
Layered Queueing Network Solver and Simulator User Manual

Greg Franks Peter Maly Murray Woodside Dorina C. Petriu AlexHubbard
Martin Mroz

Department of Systems and Computer Engineering
Carleton University

Ottawa ON K1S 5B6
{cmw,greg }@sce.carleton.ca

January 30, 2013

Revision: 11145

Contents

1 The Layered Queueing Network Model 1
1.1 Model Elements 3

1.1.1 Processors 3
1.1.2 Groups 4
1.1.3 Tasks 4
1.1.4 Entries 5
1.1.5 Activities 5
1.1.6 Precedence 8
1.1.7 Requests 9

1.2 Multiplicity and Replication 9
1.3 A Brief History 10

2 Results 11
2.1 Header 11

2.1.1 Analytic Solver (lqns) 13
2.1.2 Simulator (lqsim) 13

2.2 Type 1 Throughput Bounds 13
2.3 Mean Delay for a Rendezvous 15
2.4 Variance of Delay for a Rendezvous 15
2.5 Mean Delay for a Send-No-Reply Request 15
2.6 Variance of Delay for a Send-No-Reply Request 15
2.7 Arrival Loss Probabilities 15
2.8 Mean Delay for a Join 16
2.9 Service Times 16
2.10 Service Time Variance 17
2.11 Probability Maximum Service Time Exceeded 17
2.12 Service Time Distributions for Entries and Activities. 18
2.13 Semaphore Holding Times 18
2.14 Throughputs and Utilizations per Phase 18
2.15 Arrival Rates and Waiting Times 18
2.16 Utilization and Waiting per Phase for Processor 18

3 XML Grammar 21
3.1 Basic XML File Structure 21
3.2 Schema Elements 21

3.2.1 LqnModelType 24
3.2.2 ProcessorType 26
3.2.3 GroupType 27
3.2.4 TaskType 27
3.2.5 FanInType and FanOutType 27
3.2.6 EntryType 27

1

3.2.7 ActivityGraphBase 30
3.2.8 TaskActivityGraph 30
3.2.9 ActivityDefBase 32
3.2.10 MakingCallType 32
3.2.11 PrecedenceType 33
3.2.12 OutputResultType 35
3.2.13 OutputResultJoinDelayType 35
3.2.14 OutputDistributionType 35
3.2.15 HistogramBinType 35

3.3 Schema Constraints 35

4 LQX Users Guide 39
4.1 Introduction to LQX 39

4.1.1 Input File Format 39
4.1.2 Writing Programs in LQX 41
4.1.3 Program Input/Output and External Control 44
4.1.4 Actual Example of an LQX Model Program 47

4.2 API Documentation 48
4.2.1 Built-in Class: Array 48
4.2.2 Built-in Global Methods and Constants 48

4.3 API Documentation for the LQN Bindings 50
4.3.1 LQN Class: Document 50
4.3.2 LQN Class: Processor 50
4.3.3 LQN Class: Group 50
4.3.4 LQN Class: Task 50
4.3.5 LQN Class: Entry 51
4.3.6 LQN Class: Phase 51
4.3.7 LQN Class: Activity 51
4.3.8 LQN Class: Call 52
4.3.9 Confidence Intervals 52

5 LQN Input File Format 53
5.1 Lexical Conventions 53

5.1.1 White Space 53
5.1.2 Comments 55
5.1.3 Identifiers 55
5.1.4 Variables 55

5.2 LQN Model Specification 55
5.2.1 Pragmas 55
5.2.2 General Information 55
5.2.3 Processor Information 56
5.2.4 Group Information 56
5.2.5 Task Information 57
5.2.6 Entry Information 57
5.2.7 Activity Information 58

5.3 SPEX: Software Performance Experiment Driver 58
5.3.1 Variables 60
5.3.2 Report Information 62
5.3.3 Convergence Information 62
5.3.4 Differeneces to SPEX 1 62
5.3.5 SPEX and LQX 63

2

6 Invoking the Analytic Solver “lqns” 65
6.1 Command Line Options 65
6.2 Pragmas 69
6.3 Stopping Criteria 72
6.4 Model Limits 72
6.5 Diagnostics 72

7 Invoking the Simulator “lqsim” 74
7.1 Command Line Options 74
7.2 Return Status 76
7.3 Pragmas 77
7.4 Stopping Criteria 77
7.5 Model Limits 78

8 Error Messages 79
8.1 Fatal Error Messages 79
8.2 Error Messages 79
8.3 Advisory Messages 85
8.4 Warning Messages 86
8.5 Input File Parser Error Messages 88
8.6 LQX Error messages 89

9 Known Defects 90
9.1 MOL Multiserver Approximation Failure 90
9.2 Chain construction for models with multi- and infinite-servers . 90
9.3 No algorithm for phased multiservers OPEN class. 90
9.4 Overtaking probabilities are calculated using CV=1 90
9.5 Need to implement queue lengths for open classes. 90

A Traditional Grammar 91
A.1 Input File Grammar 91

A.1.1 SPEX Parameters 91
A.1.2 General Information 91
A.1.3 Processor Information 91
A.1.4 Group Information 92
A.1.5 Task Information 92
A.1.6 Entry Information 93
A.1.7 Activity Information 94
A.1.8 SPEX Report Information 94
A.1.9 SPEX Convergence Information 95
A.1.10 Expressions 95
A.1.11 Identifiers 95
A.1.12 Variables 95

A.2 Output File Grammar 96
A.2.1 General Information 96
A.2.2 Throughput Bounds 96
A.2.3 Waiting Times 96
A.2.4 Waiting Time Variance 96
A.2.5 Send-No-Reply Waiting Time 97
A.2.6 Send-No-Reply Wait Variance 97
A.2.7 Arrival Loss Probabilities 97
A.2.8 Join Delays 97
A.2.9 Service Time 97

3

A.2.10 Service Time Variance 98
A.2.11 Probability Service Time Exceeded 98
A.2.12 Service Time Distribution 98
A.2.13 Throughputs and Utilizations 98
A.2.14 Arrival Rates and Waiting Times 98
A.2.15 Utilization and Waiting per Phase for Processor 99

4

Abstract

The Layered Queuing Network (LQN) model is a canonical form for extended queueing networks with a lay-
ered structure. The layered structure arises from servers at one level making requests to servers at lower levels as a
consequence of a request from a higher level. LQN was developed for modeling software systems, but it applies to
any extended queueing network with multiple resource possession, in which multiple resources are held in a nested
fashion.

This document describes the elements found in Layered Queueing Network Model, the results produced when a
LQN model is solved, and the input and output file formats. It also describes the method used to invoke the analytic
and simulation solvers, and the possible errors that can arise when solving a model. The reader is referred to “Tutorial
Introduction to Layered Modeling of Software Performance”[21] for constructing models.

Chapter 1

The Layered Queueing Network Model

Figure 1.1 illustrates the LQN notation with an example of anon-line e-commerce system. In an LQN, software
resources are all called “tasks”, have queues and provide classes of service which are called “entries”. The demand
for each class of service can be specified through “phases”, or for more complex interactions, using “activities”. In
Figure 1.1, a task is shown as a parallelogram, containing parallelograms for its entries and rectangles for activities.
Processor resources are shown as circles, attached to the tasks that use them. Stacked icons represent tasks or pro-
cessors with multiplicity, making it a multiserver. A multiserver may represent a multi-threaded task, a collection of
identical users, or a symmetric multiprocessor with a common scheduler. Multiplicity is shown on the diagram with a
label in braces. For example there are five copies of the task ‘Server’ in Figure 1.1.

Entries and activities have directed arcs to other entries at lower layers to represent service requests (or messages)1.
A request from an entry or an activity to an entry may return a reply to the requester (a synchronous request, or
rendezvous) indicated in Figure 1.1 by solid arrows with closed arrowheads. For example, task Administrator makes a
request to task BackorderMgr who then makes a request to taskInventoryMgr. While task InventoryMgr is servicing
the request, tasks BackorderMgr and Administrator are blocked. A request may be forwarded to another entry for later
reply, such as from InventoryMgr to CustAccMgr. Finally a request may not return any reply at all (an asynchronous
request orsend-no-reply, shown as an arrow with an open arrow head, for example, the request from task ShoppingCart
to CustAccMgr.

The first way that the demand at entries can be specified is through phases. The parameters of an entry are the
mean number of requests for lower entries (shown as labels inparenthesis on the request arcs), and the mean total host
demand for the entry (in units of time, shown as a label on the entry in brackets). An entry may continue to be busy
after it sends a reply, in an asynchronous “second phase” of service [7] so each parameter is an array of values for the
first and second phase. Second phases are a common performance optimization, for example for transaction cleanup
and logging, or delayed write operations.

The second way that demand can be specified is through activities. Activities are the lowest level of granularity in
a performance model and are linked together in a directed graph to indicate precedence. When a request arrives at an
entry, it triggers the first activity of the activity graph. Subsequent activities may follow sequentially, or may fork into
multiple paths which later join. The fork may take the form ofan ‘AND’ which means that all the activities on the
branch after the fork can run in parallel, or in the form of an ‘OR’, which chooses one of the branches with a specified
probability. In Figure 1.1, a request that is received by entry “SCE3” of task “ShoppingCart” is processed using an
activity called “SCE3A95” that represents the main thread of control, then the main thread is OR-Forked into two
branches, one of which is later AND-forked into three threads. The three threads, starting with activities ‘AFBA109’,
‘AFBA130’ and ‘AFBA133’ respectively, run in parallel. Thefirst thread replies to the entry through activity ‘OJA110’
then ends. The remaining two threads join into one thread at activity ‘AJA131’. When both ‘OJA110’ and ‘AJA131’
terminate, the task can accept a new request.

The holding time for one class of service is the entry servicetime, which is not a constant parameter but is
determined by its lower servers. Thus the essence of layeredqueuing is a form of simultaneous resource possession. In
software systems delays and congestion are heavily influenced by synchronous interactions such as remote procedure

1requests may jump over layers, such as the request from the Administrator task to the InventoryMgr task.

1

(1D)

OFBA97

[2]
IME1

(1D)

IME8
[2]

[2e-06]
SCE3A95

[2e-06]

SCE3

AJA131

ShoppingCart {inf}

+

(1)

Layer 1

[8e-06]
SE6

Layer 4

(1)

Layer 3

(1)

Layer 2[6e-06]
SE3

Layer 6

(1)

Layer 5

[4e-06]
SE1

(500)

Server {5}

(2.5)

(50)

(1)

[3e-06]
BME2

(1)

BackorderMgr

(5)

(0.5) (0.000422)

[5]
IME6

CustProc {inf}

(0.0844)

AdminProc {inf}

[1]

[3e+03]

Synchronous request

CRE

Asynchronous request

Customer {5}

[3e-06]
IME7

Forwarded request

DatabaseProc

(0.5)

[191]

[1e+05]
ARE

CADE5

Administrator

InventoryMgr

[100]
CADE4

[2e-06]
OJA110

DatabaseProc

BookstoreProc

[150]

[1]
OFBA146

CADE6

[1]
AFBA133

CustAccDatabase {3}

[1]
AFBA130

[20]

[4e-06]
AFBA112

DE1

(1D)

Database

[1]
AFBA109

BookstoreProc

[10]
CE1

Catalogue {inf}

[1]
CAME2

[3]
CAME5

CustAccMgr

&

&

+

(1.5)

0.95

(1)

0.05

(0.915)

(Admin|Cust)Proc

&

Figure 1.1: Notation

2

calls (RPCs) or rendezvous, and the LQN model captures thesedelays by incorporating the lower layer queueing and
service into the service time of the upper layer server. This“active server” feature [20] is the key difference between
layered and ordinary queueing networks.

1.1 Model Elements

Figure 1.2 shows themeta-modelused to describe Layered Queueing Networks. This model is unique in that it is
more closely aligned with the architecture of a software system that it is with a conventional queueing network model
such as Performance Model Interchange Format (PMIF) [17, 19]. The latter consists of stations with queues and visits,
whereas a LQN has processors, tasks and requests.

A Layered Queueing Network is a directed graph. Nodes in the graph consist of tasks, processors, entries, activi-
ties, and precedence. Arcs in the graph consist of requests from one node to another. The model objects are described
below.

next

next
1..*

1..*

0..* 0..*

0..*

forwards

1

1..*

dstsrc

0..* 0..*

invokes

1

{xor}
1..*

«use»

1..*

1..*

0..1

calls

src next

1

0..*0..*

10..1

0..1

1..*

0..1 connects

Group
Task

Semaphore

Task
Reference

FanOutFanIn

Forward SendNoReply Rendezvous

Request

Network
LayeredQueueing

Processor

Task

Pre

AndFork

Loop

OrForkOrJoin

Entry Activity Precedence

Post

AndJoin

Figure 1.2: LQN Meta Model

1.1.1 Processors

Processors are used by the activities within a performance model to consumetime. They arepure serversin that they
only accept requests from other servers and clients. They can be actual processors in the system, or may simply be
place holders for tasks representing customers and other logical resources.

Each processor has a single queue for requests. Requests maybe scheduled using the following queueing disci-
plines:

FIFO First-in, first out (first-come, first-served). Tasks are served in the order in which they arrive.

3

PPR Priority, preemptive resume. Tasks with priorities higherthan the task currently running on the processor will
preempt the running task.

HOL Head-of-line priority. Tasks with higher priorities will be served by the processor first. Tasks in the queue will
not preempt a task running on the processor even though the running task may have a lower priority.

PS Processor sharing. The processor runs all tasks “simultaneously”. The rate of service by the processor is inversely
proportional to the number of executing tasks. Forlqsim, processor sharing is implemented asround-robin– a
quantummust be specified.

RAND Random scheduling. The processor selects a task at random.

