
conf-95 float
conf-99 float

Table 3.22: Attributes for elements of typistogramBinType.

37

e All entries must have a unique name.

e All activities must have a unique name within a given task.
e All synchronous requests must have a valid destination.

e All asynchronous requests must have a valid destination.
e All forwarding requests must have a valid destination.

e All activity connections (in precedence blocks) must refevalid activities.
e All activity replies must refer to a valid entry.

e All activity loops must refer to a valid activities.

e Each entry has only one activity bound to it.

e Phases are restricted to values one through three.

e All phase attributes within an entry must be unique.

Further validation is performed by the solver itself. RefeBectior B for the error messages generated.

One downside of using the Xerces XML parser library is thatXlerces tends to give rather cryptic error messages
when compared to other tools. If an XML file fails to pass thikdadion phase, and the error looks cryptic, chances
are very good that there is a genuine problem with the XML firfije. Xerces has a bad habit of coming back with
cryptic errors when constraint checking fails, and onlyegivou the general area in the file where the actual problem
is.

One easy and convenient solution around this problem islidata the XML file using another XML tool. Tools
that have been found to give more user friendly feedback &eSpy (any edition), and XSDvalid (Java based, freely
available). Another solution is to check if a particularltoan de-activate schema validation and rely on the actual
tool to do its own internal error checking. Currently thisnist supported in any of the LQN tools which are XML
enabled, but it maybe implemented later on.

If the XML file validates using other tools, but fails valida with Xerces, or if the XML file fails validation on
other tools, but passes with Xerces then please report tidgm. The likelihood of validation passing with Xerces
and not other tools will be much higher then the reverse saertsecause Xerces does not rigorously apply the XML
Schema standard as other tools. Other sources of problerdusmerrors in the XML schema itself, or some unknown
bug in the Xerces library.

38

Chapter 4

LQX Users Guide

4.1 Introduction to LQX

The LQX programming language is a general purpose programtanguage used for the control of input parameters
to the Layer Queueing Network Solversystem for the purpogesensitivity analysis. This language allows a user to
perform a wide range of different actions on a variety ofatiéint input sources, and to subsequently solve the model
and control the output of the resulting data.

4.1.1 Input File Format

The LQX programming language follows grammar rules whiah\ary similar to those of ANSI C and PHP. The
main difference between these languages and LQX is that lS@Xldosely typed language with strict runtime type-
checking and a lack of variable coercion (“type casting”ddiionally, variables need not be declared before their
first use. They do, however, have to be initialized. If they an-initialized prior to their first use, the program will
fail.

Comment Style

LQX supports two of the most common commenting syntaxessty@®” and “C++-style.” Any time the scanner
discovers two forward slashes side-by-sifle), it skips any remaining text on that line (until it reachesseavline).
These are “C++-style” comments. The other rule that thersgianses is that should it encounter a forward slash
followed by an asterisk (“/*"), it will ignore any text it finslup until a terminating asterisk followed by a slash (“*/”).
The preferred commenting style in LQX programs is to use “Gtyte” comments for single-line comments and to
use “C-style” comments where they span multiple lines. Th@matter of style.

Intrinsic Types

There are 5 intrinsic types in the LQX programming languages

e Number: All numbers are stored in IEEE double-precision floatinghpormat.

String: Any literal values between (*) and (") in the input.

Null: This is a special type used to refer to an “empty” variable.

e Boolean A type whose value is limited to either “true” or “false.”

Object: An semi-opaque type used for storing complex objects. Sdgects.”

File Handle File handles to open files for writing/appending or readige “File Handles.

39

A w N e

A W N e

LQX also supports a pseudo-intrinsic “Array” type. Wheré&asany other object types, the only way to interact
with them is to explicitly invoke a method on them, objectdygfe Array may be accessed witperator [] and
with operator []= ,in afamiliar C- and C++-style syntax.

The Object type also allows certain attributes to be expasetbroperties.” These values are accessed with the
traditional C-styleobject.property syntax. An example property is tt#éze property for an object of type
Array, accessed amray.size Only instances of type Object or its derivatives have priger Number, String,
Null and Boolean instances all have no properties.

Built-in Operators
Arrays and Iteration

The built-in Array type is very similar to that used by PHRslactually a hash table, also known as a “Dictionary” or
a “Map” for which you may use any object as a key, and any olgis@ value. It is important to realize that different
types of keys will reference different entries. That is tg gatinteger 0 andstring “0” will not yield the
same value from the Array when used as a key.

The Array object exposes a couple of convenience APIs, asledtin Sectioli 4]2. These methods are simply
short-hand notation for the full function calls they re@aand provide no additional functionality. Arrays may be
created in three different ways:

e array _create(...) andarray _create _map(key,value,...)
The explicit, but long and wordy way of creating an array geals or a map is by using the standard functional
API. array _create(...) takes an arbitrary number of parameters (from O up to the maxi specified,
for all practical purposes infinity), and returns a new Ariagtance consisting dd=>arg1, 1=>arg2,
2=>arg3, ..]

The other functionarray _create _map(key,value,...) takes an even number of arguments, from O
to 2n. The first argument is used as the key, and the seconthargused as the value for that key, and so on.
The resulting Array instance consistsjafgl=>arg2, arg3=>arg4, ...] . Both of these methods are
documented in Sectidn 4.2.

e [argl, arg2, ...]: Shorthand notation faarray _create(...)

e {kl=>vl, k2= >v2, ... }: Shorthand notation faarray _create _map(...)

The LQX language supports two different methods of itecatimer the contents of an Array. The first involves
knowing what the keys in the array actually are. This is aditianal” iteration.

/* Traditional Array lteration =/

for (idx = 0; key < array.size; idx=idx+1) {
print("Key ", idx, " => ", array[idx]);

}

In the above code snippet, we assume there exists an arraf whitains values, stored at indexes 0 through
n-1 , continuously. However, the language provides a more atagathod for iterating over the contents of an array
which does not require prior knowledge of the contents ofatray. This is known as aféreach ” loop. The
statement above can be rewritten as follows:

/* More nmodern array itteration */
foreach (key, value in array) {

print("Key ", key, " => ", value);
}

This method of iteration is much cleaner and is the recommeéndhy of iterating over the contents of an array.
However, there is little guarantee of the order of the resultaforeach loop, especially when keys of multiple
different types are used.

40

A w N e

Type Casting

The LQX programming language provides a number of built-ethnods for converting between variables of different
types. Any of these methods support any input value typeptoethe Object type. The following is a non-extensive
list of use cases for each of the different type casting nustlamd the results. Complete documentation is provided in

Sectiol4.p.

str(...) double(?)

str() double(1.0) 1.0
str(1.0) “1” double(null) 0.0
str(1.0, "+", “1+true” double("9") 9.0
true) double(true) 1.0
str([1.0, "t') “[0=>1, 1=>1]" double([0]) null
str(null) “(nully”

boolean(?)

boolean(1.0) true

boolean(17.0) true

boolean(-9.0) true

boolean(0.0) false

boolean(null) false

boolean("yes") true

boolean(true) true

boolean([0]) null

User-Defined Functions

The LQX programming language has support for user-definections. When defined in the language, functions do
not check their arguments types so every effort must be takensure that arguments are the type that you expect
them to be. The number of arguments will be checked. Varibrigth argument lists are also supported with the
use of the ellipsis.(.) notation. Any arguments given that fall into the ellipsis aonverted into an array named
(Lva_list) in the functions’ scope. This is a regular instance of Arcapsisting of O or more items and can be
operated on using any of the standard operators.

User-defined functions daot have access to any variables except their arguments anch&k(#-prefixed) and
Constant (@-prefixed) variables. Any additional variabitesst be passed in as arguments, and all values must be
returned. All arguments are ionly. There are no out or inout arguments supported. All argusnarg copied,
pass-by-value. The basic syntax for declaring functiorss i®llows:

function <name>(<argl>, <arg2>, ...) {
<body>
return (value);

}

You can return a value from a function anywhere in the bodypaishereturn function. A function which
reaches the end of its body without a call to return will auatically return NULL.return() is a function, not a
language construct, and as such the brackets are requinednuimber of arguments is not limited, so long as each
one has a unique name there are no other constraints.

4.1.2 Writing Programs in LQX
Hello, World Program

A good place to start learning how to write programs in LQXfigaurse the traditional Hello World program. This
would actually be a single line, and is not particularly netging. This would be as follows:

41

1

© ® N o o 9~ W N B

PR
[N

.
N

A w N e

printin("Hello, World!);

The “printIn() " function takes an arbitrary number of arguments of any tgpe will output them (barring a
file handle as the first parameter) to standard output, feltblay a newline.

Fibonacci Sequence

This particular program is a great example of how to perfoaw ftontrol using the LQX programming language. The
Fibonacci sequence is an extremely simple infinite sequehazh is defined as the following piecewise function:

1 r=0,1
fib(X) = { fib(x — 1) + fib(z —2) otherwise
Thus we can see that the Fibonacci sequence is defined asrsive@equence. The naive approach would be to
write this code as a recursive function. However, this isarely inefficient as the overhead of even simple recursion
in LQX can be substantial. The best way is to roll the algoniihto into a loop of some type. In this case, the loop is
terminated when we have reached a target number in the Fibisseguencé 1, 1, 2, 3, 5, 8, 13, 21, }.

(4.1)

[+ Initial Values x/
fib_n_minus_two = 1;
fib_n_minus_one = 1;
fib n = 0O;

/* Loop until we reach 21 =/

while (fib_n < 21) {
fib n = fib_n_minus_one + fib_n_minus_two;
fib_n_minus_two = fib_n_minus_one;
fib_n_minus_one = fib_n;
printin("Currently: ", fib_n);

}

As you can see, this language is extremely similar to C or BHie. of the few differences as far as expressions are
concerned is that pre-increment/decrement and postrremmg#decrement are not supported. Neither are short form
expressionssuch as, -=, =, /= ,etc.

Re-using Code Sections

Many times, there will be code in your LQX programs that yownddike to invoke in many places, varying only the
parameters. The LQX programming language does providettymtandard functions system as described earlier.
Bearing in mind the caveats (some degree of overhead inifumcalls, plus the inability to see global variables
without having them passed in), we can make pretty ingenisaof user-defined functions within LQX code.

When defining functions, you can specify only the number gliarents, not their types, so you need to make sure
things are what you expect them to be, or your code may nobparés you expect. We will begin by demonstrating
a substantially shorter (but as described earlier) muchdéfcient implementation of the Fibonacci Sequence using
functions and recursion.

function fib(n) {
if (n==0] n==1){ return (1); }
return (fib(n-2) + fib(n-1));

}

Once defined, a function may be used anywhere in your coda,iev@her user defined functions (and itself —
recursively). This particular example functions very vfel the first 10-11 fibonacci numbers but becomes substan-
tially slower due to the increased number of relatively exgdee function invocationdlRemembereturn() isa
function, not a language construct. The brackets are reduir

A much more interesting use of functions, specifically thagl variable length argument lists, is an implemen-
tation of the formula for standard deviation of a set of value

42

© ® N o o A~ W N e

I T N T N T R ~ N~ S S S
N P © © ® N ®© o A~ w N b O

N
@

© ® N o o 9~ w N B

L
o~ w N P O

i
o

function average([*Array<doubl e>*/ inputs) {
doubl e sum = 0.0;
foreach (v in inputs) { sum = sum + v; }
return (sum / inputs.size);

}

function stdev(/ *bool eanx/ sample, ...) {
Xx_bar = average(_va_list);
sum_of diff = 0.0;

[+ Figure out the divisor =/
divisor = _va_list.size;
i f (sample == true) {
divisor = divisor - 1;
}

[+ Conpute sum of difference */
foreach (v in _va_list) {
sum_of _diff = sum_of _diff + pow(v - x_bar, 2);

}

return (pow(sum_of diff / divisor, 0.5));
}

You can then proceed to compute the standard deviation ofatiable length of arguments for either sample or
non-sample values as follows, from anywhere in your progaétar it has been defined:

stdev(true, 1, 2,5, 7,9, 11);
stdev(false, 2, 9, 3, 4, 2);

Using and Iterating over Arrays

As mentioned in the “Arrays and lteration” under section &flthe Manual, LQX supports intrinsic arrays and
foreach iteration. Additionally, any type of object may be used dhezi a key or a value in the array. The fol-
lowing example illustrates how values may be added to ary,aara how you can iterate over its contents and print it
out. The following snippet creates an array, stores some&lye pairs with different types of keys and values, looks
up a couple of them and then iterates over all of them.

/* Create an Array =*/
array = array\ create();

/* Store sone key-value pairs */
array[0] = "Slappy";
array[1] = "Skippy";
array[2] = "Jimmy";

/* Iterate over the nanes =/
foreach (index,name in array) {

print("Chipmunk #", index, " = ", name);
}
/+ Store variables of different types, shorthand =*/
array = { true => 1.0, false => 3.0, "one" => true, "three" => fal se}

43

17

18

20

/= Shorthand i ndexed creation with iteration =/
foreach (value in [1,1,2,3,5,8,13]) {
print ("Next fibonacci is ", value);

}

4.1.3 Program Input/Output and External Control

The LQX language allows users to write formatted output temmal files and standard output and to read input data
from external files/pipes and standard input. These festmay be combined to allow LQNX to be controlled by a
parent process as a child process providing model solvingtionality. These capabilities will be described in the
following sections.

File Handles

The LQX language allows users to open files for program inpdt@utput. Handles to these open files are stored in
the symbol table for use by the print() functions for file auttpnd the readiata() function for data input. Files may
be opened for writing/appending or for reading. The LQXiipteter keeps track of which file handles were opened
for writing and which were opened for reading.

The following command opens a file for writing. If it existsistoverwritten. It is also possible to append to an
existing file. The three options for the third parametervariée , append , andread .

file_open(output_filel, "test output 99-peva.txt", wr ite);
To close an open file handle the following command is used:

file_close(output\ filel);

File Output

Program output to both files and standard output is possilite tive print functions. If the first parameter to the
functions is an existing file handle opened for writing outiswdirected to that file. If the first parameter is not a file
handle output is sent to standard output. Standard outpiseiful when it is desired to control LQNX execution from
a parent process using pipes. If the given file handle has tyeemed for reading instead of writing a runtime error
results.

There are four variations of print commands with two optioBge option is a newline at the end of the line. Itis
possible to specify additional newlines with thvedl parameter. The second option is controlling the spacingdst
columns either by specifying column widths in integers qying a text string to be placed between columns.

The basic print functions amint() andprintin() with theln specifying a newline at the end.

printin(output_filel, "Model run #: ", i, " tl.throughput: ", tl.throughput);

print(output_filel, "Model run #: ", i,

tl.throughput: ", tl.throughput, endl);

It should be noted that with the exteandl parameter both of these calls will produce the same outpbe T
acceptable inputs to all print functions are valid file hasduoted strings, LQX variables that evaluate to numlerica
or boolean values (or expressions that evaluate to nunifcdean values) as well as the newline speciied! .
Parameters should be separated by commas.

To print to standard output no file handle is specified asWalo

printin("subprocess Igns run #: ", i, " tl.throughput: ", t1 .throughput);

To specify the content between columns the print functimng _spaced() andprintin _spaced() are
used. The first parameter after the file handle (the secorasmer when a file handle is specified) is used to specify
either column widths or a text string to be placed betweenrnak. If no file handle is specified as when printing to
standard output then the first parameter is expected to tsptueing specifier. The specifier must be either an integer
or a string.

44

A w N e

The following printin -~ _spaced() command specifies the striig " to be placed between columns. It
could be used to create comma separated value (csv) files.

printin_spaced(output_file2, ", ", $pl, $p2, Syl, $y2, tl. throughput);

Example output: 0, 2, 0.1, 0.05, 0.0907554
The followingprintin ~ _spaced() command specifies the integer 12 as the column width.

printin_spaced(output_file3, 12, $pl, $p2, Syl, $y2, tl.t hroughput);

Reading Input Data from Files/Pipes

Reading data from input files/pipes is done with thad _data() function. Data can either be read from a valid
file handle that has been opened for reading or from standatd.iReading data from standard input is useful when
is useful when it is desired to control LQNX execution fromaagnt process using pipes. If the given file handle has
been opened for writing rather than reading a runtime egsults. The first parameter is either a valid file handle
for reading or the stringstdout or- specifying standard input. The data that can be read carttmr eumerical
values or boolean values.

There are two forms in which thead _data() function can be used. The first is by specifying a list of LQX
variables which correspond to the expected inputs from piipe. This requires the data inputs from the pipe to be
in the expected order.

read_data(input_file, y, p, keep_running);

The second form in which theead _data() function can be used is much more robust. It can go into a loop
attempting to read string/value pairs from the input pip8l @ntermination stringSTORPREAD is encountered. The
string must corespond to an existing LQX variable (eithenatic or boolean) and the corresponding value must be
of the same type.

read_data(stdin, read_loop);
Sample input:

y 10.0 p 1.0 STOP_READ
continue_processing fal se STOP_READ

Controlling LQNX from a Parent Process

The file output and data reading functions can be combineliote an LQNX process to be created and controlled by
a parent process through pipes. Input data can be read indifmas, be used to solve a model with those parameters
and the output of the solve can be sent back through the pipéetparent process for analysis. A LQX program
can easily be written to contain a main loop that reads ingaltjes the model, and returns output for analysis. The
termination of the loop can be controlled by a boolean flag¢ha be set from the parent process.

This section describes an example of how to control LQNX etien from a parent process, in this caspeal
script which uses thepen2() function to create a child process with both the standardtinapd output mapped to
file handles in th@erl parent process. This allows data sent from the parent tcdobwighread _data(stdin,
...) and output from the LQX print statements sent to standanpuatio be received for analysis in the parent.

This also provides synchronization between the parenttamdhild LQNX processes. Thead _data() func-
tion blocks the LQNX process until it has received its expdatata. Similarly the parent process can be programmed
to wait for feedback from the child LQNX process before it tones.

The following is an example perl script that can be used tdroba LQNX child process.

#!/usr/bin/perl -w
script to test the creation and control of an | gns sol ver subprocess
using the LQX | anguage wi th synchronization

45

© ® N o o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

© ® N o o 9~ w N e

I I N N R N L N - T =
W N P O © ® N © o » W N P O

N}
=

use FileHandle;
use IPC::Open2;

@phases = (0.0, 0.25, 0.5, 0.75, 1.0);
@calls = (0.1, 3.0, 10.0);

run | gnx as subprocess receiving data from standard i nput
open2(*IgnxOutput, * [gnxInput, "lgnx 99-peva-pipe.lgnx");

for S$call (@calls) {
for $phase (@phases) {
print(Ignxinput "y ", $call, " p ", $phase, " STOP_READ ");
whi | e($response = <lgnxOutput>) I” nmisubprocess Igns run/){}
print ("Response from Ignx subprocess: ", $response);

}
}

send data to terminate | gnx process
print (Ignxinput “continue_processing false STOP_READ");

The above program invokes the Ignx program with its input#e child process withpen2() . Two file handles
are passed as parameters. These will be used to send datlepire to the LQNX process to be received as standard
input and to receive feedback from the LQX program whichiitdseas standard output.

The while loop at line 17 waits for the desired feedback frtwa inodel solve before continuing. This example
uses stored data but a real application such as optimizataitd need to analyze the feedback data to decide which
data to send back in the next iteration therefore this syorghation is important.

When the data is exhausted the LQNX process needs to be tqldttdrhis is done with the final print statement
which sets the continuprocessing flag to false. This causes the main loop in the L@¥nam which follows to quit.