CFS Completely fair scheduling [9]. Tasks are scheduled withingroups using round-robin scheduling and groups are
scheduled according to their share. Aquantummust be specified. This scheduling discipline is implemented on
the simulator only at present.

Priorities range from zero to positive infinity, with a priority of zero being the highest. The default priority for all
tasks is zero.

1.1.2 Groups

Groups[9] are used to divide up a processor’s execution timeup intoshares. The tasks within a group divide the share
up among themselves evenly. Groups can only be created on processors running the scheduling disciplinecompletely
fair scheduling,. .

Shares may either beguaranteedor capped. Guarantee shares act as a floor for the share that a group receives. If
surplus CPU time is available (i.e., the processor is not fully utilized), tasks in a guaranteed group can exceed their
share. Cap shares act as a hard ceiling. Tasks within these groups will never receive more than their share of CPU
time.

Note: Completely fair scheduling is a form of priority scheduling. With layered models, calls made by tasks within
groups to lower level servers can causepriority inversion. Cap scheduling tends to behave better than guaranteed
scheduling for these cases.

1.1.3 Tasks

Tasks are used in layered queueing networks to represent resources. Resources include, but are not limited to: actual
tasks (or processes) in a computer system, customers, buffers, and hardware devices. In essence, whenever some entity
requires some sort of service, requests between tasks involved.

A task has a queue for requests and runs on a processor. Items are served from the queue in a first-come, first-served
manner. Different classes of service are specified usingentries(c.f. §1.1.4). Tasks may also have internal concurrency,
specified usingactivities(c.f. §1.1.5).

Requests can be served using the following scheduling methods:

FIFO First-in, first out (first-come, first-served). Requests areserved in the order in which they arrive. This schedul-
ing discipline is the default for tasks.

PPR Priority, preemptive resume. Requests arriving at entrieswith priorities higher than entry that task is currently
processing will preempt the execution of the current entry.

HOL Head-of-line priority. Requests arriving at entries with higher priorities will be served by the task first. Requests
in the queue will not preempt the processing of the current entry by the task.

Priorities range from zero to positive infinity, with a priority of zero being the highest. The default priority for all
entries is zero.

The subclasses oftaskare:

4

Reference Task:Reference tasks are used to represent customers in the layered queueing network. They are like
normal tasks in that they have entries and can make requests.However, they can never receive requests and
are always found at the top of a call graph. They typically generate traffic in the underlying closed queueing
model by making rendezvous requests to lower-level servers. Reference tasks can also generate traffic in the
underlying open queueing model by making send-no-reply requests instead of rendezvous requests. However,
open class customers are more typically represented using open arrivals which is simply encoded as a parameter
to an entry.

Bursty reference tasks are a special case of reference tasks where the service time for the slices are random
variables with aParetodistribution (c.f.§1.1.5).

Semaphore Task:Semaphore tasks are used to model passive resources such as buffers. They always have two entries
which are used tosignalandwait the semaphore. The wait entry must be called using a synchronous request
whereas the signal entry can be called using any type of request. Once a request is accepted by the wait entry,
no further requests will be accepted until a request is processed by the signal entry. The signal and wait entries
do not have to called from a common task. However, the two entries must share a common call graph, and the
call graph must be deterministic. The entries themselves can be defined using phases or activies and can make
requests to other tasks. Counting semaphores can be modeledusing a multiserver.

Synch Task: Synchronization tasks are used... Cannot be a multiserver.

1.1.4 Entries

Entries service requests and are used to differentiate the service provided by a task. An entry can accept either
synchronous, or asynchronous requests, but not both. Synchronous requests are part of theclosedqueueing model
whereas asynchronous requests are part of theopenmodel. Message types are described in Section 1.1.7 below.

Entries also generate the replies for synchronous requests. Typically, a reply to a message is returned to the
client who originally sent the message. However, entries may also forward the reply. The next entry which accepts
the forwarded reply may forward the message in turn, or may reply back to the originating client. For example, in
Figure 1.1, entry ‘IME8’ on task ‘IventoryMgr’ forwards therequest from entry ‘BME2’ on task ‘BackorderMgr’ to
entry ‘CAME5’ on task ‘CustAccMgr’. The reply from ‘CAME2’ will be sent directly back to ‘BME2’.

The parameters for an entry can be specified using either phases or activities2. The activity method is typically
used when a task has complex internal behaviour such as forksand joins, or if its behaviour is specified as an activity
graph such as those used by Smith and Williams [18]. The phasemethod is simply a short hand notation for specifying
a sequence of one to three activities, with the reply being generated by the first activity in the sequence. Figure 1.3
shows both methods for specifying a two-phase client calling a two-phase server.

Regardless of the specification method used for an entry, itsbehaviour as a server to its clients is byphase, shown
in Figure 1.4. Phases consume time on processors and make requests to entries. Phase one is aservice phaseand
is similar to the service given by a station in a queueing network. Phase one ends after the server sends a reply.
Subsequent phases areautonomousphases which are launched by phase one. These phases operatein parallel with
the clients which initiated them. The simulator and analytic solver limit the number of phases to three.

1.1.5 Activities

Activities are the lowest-level of specification in the performance model. They are connected together using “Prece-
dence” (c.f.§1.1.6) to form a directed graph to represent more than just sequential execution scenarios.

Activities consume time on processors. Theservice timeis defined by a mean and variance, the latter throughcoef-
ficient of variation squared3. The service time between requests to lower level servers isassumed to be exponentially
distributed (with the exception ofbursty reference tasks) so the total service time is the sum of a random number of
exponentially distributed random variables.

2The meta-model in Figure 1.2 only shows activities, phases are a notational short-hand.
3The squared coefficient of variation is variance divided by the square of the mean.

5

 s e1 1 2 -1
 y e1 e1 1 2
 s e2 1 2 -1

e1

t2

(1,2)

[1,2]

t1

[1,2]

e2

(a) Phases

-1
 a1[e2] -> a2
:
 s a2 2
 s a1 1

 A e1 a1
 A e2 a1

A t1
 s a1 1
 s a2 2
 y a1 e2 1
 y a2 e2 1

A t2

-1
 a1 -> a2
:

(2)(1)

t2

[2]
a2

[1]
a1

e2

t1

[2]
a2

[1]
a1

e1

(b) Activities

Figure 1.3: Entry Specification

Phase 1

Phase 3

Phase 2

server:Taskclient:Task

Phasessd

«reply»

entry()

Figure 1.4: Phases for an Entry.

6

Activities also make requests to entries on other tasks. Thedistribution of requests to lower level servers is set by
thecall order for the activity which is eitherstochasticor deterministic. If the call order is deterministic, the activity
makes the exact number of requests specified to the lower level servers. The number of requests is integral; the order
of requests to different entries is not defined. If the call order is stochastic, the activity makes a random number of
requests to the lower level servers. The mean number of requests is specified by the value specified. Requests are
assumed to be geometrically distributed.

For entries which accept rendezvous requests, replies mustbe generated. If the entry is specified using phases, the
reply is implicit after phase one. However, if the entry is specified using activities, one or more of the activities must
explicitly generate the reply. Exactly one reply must be generated for each request.

Slices

Activities consume time by making requests to the processorassociated with the task. The service time demand
specified for an activity is divided intoslicesbetween requests to other entries, shown in the UML SequenceDiagram
in Figure 1.5. The mean number of slices is always1 + Y whereY is total total number of requests made by the
activity.

Slice

server:Entryclient:Activity server:Processor

{ζ}

«compute»

Slices

«reply»
«compute»

sd

{ζ}

«send»

loop

[y]

Figure 1.5: Slices. Theslice timeis shown using the labelζ.

By default, the demand of aslice is assumed to be exponentially distributed [20] but a variance may be specified
through thecoefficient of variation squared(cv2 = σ2/s2) parameter for the entry or activity. The method used to
solve the model depends on the solver being used:

Analytic Solver: All servers withcv2 6= 1 use the HVFCFS MVA approximation from [13].

Simulator: The simulator uses the following distributions for generating random variates for slice times provided that
the task isnot a bursty reference task.

cv2 = 0: deterministic.

0 < cv2 < 1: gamma.

cv2 = 1: exponential.

cv2 > 1: bizarro...

If the task is a bursty reference task, then the simulator generates random variates for slice times according to
the Pareto distribution. The scalexm > 0 and shapek > 0 parameters for the distribution are derived from the
service times and coefficient of variation squaredcv2 parameters for the corresponding activity (or phase).

k =

√

1

cv2
+ 1 + 1

7

xm = s×
(k − 1)

k

On-off behaviour can simulated by using two or more phases atthe client, where on phase corresponds to the
on period and makes requests to other servers, while the other phase corresponds to the off period.

1.1.6 Precedence

Precedenceis used to connect activities within a task to from anactivity graph. Referring to Figure 1.2, precedence is
subclassed into ‘Pre’ (or ‘join’) and ‘Post’ (or ‘fork’). To connect one activity to another, the source activity connects
to apre-precedence (or ajoin-list). Thepre-precedence then connects to apost-precedence (or afork-list) which, in
turn, connects to the destination activity. Table 1.1 summarizes the precedence types.

Name Icon Description

Sequence Transfer of control from an activity to a join-list.

And-Join j

.............................R
&

.............................	 A Synchronization point for concurrent activities.

Quorum-Join j

.............................R
n

.............................	 A Synchronization point for concurrent activities where only n
branches must finish.

Or-Join j

.............................R
.............................	

+

Sequence ? Transfer of control from fork-list to activity

And-Fork	
.............................R

j& Start of concurrent execution. There can be any number of
forked paths.

Or-Fork
j+

p 1− p
.............................R

.............................	

A branching point where one of the paths is selected with prob-
ability p. There can be any number of branches.

Loop
j

?��	 @@R
n1

n2

* Repeat the activity an average ofn times.

Table 1.1: Activity graph notation.

The semantics of an activity graph are as follows. For AND-forks, AND-joins and QUORUM-joins, each branch
of a join must originate from a common fork, and each branch ofthe join must have a matching branch from the fork.
Branches from AND-forks need not necessarily join, either explictily by a “dangling” thread not participating in a join,
or implicitly through a quorum join, where only a subset of the branches must join while ignoring the rest. However,
all threads started by a fork must terminate before the task will accept a new message (i.e., there is an implied join
collecting all threads at the end of a task’s cycle). Branches to an AND-join do not necessarily have to originate from
a fork – for this case each branch must originate from a uniqueentry. This case is used to synchronize two or more
clients at the server.

For OR-forks, the sum of the probabilities of the branches must sum to one – there is no “default” operation. AND-
forks may join at OR-joins. The threads from the AND-fork implicitly join when the task cycle completes. OR-joins
may be called directly from entries. This case is analogous to running common code for different requests to a task.

LOOPs consist of one or more branches, each of which is run a random number of times with the specified mean,
followed by an optional deterministic branch exit which is followed after all the looping has completed.

Replies can only occur from activities inpre-precedence (and-join) lists. Activities cannot reply to entries from a
loop branch because the number of times that a branch is executed is a random number.

8

1.1.7 Requests

Service requests from one task to another can be one of three types: rendezvous, forwarded, and send-no-reply, shown
in Figure 1.6. A rendezvous request is a blocking synchronous request – the client is suspended while the server
processes the request. A send-no-reply request is an asynchronous request – the client continues execution after the
send takes place. A forwarded request results when the replyto a client is redirected to a subsequent server which,
may forward the request itself, or may reply to the originating client.

SCE1CBE

Send

Reply

(a) Rendezvous

Reply

Send

CAME5IME8BME2

Forward

(b) Forwarding

CAME2AJA131

Send

(c) Send-no-reply

Figure 1.6: Request Types.

1.2 Multiplicity and Replication

One common technique to improve the performance of a system is to add copies of servers. The performance model
supports two techniques: multiplicity and replication. Multiplicity is the simpler technique of the two as a single queue
is served by multiple servers. Replication requires a more elaborate specification because the queues of the servers are
also copied, so requests must be routed to the various queues. Multi-servers can be replicated. Figure 1.7 shows the
underlying queueing models for each technique.

(a) Multi-server (b) Replicated

Figure 1.7: Multiple copies of servers.

Replication reduces the number of nodes in the layered queueing model by combining tasks and processors with
identical behaviour into a single object, shown in Figure 1.8. The left figure shows three identical clients making
requests to two identical servers. The right figure is the same model, but specified using replication. Labels within
angle brackets in Figure 1.8(b) denote the number of replicas.

Replication also introduces the notion offan-in andfan-in, denoted using theO=n andI= n labels on the request
from t1 to t2 in Figure 1.8(b). Fan-out represents the numberof replicated servers that a client task calls. Similarly,
fan-in represents the number of replicated clients that call a server. The product of the number of clients and the
fan-out to a server must be the same as the product of the number of servers and the fan-in to the server. Further, both
fan-in and fan-out must be integral and non-zero.

The total number of requests that a client makes to a server isthe product of the mean number of requests and the
fan-out. If the performance of a system is being evaluated byvarying the replication parameter of a server, the number
of requests to the server must be varied inversely with the number of server replicas in order to retain a constant
number of requests from the client.

9

(1)
0.728

t1_3
λ=0.224,µ=1

e1_3
[1]

4.46

(1)
0.728

(1)

0.728

t2_1
λ=0.673,µ=0.673

e2_1
[1]
1

t2_2
λ=0.673,µ=0.673

e2_2
[1]
1

(1)

4.46
[1]

e1_2

λ=0.224,µ=1
t1_2

0.728
(1)

0.728
(1)

4.46
[1]

e1_1

λ=0.224,µ=1

0.728

t1_1

(a) Flat

t2 <2>
λ=0.699,µ=0.699

0.646

[1]
1

(1), O=2, I=3

4.29
[1]
e1

λ=0.233,µ=1

e2

t1 <3>

(b) Replicated

Figure 1.8: Replicated Model

1.3 A Brief History

LQN [6] is a combination of Stochastic Rendezvous Networks [20] and the Method of Layers [14].

10

Chapter 2

Results

Both the analytic solver and the simulator calculate:

• throughput bounds (lqns only),

• mean delay for rendezvous and send-no-reply requests,

• variances for the rendezvous and send-no-reply request delays (lqsim only),

• mean delay for joins,

• entry service times and variances,

• distributions for the service time lqsim

• task throughputs and utilizations,

• processor utilizations and queueing delays.

Figure 2.1 shows some of these results for the model shown in Figure 1.1, after solving the model analytically using
lqns(1). The interpretation of these results are describe below in Section 2.1.2.

Results can be saved in three different formats:

1. in a human-readable form.

2. in a “parseable” form suitable for processing by other programs. The grammar for the parseable output is
described in Section A on page 91.

3. in XML (again suitable for by processing by other programs). The schema for the XML output is shown in
Section 3 on page 21.

If input to the solver is in XML, then output will be in XML. Human-readable output will be produced by default except
if output is redirected using the-o outputflag and either XML or parseable output is being generated. Conversion from
parseable output to XML, and from either parseable or XML output to the human-readable form, can be accomplished
usinglqn2ps(1).

2.1 Header

The human-readable output from the the analytic solver and simulator consists of three parts. Part 1 of the output
consists of solution statistics and other header information and is described in detail in Sections 2.1.1 and 2.1.2 below.
Part 2 of the output lists the input and is not described further. Part 3 contains the actual results. These results are
described in Section 2.1.2, starting on page 13. The sectionheadings here correspond to the section headings in the
output file.

11

and utilization
Task throughput

Entry service time

Entry demand

Activity demand

Activity service time

Join delay

Branch probability

Request rate

Queueing delay

Queueing delay

Processor utilization

to processor

Task multiplicity

λ=0.000135,µ=0.0268
ShoppingCart {inf}

CAME5 w=0.0491
CAME2 w=0.0491

+

3.83e-10
(1)

SE6 w=0.0511
SE3 w=0.0767
SE1 w=0.0511

OJA110 w=0.0255
OFBA146 w=0.0255
AJA131 w=0.0256

AFBA133 w=0.0255
AFBA130 w=0.0255
AFBA112 w=0.0511
AFBA109 w=0.0255
OFBA97 w=0.0511
SCE3A95 w=0.0255

µ=0.00797
BookstoreProc

52.7
[1]

CAME2

79.7
[3]

CAME5

λ=0.000359,µ=0.0251
CustAccMgr

10
[10]
CE1

λ=0.000263,µ=0.00264
Catalogue {inf}

0.0255
[2e-06]
OJA110

1.03
[1]

OFBA146

0.0256
[2e-06]
AJA131

53.4
(1D)

1.03
[1]

AFBA133

1.53

1.03
[1]

AFBA130

197
[4e-06]

AFBA112

1.03
[1]

AFBA109

0.950.05

11.1
[1]

OFBA97

3.83e-10
(1D)

0.0255
[2e-06]

SCE3A95

11.6,187
SCE3

97.2
[8e-06]

+

&

&

&

SE6

0
(1)

21.7
[6e-06]

SE3

127
[4e-06]

SE1

λ=0.0016,µ=0.189

CE1 w=0.0211

Server {5}

Figure 2.1: Results.

12

2.1.1 Analytic Solver (lqns)

Figure 2.2 shows the header information output by the analytic solver. The first line of the output shows the version of
the solver and where it was run. This information is often useful when reporting problems with the solver. The lines
labeledInput andOutput are the input and output file names respectively. The line labelled Command line
shows all the arguments used to invoke the solver. TheCommentfield contains the information found in the comment
field of the general information field of the input file (c.f.§A.1.2,§3.2.1). Next, optionally, the output lists any pragma
used. Much of this information is also present if the simulator is used to solve the model. The remainder of the header
lists statistics accumulated during the solution of the model and is solver-specific.

convergence test value: Theconvergence test value is the root of the mean of the squares of the
difference in the utilization of all of the servers from the last two iterations of the solver. If this value is less than
theconvergence value (c.f. §3.2.1, A.1.2) specified in the input file, then the results areconsidered valid.

number of iterations: The number of iterations shows the number of times the solver has per-
formed its “outer iteration”. If the number of iterations exceeds the iteration limit set by the model file, the
results are considered invalid.

MVA solver information: This table shows the amount of effort the solver expended solving each submodel.
The first column lists the submodel number. Next, the column labelled ‘n’ indicates the number of times the
MVA solver was run on the submodel. The columns labelled ‘k’ and ‘srv’ show the number of chains and
servers in the submodel respectively. The next three columns show the number of times the core MVAstep()
function was called. The following three columns show the number of time thewait() function, responsible
for computing the queueing delay at a server, is called. Finally, the last three columns list the time the solver
spends solving each submodel.

Finally, the solver lists the name of the machine the it was run on, the time spent executing the solver code, the time
spent by the system on behalf of lqns, and the total elapsed time.

2.1.2 Simulator (lqsim)

Figure 2.3 shows the header information output by the simulator after execution is completed. The first line of the
output shows the version of the simulator and where it was run. The lines labeledInput andOutput are the input
and output file names respectively. TheComment field contains the information found in the comment field of the
general information field of the input file (c.f.§A.1.2,§3.2.1). Next, optionally, the output lists any pragma used.The
remainder of the header lists statistics accumulated during the solution of the model and is specific to the simulator.

Run time: The total run time in simulation time units.

Number of Statistical Blocks: The number of statistical blocks collected (when producingconfidence
intervals).

Run time per block: The run time in simulation units per block. This value, multiplied by the number of
statistical blocks and the initial skip period will total tothe run time.

Seed Value: The seed used by simulator.

Finally, the simulator lists the name of the machine that it was run on, the time spent executing the simulator code, the
time spent by the system on behalf of lqsim, and the total elapsed time.

2.2 Type 1 Throughput Bounds
lqns

The Type 1 Throughput Boundsare the “guaranteed not to exceed” throughputs for the entries listed. The value is
calculated assuming that there is no contention delay to underlying servers.

13

Generated by lqns, version 3.9 (Darwin 6.8.Darwin Kernel Ve rsion 6.8: Wed Sep 10 15:20:55 PDT 2003; Power Macintosh)

Copyright the Real-Time and Distributed Systems Group,
Department of Systems and Computer Engineering
Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Input: bookstore.lqn
Output: bookstore.out
Command line: lqns -p
Tue Nov 1 21:37:54 2005

Comment: lqn2fig -Lg bookstore.lqn

#pragma multiserver = conway

Convergence test value: 7.51226e-07
Number of iterations: 5

MVA solver information:
Submdl n k srv step() mean stddev wait() mean stddev User Syst em Elapsed
1 5 2 4 44 8.8 1.4697 4776 955.2 299.82 0:00:00.01 0:00:00.00 0 :00:00.00
2 9 1 1 51 5.6667 0.94281 594 66 22.627 0:00:00.00 0:00:00.00 0 :00:00.00
3 9 8 3 240 26.667 9.4751 4.0365e+05 44850 32163 0:00:00.19 0: 00:00.00 0:00:00.21
4 9 10 3 271 30.111 7.0623 7.7481e+05 86090 40554 0:00:01.15 0 :00:00.00 0:00:01.19
5 9 2 1 70 7.7778 1.6178 3408 378.67 181.73 0:00:00.00 0:00:00 .00 0:00:00.00
6 5 0 0 0 0 0 0 0 0 0:00:00.00 0:00:00.00 0:00:00.00
Total 46 0 0 676 14.696 12.464 1.1872e+06 25809 41253 0:00:01 .35 0:00:00.00 0:00:01.40

greg-frankss-Computer.local. Darwin 6.8
User: 0:00:01.35
System: 0:00:00.00
Elapsed: 0:00:01.40

Figure 2.2: Analytic Solver Status Output.

1
4

Generated by lqsim, version 3.9 (Linux 2.4.20-31.9 i686),

Copyright the Real-Time and Distributed Systems Group,
Department of Systems and Computer Engineering,
Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Wed Nov 2 11:42:25 2005

Input: bookstore.lqn
Output: bookstore.out
Comment: lqn2fig -Lg bookstore.lqn

Run time: 4.34765E+09
Number of Statistical Blocks: 15
Run time per block: 2.89651E+08
Max confidence interval: 7.32
Seed Value: 1130948006

epsilon-13.sce.carleton.ca Linux 2.4.20-31.9
User: 0:04:47.78
System: 0:00:00.07
Elapsed: 0:14:27.66

Figure 2.3: Simulator Status Output.

2.3 Mean Delay for a Rendezvous

TheMean Delay for a Rendezvousis the queueing time for a request from a client to a server. Itdoes not include the
time the customer spends at the server (see Figure 2.4). To find theresidence timeresidence time, add the queueing
time to thephase one service timeof the request’s server.

2.4 Variance of Delay for a Rendezvous
lqsim

TheVariance of Delay for a Rendezvousis the variance of the queueing time for a request from a client to the server.
It does not include the variance of the time the customer spends at the server (see Figure 2.4). This result is only
available from the simulator.

2.5 Mean Delay for a Send-No-Reply Request

TheMean delay for a send-no-reply requestis the time the request spends in queue and in service in phaseone at the
destination. Phase two is treated as a ‘vacation’ at the server.

2.6 Variance of Delay for a Send-No-Reply Request
lqsim

2.7 Arrival Loss Probabilities

TheArrival Loss Probabilities...

15

2.8 Mean Delay for a Join

The Mean Delay for a Joinis the maximum of the sum of the service times for each branch of a fork. The source
activity listed in the output file is the first activity prior to the fork (e.g., AFBA112 in Figure 2.1). Similarly, the
destination activity listed in the output file is the first activity after the join (AJA131). The variance of the join time is
also computed.

{q}

idle
ready

running
blocked

idle
ready

running
blocked

idle
ready

running
blocked

idle
ready

running
blocked

idle
ready

running
blocked

join time

A
F

B
A

13
3

A
F

B
A

13
0

A
F

B
A

11
2

td: join time components

IM
E

6
C

A
M

E
2

send
fork

receive reply

send
join

Figure 2.4: Service Time Components for Join.

2.9 Service Times

Theservice timeis the total time a phase or activity uses processing a request. The time consists of four components,
shown in Figure 2.4:

1. Queueing for the processor (shown as items 1, 4, 6 and 8 in Figure 2.5.(b)).

2. Service at the processor (items 2, 5 and 9)

3. Queueing for serving tasks (item 6), and

4. Phase one service time at serving tasks (items 3 and 7).

Queuing at processors and tasks and can occur because of contention from other tasks (items 1, 6, and 8), or from
second phases from previous requests. For example, entry SE3 is queued at the processor because the processor is
servicing the second phase of entry SCE3.

Using the results shown in Figure 2.1, the service time for entry SE3 (21.7) is the sum of:

16

idle
ready

phase 1
phase 2

idle
ready

phase 1
phase 2

SE3
SCE3

CE1
Other

Idle

idle
ready

phase 1
blocked

{q}

S
E

3
S

C
E

3
C

E
1

B
oo

ks
to

re
P

ro
c

receive

receive

send

reply

send

receive reply

td: service time components

service time

2 5 9

1

3

4 8

7

6

Figure 2.5: Service Time Components for Entry ‘SCE3’.

• the processor wait (0.767),

• it’s own service time (6× 10−6),

• the queueing time to entry SCE3 (0),

• the phase one service time at entry SCE3 (11.6),

• the queueing time to entry CE1 (3.83× 10−10), and

• the phase one service time at entry CE1 (10)

Queueing time for serving tasks is shown in theMean Delay for a Rendezvoussection of the output. (c.f.§2.3).
Queueing time for the processor is shown in theUtilization and Waiting per Phase for Processorof the output (c.f.
§2.16).

2.10 Service Time Variance

TheService Time Variancesection lists the variance of the service time (c.f.§2.9) for the phases and activities in the
model.

2.11 Probability Maximum Service Time Exceeded
lqsim

Theprobability maximum service time exceededis output by the simulator for all phases and activities withamax-service-time .
This result is the probability that the service time is greater than the value specified. In effect, it is a histogram with
two bins.

17

2.12 Service Time Distributions for Entries and Activities
lqsim

Service Time Distributionsare generated by the simulator by setting theservice-time-distribution param-
eter (c.f.§3.2.9,§A.1.6,§A.1.7) for an entry or activity. A histogram ofnumber-bins bins betweenmin andmax
is generated. Samples that fall either under or over this range are stored in their own under-flow or over-flow bins
respectively. The optionalx-samples parameter can be used to set the sampling behaviour to one of:

linear Each bin is of equal width, found by dividing the histogram range by the number of bins. If thex-samples
is not set, this behaviour is the default.

log The logarithm of the range specified is divided bynumber-bins . This has the effect of making the width of the
bins small nearmin , and large nearmax. A minimum value of zero isnot allowed.

sqrt The square root of the range specified is divided bynumber-bins . Bins are smallest nearbin are smaller
than those nearmax.

The results of the histogram collection, shown in Figure 2.6, consist of the mean, standard deviation,, skew and
kurtosis of the sampled range, followed by the histogram itself. Each entry of the histogram contains the probability
of the sample falling within the bucket, and, if available, the confidence intervals of the sample.

The statistics for the histogram are found by multiplying the mid-point of the range defined bybegin andend , not
counting either the overflow or underflow bins. If the mean value reported by the histogram is substantially different
than the actual service time of the phase or activity, then the range of the histogram is not sufficiently large.

2.13 Semaphore Holding Times

TheSemaphore Holding Timessection lists the average time a semaphore token is held (it’s service time), the variance
of the holding time, and the utilization of semaphore. Figure 2.7 shows how these values are found.