<lgx><![CDATA][

i =1

p = 0.0;

y = 0.0;

continue_processing = true;

whi | e (continue_processing) {
read_data(stdin, read_loop); /+ read data frominput pipe */

i f(continue_processing) {

$pl = 2.0 =* p;

$p2 =20 * (1 - p);
$yl =y;

$y2 = 05 = y;
solve();

[+ send out put of solve through stdout through pipe */
printin("subprocess Igns run #: ", i, " tl.throughput: ", t1 .throughput);
=i+ 1

46

25

EN N e

© N o o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

TI></lgx>

The variables, y, andcontinue _processing all need to be initialized to their correct types before the
loop begins as they need to exist when thad _data() function searches for them in the symbol table. This is
necessary as they are all local variables. External vasabiat exist in the LQN model such$g and$y don’t need
initialization.

4.1.4 Actual Example of an LQX Model Program

The following LQX code is the complete LQX program for the rebdesignate@eva-99 . The model itself contains
a few model parameters which the LQX code configures, nothbply, $p2, $yl and$y2. The LQX program is
responsible for setting the values of all model parametelsast once, invoking solve and optionally printing out
certain result values. Accessing of result values is doa¢he LQNS bindings API documented in Section 3.

The program begins by defining an array of values that it wallsketting for each of the external variables. By
enumerating as follows, the program will set the variabbegtie cross product gfhase andcalls

phase = [0.0, 0.25, 0.5, 0.75, 1.0 |;
calls = [0.1, 3.0, 10.0];
foreach (idx,p in phase) {

foreach (idx,y in calls) {

Next, the program uses the input valyeandy to compute the values &pl, $p2, $yl and$y2. Any assign-
ment to a variable beginning withfarequires that variable to have been defined externallyjmitle model definition.
When such an assignment is made the value of the right-hdadsseffectively put everywhere the left-hand side is
found within the model.

$pl = 2.0 = p;

$p2 =20 = (1 - p)
Syl = vy;

$y2 = 05 =* vy;

Since all variables have now been set, the program involesdlve function with its optional parameter, the
suffix to use for the output file of the current run. This paré program outputs1.out-$p1-$p2-$y1-$y2
files, so that results for a given set of input values caneasilfound. As shown in the documentation in Section 3,

solve(<opt> suffix) will return a boolean indicating whether or not the soluttmmverged, and this program
will abort when that happens, although that is certainlyancquirement.
i f (solve(str($pl,"-",$p2,"-" $y1,"-",$y2)) == fal se) {
printin("peva-99.xml:LQX: Failed to solve the model prope rly.");
abort(1, "Failed to solve the model.");
} else {

The remainder of the program outputs a small table of refartsertain key values of interest to the person running
the solution using the APIs in Section 3.

t0 = task("t0");
pO = processor("p0");
e0 = entry("eQ");

phl = phase(e0, 1);
ctoel = call(phl, "el");

printin("+ +;

printin("t0 Throughput: ", t0.throughput);
printin("t0 Utilization: ", tO.utilization);

printin('+ - +";
printin("e0 Throughput: ", e0.throughput);
printin("e0 TP Bound: ", e0.throughput_bound);
printin("e0 Utilization: ", eO.utilization);

47

25

26

27

28

29

30

31

32

33

34

35

printin(*+ -

printin("ph Utilization:

', phi.utilization

+");

);

printin("ph Svt Variance:", phl.service time variance) ;
printin("ph Service Time:", phl.service_time);

printin("ph Proc Waiting:", phl.proc_waiting

printin(*+ -

printin("call Wait Time:

printin("+ +)

4.2 API Documentation

4.2.1 Built-in Class: Array

, ctoel.wait_time

);
);

+";

Summary of Attributes

numeric

| size

The number of key-value pairs stored in the array.

Summary of Constructors

object[Array]

object[Array]

array _create(...)

array _create _map(k,v,...)

This method returns a new instance of the Array cl4g
where each the first argument to the method is map
to index numeric(0), the second one to numeric(1) ¢
so on, yieldind0= >arg0, 1= >argl, ..]

This method returns a new instance of the Array cl
where the first argument to the constructor is u
as the key, and the second is used as the value,
so on. The result is a n arrgrg0= >argl,
arg2= >arg3,...]

1SS,
ped
and

ASS
sed
and

Summary of Meth

ods

null

ref<?>

boolean

array _set(object[Array]
a, ? key, ? value)

array _get(object[Array]
a, ? key)

array _has(object[Array]

a, ? key)

This method sets the valwalue of any type for the
keykey of any type, for array. The shorthand nota|
tion for this operation is to use ttoperator ||

This method obtains a reference to the slot in the a
a for the keykey . If there is no value defined in th
array yet for the given key, a new slot is created

that key, assigned to NULL, and a reference return
Returns whether or not there is a value defined on a

ray
e
for
ed.
rray

a for the given keykey .

4.2.2 Built-in Global Methods and Constants

Intrinsic Constants

Summary of Constants

double
double
double
double
double
double

@infinity
@type_un
@type _boolean
@type _double

@type _string

@type _null

IEEE floating-point numeric infinity.
The typeid for an Undefined Variable.
The typeid for a Boolean Variable.
The typeid for a Numeric Variable.
The typeid for a String Variable.

The typeid for a Null Variable.

48

General Utility Functions

Summary of Methods

null

null

null

null

numeric

null

abort(numeric n, string

r

copyright()

print _symbol _table()

print _special _table()

type _id(? any)

return(? any)

This call willimmediately halt the flow of the program,

with failure coden and description string. This can-

not be “caught” in any way by the program and wiill

result in the interpreter not executing any more of
program.

Displays the LQX copyright message.

This is a very useful debugging tool which output t
name and value of all variables in the current int
preter scope.

This is also a useful debugging tool which outputs

he

he
er-

he

name and value of all special (External and Constant)

variables in the interpreter scope.
This method returns the Type ID of any variable,
cluding intrinsic types (numeric, boolean, null, et

n_

C.)

and the result can be matched to the constants prefixed

with @type (@typenull, @typeun, @typedouble,
etc.)
This method will return any value from a user-defin

ed

function. This method cannot be used in global scope.

Numeric/Floating-Point Utility Functions

Summary of Methods

numeric
numeric
numeric
numeric

abs(numeric n)
ceil(numeric n)
floor(numeric n)

pow(numeric bas, numeric

X)

Returns the absolute value of the argunment
Returns the value af rounded up.

Returns the value af rounded down.
Returnshas to the poweix.

Type-casting Functions

Summary of Methods

string

numeric

boolean

str(...)

double(? x)

bool(? x)

This method will return the same value as the funct
print(...) would have displayed on the screg
Each argument is coerced to a string and then adja|
values are concatenated.

This method will return 1.0 or 0.0 if provided
boolean oftrue or false respectively. It will re-
turn the passed value for a double, 0.0 for a null g

fail (NULL) for an object. If it was passed a string,

it will attempt to convert it to a double. If the whol
string was not numeric, it will return NULL, otherwis
it will return the decoded numeric value.

This method will returrtrue for a numeric value of|
(not 0.0), a booleatrue or a string “true” or “yes”.
It will return false for a numeric value 0.0, a NULL
or a string “false” or “no”, or a booleaialse . It will
return NULL otherwise.

49

on
n.
cent
a

and

e
e

4.3 API Documentation for the LQN Bindings
4.3.1 LON Class: Document

Summary of Attributes

double
double
double
double
double
boolean

iterations
invocation
system _cpu _time
user _cpu _time
elapsed _time
valid

The number of solver iterations/simulation block
The solution invocation number

Total system time for this invocation

Total user time for this invocation

Total elapsed time for this invocation

True if the results are valid

S

Summary of Constructors

Document

| document()

Returns the Document object

4.3.2 LQON Class: Processor

Summary of Attributes

double

| utilization

The utilization of the Processor

Summary of Constructors

Processor

processor(string name)

Returns an instance of Processor from the cur

ent

LQN model with the given name.

4.3.3 LON Class: Group

Summary of Attributes

double

| utilization

The utilization of the Group

Summary of Constructors

Group

processor(string name)

Returns an instance of Group from the currg
LQN model with the given name.

ent

4.3.4 LQON Class: Task

Summary of Attributes

double
double
double
Array

throughput
utilization

proc _utilization
phase _utilizations

The throughput of the Task

The utilization of the Task

This Task’s processor utilization
Individual phase utilizations

Summary of Constructors

Task

task(string name)

Returns an instance of Task from the current L(
model with the given name.

DN

50

4.3.5 LON Class: Entry

Summary of Attributes

boolean
boolean
boolean
boolean
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

has _phase _1

has _phase _2

has _phase _3

has _open _wait _time
open-wait-time
phasel-proc-waiting
phasel-service-time-variance
phasel-service-time
phasel-utilization
phase2-proc-waiting
phase2-service-time-variance
phase2-service-time
phase2-utilization
phase3-proc-waiting
phase3-service-time-variance
phase3-service-time
phase3-utilization
proc-utilization
squared-coeff-variation
throughput-bound

throughput

utilization

Whether the entry has a phase 1 result
Whether the entry has a phase 2 result
Whether the entry has a phase 3 result
Whether the entry has an open wait time
Entry open wait time

Phase 1 Processor Wait Time

Phase 1 Service Time Variance

Phase 1 Service Time

Phase 1 (task) Utilization

Phase 2 Processor Wait Time

Phase 2 Service Time Variance

Phase 2 Service Time

Phase 2 (task) Utilization

Phase 3 Processor Wait Time

Phase 3 Service Time Variance

Phase 3 Service Time

Phase 3 (task) Utilization

Entry processor utilization

Squared coefficient of variation

Entry throughput bound

Entry throughput

Entry utilization

Summary of Constructors

Entry

entry(string name)

Returns the Entry object for the model entry whdg

name is given as name

4.3.6 LON Class: Phase

Summary of Attributes

double
double
double
double

service-time
service-time-variation
utilization
proc-waiting

Phase service time

Phase service time variance
Phase utilization

Phases’ processor waiting time

Summary of Constructors

Phase

phase(object entry,
numeric _int nr)

Returns the Phase object for a given entry’s ph

ase

number specified as nr

4.3.7 LQON Class: Activity

Summary of Attributes

double
double
double
double
double
double
double

proc-utilization
proc-waiting
service-time-variance
service-time
squared-coeff-variation
throughput

utilization

The activities’ share of the processor utilization
Activities’ processor waiting time

Activity service time variance

Activity service time

The square of the coefficient of variation

The activity throughput

Activity utilization

51

Summary of Constructors

Activity activity(object task,
string name)

Returns an instance of Activity from the current

LQN model, whose name corresponds to an activ-

ity in the given task.

4.3.8 LON Class: Call

Summary of Attributes

double waiting
double waiting-variance
double loss-probability

Call waiting time
Call waiting time

Message loss probability for asynchronous mes-

sages

Summary of Constructors

Call call(object phase, string
destinationEntry)

Returns the call from an entry’s phase (phase
the destination entry whose name is (dest)

4.3.9 Confidence Intervals

Summary of Constructors

confint | conf _int(object, int level)

Returns thet (level) for the attribute for the objeg

52

to

—

Chapter 5

LON Input File Format

This Chapter describes the original ‘'SRVN’ input file formmtigmented with the Software Performance EXperiment
driver (SPEX) grammar. In this model format models are dpetibreadth-first, in contrast to the XML format
described irffd where models are specified depth-first. This specificatieans that all resources such as processors,
tasks and entries, are defined before they are referencetieFuore, each resource is grouped into its own section in
the input file. Listind 5.1 shows the basic layout of the model

Each of the sections within the input file begins with a keyele as follows:

$ SPEX parameters (optional).

G General solver parameters (optional).
P Processor definitions.

U Processor group definitions (optional).
T Task definitions.

E Entry definitions.

A Task activity definitions (optional).

R SPEX result definitions (optional).

C SPEX convergence (optional).

Sectio5.P describes the input sections necessary to aatvedel, i.eP, U T, E, andA. Sectior[5.B describes the
additional input sections for solving multiple models gsBPEX, i.e$, R, andC. The complete input grammar is
listed in AppendiXxA.

5.1 Lexical Conventions
The section describes the lexical conventions of the SR\ tifile format.

5.1.1 White Space

White space, such as spaces, tabs and new-lines, is ignareptevithin strings. Object definitions can span multiple
lines.

53

Listing 5.1: LQN file layout

Pragmas
#pragma <par anmp=<val ue>

Paranet ers (SPEX)
$var = <expression>
$var = [<expression-list>]

CGeneral Information

© ® N o ¢ A W N e

PR e
N P O

i
w

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

G "<string>" <real> <int> <int> <real> -1
Processor definitions

p <proc-id> <sched> <opt-nult> <opt-repl> <opt-obs>

Group definitions

g <group-id> <real > <opt-cap> <proc-id>

Task definitions
t <task-id> <sched> <entry-list> -1 <proc-id> <opt-pri> <opt-think-tinme>
<opt-mul t> <opt-repl > <opt-grp> <opt-obs>
Entry definitions
A <activity-id>

s <entry-id> <real > ..
y <entry-id> <entry-id> <real > ...

-1 <opt-obs>
-1 <opt-obs>

Activity definitions
A <task-id>
s <activity-id> <real > <opt-obs>
y <activity-id> <entry-id> <real > <opt -obs>

<activity-list> -> <activity-list>

Result defintions (SPEX)

<expr essi on>

Conver gence defintions (SPEX)

<expressi on>

L B N

5.1.2 Comments

Any characters following a hash mark (#) through to the enthefline are considered to be a comment and are
generally ignored. However, should a line begin with opdilomhitespace followed by#pragma ’, then the remainder
of the line will be treated by the solver as a pragma (more agmias below).

5.1.3 Identifiers

Identifiers are used to name the objects in the model. Thesistoof zero or more leading underscore§(followed
by a character, followed by any number of characters, nusnbeunderscores. Punctuation characters and other
special characters such as the dollar-sig) @re not permitted. Non-numeric identifiers must be a mumnmof two
characters in IendﬂwThe following,1, p1, p_1, and__P_21 proc are valid identifiers, whil&proc and$1 are not.

5.1.4 Variables

Variables are used to set values of various objects sucleantiltiplicity of tasks and the service times of the phases
of entries. Variables are modifed by SPEX ($B€3) to run multiple experiments. Variables start with alalesign
(‘$’) followed by any number of characters, numbers or undeescévar and$1 are valid variables whil&$ is

not.

5.2 LQN Model Specification

This section describes the mandatory and option input fasicd QN model file. SPEX information, nameWari-
ables (§5.2.7), Report Information(§5.3.2) andConvergence Informatio(#5.3.3) are described in the section that
follows. All input files are composed of three mandatory st Processor Informatio§5.2.3), Task Information
(5. 2.8) ancEntry Information(§5.2.8), which define the processors, tasks and entriesathsglg in the model. All

of the other sections for a basic model file are optional. Ty Pragmas General Information(§5.2.2), Group
Information(45.2.4), andActivity Information The syntax of these specifications are described next iorther in
which they appear in the input model.

5.2.1 Pragmas

Any line beginning with optional whitespace followed by therd ‘#pragma 'efines a pragma which is used by either
the analytic solver or the simulator to change its behavidtie syntax for a pramga directive is shown in line 2 in
Listing[5.1. Pragma’s which are not handled by either theutbor or the analytic solver are ignored. Pragma'’s can
appear anywhere in the input Ithough they typically appear first.

5.2.2 General Information

The optional general information section is used to sebuarcontrol parameters for the analytic solver LQNS. These
parameters, with the exception of the model comment, arerégghby the simulator, Igsim. Listiig 5.2 shows the
format of this section. Note that these parameters can alsetusing SPEX variables, described belo@ai3.1.

Listing 5.2: General Information

G "<string>" # Model title.
<real > # conver gence val ue
<i nt> # iteration limt
<i nt> # Optional print interval.
<real > # Optional under-rel axation.
-1

1Single characters are used for section and record keys.
2Pragma’s are processed during lexical analysis.

55

5.2.3 Processor Information

Processors are specified in the processor informatioroseafithe input file using the syntax shown in Listing]5.3.
The start of the section is identified using <int>" and ends with 1 ”. The <int> parameter is either the number
of processor definitions in this section, or fero

Listing 5.3: Processor Information

P <int>
p <proc-id> <sched> <opt-nult>
-1

Each processor in the model is defined using the syntax sholimei 2 in Listing5.8. Each record in this section
beginning with a p’ defines a processorproc-id> is either an integer or an identifier (defined earliefffal.3).
<sched> is used to define the scheduling discipline for the procemsdiis one of the code letters listed in Tdbld 5.1.
The scheduling disciplines supported by the model are detin Sectiof 1.111. Finally, the optionabpt-mult>
specifies the number of copies of this processor serving ammmmgueue. Multiplicity is specified using the syntax
shown in Tablg€5]2. By default, a single copy of a processosésl for the model.

<sched> Scheduling Discipline

f First-come, first served.

p Priority-preemptive resume.

r Random.

[Delay (infinite server).

h Head-of-Line.
¢ <real> | Completely fair share with time quantuareal>.
s <real> | Round Robin with time quanturareal>.

Table 5.1: Processor Scheduling Disciplines &é&.1).

<opt-mult> Multiplicity
m<int> <int> identical copies with a common queug.

[Infinite (or delay).
<opt-rept> Repliplication
r <int> <int> replicated copies with separate queugs.

Table 5.2: Multiplicity and Replication (s¢f.2).

5.2.4 Group Information

Groups are specified in the group information section of

Listing 5.4: Group Information

U <int>
g <group-id> <real > <opt-cap> <proc-id>
-1

3The number of processors;int>, is ignored with all current solvers.

56

o o A W N e

5.2.5 Task Information

Tasks are specified in the task information section of thatifife using the syntax shown in Listilg5.5. The start of
the task section is identified using@ ‘<int>" and ends with *1 ". The <int> parameter is either the number of task
definitions in this section, or zero.

Listing 5.5: Task Information

T <int>
t <task-id> <sched> <entry-list> -1 <proc-id> <opt-pri> <opt-think-tinme>
<opt - nul t > <opt-repl > <opt-grp>
i <task-id> <task-id> <int> # fan-in for replication
0 <task-id> <task-id> <int> # fan-out for replication
-1

Each task definition within this section starts witht aand is is defined using the syntax shown in lines 2 and 3 of
Listing BH. <task-id> is an identifier which names the tasksched- is used to define the request distribution for
reference tasks, or the scheduling discipline for nonregfee tasks. The scheduling and distribution code letters a
shown in Tabl€5]3. Some disciplines are only supported &githulator; these are identified using.“ <entry-list>
is a list of idententifiers naming the entries of the task. dpgonal<opt-pri> is used to set the priority for the task
provided that the processor running the task is schedulied aspriority discipline. The optionatopt-think-time-
specifies a think time for a reference task. The optier@ht-mult> specifies the number of copies of this task serving
a common queue. Multiplicity is specified using the syntaovahin Tabld5.R. By default, a single copy of a task is
used for the model. Finally, the optionabpt-grp> is used to identify the group that this task belongs to predid
that the task’s processor is using fair-share scheduling

Reference tasks (customers).
<sched> Request Distribution

r Poisson.
b Burstyf.
u Uniformf.

Non-Reference tasks (servers).
<sched> Queueing Discipline
First come, first served.
Polled service at entrig¢s
Head-of-line priority.
First come, first served.
Infinite (delay) server.
Read-Write lock task
Semaphore tagk
Semaphore task

N®WE ——+3TS

Table 5.3: Task Scheduling Disciplines ($8el.3).