2.14 Throughputs and Utilizations per Phase

TheThroughputs and Utilizations per Phasesection lists the throughput by entry and activity, and the utilization by
phase and activity. The utilization is thetask utilization, i.e., the reciprocal of the service time for the task (c.f. 2.9).
The processor utilization for the task is listed underUtilization and Waiting per Phase for Processor(see§2.16).

2.15 Arrival Rates and Waiting Times

TheArrival Rates and Waiting Timessection is only present in the output whenopen arrivalsare present in the input.
This section shows the arrival rate (Lambda) and the waiting time. The waiting time includes the servicetime at the
task.

2.16 Utilization and Waiting per Phase for Processor

The Utilization and Waiting per Phase for Processorlists the processor utilization and the queueing time for every
entry and activity running on the processor.

18

Service time distributions for entries and activities:

SCE3 PHASE 1:
Mean = 11.58, Stddev = 8.457, Skew = 0.8501, Kurtosis = -0.249 6

Begin End Prob. +/-95% +/-99%
0 1 0.03355 0.001048 0.001412 | *
1 2 0.03786 0.001605 0.002163 | *
2 3 0.05406 0.002026 0.002731 | *
3 4 0.06333 0.002031 0.002737 | *
4 5 0.06545 0.001631 0.002199 | *
5 6 0.06369 0.001578 0.002127 | *
6 7 0.06049 0.001692 0.00228 | *
7 8 0.05591 0.001822 0.002456 | *
8 9 0.05133 0.001272 0.001714 | *
9 10 0.0472 0.001767 0.002382 | *

10 11 0.04318 0.001618 0.002181 | *
11 12 0.03931 0.001185 0.001597 | *
12 13 0.03579 0.001073 0.001446 | *
13 14 0.03231 0.001654 0.002229 | *
14 15 0.02952 0.001033 0.001392 | *
15 16 0.02677 0.001189 0.001603 | *
16 17 0.0243 0.001058 0.001425 | *
17 18 0.02214 0.001087 0.001466 | *
18 19 0.02001 0.001122 0.001512 | *
19 20 0.01806 0.001016 0.001369 | *
20 21 0.01653 0.0009079 0.001224 | *
21 22 0.01499 0.001018 0.001372 | *
22 23 0.01365 0.0007152 0.0009639 | *
23 24 0.01229 0.000955 0.001287 | *
24 25 0.0112 0.0008691 0.001171 | *
25 26 0.009997 0.0006182 0.0008331 | *
26 27 0.009227 0.0007344 0.0009898 | *
27 28 0.008282 0.0006896 0.0009293 | *
28 29 0.007444 0.0005936 0.0007999 | *
29 30 0.006802 0.0005752 0.0007751 | *

overflow 0.06532 0.001561 0.002104 | *

Figure 2.6: Histogram output

1
9

idle
ready

wait

blocked
signal

receive

send

receive

reply
opt reply

td: holding time components

{q}

S
em

ap
hp

re
 T

as
k holding time

Figure 2.7: Time components of a semaphore task.

20

Chapter 3

XML Grammar

The definition of LQN models using XML is an evolution of the original SRVN file format (c.f.§5 and Appendix A.1).
The new XML format is based on the work done in [22], with further refinement for general usage. There are new
features in the XML format to support new concepts for building and assembling models using components. The
normal LQN tool suite (likelqns(1)andlqsim(1)) do not support these new features, however other tools outside the
suite are being written to utilize the new parts of the XML format.

3.1 Basic XML File Structure

In XML, layered models are specified in a bottom-up order, which is the reverse of how layered models are typically
presented. First, a processor is defined, then within the processor block, all the tasks than run on it are defined.
Similarly, within each task block all the entries that are associated with it are defined, etc. A simplified layout of an
incomplete LQN model written in XML is shown in Figure 3.1.

Activity graphs (specified by task-activities) belong to a task, and hence are siblings to entry elements. The element
entry-activity-graph specifies an activity graph contained within one entry, but is not supported by any of the LQN
tools. The concept of phases still exists, but now each phaseis an activity, and is defined in the entry-phase-activities
element.

3.2 Schema Elements

The XML definition for layered models consists of three files:

lqn.xsd: lqn.xsd is the root of the schema.

lqn-sub.xsd ...

lqn-core.xsd lqn-core is the actual model specfication and is included by lqn.xsd.

All three files should exist in the same location. If the solver cannot located thelqn.xsd file, it will emit an error1

and stop.
Figure 3.1 shows the schema for Layered Queueing Networks using Unified Modeling Language notation. The

model is defined starting fromlqn-model . Unless otherwise specified in the figure, the order of elements in the
model is from left to right, i.e.,<solver-params> always preceeds<processor> in the input file. Optional
elements are shown using a multiplicity of zero for an association. Note that results (optional, shown in blue) are part
of the schema.

1See the error message “The primary document entity could notbe opened” on 88.

21

Listing 3.1: XML file layout.

1 <lqn-model>
2 <solver-params>
3 <pragma/>
4 </solver-params>
5 <processor>
6 <task>
7 <entry>
8 <entry-phase-activities>
9 <activity>

10 <synch-call/>
11 <asynch-call/>
12 </activity>
13 <activity> ... </activity>
14 </entry-phase-activities>
15 </entry>
16 <entry> ... </entry>
17 <task-activities>
18 <activity/>
19 <precedence/>
20 </task-activities>
21 </task>
22 <task> ... </task>
23 </processor>
24 <processor> ... </processor>
25 </lqn-model>

22

0..*

1..* 0..*

1..*0..1 0..* 0..*

0..*0..*

0..1 1..*

1..*

10..1 0..* 0..1

1..*1..*

1..*

0..*

0..*1..*

0..* 0..*

{ordered}

{ordered}

{xor}

{ordered}

entry

1..*

{ordered}

service

1..*

{ordered}

task-activities

0..*

service-time-

distribution

0..*

result-task

{unordered}

fan-outfan-in

0..* 0..*

task

0..*

result-group

lqxslotrun-control solver-params processorplot-control

lqn-model

result-general groupresult-processorpragma

asynch-call

{unordered}

0..*

result-entry

delay

result-join-

distribution

service-time-

0..1

graph

entry-activity-

result-call

activity

reply-

0..1

post

1

pre

0..*

synch-call
distribution

service-time-
result-activity

1..3

activity

0..1

activities

entry-phase-

1

activity

pre pre-andpre-or post post-looppost-andpost-or

reply-entryprecedence

0..*

{ordered}

0..*

{ordered}

0..*

{ordered}

{ordered}

forwarding

0..*

{ordered}

Figure 3.1: Top-level LQN Schema. Elements shown inblueare results found in the output. Elements shown inred
are not implemented. Unless otherwise indicated, all elements are ordered from left to right.

23

3.2.1 LqnModelType

The first element in a layered queueing network XML input file is lqn-model , which is of typeLqnModel-
Type and is shown in Figure 3.2.LqnModelType has five elements, namely:run-control , plot-control ,
solver-params , processor andslot . Run-control andplot-control are not not implemented.Processor
is described under Section 3.2.2.Slot is described in [22]. The attributes forLqnModelType are shown in Table 3.1.

0..10..1 1..*

0..*0..1

0..* 0..11

lqx

lqn-schema-version: float
description: string
name: string

slot

lqn-model

result-general

processor

pragma

value: string

run-control

param: string

solver-paramsplot-control

underrelax_coeff: float
print_int: unsigned
it_limit: unsigned
conv_val: float
comment: string

LqnModelType

{ordered}

{ordered}

Figure 3.2: Top-level LQN Schema.

Name Type Use Default Comments
name string optional The name of the model.
description string optional A description of the model.
lqn-schema-version integer fixed 1.0 The version of the schema (used by the solver

in case of substantial schema changes for
model conversion.)

lqncore-schema-version integer fixed 1.0
xml-debug boolean optional false

Table 3.1: Attributes for elements of typeLqnModelType from Figure 3.2.

The elementsolver-params is used to set various operating parameters for the analyticsolver, and to record
various output statistics after a run completes. It contains the elementsresult-general and pragma . The
attributes forsolver-params are shown in Table 3.2. These attributes are mainly used to control the analytic
solver. Refer to Section 6.3 for more information. The attributes forresult-general are shown in Table 3.3.
Refer to Sections 2.1.1 and 2.1.2 for the interpretation of header information. The attributes forpragma are show in
Table 3.4. Refer to Section 6.2 for the pragmas supported by lqns and to Section 7.3 for the pragmas supported by
lqsim.

24

Name Type Use Default Comments
conv val float optional 1 Convergence value for lqns (c.f§6.3). Ignored by

lqsim.
it limit integer optional 50 Iteration limit for lqns (c.f§6.3). Ignored by lqsim.
print int integer optional 0 Print interval for intermediate results. The-t print

must be specified to lqns to generate output after
it limit iterations. Blocked statistics must be specified
to lqsim using the-A n, -B n, or -C n flags.

underrelax coeff float optional 0.5 Under-relaxation coefficient for lqns (c.f§6.3). Ig-
nored by lqsim.

Table 3.2: Attributes of elementsolver-params from Figure 3.2.

Name Type Use Default Comments

conv-val float required Convergence value (c.f. 2.1.1)
valid enumeration required EitherYESor NO.
iterations float optional The number of iterations of the analytic solver or

the number of blocks for the simulator.
elapsed-time string optional The wall-clock time used by the solver.
system-cpu-time string optional The CPU time spent in kernel-mode.
user-cpu-time string optional The CPU time spent in user mode.
platform-info string optional The operating system and CPU type.
solver-info string optional The version of the solver.

Table 3.3: Attributes of elementresult-general from Figure 3.2.

Name Type Use Default Comments

param string required The name of the parameter. (c.f. 6.2,§7.3)
value string required the value assigned to the pragma.

Table 3.4: Attributes of elementpragma from Figure 3.2.

25

3.2.2 ProcessorType

Elements of typeProcessorType, shown in Figure 3.3 are used to define the processors in the model. They contain
an optionalresult-processor element and elements of eitherGroupType or TaskType. Thescheduling
attribute must by set tocfs , for completely fair scheduling, ifGroupType elements are present and to any other type
if GroupType are not found.GroupType andTaskType elements may not be both be defined in a processor.

Elementresult-processor is of typeOutputResultType and is described in Section 3.2.12. Elementtask
is described in Section 3.2.4. The attributes ofProcessorType, described in A.1.3, are shown in Table 3.5.

1..*

1..*

1..*

0..*

ProcessorType

processor

speed-factor: float

quantum: float

result-processor

replication: unsigned
multiplicity: unsigned
scheduling: SchedulingType

name: string

task

group TaskType

GroupType

{xor}

share: float

{ordered}

cap: boolean

name: string

Figure 3.3: Processor Schema.

Name Type Use Default Comments
name string required
multiplicity integer optional 1 See§1.2
speed-factor float optional 1.0 Scaling factor for the processor.
scheduling enumeration optional fcfs The allowed scheduling types arefcfs , hol , pp ,

rand , inf , ps-hol , ps-pp andcfs . See§1.1.1.
replication integer optional 1 See§1.2
quantum float optional 0.0 Mandatory for processor sharing scheduling when us-

ing lqsim.

Table 3.5: Attributes for elements of typeProcessorType.

26

3.2.3 GroupType

Optional elements of typeGroupType, shown in Figure 3.3, are used to define groups of tasks for processors running
completely fair scheduling. Each group must contain a minimum of one task. The attributes ofGroupType are shown
in Table 3.6.

Name Type Use Default Comments
name string required
share float required The fraction of the processor allocated to this

group.
cap boolean optional false If true, shares arecaps (ceilings). Otherwise,

shares are guarantees (floors)

Table 3.6: Attributes for elements of typeGroupType

3.2.4 TaskType

Elements of typeTaskType, shown in Figure 3.4, are used to define the tasks in the model.These elements contain
an optionalresult-task element, one or more elements ofEntryType , and optionally, elements ofservice and
task-activities . Elementresult-task is of typeOutputResultType, and is described in Section 3.2.12.
Elemententry is described in Section 3.2.6. The attributes ofTaskType, described in Section A.1.5, are shown in
Table 3.7.

0..*

task-activities

EntryType

service

FanOutType

dest: string
value: unsigned

entry

source: string
value: unsigned

TaskType

FanInType

intially: unsigned

service-time-

distribution

activity-graph: bool
queue-length: unsigned

0..*

priority: unsigned

result-task

think-time: float
scheduling: SchedulingType
replication: unsigned
multiplicity: unsigned

{unordered}

name: string

fan-out

task

fan-in

0..* 0..*

TaskActivityGraph

{ordered}

1..* 1..* 0..*

Figure 3.4: TaskType

3.2.5 FanInType and FanOutType

3.2.6 EntryType

Elements of typeEntryType , shown in Figure 3.5, are used to define the entries of tasks. Entries can be specified one
of three ways, based on the attributetype of anentry element, namely:

27

Name Type Use Default Comments
name string required
multiplicity integer optional 1 See§1.2.
priority integer optional 0 The priority used by the processor for scheduling.

See§1.1.1.
queue-length integer optional 0 Maximum queue size (for open-class requests

only). See§1.1.3.
replication integer optional 1 See§1.2
scheduling enumeration optional FCFS The scheduling of requests at the task. The allowed

scheduling types areref , fcfs , hol , pri , inf ,
burst , andpoll andsemaphore . See§1.1.3.

activity-graph enumeration required yes or no

think-time float optional 0 Reference tasks only. Customer think time.

initially integer optional multiplicity Semaphore tasks only. Set the initial number of
semaphore tokens to zero. By default, the number
of tokens is set to the multiplicity of the task.

Table 3.7: Attributes for elements of typeTaskType

Name Type Use Default Comments
source integer required (See§1.2)
value integer required (See§1.2)

Table 3.8: Attributes for elements of typeFanInType.

Name Type Use Default Comments
dest integer required (See§1.2)
value integer required (See§1.2)

Table 3.9: Attributes for elements of typeFanOutType.

28

{unordered}

1..* 0..*

precedence reply-entryactivity

MakingCallType

dest: string
fanout: unsigned
fanin: unsigned

Graph

EntryActivity

EntryMaking
CallType

GraphBase
Activity

entry

calls-mean: float

forwarding
entry-activity-

graph

CallType

0..1

ActivityMaking

result-entry

EntryType

0..*

type: enumeration
semaphore: SemaphoreType
priority: integer
open-arrival-rate: float
name: string

activity

phase: 1..3

PhasesType
Activity

ActivityDefBase

Activities
Phase

activities

entry-phase-

call-order: CallOrderType
max-service-time: float
think-time: float
host-demand-cvsq: float
host-demand-mean: float
name: string

0..*

asynch-call

0..*

0..*

synch-call

1..3

prob: float

0..* 0..1

Figure 3.5: Schema for typeEntryType .

29

ph1ph2 The entry is specified using phases. The phases are specified using anentry-phase-activities
element which is of theActivityPhasesTypetype. Activities defined within this element must have a unique
phase attribute.

graph The entry is specified as an activity graph defined within the entry. The demand is specified using elements
of typeActivityEntryDefType . This method of defining an entry is not supported currently.

none The entry is specified using an activity graph defined within the task. Atask-activities element
of type ActivtyDefType must be present and one of the activities defined within this element must have a
bound-to-entry attribute. TheTaskActivityGraph type is defined in Section 3.2.8.

ActivityPhasesType, ActivityEntryDefType andActivtyDefType are all based onActivityDefBase, described in
Section 3.2.9. They only differ in the way the start of the graph is identified, and in the case ofActivityPhasesType,
the way the activities are connected.

The attributes forEntryType , described in Section A.1.6, are shown in Table 3.10. The optional elementresult-entry
is of typeOutputResultType, and is described in Section 3.2.12. The optional elementforwarding is used to de-
scribe the probability of forwarding a request to another entry; it is described in Section 3.2.10.

Name Type Use Default Comments
name string required The entry name
type enumeration required PH1PH2, GRAPH, or NONE
open-arrival-rate float optional
priority integer optional (c.f. 1.1.3)
sempahore enumeration optional signal or wait (c.f. 1.1.3)

Table 3.10: Attributes for elements of typeEntryType .

3.2.7 ActivityGraphBase

Elements of typeActivityGraphBase, shown in Figure 3.6, are used to define activities (c.f. 1.1.5) and their relation-
ships to each other. They are used by elements of bothEntryType andTaskActivityGraph types.

Elements of theActivityGraphBase consist of a sequence of one or moreactivity elements followed by
a sequence ofprecedence elements.Activity elements are used to store the demand for an activity and re-
quests to other servers (through theActivityDefType) and, optionally, results through elements ofActivityDefType .
Precedence elements are defined by thePrecedenceTypein Section 3.2.11.

3.2.8 TaskActivityGraph

Task Activity Graphs, defined using elements of typeTaskActivityGraph and shown in Figure 3.6, are used to specify
the behaviour of a task using activities. This type is almostthe same asEntryActivityGraph , except that the activity
that replies to an entry must explicitly specify the entry for which the reply is being generated. The actual activity
graph is defined using elements of typeActivityGraphBase, described in Section 3.2.7. The attributes for elements
reply-entry andreply-activity are shown in Tables 3.11 and 3.12 respectively.

Name Type Use Default Comments
name string required The name of the entry for which the list of

reply-activity elements generate replies.

Table 3.11: Attributes of elementreply-entry from Figure 3.6.

30

0..*

0..*

0..*

1..* 0..*

0..*

GraphBase

task-activities

EntryActivity

Activity

TaskActivity

entry-activity-

graph

Graph

precedence

asynch-callresult-activity
distribution

service-time-
synch-call

fanout: unsigned

EntryActivity
DefType

fanin: unsigned
dest: string

MakingCallType

first-activity: string

name: string
host-demand-mean: float
host-demand-cvsq: float
think-time: float
max-service-time: float
call-order: CallOrderType

ActivityMaking

ActivityDefBase

CallType

calls-mean: float

activity

phase: 1..3

activity

PhasesType
Activity

bound-to-entry: string

ActivityDefType

reply-activity

name:string

name:string

{ordered}

0..*

reply-entry

Graph

0..*

{unordered}

{ordered}{ordered}

{ordered}

Figure 3.6: Schema diagram for the typeActivityGraphBase

Name Type Use Default Comments
name string required The name of the activity which generates a reply. The

entry is either implicitly defined if this element is de-
fined within an EntryType , or part of list defined
within a reply-element .

Table 3.12: Attributes of elementreply-activity from Figure 3.6.

31

3.2.9 ActivityDefBase

The typeActivityDefBase, shown in Figure 3.6, is used to define the parameters for an activity, such as demand and
call-order. This type is extended byActivityPhasesType, EntryActivityDefType , andActivityDefType to define
the requests from an activity to an entry, and to connect the activity graph to the requesting entry. Table 3.13 lists
the parameters used as attributes and the attributes used bythe three sub-types. Refer to Section A.1.7 for more in-
formation on these parameters. Refer toMakingCallType (§3.2.10) for theActivity-CallGroup used to make
requests to other entries2. Refer toOutputResultForwardingANDJoinDelay (§3.2.13) forresult-join-delay
andresult-forwarding for join-delay and forwarding results respectively. Referto OutputDistributionType
(§3.2.14) forservice-time-distribtion . Finally, refer toOutputResultType (§3.2.12) forresult-activity .
This element contains most of the results for an activity or phase.

Name Type Use Default Comments
name string required
host-demand-mean float required The mean service time demand for

the activity.
host-demand-cvsq float optional 1.0 The squared coefficient of varia-

tion for the activity.
think-time float optional 0.0
max-service-time float optional 0.0
call-order enumeration optional STOCHASTIC STOCHASTIC or

DETERMINISTIC

ActivtyPhasesType
phase integer required 1, 2, or 3

ActivtyEntryDefType
first-activity string required

ActivtyDefType
bound-to-entry string optional If set, this activity is the start of an

activity graph.

Table 3.13: Attributes for elements of typeActivityDefBase.

3.2.10 MakingCallType

The typeMakingCallType , shown in Figure 3.7, is used to define the parameters for requests to entries. This type is
extended byActivityMakingCallType andEntryMakingCallType to defined requests from activities to entries and
for forwarding requests from entry to entry respectively. Requests from activities to entries can be either synchronous,
(i.e., arendezvous), through async-call element, or asynchronous (i.e., asend-no-reply), through aasync-call
element. Section 1.1.7 defines the parameters for a request.Table 3.14 lists the attributes for the types.

Name Type Use Default Comments
dest string required The name of the entry to which the requests are made.

ActivityMakingCallType

calls-mean float required The mean number of requests.

EntryMakingCallType

prob float required The probability of forwarding requests.

Table 3.14: Attributes for elements of typeMakingCallType .

2Call-List-Group is not defined at present.

32

{unordered}

dest: string

MakingCallType

synch-call

forwarding

calls-mean: float

CallType
ActivityMakingentry activity

CallType

prob: float

0..*

0..*

asynch-call

0..*

EntryMaking

Figure 3.7: Schema diagram for the groupMakingCallType .

3.2.11 PrecedenceType

The typePrecedenceType, shown in Figure 3.8, is used to connect one activity to another within an activity graph.
Each element of this type contains exactly onepre element and, optionally, onepost element. The pre elements
are referred to asjoin-lists as all of the branches associated with the activitiesin the join-list must finish (i.e. “join”)
before the activities in the subsequent post element can start. The post element itself is referred to as afork-list.

Elements ofPrecedenceTypecan be of one of five types:

SingleActivityListType: Elements of this type have no attributes and a sequence of exactly oneactivity element
of ActivityType .

ActivityListType: Elements of this type have no attributes and a sequence one ormore activity elements of
ActivityType .

AndJoinListType: Elements of this type have an optionalquorum element and a sequence of one or more or more
activity elements ofActivityType . Table 3.15 show the attributes ofAndJoinListType .

OrListType: Elements of this type have no attributes and a sequence one ormoreactivity elements ofActivity-
OrType. These elements specify an activity name and a branch probability. Table 3.16 show the attributes of
ActivityOrType .

ActivityLoopListType: Elements of this type have one optional attribute and a sequence one or moreactivity
elements ofActivityLoopType . These elements specify an activity name and a loop count. The optional
attribute is used to specify the activity that is executed after all the loop branches complete. Tables 3.17 and 3.18
show the attributes ofActivityLoopListType andActivityLoopType respectively.

Name Type Use Default Comments
name string required
quorum integer optional 0 The number of branches which must complete for the

join to finish. If this attribute is not specified, then all
of the branches must finish, which makes this object
an AND-Join

Table 3.15: Attributes for elements of typeAndJoinListType .

33

quorum: unsigned

1..* 1..*

{ordered}

1

0..*

1..* 1..*

end: string

0..*

ListType

pre

Or

ListTypeListType

name: string

ActivityType

Activity

activity
service-time

distribution

activity

result-join-

delay

count: float

ActivityLoop

Type

precedence

PrecedenceType

pre-AND

SingleActivity

ListType

activity

prob: float

Type

ActivityOr

post-LOOPpost-OR

0..11

post-AND

ListType

AndJoin

pre-OR

postpre

post

{ordered}

ActivityLoop

Figure 3.8: Schema diagram for the typePrecedenceType.

Name Type Use Default Comments
name string required
prob float optional 1.0 The probability that the branch is taken, on average

(c.f. §1.1.6)

Table 3.16: Attributes for elements of typeActivityOrType .

Name Type Use Default Comments
end string required

Table 3.17: Attributes for elements of typeActivityLoopListType .

Name Type Use Default Comments
count float optional 1.0 The number of times the loop is executed, on average

(c.f. §1.1.6)

Table 3.18: Attributes for elements of typeActivityLoopType .

34

3.2.12 OutputResultType

The typeOutputResultType, shown in Figure 3.9, is used to create elements that store results described earlier in
Section 2. OutputResultType is a subtype ofResultContentType. This latter type defines the result element’s
attributes. Elements of thisOutputResultType can contain two elements of typeResultContentType, which contain
the±95% and±99% confidence intervals, provided that these results are available. The attributes for elements of
ResultContentTypeare listed in Table 3.19 and are used to store the actual results produced by the solver. Note that
all the attributes are optional: elements of this type will only have those attributes which are relevant.

0..10..1

result-callresult-entry result-activity

result-99-confresult-95-conf

result-taskresult-groupresult-processor

Result
ContentType

Output
ResultType

Figure 3.9: Schema diagram for typeOutputResultType

3.2.13 OutputResultJoinDelayType

The typeOutputResultJoinDelayType is similar toOutputResultType. The attributes of this type are shown in
Table 3.20.

3.2.14 OutputDistributionType

Elements of typeOutputDistributionType , shown in Figure 3.11, are used to define and store histogramsof phase
and activity service times. The optionalunderflow-bin , overflow-bin andhistogram-bin elements, all
the elements are of typeHistogramBinType, are used to store results.

The attributes ofOutputDistributionType elements are used to both store the parameters for the histogram, and
output statistics. Refer to Table 3.21

3.2.15 HistogramBinType

3.3 Schema Constraints

The schema contains a set of constraints that are checked by the Xerces XML parser [1] to ensure that the model file
is valid. XML editors can also enforce these constraints so that the model is somewhat correct before being passed to
the simulator or analytic solver. The constraints are as follow:

• All processor must have a unique name.

• All tasks must have a unique name.

35

Name Type Comments (xref)

proc-utilization float Processor utilization for a task, entry, or ac-
tivity.

§2.16

proc-waiting float Waiting time at a processor for an activity. §2.16
phaseX-proc-waiting float Waiting time at a processor for phaseX of an

entry.
§2.16)

open-wait-time float Waiting time for open arrivals. §2.15
service-time float Activity service time. §2.9
loss-probability float Probability of dropping an asynchronous

message.
§2.3

phaseX-service-time float Service time for phase X of an entry. §2.9
service-time-variance float Variance for an activity. §2.10
phaseX-service-time-variance float Variance for phaseX of an entry. §2.10
phaseX-utilization float Utilization for phaseX of an entry. §2.14
prob-exceed-max-service-time float §2.12
squared-coeff-variation float Squared coefficient of variation over all

phases of an entry
§2.10

throughput-bound float Throughput bound for an entry. §2.2

throughput float Throughput for a task, entry or activity. §2.14
utilization float Utilization for a task, entry, activity. §2.14

waiting float Rendezvous delay §2.3
waiting-variance float Variance of delay for a rendezvous §2.4

Table 3.19: Attributes for elements of typeResultContentType.

0..*

0..10..1

ResultJoinDelay

result-99-confresult-95-conf

JoinDelayType
OutputResult

delay

result-join-

ContentType

Figure 3.10: Schema diagram for typeOutputResultJoinDelayType

Name Type Comments (xref)

join-waiting float Join delay §2.8
join-variance float Join delay variance §2.8

Table 3.20: Attributes for elements of typeOutputResultJoinDelayType.

36

underflow-bin histogram-bin overflow-bin

0..1 0..* 0..1

begin: float

Output

DistributionType

conf-99: float

min: float
max: float
bin-size: float
number-bins: unsigned
mean: float
std-dev: float

conf-95: float
prob: float

service-time-

distribution

end: float

BinType

pre-ANDactivity

Histogram

task

0..*

Figure 3.11: Schema for typeOutputDistributionType .

Name Type Use Default Comments
min float required The lower bound of the collected histogram data.
max float required The upper bound of the collected histogram data.
number-bins integer optional 20 The number of bins in the distribution.

mid-point float optional
bin-size float optional

Table 3.21: Attributes for elements of typeOutputDistributionType .