5.2.6 Entry Information

Entries are specified in the entry information section stgrirom “E <int>" and ending with “1 ". The <int>
parameter is either the number of entry definitions in thidisa, or zero. Each record in the entry section defines
a single parameter for an entry, such as its priority, or glsiparameter for the phases of the entry, such as service
time. Listing[5.6 shows the syntax for the most commonly yss@meters.

All entry records start with a key letter, followed by aentry-id>, followed by from one to up to five arguments.
Table[55 lists all the possible entry specifiers. The tableplit into six classes, based on the arguments to the

4Line 3 is a continuation of line 2.

57

L N N

© ® N o o A~ w N e

Option Parameter
<integer> Task priority for tasks running on processors supportingrjties.
z <real> Think Time for reference tasks.
g <real> Maximum queue length for asynchronous requests.
m<integer> | Task multiplicity.
r <integer> | Task replication.
g <identifier> | Group identifier for tasks running of processors with fasrghscheduling

Table 5.4: Optional parameters for tasks (§84.3).

Listing 5.6: Entry Information

E <int>

A <entry-id> <activity-id> # Start activity.

F <entry-id> <entry-id> <real > # forward.

s <entry-id> <real> .. -1 # Service tine by phase.

y <entry-id> <entry-id> <real> ... -1 # Synchronous request by phase.
-1

parameter. Records used to specifiy service time and calpameters for phases take a list of from one to three
arguments and terminated with-d.“. All other entry records, with the exception of histogranfarmation, take a
fixed number of arguments. Records which only apply to thaikitor are marked with &*.

5.2.7 Activity Information

Activity information sections are required to specify ther@meters and connectivity of the activities for a task.eNot
that unlike all other sections, each task with activities g own activity information section.

An activity information section starts withA' <task-id>" and ends with *1 ”. The data within an activity infor-
mation section is partitioned into two parts. The first petsithe parameter data for an activity in a fashion similar
to the parameter data for an entry; the second section defineonnectivity of the activities. Listiig 5.7 shows the
basic syntax.

Listing 5.7: Activity Information

A <task-id>

S <activity-id> <real >
<activity-id> <real >
<activity-id> <int>
<activity-id> <entry-id> <real >
<activity-id> <entry-id> <real >

N< O

<activity-list> -> <activity-list>

5.3 SPEX: Software Performance Experiment Driver

SPEX, theSoftwarePerformancdExPeriment driver, was originally a Perl program used to getesaad solve multiple
layered queueing network models. With version 5 of the ssltkis functionality has been incorporated into the
Igiolib andlgx libraries used by the simulator and analytic solver. Thenpriy benefit of this change is that
analytic solutions can run faster for reasons describe#ilih [

58

Key | Paramater Arguments
One argument
a <entry-id> <real> Arrival Rate
A <entry-id> <activity-id> Start activity
p <entry-id> <int> Entry priority

One to three phase argu

ments

s <entry-id> <real> ... -1

Service Time.

time value per phase.

c <entry-id> <real> ... -1

Coefficient of Variation
Squared.

The entry’s<entry-id> andCV* value for
each phase.

f <entry-id> <int> ... -1

Call Order

STOCHASTICor DETERMINISTIC

M<entry-id> <real> ... -1

Max Service Timé

sult exceeds the<real> parameter, pe
phase.

Arguments for a single phase

H <int> <entry-id> <real> : <real> <opt-int>

Histogrant: An <int> phase, followed by
arange fromxreal> to <real>, and an op-
tional <int> buckets.

Destination and one argument

F <entry-id> <real> -1

Forwarding Probability

Source and Destination entries, and pro
bility reply is forwarded.

Destination and one to three phase arguments

The entry’s<entry-id> and mean service

Output probability that the service time r¢

pa-

y <entry-id> <entry-id> <real> ... -1 | Rendevous Rate Source and Destination entries, and rate per
phase.
z <entry-id> <entry-id> <real> ... -1 | Send-no-Reply Rate | Source and Destination entries, and rate per

phase.

Semaphores and Lodks

P <entry-id> Signak Entry <entry-id> is used to signal a
semaphore task.
V <entry-id> Wait}
R <entry-id> Read lock
U <entry-id> Read unlock
W<entry-id> Write locky
X <entry-id> Write unlockf
Table 5.5: Entry Specifiers
Key | Paramater | Arguments
one to three phase arguments

S Service Time. The entry’'s<entry-id> and mean service time value per phase.

c Coefficient of Variation Squared| The entry’s<entry-id> andCV* value for each phase.

f Call Order STOCHASTIGr DETERMINISTIC

Destination and one to three phase arguments
y Rendevous Rate Source and Destination entries, and rate per phase.
z Send-no-Reply Rate Source and Destination entries, and rate per phase.

Table 5.6: Activity Specifiers

59

Post (or Join) lists

<activity-id>

<activity-id> + <activity-id> +...

<activity-id> & <activity-id> &...

Pre (or Fork) lists

<activity-id>

<activity-id> + <activity-id> +...

<activity-id> & <activity-id> &...

Table 5.7: Activity Lists

Control Variable Type of Value | Default Value | Program
$convergence _limit <real> 0.00001 lgns
Siteration _limit <int> 100 Igns
$print _interval <int> 1 lgns
$coefficient _of _variation <real> 0.9 lgns
$model _comment <string>
$number _of _blocks <int> 1 Igsim
$block _time <int> 50000 Igsim
$seed _value <int> - Igsim
$result _precision <real> - Igsim
$warm_up _loops <int> - Igsim

Table 5.8: Spex Control Variables

SPEX augments the input file describedfin? by addingsariablesfor setting input values, Report Information
(§5:3.2) used to format output, and an optioGalinvergence Informatiof®.3.3) for feeding result values back into
input variables. Listing_ 5]1 shows these sections stastiith comments inred The syntax of these sections are
described next in the order in which they appear in the inpadeh

5.3.1 \Variables

SPEX variables are used to set and possibly vary varioug irgdues to the model, and to record results from the
solution of the model. There are four types of variables:tmdnscalar, array and observation. Control variables
are used to define parameters that control the executioreafdiver. Scalar and array variables are used to set input
parameters to the model. Finally, observation variablesiaed to record results such as throughputs and utilization

Control Variables

Control variables are used to set parameters that are ussshtml either the analytic solvégns or the simula-
tor Igsim With the exception ofcomment, all of these variables can be changed as SPEX executegjtltlois
behaviour may not be appropriate in many cases.

Scalar Variables

Scalar variables are used to set input values for the modkeaeminitialized using anyternary-expression (?:)
using this syntax:

$name =<ternary-expression

The <ternary-expression may contain any variables defined previously or subseguanthe input file; order does
not matter. However, undefined variables and observatinahlas (more on these below) are not permitted. Refer to
AppendiXA, §?? for the complete grammar ferternary-expression.

60

Key | Phase Description Location
%u | no Utilization processor declaration (p info)
yes task declaration (tinfo)
yes entry service declaration (s info)
%f no Throughput task declaration (tinfo)
no entry service declaration (s info)
%pu | no Processor Utilization task declaration (tinfo)
no entry service declaration (s info)
%s | yes Service Time entry service declaration (s info)
%v | yes Service Time Variance entry service declaration (s info)
%fb | no Throughput Bound entry service declaration (s info)
%pw| yes Processor waiting time by task entry service declaration (s info)
%w | yes Call waiting time entry call declaration (y info)
no entry open arrival declaration (a info)

Table 5.9: Observation Key location

Array Variables

Array variables are used to specify a range of values thahput iparameter may take on. There are two ways to
specify this information:

$name =[x, vy, z, ..]
$name = [a : b, c]

The first form is used to set the varialfieame to the valuesin the list, y, z, The second form is used the set
the variablegbname from the valuea to b using a step size af. The value ob must be greater that, and the step
size must be positive. Regardless of the format, the valwesrfay variables must be constants.

During the execution of the solver, SPEX iterates over alhefvalues defined for each array variable. If multiple
arrays are defined, then SPEX generates the cross-prodatitdssible parameter values. Note that if a scalar
variable defined in terms of an array variable, then the swaldable will be recomputed for each model generated by
SPEX.

Observation Variables

There is a set of special symbols that are used to indicateebowhich result values from the solution of the model
are of interest. This result indication has the followingiio

%<key><phase- $var

where<key> is a one or two letter key indicating the type of data to be olestand<phase> is an optional integer
indicating the phase of the data to be observed. The date,astained from the results of the model, is placed into
the variable $var where it may be used in the Result Infomnagection described below.

To obtain confidence interval info, the format is

%<key><phase-[confidence] $varl $var2

where confidence can be 95 or 99, $varl is the mean and $var limif-width of the confidence interval

The location of a result indication determines the entithéoobserved. Table 5.9 describes each of the keys and
where they may be used.

For any key/location combination that takes a phase argyrifierone is supplied then the sum of the values for
all phases is reported. This also happens if a phase of zgieis.

61

Listing 5.8: Report Information

R <int>

$var

$var = <expressi on>
-1

5.3.2 Report Information

The purpose of the report information section of the inpat il to specify which variable values (including result
indications) are to be printed in the spex result file. Theatrof this section is shown in Listing 5.8.

There may be any number of report declarations, howevemteger parameter t& must either be the number of
report declarations present or Zero

The <expression may be any valid LQX expression as discussed above. Notérthhis section, the report
indication variables and the parameter variables may betisled together. The values of the variables listed in this
section are printed from left to right in the order that theypear in the input file separated by commas. This output
can then be used as input to Gnuplot or a spreadsheet sucleels Ex

There is a special variable call&® which represents the independent variable in the restdisggthe x-axis in
plots). The variabl&0 may be set to any expression allowing for flexibility in prathg result tables. This variable
cannot be used as a parameter in the model.

5.3.3 Convergence Information

Spex allows a parameter value to be modified at the end of almoligion and then fed back in to the model. The
model is solved repeatedly until the parameter value cgeger The convergence section is declared in a manner
similar to the result section:

Listing 5.9: Convergence Information

C <int>

$var

$var = <expressi on>
-1

Only this time, the convergence variables must be parasiefbey cannot be result variables or tag variables.

5.3.4 Differeneces to SPEX 1

This section outlines differences in the syntax betweenSRision 1 and version 2. SPEX version 1 was processed
by a Perl program to convert the model into a conventional Li@ddel file. SPEX version 2 is now parsed directly
and converted into LQX internally.

Array Initialization
Lists used for array initialization must now be enclosedinitsquare brackets (‘[]'). Further, the items must be
separated using commas. Figlurd 5.1 shows the old and neaxsynt

Perl Expressions

Perl Expressions are no longer supported in SPEX 2.0. Ratmrbset of LQX expressions are used instead. For
SPEX convergence expressions, Rlerthen else statements must be converted to use the terfargperator.
SPEX 2 cannot invoke Perl functions.

5The number is ignored; it is present in the syntax so thatepert section matches the other sections.

62

1 $array =1 2 3 1 $array = [1, 2, 3]
> $array = 1:10,2 > $array = [1:10,2]
(a) Spex 1 (b) Spex 2
Figure 5.1: x

Line Continuation

Line continuation, where a line is terminated by a backs{agh is not needed with Version 2 SPEX. All whitespace,
including newlines, is ignored.

Comments

In Version 1 of SPEX, all text before a dollar sign (‘$’), otheér an upper case ‘G’ or ‘P’ at the start of a line, was
treated as a comment. Since Version 2 SPEX is parsed diraltttpmments must start with the hash symbol (‘#).

String Substitution

Version 2 SPEX does not support variable substitution dfigtparameters such as pragmas, and scheduling types.
This restriction may be lifted in future versions.

Pragmas

Version 1 SPEX did not require the hash symbol (‘#') for seftpragmas. Version 2 SPEX does.

SPEX AGR
SPEX AGR is no longer supported.

5.3.5 SPEXand LQX

SPEX uses LQX to generate individual model files. All scalargpaters are treated as globally scoped variables in
LQX. If the assignement expression for a scalar variables s reference any array variables, it is set prior to the
iteration of any loop. Otherwise, the scalar variable isdsging the execution of the innermost loop of the program.

Array variables are used to generfde loops in the LQX program. Each array variable generates éqr, and
the loops are nested in the order of the definition of the aramable. Local variables (i.e., without the ‘$’) store the
array values.

Finally, if SPEX convergence is used, a final innermost I@ogréated. This loop tests the variables defined in the
convergence section for change, and if any of the varialblaages by a non-trivial amount, the loop repeats.

Listing shows a model defined defined using SPEX syntasting [5.11 shows the corresponding LQX
program generated by the model file.

63

© ® N o O A~ w N e

NONNN N R R R R R B R R e e
& ® N P O © ® N o o » ®W N kP O

N
@

© ® N o O A W N e

=
o

-
[

Listing 5.10: SPEX file layout.

$m_client = [1, 2, 3]

$m_server
$s_server

1, 2,

P2
p client i
p server s 0.1

3]

$m_server |/ 2

T2
t client r client -1 client m $m_client % f $f client
t server n server -1 server m $m_server %u $u_server
-1
E 2
s client 1 -1
y client server $s_server -1
s server 1 -1
-1
R 3
$0
$f_client
$u_server
-1

m_client = [1, 2, 3]

Listing 5.11: LQX Program for SPEX input.
: /1 $mclient

m_server = [2, 3, 4]; /] $m server

f oreach($m_client

in m_client) {

foreach($m_server in m_server) {

$s_server = $m_client / 2; Il $s_server
sol ve();

$f_client = t ask("client"). t hr oughput ; Il 9% $resl
$u_server = task("server"). utilization; Il % $res2
println($0, ", ", $f client, ", ", $u_server);

64

[1,2,3]
[2,3,4]

$mclient / 2;

Chapter 6

Invoking the Analytic Solver “Ilgns”

The Layered Queueing Network Solver (LQNS) is used to sohagkred Queueing Network models analytically.
Lgns reads its input fronfilename , specified at the command line if present, or from the stahdgut oth-
erwise. By default, output for an input fildlename specified on the command line will be placed in the file
filename.out . If the-p switch is used, parseable output will also be written filtmame.p . If XML input

or the-x switch is used, XML output will be written thlename.lgxo . This behaviour can be changed using the
-ooutput switch, described below. If several files are named, theh eatreated as a separate model and output
will be placed in separate output files. If input is from thernstard input, output will be directed to the standard output
The file name- ' is used to specify standard input.

The-ooutput option can be used to direct output to the 6lgput regardless of the source of input. Output
will be XML if XML input or if the -x switch is used, parseable output if the switch is used, and normal output
otherwise. Multiple input files cannot be specified when gghis option. Output can be directed to standard output
by using-o- (i.e., the output file nameis'.)

6.1 Command Line Options

-a,--ignore-advisories
Ignore advisories. The default is to print out all advissrie

-b,--bounds-only
This option is used to compute the “Type 1 throughput boundsy. These bounds are computed assuming no
contention anywhere in the model and represent the gua@dnta to exceed values.

-d, - - debug=arg
This option is used to enable debug outpArg can be one of:
activities Activities — not functional.
all Enable all debug output.
calls Print out the number of rendezvous between all tasks.
forks Print out the fork-join matching process.
interlock Print out the interlocking table and the interlocking bedwall tasks and processors.
joins Joins — not functional.
layers Print out the contents of all of the layers found in the model.
lgx Debug LQX parser.
overtaking Overtaking — not functional.
guorum Print out results from pseudo activities used by quorum.

65

xml Debug XML.

-e,--error=arg
This option is to enable floating point exception handliAgy must be one of the following:
1. a Abort immediately on a floating point error (provided the fing point unit can do so).
2. d Abort on floating point errors. (default)
3. i Ignore floating point errors.
4. w Warn on floating point errors.
The solver checks for floating point overflow, division by@@and invalid operations. Underflow and inexact
result exceptions are always ignored.
In some instances, infinities will be propogated within tbé/er. Please refer to thetop-on-message-loss
pragma below.

-f,--fast
This option is used to set options for quick solution of a madéng One-Step (Bard-Schweitzer) MVA. It is
equivalent to settingragma mva=one-steplayering=batchedmultiservee=conway

- H, - - hel p=arg

-n,--no-execute
Read input, but do not solve. The input is checked for validilo output is generated.

- 0, - - out put =arg
Direct analysis results toutput A filename of * ’ directs output to standard output.ltfns is invoked with this
option, only one input file can be specified.

-p,--parseabl e
Generate parseable output suitable as input to other pregsach asqn2ps(1) and srvndiff(1). If input is
from filename , parseable output is directed fiename.p . If standard input is used for input, then the
parseable output is sent to the standard output devicee tbthutput option is used, the parseable output is
sent to the file nameutput . (In this case, only parseable output is emitted.)

- P,--pragma=arg
Change the default solution strategy. Refer to the PRAGM&&ien below for more information.

-r,--rtf
Output results using Rich Text Format instead of plain t€xbcessors, entries and tasks with high utilizations
are coloured in red.

-t,--trace=arg
This option is used to set tracing options which are useditd put various intermediate results while a model
is being solvedarg can be any combination of the following:
activities Print out results of activity aggregation.

convergencearg Print out convergence arg after each submodel is solveds djftion is useful for tracking
the rate of convergence for a model. The optional numerigraemt supplied to this option will print out
the convergence value for the specified mva submodel, otberthe convergence value for all submodels
will be printed.

deltawait Print out difference in entry service time after each subeh@xisolved.
forks Print out overlap table for forks prior to submodel solution
idle_time Print out computed idle time after each submodel is solved.

66

interlock Print out interlocking adjustment before each submodedligesl.
joins Print out computed join delay and join overlap table priostiddmodel solution.

mva=arg Print out the MVA submodel and its solution. A numeric argmtrgupplied to this option will print
out only the specified mva submodel, otherwise, all subnsod#l be printed.

overtaking Print out overtaking calculations.

print Print out intermediate solutions at the print interval sfied in the model. The print interval field in the
input is ignored otherwise.

quorum Print quorum traces.

throughput Print throughputs values.

variance Print out the variances calculated after each submodehisgo

wait Print waiting time for each rendezvous in the model afteai heen computed.
-v,--verbose

Generate output after each iteration of the MVA solver arel dbnvergence value at the end of each outer
iteration of the solver.

-V,--version
Print out version and copyright information.

- W, - - NO- war ni ngs
Ignore warnings. The default is to print out all warnings.

-X,--xm
Generate XML output regardless of input format.

-z,--speci al =arg
This option is used to select special options. Arguments@fdrmnnare integers while arguments of the form
nn.nare real number#rg can be any of the following:
convergence-valuearg Set the convergence valueday. Arg must be a number between 0.0 and 1.0.
full-reinitialize For multiple runs, reinitialize all processors.

generatecarg This option is used for debugging the solver. A directory edierg will be created containing
source code for invoking the MVA solver directly.

ignore-overhanging-threaddgnore the effect of the overhanging threads.

iteration-limit=arg Set the maximum number of iterationsaay. Arg must be an integer greater than 0. The
default value is 50.

man=arg Output this manual page. If an optioraag is supplied, output will be written to the file namesdj.
Otherwise, output is sent to stdout.

min-stepsarg Force the solver to iterate min-steps times.

mol-ms-underrelaxatiorarg Set the under-relaxation factor &wg for the MOL multiserver approximation.
Arg must be a number between 0.0 and 1.0. The default value is 0.5.

overtaking Print out overtaking probabilities.

print-interval=arg Set the printing interval targ. The-d or -v options must also be selected to display
intermediate results. The default value is 10.

single-stepStop after each MVA submodel is solved. Any character typgeti@terminal except end-of-file
will resume the calculation. End-of-file will cancel singdeepping altogether.

skip-layerarg Ignore submodedrg during solution.

67

tex=arg Output this manual page in LaTeX format. If an optioasd is supplied, output will be written to the
file namedarg. Otherwise, output is sent to stdout.

underrelaxatiorFarg Set the underrelaxation #rg. Arg must be a number between 0.0 and 1.0. The default
value is 0.9.

If any one ofconvergencgteration-limit, orprint-intervalare used as arguments, the corresponding value spec-
ified in the input file for general information, ‘G’, is ignate

- -conver gence=arg
Set the convergence valueday. Arg must be a number between 0.0 and 1.0.

- -exact-nva
Use Exact MVA to solve all submodels.

--hwsw [ayeri ng

--iteration-limt=arg
Set the maximum number of iterationsany. Arg must be an integer greater than 0. The default value is 50.

--srvn-layering
Solve the model using submodels containing exactly oneserv

--squashed- | ayeri ng
Use only one submodel to solve the model.

- - et hod- of -l ayers
This option is to use the Method Of Layers solution approactotving the layer submodels.

--processor-sharing
Use Processor Sharing scheduling at all fixed-rate processo

--schwei t zer-anva
Use Bard-Schweitzer approximate MVA to solve all submadels

--st op-on- nessage- | oss
Do not stop the solver on overflow (infinities) of open arréval send-no-reply messages.

--trace-nva

--underrel axati on=arg
Set the underrelaxation srg. Arg must be a number between 0.0 and 1.0. The default value is 0.9.

--no-vari ance
Do not use variances in the waiting time calculations.

--rel oad- 1 gx
Re-run the LQX program without re-solving the models. Rissoust exist from a previous solution run. This
option is useful if LQX print statements are changed.

- -debug- 1 gx
Output debugging informtion as an LQX program is being pairse

- - debug- xm
Output XML elements and attributes as they are being parSétce the XML parser usually stops when it
encounters an error, this option can be used to localizertbe e

68

- -debug-srvn

Lgns exits with 0 on success, 1 if the model failed to converge,tBéfinput was invalid, 4 if a command line
argumentwas incorrect, 8 for file read/write problems arfdrfatal errors. If multiple input files are being processed
the exit code is the bit-wise OR of the above conditions.

6.2 Pragmas

Pragmasare used to alter the behaviour of the solver in a variety ofswval'hey can be specified in the input file
with “#pragma”, on the command line with thB option, or through the environment variall@NSPRAGMAS
Command line specification of pragmas overrides those dkfméhe environment variable which in turn override
those defined in the input file. The following pragmas are sutgpl. Invalid pragma specification at the command
line will stop the solver. Invalid pragmas defined in the eowriment variable or in the input file are ignored as they
might be used by other solvers.

cyclessarg
This pragma is used to enable or disable cycle detectioreicdti graph. Cycles may indicate the presence of
deadlocksArg must be one of:
allow Allow cycles in the call graph. The interlock adjustmentiisatbled.
disallow Disallow cycles in the call graph.

The default is disallow.

interlocking=arg
The interlocking is used to correct the throughputs atatatas a result of solving the model using layefs [5].
This pragma is used to choose the algorithm uged must be one of:
none Do not perform interlock adjustment.
throughput Perform interlocking by adjusting throughputs.

The default is throughput.

layering=arg
This pragma is used to select the layering strategy usedebgaiver.Arg must be one of:
batched Batched layering — solve layers composed of as many sersgrsssible from top to bottom.

batched-backBatched layering with back propagation — solve layers caag®f as many servers as possible
from top to bottom, then from bottom to top to improve solatapeed.

hwsw Hardware/software layers — The model is solved using twonadels: One consisting soley of the tasks
in the model, and the other with the tasks calling the pramsss

mol Method Of layers — solve layers using the Method of Layer [[Ldyer spanning is performed by allowing
clients to appear in more than one layer.

mol-back Method Of layers — solve layers using the Method of Layersfitv&oe submodels are solved top-
down then bottom up to improve solution speed.

squashedSquashed layers — All the tasks and processors are placedristsubmodel. Solution speed may
suffer because this method generates the most number afsdhahe MVA solution. See als® mva

srvn SRVN layers — solve layers composed of only one server. Tkihad of solution is comparable to the
technique used by thervn solver. See alseP mva

The default is batched-back.

69

multiserverarg
This pragma is used to choose the algorithm for solving seHtiers Arg must be one of:
bruell Use the Bruell multiserver [2] calculation for all multisers.
conway Use the Conway multiserver|[4, 3] calculation for all mugtigers.
reiser Use the Reiser multiserver [13] calculation for all multisers.

reiser-ps Use the Reiser multiserver calculation for all multisesveFor multiservers with multiple entries,
scheduling is processor sharing, not FIFO.

rolia Use the Rolial[15, 14] multiserver calculation for all msétivers.

rolia-ps Use the Rolia multiserver calculation for all multiserverBor multiservers with multiple entries,
scheduling is processor sharing, not FIFO.

schmidt Use the Schmidt multiserver [[16] calculation for all mudtigers.
suri experimental.

The default multiserver calculation uses the the Conwaytisaulzer for multiservers with less than five servers,
and the Rolia multiserver otherwise.

mva=arg
This pragma is used to choose the MVA algorithm used to sblwestibmodelsArg must be one of:
exact Exact MVA. Not suitable for large systems.
fast Fast Linearizer
linearizer Linearizer.

one-stepPerform one step of Bard Schweitzer approximate MVA for gerfation of a submodel. The default
is to perform Bard Schweitzer approximate MVA until convemge for each submodel. This option,
combined with-P layering=srvnmost closely approximates the solution technique useddxsrim solver.

one-step-linearizerPerform one step of Linearizer approximate MVA for eachati®n of a submodel. The
default is to perform Linearizer approximate MVA until camgence for each submodel.

schweitzerBard-Schweitzer approximate MVA.
The default is linearizer.

overtaking=arg
This pragma is usesd to choose the overtaking approximaiigrmust be one of:
markov Markov phase 2 calculation.

none Disable all second phase servers. All stations are modslbd\ang a single phase by summing the phase
information.

rolia Use the method from the Method of Layers.
simple Simpler, but faster approximation.
special ?

The default is rolia.

processorarg
Force the scheduling type of all uni-processors to the tpeefed.

fcfs All uni-processors are scheduled first-come, first-served.
hol All uni-processors are scheduled using head-of-line ftyior
ppr All uni-processors are scheduled using priority, pre-évepesume.

70

ps All uni-processors are scheduled using processor sharing.
The default is to use the processor scheduling specifieceimtidel.

severity-levetarg
This pragma is used to enable or disable warning messages.
advisory
all
run-time
warning

The default is all.

stop-on-message-losarg
This pragma is used to control the operation of the solvermathe arrival rate exceeds the service rate of a
server.Arg must be one of:

false Ignore queue overflows for open arrivals and send-no-reggyests. If a queue overflows, its waiting
times is reported as infinite.
true Stop if messages are lost.

The default is false.

tau=arg
Set the tau adjustment factor éog. Arg must be an integer between 0 and 25. A valugeabdisables the
adjustment.

threads-arg
This pragma is used to change the behaviour of the solver atlgimg models with fork-join interactions.
exponential Use exponetial values instead of three-point approximatio all approximations [8].
hyper Inflate overlap probabilities based on arrival instanteates.
mak Use Mak-Lundstroni[10] approximations for join delays.
none Do not perform overlap calculation for forks.

The default is hyper.

variance=arg
This pragma is used to choose the variance calculation ysttklsolver.
init-only Initialize the variances, but don’t recompute as the magisbived.
mol Use the MOL variance calculation.

no-entry By default, any task with more than one entry will use the asace calculation. This pragma will
switch off the variance calculation for tasks with only omgrg.

none Disable variance adjustment. All stations in the MVA subrlsdire either delay- or FIFO-servers.
stochastic ?

71

6.3 Stopping Criteria

Lgns computes the model results by iterating through a set of sdlets until either convergence is acheived, or the
iteration limit is hit. Convergence is determined by takihg root of the mean of the squares of the difference in
the utilization of all of the servers from the last two itéoas of the MVA solver over the all of the submodels then
comparing the result to the convergence value specifieceimiut file. If the RMS change in utilization is less than
convergence value, then the results are considered valid.

If the model fails to converge, three options are available:

1. reduce the under-relaxation coefficient. Waiting and tiathes are propogated between submodels during each
iteration. The under-relaxation coefficient determinesamount a service time is changed between each itera-
tion. A typical value is 0.7 - 0.9; reducing it to 0.1 may help.

2. increase the iteration limit. The iteration limit sete thpper bound on the number of times all of the submodels
are solved. This value may have to be increased, espedittily under-relaxation coefficient is small, or if the
model is deeply nested. The default value is 50 iterations.

3. increase the convergence test value. Note that the ageves value is the standard deviation in the change in
the utilization of the servers, so a value greater than 1 Kesao sense.

The convergence value can be observed ugingpnvergencéag.

6.4 Model Limits

The following table lists the acceptable parameter typekgfes. An error will be reported if an unsupported parameter
is supplied except when the value supplied is the same athald

Parameter lgns

Phases 3

Scheduling FIFO, HOL, PPR
Open arrivals yes

Phase type stochasic, deterministic
Think Time yes

Coefficient of variation yes
Interprocessor-delay yes
Asynchronous connections yes
Forwarding yes
Multi-servers yes
Infinite-servers yes

Max Entries 1000

Max Tasks 1000

Max Processors 1000

Max Entries per Task 1000

Table 6.1: LQNS Model Limits.

6.5 Diagnostics

Most diagnostic messages result from errors in the input filehe solver reports errors, then no solution will be
generated for the model being solved. Models which gengratrings may not be correct. However, the solver will
generate output.

72

Sometimes the model fails to converge, particularly if éhare several heavily utilized servers in a submodel.
Sometimes, this problem can be solved by reducing the vdltleeounder-relaxation coefficient. It may also be
necessary to increase the iteration-limit, particularthére are many submodels. With replicated models, it may be
necessary to use ‘srvn’ layering to get the model to conve@gavergence can be tracked using theonvergence
option.

The solver will sometimes report some servers with ‘higlilizgtion. This problem is the result of some of the
approximations used, in particular, two-phase serveridizations in excess of 10% are likely the result of failunes
the solver. Please send us the model file so that we can imgivexadgorithms.

73

Chapter 7

Invoking the Simulator “lgsim”

Lgsim is used to simulate layered queueing networks usiadPkRASOL [12] simulation system. Lgsim reads its
input from files specified at the command line if present, onfithe standard input otherwise. By default, output for
an input filefilename specified on the command line will be placed in thefilename.out . If the -p switch

is used, parseable output will also be written ifilename.p . If XML input is used, results will be written back to
the original input file. This behaviour can be changed udiregd outputswitch, described below. If several files are
named, then each is treated as a separate model and outphg wiaced in separate output files. If input is from the
standard input, output will be directed to the standard aiifphe file name-"’ is used to specify standard input.

The -0 outputoption can be used to direct output to the file or directory edoutputregardless of the source
of input. Output will be XML if XML input is used, parseable tput if the-p switch is used, and normal output
otherwise; multiple input files cannot be specified.olftputis a directory, results will be written in the directory
namedoutput . Output can be directed to standard output by using (i.e., the output file nameis '.)

7.1 Command Line Options

- A - - aut omat i c=run-time[,precision[,skip]]
Use automatic blocking with a simulation block sizerof-time Theprecisionargument specifies the desired
mean 95% confidence level. By default, precision is 1.0%. Sitmalator will stop when this value is reached,
or when 30 blocks have rurskipspecifies the time value of the initial skip period. Statstjathered during
the skip period are discarded. By default, its value is 0. kthe run completes, the results reported will be the
average value of the data collected in all of the blocks. éf-R flag is used, the confidence intervals will for
the raw statistics will be included in the monitor file.

- B, - - bl ocks=blocks][,run-time][,skip]]
Use manual blocking witblocksblocks. The value dblocksmust be less than or equal to 30. The run time for
each block is specified wittun-time Skipspecifies the time value of the initial skip period.

- C, - - conf i dence=precision],initial-loops[,run-time]]
Use automatic blocking, stopping when the specified pracis met. The run time of each block is estimated,
based orinitial-loops running on each reference task. The default valuénitial-loopsis 500. Therun-time
argument specifies the maximum total run time.

-d, - - debug
This option is used to dump task and entry information shgvimternal index numbers. This option is useful
for determining the names of the servers and tasks whemgréoé execution of the simulator since the Parasol
output routines do no emit this information at present. Qtigpdirected to stdout unless redirected usimgjle.

-e,--error=error
This option is to enable floating point exception handling.

74

a Abortimmediately on a floating point error (provided the flng point unit can do so).
b Abort on floating point errors. (default)

i Ignore floating point errors.

w Warn on floating point errors.

The solver checks for floating point overflow, division by aand invalid operations. Underflow and inexact
result exceptions are always ignored.

In some instances, infinities will be propogated within tiodver. Please refer to thgtop-on-message-loss
pragma below.

- houtput
Generate comma separated values for the service timebdisom data. Ifoutputis a directory, the output file
name will be the name of a the input file with@v extension. Otherwise, the output will be written to the
named file.

- nfile
Direct all output generated by the various debugging arartgeoptions to the monitor filéle, rather than to
standard output. A filename of * directs output to standard output.

-n,--no-execute
Read input, but do not solve. The input is checked for validilo output is generated.

- 0, - - out put =output
Direct analysis results to output. A file name of directs output to standard output. dlitputis a directory,
all output from the simulator will be placed there with filenes based on the name of the input files processed.
Otherwise, only one input file can be processed; its outplibeiplaced inoutput

-p,--parseabl e
Generate parseable output suitable as input to other presggach asMultiSRVN(1)andsrvndiff(1) If inputis
from filename , parseable output is directedfiename.p . If standard input is used for input, then the
parseable output is sent to the standard output device e Hotloutputoption is used, the parseable output is
sent to the file name output. (In this case, only parseabfgubig emitted.)

- P, - - pragma=pragma
Change the default solution strategy. Refer to the PRAGMK&pter {7.3) below for more information.

-R--rawstatistics
Print the values of the statistical counters to the moniter fif the-A, -B or -C option was used, the mean
value, 95th and 99th percentile are reported. At presatissts are gathered for the task and entry, cycle time
task, processor and entry utilization, and waiting timenf@ssages.

- S, - - seed=seed
Set the initial seed value for the random number generatgprdeBault, the system time from tinteme(3)is
used. The same seed value is used to initialize the randorbenugenerator for each file when multiple input
files are specified.

-t,--trace=traceopts
This option is used to set tracing options which are useditd put various steps of the simulation while it is
executing.Traceoptds any combination of the following:
driver Print out the underlying tracing information from the Palagmulation engine.

processorregex Trace activity for processors whose name masglex If regexs not specified, activity on all
processors is reporteRegexs regular expression of the type acceptedgsep(1)

task=regex Trace activity for tasks whose name mateggex If regexis not specified, activity on all tasks is
reported. pattern is regular expression of the type acdéptegrep(1)

75

eventsegex[:regex] Display only events matching pattern. The events are: rsggea msg-send, msg-receive,
msg-reply, msg-done, msg-abort, msg-forward, workepatish, worker- idle, task-created, task-ready,
task-running, task-computing, task-waiting, threadtstread-enqueue, thread-dequeue, thread-idle, thread
create, thread-reap, thread-stop, activity-start, @igt@xecute, activity-fork, and activity-join.

msgbuf Show msgbuf allocation and deallocation.
timeline Generate events for the timeline tool.
-T,--run-tine=run-time
Set the run time for the simulation. The defaultis 10,00@ur8pecifying T after eitherA or-B changesthe
simulation block size, but does not turn off blocked statsstollection.

-V,--verbose
Print out statistics about the solution on the standarduidgvice.

-V,--version
Print out version and copyright information.

- W, - - NO- war ni ngs
Ignore warnings. The default is to print out all warnings.

-X,--xm
Generate XML output regardless of input format.

- zspecialopts
This flag is used to select special options. Arguments of ¢ine f» are integers while arguments of the form
n.n are real numbersSpecialoptés any combination of the following:

print-interval=nn Set the printing interval ta. Results are printed aftem blocks have run. The default value
is 10.

global-delayn.n Setthe interprocessor delay to nn.n for all tasks. Delagsifipd in the input file will override
the global value.

--gl obal - del ay
Set the inter-processor communication delay to n.n.

--print-interval
Ouptut results after n iterations.

--restart
Re-run the LQX program without re-solving the models unkesslid solution does not exist. This option is
useful if LQX print statements are changed, or if a subsetmfiktions has to be re-run.

- -debug- 1 gx
Output debugging informtion as an LQX program is being pairse

- - debug- xm
Output XML elements and attributes as they are being parSéuce the XML parser usually stops when it
encounters an error, this option can be used to localizertbe e

7.2 Return Status

Lgsim exits 0 on success, 1 if the simulation failed to meetdbnvergence criteria, 2 if the input was invalid, 4 if a
command line argument was incorrect, 8 for file read/writgbpgms and -1 for fatal errors. If multiple input files are
being processed, the exit code is the bit-wise OR of the aborditions.

76

7.3 Pragmas

Pragmas are used to alter the behaviour of the simulator ariaty of ways. They can be specified in the input file
with “#pragma”, on the command line with th® option, or through the environment variabhl®SIM PRAGMAS
Command line specification of pragmas overrides those dkfméhe environment variable which in turn override
those defined in the input file.

The following pragmas are supported. An invalid pragma ifigation at the command line will stop the solver.
Invalid pragmas defined in the environment variable or initipit file are ignored as they might be used by other
solvers.

scheduling=enum
This pragma is used to select the scheduler used for praseEsmmis any one of the following:

default Use the scheduler built into parasol for processor scheglu(faster)

custom Use the custom scheduler for scheduling which permits ntatistcs to be gathered about processor
utilization and waiting times. However, this option invekmore internal tasks, so simulations are slower
than when using the default scheduler.

default-natural Use the parasol scheduler, but don't reschedule after thetaach phase or activity. This
action more closely resembles the scheduling of real agjpics.

custom-natural Use the custom scheduler; don’t reschedule after the enalobf ghase or activity.

messages=n
Set the number of message buffersitarhe default is 1000.

stop-on-message-loss=bool
This pragma is used to control the operation of the solvermvthe arrival rate exceeds the service rate of a
server. The simulator can either discard the arrival, oaiit lealt. The meanings dbolare:

false Ignore queue overflows for open arrivals and send-no-reggyests. If a queue overflows, its waiting
times is reported as infinite.

true Stop if messages are lost.

reschedule-on-async-send=bool
In models with send-no-reply messages, the simulator doe®achedule the processor after an asynchronous
message is sent (unlike the case with synchronous messagesneanings dfool are:

true reschedule after each asynchronous message.
false reschedule after each asynchronous message.

7.4 Stopping Criteria

It is important that the length of the simulation be chosespprly. Results may be inaccurate if the simulation run is
too short. Simulations that run too long waste time and nessu

Lgsim usedatch meangor the method of samples) to generate confidence inter\dih automatic blocking,
the confidence intervals are computed after the simulatioms for three blocks plus the initial skip period If the root
or the mean of the squares of the confidence intervals forrttrg service times is within the specified precision, the
simulation stops. Otherwise, the simulation runs for aaotbiock and repeats the test. With manual blocking, Igsim
runs the number of blocks specified then stops. In either, dasasimulator will stop after 30 blocks.