Name Type Comments (xref)

begin float Lower limit of the bin.
end float Upper limit of the bin.
prob float The probability that the measured value lies

within begin andend .
conf-95 float
conf-99 float

Table 3.22: Attributes for elements of typeHistogramBinType.

37

• All entries must have a unique name.

• All activities must have a unique name within a given task.

• All synchronous requests must have a valid destination.

• All asynchronous requests must have a valid destination.

• All forwarding requests must have a valid destination.

• All activity connections (in precedence blocks) must referto valid activities.

• All activity replies must refer to a valid entry.

• All activity loops must refer to a valid activities.

• Each entry has only one activity bound to it.

• Phases are restricted to values one through three.

• All phase attributes within an entry must be unique.

Further validation is performed by the solver itself. Referto Section 8 for the error messages generated.
One downside of using the Xerces XML parser library is that the Xerces tends to give rather cryptic error messages

when compared to other tools. If an XML file fails to pass the validation phase, and the error looks cryptic, chances
are very good that there is a genuine problem with the XML input file. Xerces has a bad habit of coming back with
cryptic errors when constraint checking fails, and only gives you the general area in the file where the actual problem
is.

One easy and convenient solution around this problem is to validate the XML file using another XML tool. Tools
that have been found to give more user friendly feedback are XMLSpy (any edition), and XSDvalid (Java based, freely
available). Another solution is to check if a particular tool can de-activate schema validation and rely on the actual
tool to do its own internal error checking. Currently this isnot supported in any of the LQN tools which are XML
enabled, but it maybe implemented later on.

If the XML file validates using other tools, but fails validation with Xerces, or if the XML file fails validation on
other tools, but passes with Xerces then please report the problem. The likelihood of validation passing with Xerces
and not other tools will be much higher then the reverse scenario, because Xerces does not rigorously apply the XML
Schema standard as other tools. Other sources of problems could be errors in the XML schema itself, or some unknown
bug in the Xerces library.

38

Chapter 4

LQX Users Guide

4.1 Introduction to LQX

The LQX programming language is a general purpose programming language used for the control of input parameters
to the Layer Queueing Network Solversystem for the purposesof sensitivity analysis. This language allows a user to
perform a wide range of different actions on a variety of different input sources, and to subsequently solve the model
and control the output of the resulting data.

4.1.1 Input File Format

The LQX programming language follows grammar rules which are very similar to those of ANSI C and PHP. The
main difference between these languages and LQX is that LQX is a loosely typed language with strict runtime type-
checking and a lack of variable coercion (“type casting”). Additionally, variables need not be declared before their
first use. They do, however, have to be initialized. If they are un-initialized prior to their first use, the program will
fail.

Comment Style

LQX supports two of the most common commenting syntaxes, “C-style” and “C++-style.” Any time the scanner
discovers two forward slashes side-by-side (//), it skips any remaining text on that line (until it reaches anewline).
These are “C++-style” comments. The other rule that the scanner uses is that should it encounter a forward slash
followed by an asterisk (“/*”), it will ignore any text it finds up until a terminating asterisk followed by a slash (“*/”).
The preferred commenting style in LQX programs is to use “C++-style” comments for single-line comments and to
use “C-style” comments where they span multiple lines. Thisis a matter of style.

Intrinsic Types

There are 5 intrinsic types in the LQX programming languages:

• Number: All numbers are stored in IEEE double-precision floating point format.

• String: Any literal values between (“) and (”) in the input.

• Null : This is a special type used to refer to an “empty” variable.

• Boolean: A type whose value is limited to either “true” or “false.”

• Object: An semi-opaque type used for storing complex objects. See “Objects.”

• File Handle File handles to open files for writing/appending or reading.See “File Handles.”

39

LQX also supports a pseudo-intrinsic “Array” type. Whereasfor any other object types, the only way to interact
with them is to explicitly invoke a method on them, objects oftype Array may be accessed withoperator [] and
with operator []= , in a familiar C- and C++-style syntax.

The Object type also allows certain attributes to be exposedas “properties.” These values are accessed with the
traditional C-styleobject.property syntax. An example property is thesize property for an object of type
Array, accessed asarray.size Only instances of type Object or its derivatives have properties. Number, String,
Null and Boolean instances all have no properties.

Built-in Operators

Arrays and Iteration

The built-in Array type is very similar to that used by PHP. Itis actually a hash table, also known as a “Dictionary” or
a “Map” for which you may use any object as a key, and any objectas a value. It is important to realize that different
types of keys will reference different entries. That is to say thatinteger 0 andstring ‘‘0’’ will not yield the
same value from the Array when used as a key.

The Array object exposes a couple of convenience APIs, as detailed in Section 4.2. These methods are simply
short-hand notation for the full function calls they replace, and provide no additional functionality. Arrays may be
created in three different ways:

• array create(...) andarray create map(key,value,...) :
The explicit, but long and wordy way of creating an array of objects or a map is by using the standard functional
API. array create(...) takes an arbitrary number of parameters (from 0 up to the maximum specified,
for all practical purposes infinity), and returns a new Arrayinstance consisting of[0=>arg1, 1=>arg2,
2=>arg3, ...] .

The other function,array create map(key,value,...) takes an even number of arguments, from 0
to 2n. The first argument is used as the key, and the second argument used as the value for that key, and so on.
The resulting Array instance consists of[arg1=>arg2, arg3=>arg4, ...] . Both of these methods are
documented in Section 4.2.

• [arg1, arg2, ...]: Shorthand notation forarray create(...)

• {k1=>v1, k2= >v2, ... }: Shorthand notation forarray create map(...)

The LQX language supports two different methods of iterating over the contents of an Array. The first involves
knowing what the keys in the array actually are. This is a “traditional” iteration.

1 /* Traditional Array Iteration */
2 for (idx = 0; key < array.size; idx=idx+1) {
3 print("Key ", idx, " => ", array[idx]);
4 }

In the above code snippet, we assume there exists an array which containsn values, stored at indexes 0 through
n-1 , continuously. However, the language provides a more elegant method for iterating over the contents of an array
which does not require prior knowledge of the contents of thearray. This is known as a “foreach ” loop. The
statement above can be rewritten as follows:

1 /* More modern array itteration */
2 foreach (key, value in array) {
3 print("Key ", key, " => ", value);
4 }

This method of iteration is much cleaner and is the recommended way of iterating over the contents of an array.
However, there is little guarantee of the order of the results in a foreach loop, especially when keys of multiple
different types are used.

40

Type Casting

The LQX programming language provides a number of built-in methods for converting between variables of different
types. Any of these methods support any input value type except for the Object type. The following is a non-extensive
list of use cases for each of the different type casting methods and the results. Complete documentation is provided in
Section 4.2.

str(...)
str() “”
str(1.0) “1”
str(1.0, "+",
true)

“1+true”

str([1.0, "t"]) “[0=>1, 1=>t]”
str(null) “(null)”

double(?)
double(1.0) 1.0
double(null) 0.0
double("9") 9.0
double(true) 1.0
double([0]) null

boolean(?)
boolean(1.0) true
boolean(17.0) true
boolean(-9.0) true
boolean(0.0) false
boolean(null) false
boolean("yes") true
boolean(true) true
boolean([0]) null

User-Defined Functions

The LQX programming language has support for user-defined functions. When defined in the language, functions do
not check their arguments types so every effort must be takento ensure that arguments are the type that you expect
them to be. The number of arguments will be checked. Variable-length argument lists are also supported with the
use of the ellipsis (...) notation. Any arguments given that fall into the ellipsis are converted into an array named
(va list) in the functions’ scope. This is a regular instance of Arrayconsisting of 0 or more items and can be
operated on using any of the standard operators.

User-defined functions donot have access to any variables except their arguments and External ($-prefixed) and
Constant (@-prefixed) variables. Any additional variablesmust be passed in as arguments, and all values must be
returned. All arguments are inonly. There are no out or inout arguments supported. All arguments are copied,
pass-by-value. The basic syntax for declaring functions isas follows:

1 function <name>(<arg1>, <arg2>, ...) {
2 <body>
3 return (value);
4 }

You can return a value from a function anywhere in the body using thereturn function. A function which
reaches the end of its body without a call to return will automatically return NULL.return() is a function, not a
language construct, and as such the brackets are required. The number of arguments is not limited, so long as each
one has a unique name there are no other constraints.

4.1.2 Writing Programs in LQX

Hello, World Program

A good place to start learning how to write programs in LQX is of course the traditional Hello World program. This
would actually be a single line, and is not particularly interesting. This would be as follows:

41

1 println("Hello, World!");

The “println() ” function takes an arbitrary number of arguments of any typeand will output them (barring a
file handle as the first parameter) to standard output, followed by a newline.

Fibonacci Sequence

This particular program is a great example of how to perform flow control using the LQX programming language. The
Fibonacci sequence is an extremely simple infinite sequencewhich is defined as the following piecewise function:

fib(X) =

{

1 x = 0, 1
fib(x − 1) + fib(x− 2) otherwise

(4.1)

Thus we can see that the Fibonacci sequence is defined as a recursive sequence. The naive approach would be to
write this code as a recursive function. However, this is extremely inefficient as the overhead of even simple recursion
in LQX can be substantial. The best way is to roll the algorithm into into a loop of some type. In this case, the loop is
terminated when we have reached a target number in the Fibonacci sequence{ 1, 1, 2, 3, 5, 8, 13, 21, ...}.

1 /* Initial Values */
2 fib_n_minus_two = 1;
3 fib_n_minus_one = 1;
4 fib_n = 0;
5

6 /* Loop until we reach 21 */
7 while (fib_n < 21) {
8 fib_n = fib_n_minus_one + fib_n_minus_two;
9 fib_n_minus_two = fib_n_minus_one;

10 fib_n_minus_one = fib_n;
11 println("Currently: ", fib_n);
12 }

As you can see, this language is extremely similar to C or PHP.One of the few differences as far as expressions are
concerned is that pre-increment/decrement and post-increment/decrement are not supported. Neither are short form
expressions such as+=, -=, * =, /= , etc.

Re-using Code Sections

Many times, there will be code in your LQX programs that you would like to invoke in many places, varying only the
parameters. The LQX programming language does provide a pretty standard functions system as described earlier.
Bearing in mind the caveats (some degree of overhead in function calls, plus the inability to see global variables
without having them passed in), we can make pretty ingenioususe of user-defined functions within LQX code.

When defining functions, you can specify only the number of arguments, not their types, so you need to make sure
things are what you expect them to be, or your code may not perform as you expect. We will begin by demonstrating
a substantially shorter (but as described earlier) much less efficient implementation of the Fibonacci Sequence using
functions and recursion.

1 function fib(n) {
2 if (n == 0 || n == 1) { return (1); }
3 return (fib(n-2) + fib(n-1));
4 }

Once defined, a function may be used anywhere in your code, even in other user defined functions (and itself —
recursively). This particular example functions very wellfor the first 10-11 fibonacci numbers but becomes substan-
tially slower due to the increased number of relatively expensive function invocations.Remember, return() is a
function, not a language construct. The brackets are required.

A much more interesting use of functions, specifically thosewith variable length argument lists, is an implemen-
tation of the formula for standard deviation of a set of values:

42

1 function average(/*Array<double>*/ inputs) {
2 double sum = 0.0;
3 foreach (v in inputs) { sum = sum + v; }
4 return (sum / inputs.size);
5 }
6

7 function stdev(/*boolean*/ sample, ...) {
8 x_bar = average(_va_list);
9 sum_of_diff = 0.0;

10

11 /* Figure out the divisor */
12 divisor = _va_list.size;
13 if (sample == true) {
14 divisor = divisor - 1;
15 }
16

17 /* Compute sum of difference */
18 foreach (v in _va_list) {
19 sum_of_diff = sum_of_diff + pow(v - x_bar, 2);
20 }
21

22 return (pow(sum_of_diff / divisor, 0.5));
23 }

You can then proceed to compute the standard deviation of thevariable length of arguments for either sample or
non-sample values as follows, from anywhere in your programafter it has been defined:

1 stdev(true, 1, 2, 5, 7, 9, 11);
2 stdev(false, 2, 9, 3, 4, 2);

Using and Iterating over Arrays

As mentioned in the “Arrays and Iteration” under section 1.1of the Manual, LQX supports intrinsic arrays and
foreach iteration. Additionally, any type of object may be used as either a key or a value in the array. The fol-
lowing example illustrates how values may be added to an array, and how you can iterate over its contents and print it
out. The following snippet creates an array, stores some key-value pairs with different types of keys and values, looks
up a couple of them and then iterates over all of them.

1 /* Create an Array */
2 array = array_create();
3

4 /* Store some key-value pairs */
5 array[0] = "Slappy";
6 array[1] = "Skippy";
7 array[2] = "Jimmy";
8

9 /* Iterate over the names */
10 foreach (index,name in array) {
11 print("Chipmunk #", index, " = ", name);
12 }
13

14 /* Store variables of different types, shorthand */
15 array = { true => 1.0, false => 3.0, "one" => true, "three" => false}
16

43

17 /* Shorthand indexed creation with iteration */
18 foreach (value in [1,1,2,3,5,8,13]) {
19 print ("Next fibonacci is ", value);
20 }

4.1.3 Program Input/Output and External Control

The LQX language allows users to write formatted output to external files and standard output and to read input data
from external files/pipes and standard input. These features may be combined to allow LQNX to be controlled by a
parent process as a child process providing model solving functionality. These capabilities will be described in the
following sections.

File Handles

The LQX language allows users to open files for program input and output. Handles to these open files are stored in
the symbol table for use by the print() functions for file output and the readdata() function for data input. Files may
be opened for writing/appending or for reading. The LQX interpreter keeps track of which file handles were opened
for writing and which were opened for reading.

The following command opens a file for writing. If it exists itis overwritten. It is also possible to append to an
existing file. The three options for the third parameter arewrite , append , andread .