Confidence intervals can be tightened by either runningtimahdil blocks or by increasing the block size. A rule
of thumb is the block size should be 10,000 times larger tharargest service time demand in the input model.

77

7.5 Model Limits

The following table lists the acceptable parameter typeklianits for Igsim. An error will be reported if an unsup-
ported parameter is supplied except when the value suppltéé same as the default.

Parameter lgsim

Phases 3

Scheduling FIFO, HOL, PPR, RAND
Open arrivals yes

Phase type stochastic, deterministic
Think Time yes

Coefficient of variation yes
Interprocessor-delay yes

Asynchronous connections yes

Forwarding yes

Multi-servers yes

Infinite-servers yes

Max Entries unlimited

Max Tasks 1000

Max Processors 1000

Max Entries per Task unlimited

Table 7.1: Lgsim Model Limits

78

Chapter 8

Error Messages

Error messages are classified into four categories rangarg fhe most severe to the least, they are: fatal, error,
advisory and warning. Fatal errors will cause the prograrexibimmediately. All other error messages will stop
the solution of the current model and suppress output geéarraiowever, subsequent input files will be processed.
Advisory messages occur when the model has been solvedhduesults may not be correct. Finally, warnings
indicate possible problems with the model which the soheerignored.

8.1

8.2

Fatal Error Messages

Internal error
Something bad happened...

No more memory
A request for memory failed.

Model has no (activitylentryjtaskprocessor)
This should not happen.

Activity stack for " identifier" is full.
The stack size limit for taskdentifierhas been exceeded.

Message pool is empty. Sending from identifier" to " identifier".
Message buffers are used when sending asynchronous saegiponessages. All the buffers have been used.

Error Messages

(tasKprocessor) " identifier: Replication not supported. Igsim
The simulator does not support replication. The model cdffl@igened” usingep2flat(1)

n.nReplies generated by Entry " identifier".

This error occurs when an entry is supposed to generateyalvephuse it accepts rendezvous requests, but the
activity graph does not generate exactly one reply. Comraases of this error are replies being generated by
two or more branches of an AND-fork, or replies being gerestais part of a Lodk

1Replies cannot be generated by branches of loops becauserttier of iterations of the loop is random, not determiaisti

79

Activity " identifier" is a start activity.

The activity nameddentifier is the first activity in an activity graph. It cannot be usedaipostprecedence
(fork-list).

Activity " identifier' previously used in a fork."

The activityidentifierhas already been used as part of a fork expression. Forlatistsn the right hand side of
the-> operator in the old grammar, and are piestprecedence expressions in the XML grammar. This error
will cause a loop in the activity graph.

Activity " identifier" previously used in a join."

The activityidentifierhas already been used as part of a join list. Join lists arb@feft hand side of the>
operator in the old grammar, and are fire-precedence expressions in the XML grammar. This erroroailise

a loop in the activity graph.

Activity " identifier" requests reply for entry " identifie but none pending. Igsim
The simulator is trying to generate a reply from erittgntifier, but there are no messages queued at the entry.
This error usually means there is a logic error in the sinoulat

An error occured while compiling the LQX program found in fil e: filenamé. lgx
A syntax error was found in the LQX program found in the filename Refer to earlier error messages.

An error occured executing the LQX program found in file: filename Igx
A error occured while executing the the LQX program foundhimfilefilename Refer to earlier error messages.

Attribute " attribute’ is missing from type' element.

The attribute namedittributefor thetype -elementis missing.

Attribute ’ attribut€ is not declared for element '’ element
The attribute namedittribute for elemenis not defined in the schema..

Cannot create (processojprocessor for tagkask " identifier". Igsim
Parasol could not create an object such as a task or processor

Cycle in activity graph for task " identifier’, back trace is " list".
Thereis a cycle in the activity graph for the task nandeahtifier. Activity graphs must be acyclid.ist identifies

the activities found in the cycle.

Cycle in call graph, backtrace is " list",
There is a cycle in the call graph indicating either a possit#adlock or livelock condition. A deadlock can
occur if the same task, but via a different entry, is callethacycle of rendezvous indentified list. A livelock

can occur if the same task and entry are found in the cycle.

In general, call graphs must be acyclic. If a deadlock cémdlits identified, thecycles=allowpragma can be
used to suppress the error. Livelock conditions cannot ppressed as these indicate an infinite loop in the call
graph.

Data for n phases specified. Maximum permitted is m.
The solver only supports phases (typically 3); data forphases was specified. If more tharphases need to
be specified, use activities to define the phases.

Datatype error: Type:lnvalidDatatypeValueException, Me ssage: message

Delay from processor identifier" to processor identifier" previously specified. Igsim

Inter-processor delay...

80

Derived population of n.n for task " identifier' is not valid." Igns

The solver finds populations for the clients in a given subehtg traversing up the call graphs from all the
servers in the submodel. If the derived population is indinihe submodel cannot be solved. This error usually
arises when open arrivals are accepted by infinite servers.

Destination entry " dst-identifie? must be different from source entry src-identifief’.

This error occurs whesrc-identifieranddst-identifierspecify the same entry.

Deterministic phase
entry dst-identifier

This error occurs when a deterministic phase or activity @sak non-integral number of calls to some other
entry.

src-identifief makes a non-integral number of calls (n.n to

Duplicate unique value declared for identity constraint of element ' task.

One or more activities are being bound to the same entry. i$hist allowed, as an entry is only allowed to
be bound to one activity. Check dbund-to-entry attributes for all activities to ensure this constraint is
being met.

Duplicate unique value declared for identity constraint of element ' Ign-model.

This error indicated that an element has a duplicate name pdiser gives the line number to the start of
the second instance of duplicate element. The followinghelgs must have unique name attributes, but the
uniqueness does not span elements. Therefore a process@aisirelement can have the same name attribute,
but two processor elements cannot have the same name tattribu

The following elements must have a unicneme attribute:

— processor
— task
— entry

Empty content not valid for content model’ elemenit
(result-processor,task)

Entry " identifier' accepts both rendezvous and send-no-reply messages.

An entry can either accept synchronous messages (to whiemérates replies), or asynchronous messages (to
which no reply is needed), but not both. Send the requestgaséparate entries.

Entry " identifier" has invalid forwarding probability of n.n

This error occurs when the sum of all forwarding probalgititirom the entrydentifieris greater than 1.

Entry " entry-identifief is not part of task " task-identifiet.

An activity graph part of taskask-identiferreplies toentry-identifier However,entry-identifierbelongs to
another task.

Entry " identifie" is not specified.

An entry is declared but not defined, either using phasesivitaes. An entry is “defined” when some parameter
such as service time is specified.

Entry " identifier' must reply; the reply is not specified in the activity graph

The entryidentifieraccepts rendezvous requests. However, no reply is speicified activity graph.

Entry " identifier" specified using both activity and phase methods.
Entries can be specified either using phases, or usingtisivibut not both..

81

Entry " identifie" specified as both a signal and wait.
A semaphore task must have exactly one signal and one wajt 8uth entries have the same type..

Expected end of tag ’ element
The closing tag foelementvas not found in the input file.

External synchronization not supported for task " identifier' at join join-list". Igns
The analytic solver does not implement external synchediua.

External variables are present in file filename but there is no LQX program
to resolve them. lgx

The input model contains a variable of the for@var " as a parameter such as a service time, multiplicty,
or rate. The variables are only assigned values when an LQ¥ram executes. Since no LQX program was
present in the model file, the model cannot be solved.

Fan-ins from task " from-identifief' to task " to-identifiet' are not identical for all

calls. Igns
All requests made from tagkom-identifierto taskto-identifiermust have the same fan-in and fan-out values.
Fan-out from (activitylentryjtask) " src-identifief (n * n replicas) does not match fan-in

to (entryprocessor)" dst-identifief (n * n). Igns
This error occurs when the number of replicasratidentifiermultiplied by the fan-out for the request dst-
identifier does not match the number of replicaslat-identifiermultiplied by the fan-in for the request from
src-identifier A fan-in or fan-out of zero (a common error case) can arisenthe ratios of tasks to processors

is non-integral.

Fewer entries defined (n) than tasks (m).

A model was specified with more tasks than entries. Since @s&hmust have at least one entry, this model is
invalid.

Group " identifief' has no tasks.

The group named biglentifierhas no tasks assigned to it. A group requires a minimum ofasie t

Group " identifief' has invalid share of n.n

The share value af.nfor groupidentifieris not between the range 0f< n.n <= 1.0.

Infinite throughput for task " identifier". Model specification error. Igns
The response time for the taglentifieris zero. The likely cause is zero service time for all callgimby the

task.

Initial delay of n.n is too small, n client(s) still running. Igsim
This error occurs when thaitial-loops parameter for automatic blocking is too small.

Invalid fan-in of n: source task " identifier" is not replicated. Igns
The fan-in value for a request specifies the number of retglicaource tasks making a call to the destination.
To correct this error, the source task needs to be replidatedmultiple ofn.

Invalid fan-out of n: destination task " identifie" has only m replicas. Igns

The fan-out valuer is larger than the number of destination tasksin effect, the source will have more than
one request arc to the destination.

82

Invalid path to join " join-list" for task " identifier': backtrace is " list".

The activity graph for tasldentiferis invalid because the branches to the joim-list do not all originate from
the same forkList is a dump of the activity stack when the error occurred.

Invalid probability of n.n

The probability ofn.nis not between the range of zero to one inclusive. The likalyse for this error is the
sum of the probabilities either from an OR-fork, or from famding from an entry, is greater than one.

Name “"identifier" previously defined.

The symboldentiferwas previously defined. Tasks, processors and entries thbst@amed uniquely. Activi-
ties must be named uniquely within a task.

Model has no reference tasks.

There are no reference tasks nor are there any tasks withaspeals specified in the model. Reference tasks
serve as customers for closed queueing models. Openiagseme as sources for open queueing models.

No calls from (entryjactivity) " from-identifief to entry " to-identifief' Igns

This error occurs when the fan-in or fan-out parameter favpest are specifidmeforethe actual request type.
Switch the order in the input file.

No group specified for task " taskidentifie' running on processor
fair share scheduling.

proc_identifier using

Tasktaskidentifier has no group specified, yet it is running on procegsoc_identifier which is using com-
pletely fair scheduling.

No signal or wait specified for semaphore task " identifier".

Taskidentifierhas been identified as a semaphore task, but neither of iteehas been designated as a signal
or a wait.

Non-reference task " identifie cannot have think time.

A think time is specified for a non-reference task. Think i@ non-reference tasks can only be specified by
entry.

Non-semaphore task " identifer' cannot have a (signal—wait) for entry " entry'.

Theentryis designated as either a signal or a wait. Howedentifieris not a semaphore task.

Number of (entriedtask$processors)is outside of program limits of (1, n).

An internal program limit has been exceeded. Reduce the auaflobjects in the model.

Number of paths found to AND-Join " join-list" for task " identifie does not match

join list."

During activity graph traversal, one or more of the brandbeate joinjoin-list either originate from different
forks, or do not originate from a fork at all.

Open arrival rate of n.n to task " identifier is too high. Service time is n.n. Igns

The open arrival rate af.n to entryidentifieris too high, so the input queue to the task has overflowed. This
error may be the result of a transient condition, sostog-on-message-lopsagma (c.f.46.2) may be used to
suppress this error. If the arrival rate exceeds the setwieeat the time the model converges, then the waiting
time results for the entry will show infinity. Note that if astaaccepts both open and closed classes, an overflow
in the open class will result in zero throughput for the ctbskasses.

83

e OR branch probabilities for OR-Fork " list" for task " identifier do not sum to 1.0;
sum is n.n

All branches from an or-fork must be specified so that the stitheoprobabilities equals one.

e Processor " identifie’ has invalid rate of n.n
The processor rate parameter is used to scale the speedobtiessor. A value greater than zero must be used.

e Processor identifier" using CFS scheduling has no group."

If the completely fair share scheduler is being used, tharstime at least one group defined for the processor.

e Reference task " identifier' cannot forward requests.
Reference tasks cannot accept messages, so they cannatdorw

e Reference task " task-identifiet, entry " entry-identifief cannot have open arrival stream.
Reference tasks cannot accept messages.

e Reference task " task-identifiet, entry " entry-identifiel receives requests.
Reference tasks cannot accept messages.
e Reference task " task-identifiet, replies to entry " entry-identifiet from activity " activity-
identifien".
Reference tasks cannot accept messages, so they cann@ttgeaplies. The activitgctivity-identifierreplies
to entryentry-identifier
e Required attribute ’ attribute¢ was not provided
The attribute namedittributeis missing for the element.

e Semaphore "wait" entry " entry-identifief cannot accept send-no-reply requests.
An entry designated as the semaphore “wait” can only acegptazvous-type messages because send-no-reply
messages and open arrivals cannot block the caller if thasleane is busy.

e Start activity for entry " entry-identifief is already defined. Activity " activity-
identifier" is a duplicate.
A start activity has already been defined. This one is a dafgic

e Symbol
All identifiers must be declared before they can be used.

identifier" not previously defined.

e Task " identifie" cannot be an infinite server."

This error occurs whenever a reference task or a semaplsiréstdesignated as an infinite server. Reference
tasks are the customers in the model so an infinite referaskaxtould imply an infinite number of custonférs
An infinite semaphore task implies an infinite humber of bisffe no blocking at the wait entry would ever
occur.

e Task " identifier" has activities but none are reachable.

None of the activities foidentifieris reachable. The most likely cause is that the start agliwinissing.

e Task " identifie has no entries.
No entries were defined fadentifier.

2An infinite source of customers should be represented by apemls instead.

84

8.3

"Task " identifie’' has n entries defined, exactly m are required.

The taskidentifierhasn entries,m are required. This error typically occurs with semaphos&savhich must
have exactly two entries.

Task " task-identifiet, Activity " activity-identifet' is not specified.

An activity is declared but not defined.. An activity is “dedi when some parameter such as service time is
specified.

Task " task-identifiet, Activity " activity-identifef makes a duplicate reply for Entry

" entry-identifiel.

An activity graph is making a reply to ententry-identifiereven though the entry is already in phase two. This
error usually occurs when more than one replgmdry-identifieris specified in a sequence of activities.

Task " task-identifiet, Activity " activity-identifef makes invalid reply for Entry " entry-
identifier".

An activity graph is making a reply to entgntry-identifiereven though the activity is not reachable..

Task " task-identifiet, Activity " activity-identifef' replies to Entry " entry-identifief which
does not accept rendezvous requests.

The activity graph specifies a reply to enewtry-identifiereven though the entry does not accept rendezvous
requests. (The entry either accepts send-no-reply resjaespen arrivals).

Unknown element ’ element

Theelements not expected at this point in the input filElementmay not be spelled incorrectly, or if not, in
an incorrect location in the input file.

Advisory Messages

Invalid convergence value of n.n, using m.m Igns
The convergence value specified in the input file is not vallte analytic solver is usingy.m instead.

Invalid standard deviation: sum= n.n, sum _sqr= n.n, n= n.n.

When calculating a standard deviation, the difference efshim of the squares and the mean of the square of
the sum was negative. This usually implies an internal énréine simulator.

Iteration limit of n is too small, using m. Igns
The iteration limit specified in the input file is not valid. @lanalytic solver is using: instead.

Messages dropped at task identifier for open-class queues.

Asynchronous send-no-reply messages vieseat the taskask This message will occur when tiséop-on-
message-lossragma (c.f{6.2) is set to ignore open class overflows. Note that if a taskpts both open and
closed classes, an overflow in the open class will resultiia teroughput for the closed classes.

Model failed to converge after n iterations (convergence test is n.n, limit is
n.n). Igns

Sometimes the model fails to converge, particularly if ¢ghare several heavily utilized servers in a submodel.
Sometimes, this problem can be solved by reducing the vdltleeaunder-relaxation coefficient. It may also
be necessary to increase the iteration-limit, particuldrthere are many submodels. With replicated models,
it may be necessary to use ‘loose’ layering to get the modebtwerge. Convergence can be tracked using
-t convergence

85

e No solve() call found in the Igx program in file: filename solve() was invoked
implicitly.
An LQX program was found in filéilename However, the functiosolve() was not invoked explictity. The
program was executed to completion, after wrgohve() was called using the final value of all the variables
found in the program.

e Replicated Submodel n failed to converge after n iterations (convergence test
is n.n limit
is m.n. Igns
The inner “replication” iteration failed to converge....
e Service times for (processor) identifierhave a range of n.n - n.n Results may not
be valid. Igns

The range of values of service times for a processor usingegsmr sharing scheduling is over two orders of
magnitude. The results may not be valid.

e Specified confidence interval of n."% not met after run time of n.n. Actual
value is n.n%. Igsim
e Submodel n is empty. Igns

The call graph is interesting, to say the least.

e Underrelaxation ignored. n.n outside range [0-2), using m.m Igns
The under-relaxation coefficient specified in the input Blaot valid. The solver is using.m instead.

e The utilization of n.n at (taskprocessor) identifierwith multiplicity mis too high.

This problem is the result of some of the approximations usethe analytic solver. The common causes are
two-phase servers and the Rolia multiserveidéntiferis a multiserver, switching to the Conway approxima-
tion will often help. Values of..n in excess of 10% are likely the result of failures in the spl&tease send us
the model file so that we can improve the algorithms.

8.4 Warning Messages

e (activitylentryjtaskprocessor)" identifier" is not used.
The object is not reachable. This may indicate an error irsgieeification of the model.

e (ProcessofTask) " identifier' is an infinite server with a multiplicity of n.
Infinite servers must always have a multiplicty of one. Thi®eis caused by specifying bottelayscheduling
and a multiplicity for the named task or processor. The mlitiity attribute is ignored.

e schedscheduling specified for (processojtask) " identifier' is not supported.
The solver does not support the specified scheduling typst-ifi first-out scheduling will be used instead.

e Activity " identifie has no service time specified.
No service time is specified fadentifier.

e Coefficient of variation is incompatible with phase type at (entryitask)" identifier"
(phaseéactivity)" identifier". Igns
A coefficient of variation is specified at a using stochastiage or activity.

3Values of under-relaxation frorh < n < 2 are more correctly called over-relaxation.

86

Entry " identifier' does not receive any requests.
Entryidentifieris part of a non-reference task. However, no requests are todtlis entry.

Entry " identifier' has no service time specified for any phase.
No service time is specified for entigentifier.

Entry " identifier' has no service time specified for phase n.
No service time is specified for entigentifier, phasen.

Histogram requested for entry " identifier, phase n -- phase is not present. Igsim
A histogram for the service time of phasef entryidentifierwas requested. This entry has no corresponding
phase.

Priority specified (n) is outside of range (n, n). (Value has been adjusted

to n). Igsim
The priorityn is outside of the range specified.

No quantum specified for PS scheduling discipline. FIFO use d." Igsim
A processor using processor sharing scheduling needs aup&alue when running on the simulator.

No requests made from from-identifier to to-identifier Igns
The input file has a rendezvous or send-no-reply requestandiue of zero.

Number of (processorfasksentries) defined (n) does not match number specified (m).

The processor task and entry chapters of the original inpargar can specify the number of objects that
follow. The number specified does not match the actual numi@bjects. Specifyingeroas a record count is
valid.

Parameter is specified multiple times.

A parameter is specified more than one time. The first occersnesed.

Processor identifier" is not running fair share scheduling.”

A group was defined in the model and associated with a processuog a scheduling discipline other than
completely fair scheduling.

Processor identifier' has no tasks.

A processor was defined in the model, but it is not used by akstarhis can occur if none of the entries or
phases has any service time.

Queue Length is incompatible with task type at task identifier. Igns
A queue length parameter was specified at a task which doassippbrt bounded queues.

Reference task " identifier' does not send any messages."

Reference tasks are customers in the model. This referaskedbes not visit any servers, so it serves no
purpose.

Reference task " identifier' has more than one entry defined.

Reference tasks typically only have one entry. The namesterte task has more than one. Requests are
generated in proportion to the service times of the entries.

Task " task-identifiet with priority is running on processor
does not have priority scheduling.

processor-identifiérwhich

Processors running with FCFS scheduling ignore priorities

87

8.5

Value specified for (fanin/fanout) n, is invalid. Igns
The value specified for a fan-in or fan-out is not valid and b ignored.

The x feature is not supported in this version.
Featurex is not supported in this release.

Input File Parser Error Messages

error: not well-formed (invalid token)
This error occurs when an XML input file is expected, but soteninput file type was given.

Parse error.
An error was detected while processing the XML input file. Seelist below for more explantion:

— The primary document entity could not be opened. Id= URI while parsing file-
name
This error is generated by the Xerces when the Uniform resoindicato(URI) specified as the argument
to thexsi:noNamespaceSchemalocation attribute of thdgn-model element cannot be opened.

This argument must refer to a valid location containing tlN_schema files.

— The key for identity constraint of element ’ Ign-model is not found.

When this message appears, Xerces dugrovide many hints on where the actual error occurs be-
cause it always gives a line number which points to the endhefiite (i.e. where the terminating tag
</lgn-model> is).

In this case, the following three points should be inspetdezhsure validity of the model:

1. All synchronous calls havedest attribute which refers to a valid entry.
2. All asynchronous calls havedest attribute which refers to a valid entry.
3. All forwarding calls have dest attribute which refers to a valid entry.
If it is not practical to manually inspect the model, run thiXfile through another tool like XMLSpy or
XSDvalid which will report more descriptive errors.
— The key for identity constraint of element ’ task is not found.
When this error appears, it means there is something wrothinihetask element indicated by the line
number. Check that:
x The nameattribute of all reply-entry elements refers to a valid entry name, which exists
within the same task as the task activity graph.

x All activities which contain the attributbound-to-entry have a valid entry name that exists
within the same task as the task activity graph.

— The key for identity constraint of element ’ task-activities is not found.
When this error appears, it means there is something wrotignathe task-activities element
indicated by the line number.
Check that:

x All activities referenced within therecedence elements refer to activities which are defined for
that particular task activity graph.

x Thename attribute of allreply-activity elements refers to an activity defined within the men-
tionedtask-activities element.

x The head attribute of ajpost-loop elements refers to an activity defined within the mentioned
task-activities element.

88

x All post-LOOP elements which contain the optional attréeend , refers to an activity defined within
the mentionedask-activities element.

— Not enough elements to match content model : elements
((run-control,plot-control,solver-params,processio))

8.6 LQX Error messages

e Runtime Exception Occured: Unable to Convert From: ‘jiuninitialized¢, ¢’ To: ‘Array’
An unitialized variable is used where an array is expecigd {h a foreach loop).

89

Chapter 9

Known Defects

9.1 MOL Multiserver Approximation Failure

The MOL multiserver approximation sometimes fails whendbgvice time of the clients to the multiserver are signif-
icantly smaller than the service time of the server itselife Ttilization of the multiserver will be too high. Sometispe
the problem can be solved by changing the mol-underrelaxatdtherwise, switch to the more-expensive Conway
multiserver approximation.

9.2 Chain construction for models with multi- and infinite-servers
9.3 No algorithm for phased multiservers OPEN class.
9.4 Overtaking probabilities are calculated using CV=1

9.5 Need to implement queue lengths for open classes.

90

Appendix A

Traditional Grammar

This chapter gives the formal description of Layered Quegidletwork input file and parseable output file grammars
in extended BNF form. For the nonterminals the notatjoonterminalid) is used, while the terminals are written
without brackets as they appear in the input text. The randti- -}, wheren < m means that the part inside the
curly brackets is repeated at leastimes and at most, times. Ifn = 0, then the part may be missing in the input
text. The notatiori- -), means that the non-terminal is optional.

A.1 Input File Grammar

(taskinfo) (entry.info)

t

(LQNLinputfile) — (generalinfo) (processorinfo) (group.info),
{(activity.info) }
| (parametetlist) (processorinfo) (groupinfo) . (taskinfo) (entry.info)

{(activity.info) }, (reportinfo)_ (convergencenfo)
A.1l.1 SPEX Parameters
(parametetlist) — {(variable.def)}}?
(variable_def) — (variable) = (ternary_expn
| [(expressiodist)]
| [(real) : (real) , (real)]
A.1.2 General Information
(generalinfo) — G (comment (conuvval) (it_limit) (print.int) . (underrelaxcoeff) . (endlist)
(commerit — (string) /* comment on the modet/
(convval) — (real) /* convergence valuex/ I
(it_limit) — (integer /* max. nb. of iterationsx/ i
(print_int) — (integer i
/* intermed. res. print interval/
(underrelaxcoeffy — (real) /* undecrelaxation coefficientx/ i
(endlist) - -1 /+ endof_list mark x/
(string) — " (text "

A.1.3 Processor Information

(processorinfo) — P (np) (p-decllist)
(np) — (integen /* total number of processors:/

91

(p_decllist)
(p-dec)

(proc.id)

(schedulingflag)

(quantum
(multi_serverflag)

replication flag)
proc.rate)
copies

o~ o~~~

ratio)

+

L1y -4l -1

{(p-dec)}” (endlist)

p (proc.id) (schedulingflag) (quantum, (multiservecflag),

(replicationflag),, . (proc.rate)

(integen | (identifier)

opt

/* processor identifierx/

f /+ First come, first servedk/
h /+ Head Of Line x/
p /* Priority, preemeptivex/
c (real) /+ completely fair schedulingx/
s (real) /* processor sharingx/
i /* Infinite or delay =/
r /+ Random s/

(real) | (variable)

m (copies /+ number of duplicatesx/
i /* Infinite server x/
r (copies /* number of replicasx/
R (ratio) | (variable) /+ Relative proc. speedk/

(integen | (variable)
(real) | (variable)

A.1.4 Group Information

(group.info)
(ng)
(g-decllist)
(g-dec)
(group.id)
(group.share
(

L4 4Ll

U (ng) (g-decllist) (endlist)

(integer) /+ total number of groups«/
{(g-dech}1? (endlist)

g (groupid) (groupsharg (capflag), (proc.id)

(identifier)

(real) | (variable)

c

A.1.5 Task Information

task.info)

t

t_declLlist)
t_dec)

(
(n
(
(

(taskid)

(task schedtype

—

_)
N
N

T (nt) (t_decllist)
(integer) /+ total number of tasks«/
{{t_dech}?* (endlist)

t (taskid) (taskschedtype (entrylist) (queuelength ., (proc.id) (taskpri)
(thinktimeflag), . (multi_serverflag), , (replicationflag), , (groupflag),

i (fromtask (to_task (far.in)

o (fromtask (to_task (fanout)

(integen | (identifier)

opt

/* task identifier x/

/+ reference taskx/

/* non-reference taskx/

/+ Head of line x/

/* FIFO Scheduling */

/* Infinite or delay serverx/

/+ Polled scheduling at entries/
/+ Bursty Reference task/

/+ Semaphorex/

wWoo — "S5 =

92

(entry_list)
(entry.id)

(queuelength
(taskpri)
(group-flag)
(from_task
(to_task
(farin)
(fan_out)

J/_

+

L4l

o~ o~~~

Z
{(entry.id)}7¢* (endlist)

(integen | (identifier)

g (integen
(integer)

g (identfier
taskid)
taskid)
integen
integen

A.1.6 Entry Information

(entry.info)

(ne)
(entry_declLlist)

(entry_dec)

arrival_rate)
coeftof_variation)
from_entry)

(

(

(

(hi

(hi
(histmin)
(hi
(maxservicetime)
(p_forward)
(phase
(ph.typeflag)
(rate)
(rendezvous

—

—

—

T A R e A e

E (ne (entrydecllist)
(integern)
{{entry.dech}, (endlist)

(real) | (variable)
(real) | (variable)
(entry.id)
(integer)
(real)
(real)
log

(real)

| linear | sqrt

(real)
11213

0
1

real) | (variable)

(|
(real) | (variable)

/* Semaphore — initially empty/

/x taskt hasne; entries x/

/x entry identifier x/

/* open class queue length/
/* task priority, optional /
/+ Group for schedulingx/
/* Source taskx/

/+ Destination taskx/

/* fanin to this taskx/

/+ fan out from this tasksx/

/+ total number of entries«/

/* k=maximum number of phases/

(histmax (histbins) (histtype

/+ Signal Semaphorex/
/* Wait Semaphorex/

a (entry.id) (arrival_rate)

A (entry.id) (activity_id)

F (from.entry) (to_entry) (p_forward)

H (entry.id) (phase (histmin) ’

M (entry.id) {(maxservicetime)}¥ (endlist)
P (entry.id)

V (entry.id)

Z (entryid) {(thinktime)}¥ (endlist)

¢ (entryid) {(coeffofvariation)}’ (endlist)
f (entryid) {(phtypeflag}? (endlist)

p (entry.id) (entry_priority)

s (entryid) {(servicetime)}} (endlist)

y (fromentry) (to_entry) {(rendezvoug? (endlist)
z

from.entry) (to_entry) {(sendno_reply)}¥ (endlist)

/* open arrival rate to entryx/

/* squared service time coefficient of variatiary
/* Source of a message/

/* Number of bins in histograms/

/+ Median service timex/

/+ Median service timex/

/* bintype. x/

/* Median service timex/

/* probability of forwarding */

/* phase of entryx/

/+ stochastic phasex/
/+ deterministic phasex/

/* nb. of calls per arrival x/
/* mean number of RNVs/pk/

93

sendna_reply)
servicetime)
think_time)
to_entry)

o~ o~~~

—
—
N
N

(real) | (variable) /* mean nb.of non-blck.sends/pk/
(real) | (variable) /* mean phase service time/
(real) | (variable) /* Think time for phasex/
(entry.id) /+ Destination of a message/

A.1.7 Activity Information

(activity_info)

(activity_defnlist)
(activity_defn)

(activity_connections —

(activity_conn.list)
(activity_conn)

(join_list)

(fork_list)

andjoin_list)
or_join_list)
and-fork_list)
or_forklist)
loop_list)

(

(

(

(

(
(prob_activity)
(loop_activity)
(end.activity)
(reply_activity)
(reply_list)

(

quorumcount

—

—
_)
|
|
|
|
|
|
|

.
.
|
.
|
.
|
|
.
.
L
L
.
.
L
L
.
.
L

(activity_defnlist) (activity.connectiong, . (endlist)
/* Activity definition. x/

{(activity_defn } ¢

c (activity_id) (coeffof_variation) /* Sqr. Coeff. of Var. */
f (activity.id) (ph_typeflag) /+ Phase type %/
H (entry.id) (histmin) (histmax (histbins (histtype

M (activity.id) (maxservicetime)

s (activity.id) (ph.serctime) /x Service time x/
Z (activity_id) (think.time) /* Thinktime x/
y (activity_id) (to_entry) (rendezvous /* Rendezvousx/
z (activity.id) (to_entry) (sendno_reply) /* Send-no-reply x/

/* Activity Connections. x/
(activity_conn.list)
(activity.conn) {; (activity_conn }7*
join_list)
join_list) -> (forklist)

reply_activity)
andjoin_list)
or_join_list)

{

{

(

(

(
(activity_id)

(and.fork_list)

(or_fork_list)

(loop_list)

(reply-activity) {& (reply_activity)}i* (quorumcoun
(reply_activity) {+ (reply.activity)}7*

(activity_id) {& (activity_id)}7*

(prob_activity) {+ (prob_activity)}7*

(loop.activity) {, (loop.activity)}¢“ (endactivity),

((real))
(real) * (activity.id)

(activity_id)

, (activity_id)
(activity_id) (reply_list)
[(entry.id) {,

((integey)

opt
(entry.id) }3° 1

/* Quorum x/

A.1.8 SPEX Report Information

(report.info)

—

R (nr) (reportdecllist)

94

A.1.9 SPEX Convergence Information

(convergencenfo) — C (nc) (convergencelecllist)

A.1.10 Expressions

(ternary_expression — (or_expressioh ? (or_expressiop : (or_expressioh
or_expressiof

S
(or_expressioh — (or_expressiop | (and.expressioh /+ Logical OR x/
| (and.expressioh
(andexpressioh ~ — (and.epxressioh & (compareexpressioh /+ Logical AND =/
S

compareexpressioh

(compareexpression — (compareexpressioh == (expressioh
compareexpressiop != (expressioh
compareexpressiop < (expressioh
compareexpressiop <= (expressioh
compareexpressioh > (expressioh
compareexpressmh >= (expressioh

(expressioh expressioh + (term)
expressiop — (term)

term)

(
(
(
(
(
(
(
(
(
(term) (term) * (power)

(term) / (power)

(term) % (power) /* Modulus =/
(powef)

(prefixy * (powen /+ Exponentiation, right associative/
(prefix)

|
(
(
(
(
(
(
(

(factor) /* Logical NOT %/

(powen

(prefix)

(factor) (expressiop)
identifier) ((expressiodist))
variable) [(expressiodist)]

variable)

(expressiodist)

(int)
(double

expressioh {, (expressioh },
/+ Non negative integerx/

bl ————1 =l =) ——— ——] —————

/+ Non negative double precision number/

A.1.11 Identifiers

Identifiers may be zero or more leading underscores followed by a character, followed by any number of charac
ters, numbers or underscores. Punctuation charactershedspecial characters such as the dollar-sign (‘$’) ate no
permitted. The following,pl, foo _bar , and__P_21 proc are valid identifiers, while21 and$proc are not.

A.1.12 Variables

SPEX variables all start with a dollar-sign (‘$’) followed lany number of characters, numbers or underscorgs (*
The following,$s1, $1, and$ _x are all valid variables. SPEX variables are treated as gymabols by the underly-
ing LQX program. Variables used to store arrays will alsoagate docal variable of the same name, except without
the leading dollar-sign.

95

A.2 Output File Grammar

(LQN_outputfile)

(
(
(
(taskname
(
(
(

from_entry)
to_entry)
entry.name

proc_.name
float phaselist)
real)

—

L Ll

(genera} (bound, . (waiting), , (waitvar) . (snrwaiting), . (snrwaitvar)

opt
(drop_prob) , . (join)_, (service . (variancg <exceeded> op¢ ’

{<distribution> }o (thptut) (openarrivals) , (processoy

(entry_.name /* Source entry id.x/
(entry_.name /+ Destination entry id.x/
(identifier)

(identifier)

(identifier)

{(real)} (endlist)
(floaty | (integern

A.2.1 General Information

(
(
(
(convergence
(
(
(

iterations
n_processors
n_phases

+

e el

(valid) (convergencg (iterations (n_processors (n_phase$
V (yesor_no)

y I YIn|N

C (real)

I (integef

PP (integer

NP (integer

A.2.2 Throughput Bounds

(bound
(boundsentry)

(nt)

—

—

—

A.2.3 Waiting Times

(
(
(
(
(
(
(
(

waiting)
waiting_t_tbl)
waiting_e_tbl)
waiting_entry)

>

e
waiting_a_tbl)
waiting activity)
na)

s

B (nt) {(boundsentry)}?* (endlist)
(taskname (real)

(integern) /+ Total number of tasksk/

W (ne) {(waiting_t_tbl)}7* (endlist)
(taskname : (waitinge_tbl) (endlist) (waitinga_tbl)

opt
{{waiting_entry) }¢°
(from_entry) (to_entry) (floatphaselist)
(integer) /* Number of Entriesx/

{{waiting_activity) }¢* (endlist)
(from_activity) (to_entry) (floatphaselist)
(integer) /* Number of Activitiesx/

A.2.4 Waiting Time Variance

(
(
(
(
(

wait.var)

wait var_t_tbl)
wait var_e_tbl)
wait.var_entry)
wait var_a_tbl)

—

N
N
—
N

VARW(ne) {(waitvartthl)}7* (endlist)
(taskname : (waitvar_etbl) (endlist) (waitvar_atbl)
{{wait.var_entry) }¢°

opt

(from_entry) (to_entry) (floatphaselist)
{{wait.var_activity) }¢* (endlist)

96

(wait.var_activity)

—

(from_activity) (to_entry) (floatphaselist)

A.2.5 Send-No-Reply Waiting Time

snr_waiting)

snr_waiting t_tbl)
snr_waiting_e_tbl)
snr.waiting_entry)
snr_waiting_a_tbl)

o~ o~ o~ o~~~

snr_waiting activity)

—

—

—
—
—

Z (ne) {(snr.waitingt_tol)}7* (endlist)

(taskname : (snrwaitinge_tbl) (endlist) (snr.waitinga_tbl)

{(snr.waiting_entry) }¢©
(from_entry) (to_entry) (floatphaselist)
{(snr.waiting.activity) }¢* (endlist)

— (from.activity) (to_entry) (floatphaselist)

A.2.6 Send-No-Reply Wait Variance

(snr_wait.var) —
(snrwaitvar_t_tbl) —
(snrwaitvar_e_tbl) —
(snrwaitvar_entry) —
(snrwaitvar_a_tbl) —
(snr_wait.var_activity)

VARZ (ne) {(snr.waitvar_t_tbl)}?* (endlist)

(taskname : (snrwaitvar_e_tbl) (endlist) (snrwaitvar_a_tbl)

{{(snr.wait.var_entry) }4°
(from_entry) (to_entry) (floatphaselist)
{(snr.wait.var_activity) }¢* (endlist)

— (from.activity) (to_entry) (floatphaselist)

A.2.7 Arrival Loss Probabilities

A.2.8 Join Delays

o~ o~ o~ o~~~

o~ o~ o~ o~

drop_prob)
drop_prob_t_tbl)
drop_prob_e_tbl)
drop_prob_entry)
drop_prob_a_tbl)
drop_prob_activity)

join)
join_t_tbl)
join_a_tbl)
join_entry)

N
N
—
—
—

—

—
—
N
N

A.2.9 Service Time

o~ o~ o~ o~~~

service
servicet_tbl)
servicee_tbl)
serviceentry)
servicea.tbl)
serviceactivity)

—
—
—
—
—
—

DP (ne) {(drop_prob.t_thl)}7* (endlist)

(taskname : (drop_prob_e_tbl) (endlist) (drop_prob_a_tbl)

{(drop_prob_entry) } ¢

(from_entry) (to_entry) (floatphaselist)
{(drop_prob_activity) }¢* (end.list)

(from_activity) (to_entry) (floatphaselist)

J (ne {(join_t_tbl)}?* (endlist)
(taskname : (join_a_tbl) (endlist)

{{join_entry) }5*
(from_activity) (to_activity) (real) (real)

X (ne) {(servicet_thl)}?* (endlist)
(taskname : (servicee_tbl) (endlist) (servicea.tbl)
{{serviceentry) }¢°
(entry_.name (float phaselist)
{(serviceactivity) }3* (endlist)
(activity_.name (float phaselist)