1 file_open(output_file1, "test_output_99-peva.txt", wr ite);

To close an open file handle the following command is used:

1 file_close(output_file1);

File Output

Program output to both files and standard output is possible with the print functions. If the first parameter to the
functions is an existing file handle opened for writing output is directed to that file. If the first parameter is not a file
handle output is sent to standard output. Standard output isuseful when it is desired to control LQNX execution from
a parent process using pipes. If the given file handle has beenopened for reading instead of writing a runtime error
results.

There are four variations of print commands with two options. One option is a newline at the end of the line. It is
possible to specify additional newlines with theendl parameter. The second option is controlling the spacing between
columns either by specifying column widths in integers or supplying a text string to be placed between columns.

The basic print functions areprint() andprintln() with the ln specifying a newline at the end.

1 println(output_file1, "Model run #: ", i, " t1.throughput: ", t1.throughput);
2

3 print(output_file1, "Model run #: ", i, " t1.throughput: ", t1.throughput, endl);

It should be noted that with the extraendl parameter both of these calls will produce the same output. The
acceptable inputs to all print functions are valid file handles, quoted strings, LQX variables that evaluate to numerical
or boolean values (or expressions that evaluate to numerical/boolean values) as well as the newline specifierendl .
Parameters should be separated by commas.

To print to standard output no file handle is specified as follows:

1 println("subprocess lqns run #: ", i, " t1.throughput: ", t1 .throughput);

To specify the content between columns the print functionsprint spaced() andprintln spaced() are
used. The first parameter after the file handle (the second parameter when a file handle is specified) is used to specify
either column widths or a text string to be placed between columns. If no file handle is specified as when printing to
standard output then the first parameter is expected to be thespacing specifier. The specifier must be either an integer
or a string.

44

The following println spaced() command specifies the string", " to be placed between columns. It
could be used to create comma separated value (csv) files.

1 println_spaced(output_file2, ", ", $p1, $p2, $y1, $y2, t1. throughput);

Example output: 0, 2, 0.1, 0.05, 0.0907554
The followingprintln spaced() command specifies the integer 12 as the column width.

1 println_spaced(output_file3, 12, $p1, $p2, $y1, $y2, t1.t hroughput);

Reading Input Data from Files/Pipes

Reading data from input files/pipes is done with theread data() function. Data can either be read from a valid
file handle that has been opened for reading or from standard input. Reading data from standard input is useful when
is useful when it is desired to control LQNX execution from a parent process using pipes. If the given file handle has
been opened for writing rather than reading a runtime error results. The first parameter is either a valid file handle
for reading or the stringsstdout or - specifying standard input. The data that can be read can be either numerical
values or boolean values.

There are two forms in which theread data() function can be used. The first is by specifying a list of LQX
variables which correspond to the expected inputs from the file/pipe. This requires the data inputs from the pipe to be
in the expected order.

1 read_data(input_file, y, p, keep_running);

The second form in which theread data() function can be used is much more robust. It can go into a loop
attempting to read string/value pairs from the input pipe until a termination stringSTOPREAD is encountered. The
string must corespond to an existing LQX variable (either numeric or boolean) and the corresponding value must be
of the same type.

1 read_data(stdin, read_loop);

Sample input:

1 y 10.0 p 1.0 STOP_READ
2 continue_processing false STOP_READ

Controlling LQNX from a Parent Process

The file output and data reading functions can be combined to allow an LQNX process to be created and controlled by
a parent process through pipes. Input data can be read in frompipes, be used to solve a model with those parameters
and the output of the solve can be sent back through the pipes to the parent process for analysis. A LQX program
can easily be written to contain a main loop that reads input,solves the model, and returns output for analysis. The
termination of the loop can be controlled by a boolean flag that can be set from the parent process.

This section describes an example of how to control LQNX execution from a parent process, in this case aperl
script which uses theopen2() function to create a child process with both the standard input and output mapped to
file handles in theperl parent process. This allows data sent from the parent to be read withread data(stdin,
...) and output from the LQX print statements sent to standard output to be received for analysis in the parent.

This also provides synchronization between the parent and the child LQNX processes. Theread data() func-
tion blocks the LQNX process until it has received its expected data. Similarly the parent process can be programmed
to wait for feedback from the child LQNX process before it continues.

The following is an example perl script that can be used to control a LQNX child process.

1 #!/usr/bin/perl -w
2 # script to test the creation and control of an lqns solver subprocess
3 # using the LQX language with synchronization
4

45

5 use FileHandle;
6 use IPC::Open2;
7

8 @phases = (0.0, 0.25, 0.5, 0.75, 1.0);
9 @calls = (0.1, 3.0, 10.0);

10

11 # run lqnx as subprocess receiving data from standard input
12 open2(* lqnxOutput, * lqnxInput, "lqnx 99-peva-pipe.lqnx");
13

14 for $call (@calls) {
15 for $phase (@phases) {
16 print(lqnxInput "y ", $call, " p ", $phase, " STOP_READ ");
17 while($response = <lqnxOutput>) !˜ m/subprocess lqns run/){}
18 print("Response from lqnx subprocess: ", $response);
19 }
20 }
21

22 # send data to terminate lqnx process
23 print(lqnxInput "continue_processing false STOP_READ");

The above program invokes the lqnx program with its input fileas a child process withopen2() . Two file handles
are passed as parameters. These will be used to send data overthe pipe to the LQNX process to be received as standard
input and to receive feedback from the LQX program which it sends as standard output.

The while loop at line 17 waits for the desired feedback from the model solve before continuing. This example
uses stored data but a real application such as optimizationwould need to analyze the feedback data to decide which
data to send back in the next iteration therefore this synchronization is important.

When the data is exhausted the LQNX process needs to be told toquit. This is done with the final print statement
which sets the continueprocessing flag to false. This causes the main loop in the LQX program which follows to quit.

1 <lqx><![CDATA[
2

3 i = 1;
4 p = 0.0;
5 y = 0.0;
6 continue_processing = true;
7

8 while (continue_processing) {
9

10 read_data(stdin, read_loop); /* read data from input pipe */
11

12 if(continue_processing) {
13

14 $p1 = 2.0 * p;
15 $p2 = 2.0 * (1 - p);
16 $y1 = y;
17 $y2 = 0.5 * y;
18 solve();
19

20 /* send output of solve through stdout through pipe */
21 println("subprocess lqns run #: ", i, " t1.throughput: ", t1 .throughput);
22 i = i + 1;
23 }
24 }

46

25]]></lqx>

The variablesp, y , andcontinue processing all need to be initialized to their correct types before the
loop begins as they need to exist when theread data() function searches for them in the symbol table. This is
necessary as they are all local variables. External variables that exist in the LQN model such as$p and$y don’t need
initialization.

4.1.4 Actual Example of an LQX Model Program

The following LQX code is the complete LQX program for the model designatedpeva-99 . The model itself contains
a few model parameters which the LQX code configures, notably$p1 , $p2 , $y1 and$y2 . The LQX program is
responsible for setting the values of all model parameters at least once, invoking solve and optionally printing out
certain result values. Accessing of result values is done via the LQNS bindings API documented in Section 3.

The program begins by defining an array of values that it will be setting for each of the external variables. By
enumerating as follows, the program will set the variables for the cross product ofphase andcalls .

1 phase = [0.0, 0.25, 0.5, 0.75, 1.0];
2 calls = [0.1, 3.0, 10.0];
3 foreach (idx,p in phase) {
4 foreach (idx,y in calls) {

Next, the program uses the input valuesp andy to compute the values of$p1 , $p2 , $y1 and$y2 . Any assign-
ment to a variable beginning with a$ requires that variable to have been defined externally, within the model definition.
When such an assignment is made the value of the right-hand side is effectively put everywhere the left-hand side is
found within the model.

5 $p1 = 2.0 * p;
6 $p2 = 2.0 * (1 - p);
7 $y1 = y;
8 $y2 = 0.5 * y;

Since all variables have now been set, the program invokes the solve function with its optional parameter, the
suffix to use for the output file of the current run. This particular program outputsin.out-$p1-$p2-$y1-$y2
files, so that results for a given set of input values can easily be found. As shown in the documentation in Section 3,
solve(<opt> suffix) will return a boolean indicating whether or not the solutionconverged, and this program
will abort when that happens, although that is certainly nota requirement.

9 if (solve(str($p1,"-",$p2,"-",$y1,"-",$y2)) == false) {
10 println("peva-99.xml:LQX: Failed to solve the model prope rly.");
11 abort(1, "Failed to solve the model.");
12 } else {

The remainder of the program outputs a small table of resultsfor certain key values of interest to the person running
the solution using the APIs in Section 3.

13 t0 = task("t0");
14 p0 = processor("p0");
15 e0 = entry("e0");
16 ph1 = phase(e0, 1);
17 ctoe1 = call(ph1, "e1");
18 println("+-------------------------------------+");
19 println("t0 Throughput: ", t0.throughput);
20 println("t0 Utilization: ", t0.utilization);
21 println("+ ----- +");
22 println("e0 Throughput: ", e0.throughput);
23 println("e0 TP Bound: ", e0.throughput_bound);
24 println("e0 Utilization: ", e0.utilization);

47

25 println("+ ----- +");
26 println("ph Utilization: ", ph1.utilization);
27 println("ph Svt Variance:", ph1.service_time_variance) ;
28 println("ph Service Time:", ph1.service_time);
29 println("ph Proc Waiting:", ph1.proc_waiting);
30 println("+ ----- +");
31 println("call Wait Time: ", ctoe1.wait_time);
32 println("+-------------------------------------+");
33 }
34 }
35 }

4.2 API Documentation

4.2.1 Built-in Class: Array

Summary of Attributes
numeric size The number of key-value pairs stored in the array.

Summary of Constructors
object[Array] array create(...) This method returns a new instance of the Array class,

where each the first argument to the method is mapped
to index numeric(0), the second one to numeric(1) and
so on, yielding[0= >arg0, 1= >arg1, ...]

object[Array] array create map(k,v,...) This method returns a new instance of the Array class
where the first argument to the constructor is used
as the key, and the second is used as the value, and
so on. The result is a n array[arg0= >arg1,
arg2= >arg3,...]

Summary of Methods
null array set(object[Array]

a, ? key, ? value)
This method sets the valuevalue of any type for the
keykey of any type, for arraya. The shorthand nota-
tion for this operation is to use theoperator [] .

ref<?> array get(object[Array]
a, ? key)

This method obtains a reference to the slot in the array
a for the keykey . If there is no value defined in the
array yet for the given key, a new slot is created for
that key, assigned to NULL, and a reference returned.

boolean array has(object[Array]
a, ? key)

Returns whether or not there is a value defined on array
a for the given key,key .

4.2.2 Built-in Global Methods and Constants

Intrinsic Constants

Summary of Constants
double @infinity IEEE floating-point numeric infinity.
double @type un The typeid for an Undefined Variable.
double @type boolean The typeid for a Boolean Variable.
double @type double The typeid for a Numeric Variable.
double @type string The typeid for a String Variable.
double @type null The typeid for a Null Variable.

48

General Utility Functions

Summary of Methods
null abort(numeric n, string

r)
This call will immediately halt the flow of the program,
with failure coden and description stringr . This can-
not be “caught” in any way by the program and will
result in the interpreter not executing any more of the
program.

null copyright() Displays the LQX copyright message.
null print symbol table() This is a very useful debugging tool which output the

name and value of all variables in the current inter-
preter scope.

null print special table() This is also a useful debugging tool which outputs the
name and value of all special (External and Constant)
variables in the interpreter scope.

numeric type id(? any) This method returns the Type ID of any variable, in-
cluding intrinsic types (numeric, boolean, null, etc.)
and the result can be matched to the constants prefixed
with @type (@typenull, @typeun, @typedouble,
etc.)

null return(? any) This method will return any value from a user-defined
function. This method cannot be used in global scope.

Numeric/Floating-Point Utility Functions

Summary of Methods
numeric abs(numeric n) Returns the absolute value of the argumentn
numeric ceil(numeric n) Returns the value ofn rounded up.
numeric floor(numeric n) Returns the value ofn rounded down.
numeric pow(numeric bas, numeric

x)
Returnsbas to the powerx .

Type-casting Functions

Summary of Methods
string str(...) This method will return the same value as the function

print(...) would have displayed on the screen.
Each argument is coerced to a string and then adjacent
values are concatenated.

numeric double(? x) This method will return 1.0 or 0.0 if provided a
boolean oftrue or false respectively. It will re-
turn the passed value for a double, 0.0 for a null and
fail (NULL) for an object. If it was passed a string,
it will attempt to convert it to a double. If the whole
string was not numeric, it will return NULL, otherwise
it will return the decoded numeric value.

boolean bool(? x) This method will returntrue for a numeric value of
(not 0.0), a booleantrue or a string “true” or “yes”.
It will return false for a numeric value 0.0, a NULL
or a string “false” or “no”, or a booleanfalse . It will
return NULL otherwise.

49

4.3 API Documentation for the LQN Bindings

4.3.1 LQN Class: Document

Summary of Attributes
double iterations The number of solver iterations/simulation blocks
double invocation The solution invocation number
double system cpu time Total system time for this invocation
double user cpu time Total user time for this invocation
double elapsed time Total elapsed time for this invocation
boolean valid True if the results are valid

Summary of Constructors
Document document() Returns the Document object

4.3.2 LQN Class: Processor

Summary of Attributes
double utilization The utilization of the Processor

Summary of Constructors
Processor processor(string name) Returns an instance of Processor from the current

LQN model with the given name.

4.3.3 LQN Class: Group

Summary of Attributes
double utilization The utilization of the Group

Summary of Constructors
Group processor(string name) Returns an instance of Group from the current

LQN model with the given name.