97

opt

opt

opt

opt

A.2.10 Service Time Variance

variance
variancet_tbl)
variancee_tbl)
varianceentry)
variancea.tbl)

o~ o~ o~ o~ o~ —~

varianceactivity)

—

—
—
—
—
—

VAR (ne) {(variancet_tbl)}7* (endlist)
(taskname : (variancee.tbl) (endlist) (varianceatbl)
{(varianceentry) }¢°
(entry_.name (float phaselist)
{{varianceactivity) }3* (endlist)

(activity_.name (floatphaselist)

A.2.11 Probability Service Time Exceeded

(variance

—

VAR (ne) {(variancet_tbl)}7* (endlist)

A.2.12 Service Time Distribution

(distribution)

—

R

D (entry.name (statistics {(histbin)}, (endlist)
D (taskname (activity.name (statisticg {(histbin)}, (endlist)

(phase (mean (stddey (skew (kurtosig

(beginy (end (probability) {(bin_conf)}3

(real) /* Distribution mean x/
(real) /+ Distribution standard deviationx/
(real) /* Distribution skew s/
(real) /+ Distribution kurtosis */
(

real) /* 0.0-1.0 %/
% (contlevel) (real)

A.2.13 Throughputs and Utilizations

thpt.ut)

thptut task
thptut.entry)
entry.info)
throughpuj
utilization)
total_util)
thptut_tasktotal)

o~ o~ o~ o~ o~ o~~~

(thptut_conf)
(contlevel

+

—
—
—
—
—
—
—

+

FQ (nt) {(thptuttask}?* (endlist)

(tasknamé (net {<thpt _ut _entry> }7°* (endlist) (thptut tasktotal) ,
(entry.name (entry.info) {(thptutconfidencg},

(throughpuj (utilization) (endlist) (total_util)

(real) /* Task Throughputsx/
(float phaselist) /+ Per phase task util.x/
(real)

(entry.info)
{(thptutconf) },

% (contlevel) (entry.info)
(integer)

A.2.14 Arrival Rates and Waiting Times

(openarrivals)
(no)
(openarvl_entry)

—

—
—
|

R (no) {(openarvl_entry)}7° (endlist)
(integer) /* Number of Open Arrivals«/

(from_entry) (to_entry) (real) (real)
(from_entry) (to_entry) (real) Inf

98

A.2.15 Utilization and Waiting per Phase for Processor

(processoy — {(proc_group) }7-P"°¢“**°"¢ (endlist)

(proc_group) — P {procname (nt) {(proctask}y* (endlist) (proc_total)

(proc_task — (taskname (proc.taskinfo) {(proc.entry.info)}7“ (endlist) (tasktotal) .
(proc_taskinfo) — (ne) (priority) (multiplicity),,

(priority) — (integer /+ Prio. of task x/
(multiplicity) — (integen /* Number of task instances/
(proc_info) — (entry.name (proc_entry.info) {(proc_entry.conf)},

(proc_entry.info) ~ — (utilization) (scheddelay (endlist)

(scheddelay) — (floatphaselist) /+ Scheduling delayx/
(proc_entry.conf) — % (integen (proc_entry.info)

(task total) — (real) {(proc_total_conf)},

(proc_total) — (real) {(proc_total_.conf)}, (endlist)

(proc_total_confy — % (integen (real)

99

Bibliography

[1] The Apache Software Foundatiokerces C++ Documentatian

[2] S. C. Bruell, G. Balbo, and P. V. Afshari. Mean value ams#y of mixed, multiple class
BCMP networks with load dependent service centerd?erformance Evaluatign4(4):241-260, 1984.
doi:10.1016/0166-5316(84)90010-5

[3] Adrian E. Conway. Fast approximate solution of queuairgvorks with multi-server chain-dependent FCFS
gueues. In Ramon Puigjaner and Dominique Potier, editdrgjeling Techniques and Tools for Computer
Performance Evaluatigrpages 385-396. Plenum, New York, 1989.

[4] Edmundo de Souza e Silva and Richard R. Muntz. Approxémaplutions for a class of
non-product form queueing network models. Performance Evaluatign 7(3):221-242, 1987.
doi:10.1016/0166-5316(87)90042-3

[5] Greg Franks. Traffic dependencies in client-serveresystand their effect on performance predictionlHEE
International Computer Performance and Dependability Bgsium pages 24-33, Erlangen, Germany, April
1995. IEEE Computer Society Pregi:10.1109/IPDS.1995.395840

[6] Greg Franks, Tarig Al-Omari, Murray Woodside, Olivia §aand Salem Derisavi. Enhanced modeling and
solution of layered queueing networklEEEE Transactions on Software Engineerirg$(2):148-161, March—
April 2009./doi:10.1109/TSE.2008.74

[7]1 Roy Gregory FranksPerformance Analysis of Distributed Server SysteRttD thesis, Department of Systems
and Computer Engineering, Carleton University, Ottawaa@o, Canada, December 1999.

[8] Xianghong Jiang. Evaluation of approximation for respe time of parallel task graph model. Master’s thesis,
Department of Systems and Computer Engineering, Carletavelsity, Canada, April 1996.

[9] Lianhua Li and Greg Franks. Performance modeling ofayst using fair share scheduling with layered queue-
ing networks. InProceedings of the Seventeenth IEEE/ACM Internationalp®gium on Modeling, Analysis,
and Simulation of Computer and Telecommunications SystdmSCOTS 2009pages 1-10, London, Septem-
ber 21-23 2009d0i:10.1109/MASCOT.2009.5366689

[10] Victor W. Mak and Stephen F. Lundstrom. Predicting perfance of parallel computation&EE Transactions
on Parallel and Distributed SystemB(3):257-270, July 199@0i:10.1109/71.80155

[11] Martin Mroz and Greg Franks. A performance experimgstam supporting fast mapping of system issues. In
Fourth International Conference on Performance Evaluatidethodologies and Toql®isa, Italy, October 20—
22 2009/doi:10.4108/ICST.VALUETOOLS2009.7807

[12] John E. Neilson. PARASOL: A simulator for distributedddor parallel systems. Technical Report SCS TR-192,
School of Computer Science, Carleton University, Ottawata@o, Canada, May 1991.

[13] Martin Reiser. A queueing network analysis of computssmmunication networks with win-
dow flow control. IEEE Transactions on Communication®27(8):1199 — 1209, August 1979.
doi:10.1109/TCOM.1979.1094531

100

http://dx.doi.org/10.1016/0166-5316(84)90010-5
http://dx.doi.org/10.1016/0166-5316(87)90042-3
http://dx.doi.org/10.1109/IPDS.1995.395840
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1109/MASCOT.2009.5366689
http://dx.doi.org/10.1109/71.80155
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7807
http://dx.doi.org/10.1109/TCOM.1979.1094531

[14] J. A. Roliaand K. A. Sevcik. The method of layelSEE Transactions on Software Engineerj2d(8):689—-700,
August 1995/d0i:10.1109/32.403785

[15] Jerome Alexander RoliaPredicting the Performance of Software SysteRkD thesis, Univerisity of Toronto,
Toronto, Ontario, Canada, January 1992.

[16] Rainer Schmidt. An approximate MVA algorithm for expanial, class-dependent multiple servéatformance
Evaluation 29(4):245-254,199H0i:10.1016/S0166-5316(96)00048- X

[17] C. U. Smith and L. G. Williams. A performance model irdeange formatJournal of Systems and Software
49(1):63-80, 1999d0i:10.1016/S0164-1212(99)00067-9

[18] C. U. Smith and L. G Williams.Performance Solutions: A Practical Guide to Creating Rewiee, Scalable
Software Object Technology Series. Addison Wesley, 2002.

[19] Connie U. Smith and Catalina M. Lladé. Performance siadterchange format (PMIF 2.0): XML definition
and implementation. IfProceedings of the First International Conference on theaQative Evaluation of
Systems (QESTpages 38-47, Enschede, the Netherlands, September 20830 IEEE Computer Society
Press|doi:10.1109/QEST.2004.1348017

[20] C. Murray Woodside, John E. Neilson, Dorina C. Petrind &hikharesh Majumdar. The stochastic rendezvous
network model for performance of synchronous client-selike distributed software. IEEE Transactions on
Computers44(8):20—-34, August 199510i:10.1109/12.368012

[21] Murray Woodside and Greg Franks. Tutorial introductio layered modeling of software performance. Revision
6554.

[22] Xiuping Wu. An approach to predicting peformance fonqmonent based systems. Master’s thesis, Department
of Systems and Computer Engineering, Carleton UniverSittawa, Ontario, Canada, August 2003. Available
from: ftp://ttp.sce.carleton.ca/pub/cmw/xpwu-mthesis.pdf

101

http://dx.doi.org/10.1109/32.403785
http://dx.doi.org/10.1016/S0166-5316(96)00048-X
http://dx.doi.org/10.1016/S0164-1212(99)00067-9
http://dx.doi.org/10.1109/QEST.2004.1348017
http://dx.doi.org/10.1109/12.368012
ftp://ftp.sce.carleton.ca/pub/cmw/xpwu-mthesis.pdf

Index

--automatic ,[74
--blocks ,[74
--bounds-only ,[65
--confidence ,[74
--convergence ,[68
--debug ,[68,[72
--debug-lgx ,[68,[76
--debug-srvn ,[69
--debug-xml ,[68,[76
--error ,[68,[74
--exact-mva
--fast ,[68
--global-delay ,[78

--help ,[68

--hwsw-layering ,[68
--ignore-advisories ,[65
--iteration-limit ,[68
--method-of-layers ,[68
--no-execute ,[68,[75
--no-variance ,[68

--no-warnings ,[67,[76
--output ,[68,[75
--parseable ,[68,[7%
--pragma ,[68,[7%
--print-interval ,[78
--processor-sharing ,[68
--raw-statistics ,[73
--reload-lgx ,[68
--restart ,[78

-rtf ,[68

--run-time ,[78
--schweitzer-amva [68
--seed ,[78

--special ,[671
--squashed-layering ,[68
--srvn-layering ,[68
--stop-on-message-loss
-trace ,[68,[7%
--trace-mva ,[68
--underrelaxation ,[68
--verbose ,[64,[76
--version ,[67,[76
-xml 64,76

-> [80, seeprecedence
-A [28[73E76
-B,[25[74E76
-C,[28[73[75

-H,[68
-P,[68,[69[70 75,727
-R,[74[75

-S,[758

-T ,[78

-V,[67[76

-a ,[63

-b ,[65

-d ,[68,[67[74

-e ,[68,

-f ,[68

-h ,[78

-m,[74[7%

-n ,[68,[75

-0 ,[11,[65[66 74. 75

-p ,[68,[66[7475

-r [68

-t ,[28,[66[72 7H. 7%, 85
-v ,[67[76

-w,[67,[76

-x ,[68,[67[76

-z ,[67[76

?:[60[62

.62

#5863

#pragmal_5b

$0,[62

$block _time ,[60
$coefficient _of _variation
$comment,[60
$convergence _imit ,[60
$iteration dimit ,[60
$model _comment,[60
$number _of _blocks ,[60
$print _interval ,[60
$result _precision ,[60
$seed _value ,[60
$warm_up _loops ,[60
\,[63

102

,160

-> 180

asynchronous connectiofs] 72
coefficient of variatior,_72
entry
maxium[72
forwarding[72
infinite server_7R
interprocessor delaly, 72
multi-server[7P
open arrival_7R
phase
maximum[7R
type[72
processor
maximum[72
scheduling_72
task
maximum[72
think time [72

active servef,]3
activities [65,[66
activity,[1,[3[45, 5,130

connection_38seeprecedencé, 94

defined[8b
demand_ 30
error[8%
LON,
not reachable
error[8%
reply,[[7[8
error[81
rescheduld17
results[3P
service timel_16
start[84
activity,[30,[33
activity graph[Jll B, 30, 33
connection 32
error[83[88
semantic4,18
start[32
task[30
activity list
LON,
Activity-CallGroup[32
activity-graph ,
ActivityDefBase,[30,[32
ActivityDefType,[30,[32
ActivityEntryDefType ,[30
ActivityGraphBase, [30,[31
ActivityListType ,[33

ActivityLoopListType ,[33,[34
ActivityLoopType,[33,[32
ActivityMakingCallType ,[32
ActivityOrType ,[33,[32
ActivityPhasesType[30,[32
ActivityType ,[33
ActivtyDefType,[30,[32
ActivtyEntryDefType ,[32
ActivtyPhasesTypel32
advisory

ignore[65
advisory[7]
all,[68[71
allow,
AND-fork, 1,8

reply

error[79

and-fork[94
AND-join, 8,04
AndJoinListType,[33
and fork[8
and join[8
arcs[1[B
arrival loss probabilitie§, 15
arrival rate 71717
async-call32
asynchronous connectiofs] 78
attribute

activity-graph[2B

attribute[88

begin[37

bin,[18

bin-size[3¥

bound-to-entry, 30, 32, I, B8

call-order[32
calls-mear_ 32
cap[27Y

conf-95[37
conf-99[37
conv-val[Zh
conv.val,[28

count[3%
description[24
dest[28[31, 88
elapsed-timd, 25

end[343189
first-activity,[32
host-demand-cvsg, B2
host-demand-medn.132
initially,

it_limit,
iterations[Zb

103

join-variancel 3b unique phasé, 38

join-waiting,[36 user-cpu-time, 25
loss-probability 36 utilization,[36
Ign-schema-versioh, 24 valid,[28
Igncore-schema-versidn,|24 value[25[2B
max [183V waiting,[36
max-service-time, 17, 32 waiting-variance, 36
mid-point[37 x-sampled_18
min,[18[3T xml-debug[Zh
missing xsi:noNamespaceSchemalocat[on, 88
error[80[84 attribute ,[88
multiplicity, 26,[28 automatic blockind, 44, 77, 82
name[24 26-28. 30341188 autonomous phagg, 5
not declared
error[80 Bard-Schweitze[, 10
number-bind 18, 37 batch means, T7
open-arrival-raté, 30 batcheq[69
open-wait-time[_36 batched layer§, 69
param[2b batched-bac69
phasel 3, 32 b_egin 37
phaseX-proc-waitind, 36 b!n IE
phaseX-service-timg, 86 bin-size ,[31
phaseX-service-time-varian€e] 36 block
phaseX-utilizatior(_36 automaticl 74,717, 82
platform-info [2% manual[_Z4 77
print.int,[23 simulation[IB 74
priority,[28,[30 size [747
prob [32[3437 bound-to-entry ,[30,[32[81[88
prob-exceed-max-service-tinie] 36 bounds
proc-utilization[36 throughput 66
proc-waiting[36 branch
quantum[_26 AND, [1,[8,[83
queue-length. 28 deterministic[B
quorum[38 exit,[8
replication[26[28 loop count[B[3B
scheduling 24, 28 OR,[1[8%
sempahoré, 30 probability[1[8[38, 83, 84
service-timel_ 36 bruell,[70
service-time-distributior, 18 buffers[4
zﬁg\lrlé:g;me-vanancEBG call graph[6B 86

call order[7[3P
Call-List-Group[32
call-order B2
calls,
calls-mean ,[32

solver-info[25

source[28
speed-factof, 26
squared-coeff-variatiof, 86
system-cpu-timé, 25

stem . cap,[24

think-time [28[3P chain[13
throughput 36 class
throughput-bound. 36 closed[BB 85
type [27[30 [8B[8b
underrelaxcoeff,[25 s

closed model[15

unique namd. 81 coefficient of variatior. 597, [32,[36[59 79, 93. 94

104

error[86
command line, 24,17
incorrect[69] 76
comment
LON,[58
component$, 21
concurrency, 4
conf-95 ,[37
conf-99 ,[37
confidence intervalg, TE. 77
confidence level 14
constraint checking, 38
contention delay, 13
conv-val ,[28
conv val ,[28
Convergence
SPEX[62
convergenceé, 12
error[85%
failure [69[72[73, 16
test valuel 13
value[68[72 [72,91
error[85
convergencdod
convergence-valyg{
conway[70
copyright[67[76
count ,[34
counters
statistical["7b
customel Y. 15
cycle
activity graph
error[80
call graph
error[80
detection[6P
cycle-time
entry[75
task[7%
cycles[69
cycles=allow[80

d

LON

pragmal 5b

deadlocki 64, 80
debug[6b
delay

contention[183

interprocessof, 16
deltawait,

demand [30,32
description 24
dest ,[28,[32[88
deterministic[7
directed grapHi.]5
disallow,[69
distribution

exponential 7
gammall
Pareto[T
service timel_75

driver,[73
duplicate

identifier
error[83

parameter

error[87

start activity

error[84

unigue value

error[81

egrepl7b
elapsed-time ,[28
element

105

activity,[30[33
Activity-CallGroup [32
async-call 3R
Call-List-Group[32
duplicate name
error[81
entry[27
entry-phase-activitieg, B0
forwarding
histogram-bin 35
Ign-model[2488
overflow-bin[3%
plot-control[2%
post[33
post-loop[8B
pragmal 24, 25
pre[33
precedencé, 30, 88
processof, 24
guorum[38
reply-activity[30[311 88
reply-elemenf, 31
reply-entry[30] 88
result-activity[32
result-entry[-3D
result-forwarding, 32
result-general, 24, 25

result-join-delay 32
result-processdr, 26
result-task_2l7
run-control[24
service[27
service-time-distribtiorl, 32
slot,[24
solver-param$, 24, 25
sync-call[32
task[26[8B
task-activities, 2/1, 30, 38, 89
underflow-bin[3b
unkown
error[8%
end,[34,[3789
entry[1[3[4547
activity,[81
defined[8IL
different
error[81
error[81[84
LQON,[57
maximum[78
message type
error[81
parameterg]1
phasel 81
priority,[4
service timel 59
signal [5[82 83
type
error[81[8P
wait,[5,[8284
entry,[21
entry-phase-activitie 80
EntryActivityDefType ,[32
EntryActivityGraph ,[30
EntryMakingCallType ,[32
EntryType, 24,2931
environment variable
override[7V
environment variabl&. 6B, 77
error[88
activity,[85
not reachabl¢, 85
reply,[81
activity graph[(83,88
AND-fork
reply,[79
attribute
missing[[80[8k
not declared. 80

106

coefficient of variatior], 86
convergence, 85
value[85
cycle
activity graph[(8D
call graph[8D
duplicate
identifier[83
parametef,_87
start activity[84
unique valud,_81
element
duplicate namé, 81
unkown[85
entry[81[84
different[81
message typg, 81
type [81[8P
external variabld, 82
fan-in,[82[83[8B
fan-out[82[813, 88
fatal [69][76
fork,[83
fork-list,[80
forward [84[88
forwarding
probability[81
group[84[8l
share[8P
tasks[8P
infinite server_8iL
iteration limit,[8%
join,[83
join-list,[80
LOOP
reply,[79
LQX,
execution[8P
maximum phaseb, 80
message
pool [79
model[82
multiplicity,
not defined,_84
not reachablé, 34,86
open arrival 811, 83, 84
OR-fork,[84
Parasol_80
phase
deterministicl 8l
population
infinite,[81

post-precedence, BO
pre-precedenck, BO
primary documenf, 21,88
priority,[87
probability[83
processor
creation[8D
not used, 87
rate[84
sharing[(86 87
program limit[83
queue length, 87
reference task,_ 88, 84,187
rendezvous, 87, 88
replication 798P
iteration[86
reply,[79[80[84
duplicate[8b
invalid,[83
reply-activity[88
response timé, 82
scheduling,_86
completely fair (8B, 84, 87
schemd_88
semaphore task, B3385
send-no-reply, 49, 85, 87,188
server
task[87
service timel_ 84, 87
stack size[79
standard deviatiofi, 85
start activity[80 84
synchronizatiori, 82
tag
end[82
task creatior, 80
think time [83
throughput
infinite,[82
under-relaxation coefficienf, B6
utilization
high,[86
wait,[84
Xerces[8B

events7@
exact[7d
Excel [62

succesd. 89, 76

exponential/]
external variable

error[82

false[71
fan-in,9
error[82[88 88
fan-out[9,
error[82[8B, 88
FaninType,
FanOutType,
fast[70
fcfs [7Q
file
debug[7b
monitor[74[7b
tracing[75
first-activity [32
floating point
exception[6d, 14
infinity, 66,[75
fork,[1,[8,[71
error[83
precedencé]8
fork-list,[8,[33
error[80
forks [65,[66
forward
error[84[88
forwarding 21 (B[P 34, 78,83
probability[83
error[81
forwarding [30
forwarding probability 98
full-reinitialize,[64

generatel6d
global-delay[78
Gnuplot[62
Grammar
XML, 21
XML),
grammar
original [87
group[4,
textbfd
error[84[87
LON,
share[8P
error[82
tasks
error[82
group shard, 92
GroupType,[28,[27

hardware-software layefs.]69
histogram[_3H, 93, 94

107

no phasd, 87
overflow[18
statistics[18
underflow[I8
histogram-bin33
HistogramBinType, [33,[37
hol,[Z0
holding time[1
host-demand-cvsq ,[32
host-demand-mean ,[32
hwsw[69
hyper [71

icon

stacked 1L
identifier

duplicate[8B

LON,
identifiers[9b
idle_time,
ignore-overhanging-threacl§7
infinite loop

call graph[8D
infinite server_7B

error[81
infinity, 68,73 [75[71183
init-only,[71
initial-loops [74[8P
initially ,[28
input

invalid,[69[76

multiple [76

XML, 011 24,[65[74
interlock [69
interlock [68,[67
interlocking
interprocessor delay, 78
it _limit 28
iteration limit,[13[25[72,[72,[73[85 o1

error[8%
iteration-limit, 64
iterations ,[25

join,[1,3,[16[71
and[33
delay[T1[16 B2,[36[7197
error[83
precedencé]8
quorum[B8[3B
variance[16, 36
join-list,[8,[33 9%
error[80
join-variance (39

join-waiting 38
joins,[65,[67

lambda[1B
layer
spanning 1L

Layered Queueing Network] 1], 3

layering
batched, 69
loose[8b
method of[6P
Method of Layerd, 69
squashed, 69
srvn[69
strategyl 6P

layering [69

layers
hardware-softwar€, 69

layers

length
simulation[7¥

limits
Igns [72
Igsim,[78

line continuation, 613

Linearizer[70

linearizer,[70

livelock,[80

LOOP[8[9#
reply

error[79
loop,[8[33

loop count[833

loss probabilityl-36

loss-probability ,[38
giolib,

LQN, 5558
activity,[58[59
activity list,[60
comment 5b
entry[57[59
group[56
identifier[55
multiplicity,
parametef, 35
pragma

d,58
processof, 36
task[5Y
white spacd, 53

Ign-core.xsd, 21

Ign-model[24,88

108

Ign-schema-version ,[24
Ign-sub.xsd, 21
Ign.xsd[Z1
lgn2ps[I1
Igncore-schema-version
LgnModelType,
LQONS,[65
parameter$, 55
Igns 1121
convergence valug, P5
LONSPRAGMA®Y
Igsim,[21
scheduling 4, 87
LQSIM.PRAGMAE 1
LQX,B9H52[63,[68[76
debug[6B, 76
error[80
execution
error[82
intrinsic types39-140
Operatord4Q
lgx,[58,[86
Igx,

mak [71
Mak-Lundstrom[_7lL
MakingCallType,[32,[33
man 67
manual blockind,_74
markoy[70
max, [18,[37
max-service-time 14,32
maximum phases
error[80
maximum service tim¢, 98, 94
messageseerequest
asynchronoug§]5
buffers[77
pool
error[79
synchronou$.]5
message&1
meta model 13
Method of Layerd, 69
variance[7L
method of layers$, 89
method of sampleB. V7
mid-point ,[37
min ,[18,[37
min-stepd64
model
comment 9l

(24

error[82
mol,[69,[71
mol-back[69
mol-ms-underrelaxatiqf6q
monitor file [74
msgbufi7g
multi-server 7B
multiplicity, [, 0
error[86
infinite server_8b
LON,
multiplicity ,[26,28
multiserver[1
algorithm[70
approximation
error[86
Bruell,[70
Conway[70[86
default[70
Reiser[7D
Rolia,[70[86
Schmidt[70
multiserver[7Q
MultiSRVN, [78
MVA,
Bard-Schweitzef, 88,70
exact[68[7D
Linearizer[70
mva [67,[70

name,[24 2628 3(0=34. BL. B8
no-entry[71
node[3
none[69+71
not defined
error[84
not reachable
error[84[86
number of iteration$. 13
number-bins ,[18,[37

on-off behaviour, B
one-stefd70
one-step-linearizef7d
open arrivall_3[0, 18, 84, 85
error[81[8B, 84
loss probability 97
overflow[71[7V
waiting time [18 [08
open model 5
open-arrival-rate ,[30
open-wait-time ,[38

OR-fork[8[83

109

error[84
or-fork,[94
OR-join,[8[9%
OrListType,[33
or fork,[8
or join,[8
output[66[7b

conversion_11

csv[7H

human readablg 11

parseabld, 1L, TH 75

XML, 1] 65,[74
OutputDistributionType ,[32,[35[3¥
OutputResultForwardingANDJoinDelay,[32
OutputResultJoinDelayType [33,[36
OutputResultType, 28,2732 3b
over relaxatior(_ 86
overflow[66[71 79,47
overflow-bin[33
overlap calculatiod, 71
overtaking[7D

Markov,[70

Method of Layerd, 70
overtaking[68,[67[70

param,[25
parameter
LQN,[58
Parasol 74,15
error[80
Pareto distributior,]5
Performance Model Interchange Fornhat, 3
Perl
SPEX[62
phase 11 19.16
asynchronou§] 1
autonomous.]5
deterministic
error[81
maximum[78
reply,[d
rescheduld, 47
results[3P
second 1L
service timel_16
type [78[98 94
phase ,[30,[32
phases
approximation
error[86
phaseX-proc-waiting [38
phaseX-service-time ,[36

phaseX-service-time-variance
phaseX-utilization ,[38
platform-info 25
plot-control 24
population
infinite
error[81
post[33
post-loop[83
post-precedencé] 8
error[80
ppr,[70
pragmal 5H, 66. 69, V6,177
invalid,[69
command line_77
input file,[77
pragmal24,[25
pre,[33
pre-precedencg] 8
error[80
precedencé,] 8] B39
activity,[1
and-fork[8
and-join[8
loop,[8
or-fork,[8
or-join,[8
quourm-join[8
sequencé]8
precedencg30,[88
PrecedenceTypd30,[33[34
precision
simulation[74
primary document
error[21[8B
print,[64
print interval [25[9l
lgns [2%
print-interval,[64,[76
print _int ,[25
prioity
premptive-resumg, 70
priority
entry[4][93
error[8T
head of line[470
highest[%
inversion[4
preemptive resumg] 4
preemptive resumg] 4
processof,l4
priority ,[28,[30

110

prob ,32,[34[37
prob-exceed-max-service-time ,[36
probability
branch[8[33,. 83
error[83
forwarding[81[8B
proc-utilization 38
proc-waiting ,[38
processofJL1BH4
creation
error[80
LON,
maximum[78
not used
error[8T
priority, 4
queueing,_16
rate
error[84
scheduling 56,40, T7
completely fair 9P
custom[_Z
natural[77
sharing[9R
sharing(4, [28,[70[86[92
error[86[8Y
trace[7b
utilization [I8[7Y
waiting,[77
processoy24,[70[75
processor sharinf, 71
ProcessorType28
program limit
error[83
ps 71

quantum[487,92
quantum ,[28
queue[L
gueue length, 92
error[8T
gueue-length ,[28
gueueing delay
processof, 11
task[11
gueueing model
closed[5[8B
customerd, 83
open[5[8B
gueueing network
extended, 11
layered[L

gueueing timd, 15
processofl8 36,09
variance[_1b

guorum[94

quorum([33,[65[6V
guorum,[33

quorum join[8

QUORUM:-join,[8

quorum join[B[3B

random number
generatior,_75
reference
task[5T
reference tasig [54,[74
bursty5, [
error[83[84, 87
reiser,[7Q
reiser-ps[Zd
remote procedure call] 3
rendezvous.|T]8] 5] [710.132.179] 94
cycle[80
delay[15 [38,[96
error[87[88
reference task]5
variance[15 [36,[96
rep2flat[79
replication[9
convergence, 85
error[79[8P
flatten[79
iteration
error[86
processof, 92
ratio,[82
simulator[79
task[92
replication 26,28
reply,[d
activity,[1,[530
duplicate
error[85%
error[79[80 84
explicitly,[
implicit, [7]
invalid
error[85%
phase b
reply-activity
error[88
reply-activity, [30,[31[88
reply-elemeni3]

111

reply-entry[30,[88
request [130 32
asynchronoug]1
blocked[1
forward[1
reply,[d
synchronoug,]1
types[9
reschedule
activity,[74
phase 7I7
reschedule-on-async-se i
resource
passivel b
possessiof] 1
simultaneoug,]1
software[1
response time
error[82
result-activity[32
result-entry[30
result-forwarding[32
result-general24,2%
result-join-delayi32
result-processqiZd
result-tasklZ7
ResultContentType [35,[36
results
activity,[32
intermediate],_ 66
phase[32
valid,[13
rolia,[70
rolia-ps,[70
root mean squarg, 77
round robin[#
run time
simulation[7476
run-control
run-timg[71

scheduling_78
cfs,[4
completely fairf 4[24, 27, 56

error[83[8487

delay[86
error[86
fair share[57
FCFS[56[51,87
fifo, 3,4
head of line[Zb
head-of-line[54, 57

priority, 4
processof, 26, 56, V10,192
processor sharing] &, 87
random[%
round robin[%
semaphoré, 92
task[4[28 92
scheduling 74
scheduling ,[26/[28
schema
constraintd, 35
error[88
schmidi[70
schweitze 70
seed['7b
semaphore
counting[®
service timel_1I8
signal[93
utilization,[18
wait,[84
semaphore task, [59,[82
error[83£8b
sempahore ,[30
send-no-repl 1119, 32, V(7,193,194
delay[15,
error[79[85, 81,88
loss probabilitylT5
overflow[71[7V
variance[15 [97
server
active[3
infinite,[81
pure[3
synchronizd, 18
task
error[87
service
class[1['}k
request 1L
service[21
service time[H, 1116-£17 18,32 36[811. 93. 94,97
demand_77
distribution[T1[18 [75,[98
distributions["IB
entry[7T
error[86[8V
exceeded, 98
histogram[_3b
kurtosis[18
maximum[9B8[94

maximum exceeded L7

112

mean[1B
phase oné¢, 15,16
probability exceeded.7,
skew[I8
standard deviatiof, 18
variancelI7 [17,[36[98
service-time 38
service-time-distribtioyi32
service-time-distribution 18
service-time-variance [38
severity-leve(71
share[#
cap[4[2V
exceed U
guaranted,14, 27
share ,[21
signal[5[59 84, 83
simple[70
simulation
block,[74[76
statistics| 74
single-step64
SingleActivityListType,[33
skip,[73
skip period[74717
skip-layer[64
slice,[B[T[2H8
slot,
solution
statistics[_7b
solve()
implicit,
solver-info ,[25
solver-paramgd24,[2%
source ,[28
special[7d
speed-factor ,[28
SPEX[5368163
AGR,[63
arrays[6P
convergencé, 58, 62
grammar
convergencé, 95
expressions$, 95
paramters, 91
report[9%
if-then-else[6P
LQX,
parameter
control [55
parameter$, 53
Perl [62

report[62
results[5B
ternary expressions, 50,162
Variables[5b
variables[9H60-9%
array[61
control [0
observatior, @1
scalar[6D
versions[6P
spex
variables[6D
squared-coeff-variation 38
squashed6d
squashed layers, 69
srvn,
srvn layers]_619
srvndiff,[79
stack size
error[79
standard deviation
error[8%
standard inpuf, 86, 75
start activity
error[80[84
statistical counterg, 75
statistics| 74, 716
blocked[2b
simulation[76
step() 13
stochastid.J7
stochastigi71
stop-on-message-lq§&l,[75[77 84, 85
stopping criteria 47
submodel
population[8l
suri,[70
sync-call[32
synchronization
error[82
synchronization server] 8
synchronization tas§
system-cpu-time ,[28

tag
end
error[82
task[1[BA-3
LQON, 51
maximum[78
queuel ¥
reference[4, 57, T4, 84,187

113

bursty5,[5 EntryActivityDefType[32

semaphoré,|5, 8P—B5 EntryActivityGraph[30
server[8F EntryMakingCallType 32
synchronizatiori,]5 EntryType[2V[29=31
trace[75 FaninType[2B
task 28,7588 FanOutTypd, 28
task creation GroupTypel 26, 27
error[80 HistogramBinTypd, 3%, 37
task-activitiesl27,[30[8889 LgnModelType[24
TaskActivityGraph ,[30 MakingCallType[3P 33
TaskType, 2628 OrListType[33
tay,[71 OutputDistributionTypd, 32,36, B7
tex OutputResultForwardingANDJoinDeldy,32
think time,[5T[78 92-94 OutputResultJoinDelay Type 135136
entry[83 OutputResultTypé, 26, 27. 32,135
error[83 PrecedenceType, H0,133]34
think-time ,[28,[32 ProcessorTypé, 26
thread[ResultContentTypé, 86, 36
threads[71 SingleActivityListType[38
three-point approximatioh, 71 TaskActivityGraph[-3D
throughput, TI18 [36,198 TaskTypel 26=28
bounds[TN[I3 [36,[65[96 type ,[27,[30
infinite
error[82 under-relaxatior, 85
interlock [69 under-relaxation coefficiedt. D1
zero[83[8b error[86
throughpu64,[69 underflow-bin33
throughput ,[38 underrelax _coeff ,[28
throughput-bound ,[38 underrelaxationc8
time,[75 user-cpu-time ,[25
timeline [76 utilization
trace entry[36[7b
processof, 45 high,[85
task[7H error[86
tracing[66[75 processof, 1118 [18,[36[7571199
true,[71 semaphordlg [18
type task[11[18 [36,[75[98
ActivityDefBase[30[3P utilization 136
ActivityDefType,[30[32 . -
ActivityEntryDefType[30 valid ' .
ActivityGraphBasd, 30, 31 VaIL_’e 2828
ActivityListType,[33 Variables
ActivityLoopListType[33[34) SPEX[S5
ActivityLoopType [33[34 variables
ActivityMakingCallType[32 parameters, 62
ActivityOrType [33 3% report indication 62
ActivityPhasesTypd. 30,382 _spex[6D
Activity Type,[33 variance 711
ActivtyDefType [30[32 initialize only,[71
ActivtyEntryDefType[32 Method of Layers] 711
ActivtyPhasesTypé, 32 variasnei:rg %e[‘ﬂ?
AndJoinListType[3B versionLGVLT6

114

wait,[5,[82[88

error[84
wait,
wait() ,[I3
waiting

processof,_47
waiting ,[36
waiting time [18[7b

open arrivall18,[36,[98
waiting-variance 38
warning

ignore[6T[76
warning [71
white space

LQON, 53

x-samples ,[18

Xerces[35,34, 88
error[88
error messagels, 38
validation[38

XML, [74
debug[68, 76
input,[65
validation[38

xml, [68

XML Grammar[2]

XML Grammar)[38

xml-debug ,[Z4

XMLSpy,[38

XSDvalid,[38

xsi:noNamespaceSchemalocation

115

	The Layered Queueing Network Model
	Model Elements
	Processors
	Groups
	Tasks
	Entries
	Activities
	Precedence
	Requests

	Multiplicity and Replication
	A Brief History

	Results
	Header
	Analytic Solver (lqns)
	Simulator (lqsim)

	Type 1 Throughput Bounds
	Mean Delay for a Rendezvous
	Variance of Delay for a Rendezvous
	Mean Delay for a Send-No-Reply Request
	Variance of Delay for a Send-No-Reply Request
	Arrival Loss Probabilities
	Mean Delay for a Join
	Service Times
	Service Time Variance
	Probability Maximum Service Time Exceeded
	Service Time Distributions for Entries and Activities
	Semaphore Holding Times
	Throughputs and Utilizations per Phase
	Arrival Rates and Waiting Times
	Utilization and Waiting per Phase for Processor

	XML Grammar
	Basic XML File Structure
	Schema Elements
	LqnModelType
	ProcessorType
	GroupType
	TaskType
	FanInType and FanOutType
	EntryType
	ActivityGraphBase
	TaskActivityGraph
	ActivityDefBase
	MakingCallType
	PrecedenceType
	OutputResultType
	OutputResultJoinDelayType
	OutputDistributionType
	HistogramBinType

	Schema Constraints

	LQX Users Guide
	Introduction to LQX
	Input File Format
	Writing Programs in LQX
	Program Input/Output and External Control
	Actual Example of an LQX Model Program

	API Documentation
	Built-in Class: Array
	Built-in Global Methods and Constants

	API Documentation for the LQN Bindings
	LQN Class: Document
	LQN Class: Processor
	LQN Class: Group
	LQN Class: Task
	LQN Class: Entry
	LQN Class: Phase
	LQN Class: Activity
	LQN Class: Call
	Confidence Intervals

	LQN Input File Format
	Lexical Conventions
	White Space
	Comments
	Identifiers
	Variables

	LQN Model Specification
	Pragmas
	General Information
	Processor Information
	Group Information
	Task Information
	Entry Information
	Activity Information

	SPEX: Software Performance Experiment Driver
	Variables
	Report Information
	Convergence Information
	Differeneces to SPEX 1
	SPEX and LQX

	Invoking the Analytic Solver ``lqns''
	Command Line Options
	Pragmas
	Stopping Criteria
	Model Limits
	Diagnostics

	Invoking the Simulator ``lqsim''
	Command Line Options
	Return Status
	Pragmas
	Stopping Criteria
	Model Limits

	Error Messages
	Fatal Error Messages
	Error Messages
	Advisory Messages
	Warning Messages
	Input File Parser Error Messages
	LQX Error messages

	Known Defects
	MOL Multiserver Approximation Failure
	Chain construction for models with multi- and infinite-servers
	No algorithm for phased multiservers OPEN class.
	Overtaking probabilities are calculated using CV=1
	Need to implement queue lengths for open classes.

	Traditional Grammar
	Input File Grammar
	SPEX Parameters
	General Information
	Processor Information
	Group Information
	Task Information
	Entry Information
	Activity Information
	SPEX Report Information
	SPEX Convergence Information
	Expressions
	Identifiers
	Variables

	Output File Grammar
	General Information
	Throughput Bounds
	Waiting Times
	Waiting Time Variance
	Send-No-Reply Waiting Time
	Send-No-Reply Wait Variance
	Arrival Loss Probabilities
	Join Delays
	Service Time
	Service Time Variance
	Probability Service Time Exceeded
	Service Time Distribution
	Throughputs and Utilizations
	Arrival Rates and Waiting Times
	Utilization and Waiting per Phase for Processor