4.3.4 LQN Class: Task

Summary of Attributes
double throughput The throughput of the Task
double utilization The utilization of the Task
double proc utilization This Task’s processor utilization
Array phase utilizations Individual phase utilizations

Summary of Constructors
Task task(string name) Returns an instance of Task from the current LQN

model with the given name.

50

4.3.5 LQN Class: Entry

Summary of Attributes
boolean has phase 1 Whether the entry has a phase 1 result
boolean has phase 2 Whether the entry has a phase 2 result
boolean has phase 3 Whether the entry has a phase 3 result
boolean has open wait time Whether the entry has an open wait time
double open-wait-time Entry open wait time
double phase1-proc-waiting Phase 1 Processor Wait Time
double phase1-service-time-variance Phase 1 Service Time Variance
double phase1-service-time Phase 1 Service Time
double phase1-utilization Phase 1 (task) Utilization
double phase2-proc-waiting Phase 2 Processor Wait Time
double phase2-service-time-variance Phase 2 Service Time Variance
double phase2-service-time Phase 2 Service Time
double phase2-utilization Phase 2 (task) Utilization
double phase3-proc-waiting Phase 3 Processor Wait Time
double phase3-service-time-variance Phase 3 Service Time Variance
double phase3-service-time Phase 3 Service Time
double phase3-utilization Phase 3 (task) Utilization
double proc-utilization Entry processor utilization
double squared-coeff-variation Squared coefficient of variation
double throughput-bound Entry throughput bound
double throughput Entry throughput
double utilization Entry utilization

Summary of Constructors
Entry entry(string name) Returns the Entry object for the model entry whose

name is given as name

4.3.6 LQN Class: Phase

Summary of Attributes
double service-time Phase service time
double service-time-variation Phase service time variance
double utilization Phase utilization
double proc-waiting Phases’ processor waiting time

Summary of Constructors
Phase phase(object entry,

numeric int nr)
Returns the Phase object for a given entry’s phase
number specified as nr

4.3.7 LQN Class: Activity

Summary of Attributes
double proc-utilization The activities’ share of the processor utilization
double proc-waiting Activities’ processor waiting time
double service-time-variance Activity service time variance
double service-time Activity service time
double squared-coeff-variation The square of the coefficient of variation
double throughput The activity throughput
double utilization Activity utilization

51

Summary of Constructors
Activity activity(object task,

string name)
Returns an instance of Activity from the current
LQN model, whose name corresponds to an activ-
ity in the given task.

4.3.8 LQN Class: Call

Summary of Attributes
double waiting Call waiting time
double waiting-variance Call waiting time
double loss-probability Message loss probability for asynchronous mes-

sages

Summary of Constructors
Call call(object phase, string

destinationEntry)
Returns the call from an entry’s phase (phase) to
the destination entry whose name is (dest)

4.3.9 Confidence Intervals
Summary of Constructors
conf int conf int(object, int level) Returns the± (level) for the attribute for the object

52

Chapter 5

LQN Input File Format

This Chapter describes the original ‘SRVN’ input file format, augmented with the Software Performance EXperiment
driver (SPEX) grammar. In this model format models are specified breadth-first, in contrast to the XML format
described in§3 where models are specified depth-first. This specification means that all resources such as processors,
tasks and entries, are defined before they are referenced. Furthermore, each resource is grouped into its own section in
the input file. Listing 5.1 shows the basic layout of the model.

Each of the sections within the input file begins with a key-letter, as follows:

$ SPEX parameters (optional).

G General solver parameters (optional).

P Processor definitions.

U Processor group definitions (optional).

T Task definitions.

E Entry definitions.

A Task activity definitions (optional).

R SPEX result definitions (optional).

C SPEX convergence (optional).

Section 5.2 describes the input sections necessary to solvea model, i.e.P, U T, E, andA. Section 5.3 describes the
additional input sections for solving multiple models using SPEX, i.e.$, R, andC. The complete input grammar is
listed in Appendix A.

5.1 Lexical Conventions

The section describes the lexical conventions of the SRVN input file format.

5.1.1 White Space

White space, such as spaces, tabs and new-lines, is ignored except within strings. Object definitions can span multiple
lines.

53

Listing 5.1: LQN file layout

1 # Pragmas
2 #pragma <param>=<value>
3

4 # Parameters (SPEX)
5 $var = <expression>
6 $var = [<expression-list>]
7

8 # General Information
9 G " <string>" <real> <int> <int> <real> -1

10

11 # Processor definitions
12 P 0
13 p <proc-id> <sched> <opt-mult> <opt-repl> <opt-obs>
14 -1
15

16 # Group definitions
17 U 0
18 g <group-id> <real> <opt-cap> <proc-id>
19 -1
20

21 # Task definitions
22 T 0
23 t <task-id> <sched> <entry-list> -1 <proc-id> <opt-pri> <opt-think-time>
24 <opt-mult> <opt-repl> <opt-grp> <opt-obs>
25 -1
26

27 s # Entry definitions
28 E 0
29 A <activity-id>
30 s <entry-id> <real> ... -1 <opt-obs>
31 y <entry-id> <entry-id> <real> ... -1 <opt-obs>
32 -1
33

34 # Activity definitions
35 A <task-id>
36 s <activity-id> <real> <opt-obs>
37 y <activity-id> <entry-id> <real> <opt-obs>
38 :
39 <activity-list> -> <activity-list>
40 -1
41

42 # Result defintions (SPEX)
43 R 0
44 $var = <expression>
45 -1
46

47 # Convergence defintions (SPEX)
48 C 0
49 $var = <expression>
50 -1

54

5.1.2 Comments

Any characters following a hash mark (#) through to the end ofthe line are considered to be a comment and are
generally ignored. However, should a line begin with optional whitespace followed by ‘#pragma ’, then the remainder
of the line will be treated by the solver as a pragma (more on pragmas below).

5.1.3 Identifiers

Identifiers are used to name the objects in the model. They consist of zero or more leading underscores (‘’), followed
by a character, followed by any number of characters, numbers or underscores. Punctuation characters and other
special characters such as the dollar-sign (‘$’) are not permitted. Non-numeric identifiers must be a minimum of two
characters in length1 The following,1, p1 , p 1, and P 21 proc are valid identifiers, while$proc and$1 are not.

5.1.4 Variables

Variables are used to set values of various objects such as the multiplicity of tasks and the service times of the phases
of entries. Variables are modifed by SPEX (see§5.3) to run multiple experiments. Variables start with a dollar-sign
(‘$’) followed by any number of characters, numbers or underscores. $var and$1 are valid variables while$$ is
not.

5.2 LQN Model Specification

This section describes the mandatory and option input for a basic LQN model file. SPEX information, namelyVari-
ables, (§5.2.7),Report Information(§5.3.2) andConvergence Information(§5.3.3) are described in the section that
follows. All input files are composed of three mandatory sections: Processor Information(§5.2.3),Task Information
(§5.2.5) andEntry Information(§5.2.6), which define the processors, tasks and entries respectively in the model. All
of the other sections for a basic model file are optional. Theyare: Pragmas, General Information(§5.2.2),Group
Information(§5.2.4), andActivity Information. The syntax of these specifications are described next in theorder in
which they appear in the input model.

5.2.1 Pragmas

Any line beginning with optional whitespace followed by theword ‘#pragma ’efines a pragma which is used by either
the analytic solver or the simulator to change its behaviour. The syntax for a pramga directive is shown in line 2 in
Listing 5.1. Pragma’s which are not handled by either the simulator or the analytic solver are ignored. Pragma’s can
appear anywhere in the input file2 though they typically appear first.

5.2.2 General Information

The optional general information section is used to set various control parameters for the analytic solver LQNS. These
parameters, with the exception of the model comment, are ignored by the simulator, lqsim. Listing 5.2 shows the
format of this section. Note that these parameters can also be set using SPEX variables, described below in§5.3.1.

Listing 5.2: General Information

1 G " <string>" # Model title.
2 <real> # convergence value
3 <int> # iteration limit
4 <int> # Optional print interval.
5 <real> # Optional under-relaxation.
6 -1

1Single characters are used for section and record keys.
2Pragma’s are processed during lexical analysis.

55

5.2.3 Processor Information

Processors are specified in the processor information section of the input file using the syntax shown in Listing 5.3.
The start of the section is identified using “P<int>” and ends with “-1 ”. The<int> parameter is either the number
of processor definitions in this section, or zero3.

Listing 5.3: Processor Information

1 P <int>
2 p <proc-id> <sched> <opt-mult>
3 -1

Each processor in the model is defined using the syntax shown in line 2 in Listing 5.3. Each record in this section
beginning with a ‘p’ defines a processor.<proc-id> is either an integer or an identifier (defined earlier in§5.1.3).
<sched> is used to define the scheduling discipline for the processorand is one of the code letters listed in Table 5.1.
The scheduling disciplines supported by the model are described in Section 1.1.1. Finally, the optional<opt-mult>
specifies the number of copies of this processor serving a common queue. Multiplicity is specified using the syntax
shown in Table 5.2. By default, a single copy of a processor isused for the model.

<sched> Scheduling Discipline
f First-come, first served.
p Priority-preemptive resume.
r Random.
i Delay (infinite server).
h Head-of-Line.

c <real> Completely fair share with time quantum<real>.
s <real> Round Robin with time quantum<real>.

Table 5.1: Processor Scheduling Disciplines (see§1.1.1).

<opt-mult> Multiplicity
m<int> <int> identical copies with a common queue.

i Infinite (or delay).

<opt-repl> Repliplication
r <int> <int> replicated copies with separate queues.

Table 5.2: Multiplicity and Replication (see§1.2).

5.2.4 Group Information

Groups are specified in the group information section of

Listing 5.4: Group Information

1 U <int>
2 g <group-id> <real> <opt-cap> <proc-id>
3 -1

3The number of processors,<int>, is ignored with all current solvers.

56

5.2.5 Task Information

Tasks are specified in the task information section of the input file using the syntax shown in Listing 5.5. The start of
the task section is identified using “T <int>” and ends with “-1 ”. The<int> parameter is either the number of task
definitions in this section, or zero.

Listing 5.5: Task Information

1 T <int>
2 t <task-id> <sched> <entry-list> -1 <proc-id> <opt-pri> <opt-think-time>
3 <opt-mult> <opt-repl> <opt-grp>
4 i <task-id> <task-id> <int> # fan-in for replication
5 o <task-id> <task-id> <int> # fan-out for replication
6 -1

Each task definition within this section starts with a ‘t ’ and is is defined using the syntax shown in lines 2 and 3 of
Listing 5.54. <task-id> is an identifier which names the task.<sched> is used to define the request distribution for
reference tasks, or the scheduling discipline for non-reference tasks. The scheduling and distribution code letters are
shown in Table 5.3. Some disciplines are only supported by the simulator; these are identified using “†”. <entry-list>
is a list of idententifiers naming the entries of the task. Theoptional<opt-pri> is used to set the priority for the task
provided that the processor running the task is scheduled using a priority discipline. The optional<opt-think-time>
specifies a think time for a reference task. The optional<opt-mult> specifies the number of copies of this task serving
a common queue. Multiplicity is specified using the syntax shown in Table 5.2. By default, a single copy of a task is
used for the model. Finally, the optional<opt-grp> is used to identify the group that this task belongs to provided
that the task’s processor is using fair-share scheduling

Reference tasks (customers).
<sched> Request Distribution

r Poisson.
b Bursty†.
u Uniform†.

Non-Reference tasks (servers).
<sched> Queueing Discipline

n First come, first served.
P Polled service at entries†.
h Head-of-line priority.
f First come, first served.
i Infinite (delay) server.
w Read-Write lock task†.
S Semaphore task†.
Z Semaphore task†.

Table 5.3: Task Scheduling Disciplines (see§1.1.3).

5.2.6 Entry Information

Entries are specified in the entry information section starting from “E <int>” and ending with “-1 ”. The <int>
parameter is either the number of entry definitions in this section, or zero. Each record in the entry section defines
a single parameter for an entry, such as its priority, or a single parameter for the phases of the entry, such as service
time. Listing 5.6 shows the syntax for the most commonly usedparameters.

All entry records start with a key letter, followed by an<entry-id>, followed by from one to up to five arguments.
Table 5.5 lists all the possible entry specifiers. The table is split into six classes, based on the arguments to the

4Line 3 is a continuation of line 2.

57

Option Parameter
<integer> Task priority for tasks running on processors supporting priorities.
z <real> Think Time for reference tasks.
q <real> Maximum queue length for asynchronous requests.

m<integer> Task multiplicity.
r <integer> Task replication.

g <identifier> Group identifier for tasks running of processors with fair share scheduling.

Table 5.4: Optional parameters for tasks (see§1.1.3).

Listing 5.6: Entry Information

1 E <int>
2 A <entry-id> <activity-id> # Start activity.
3 F <entry-id> <entry-id> <real> # forward.
4 s <entry-id> <real> ... -1 # Service time by phase.
5 y <entry-id> <entry-id> <real> ... -1 # Synchronous request by phase.
6 -1

parameter. Records used to specifiy service time and call rate parameters for phases take a list of from one to three
arguments and terminated with a ‘-1 ’. All other entry records, with the exception of histogram information, take a
fixed number of arguments. Records which only apply to the simulator are marked with a ‘†’.

5.2.7 Activity Information

Activity information sections are required to specify the parameters and connectivity of the activities for a task. Note
that unlike all other sections, each task with activities has its own activity information section.

An activity information section starts with “A <task-id>” and ends with “-1 ”. The data within an activity infor-
mation section is partitioned into two parts. The first part lists the parameter data for an activity in a fashion similar
to the parameter data for an entry; the second section definesthe connectivity of the activities. Listing 5.7 shows the
basic syntax.

Listing 5.7: Activity Information

1 A <task-id>
2 s <activity-id> <real>
3 c <activity-id> <real>
4 f <activity-id> <int>
5 y <activity-id> <entry-id> <real>
6 z <activity-id> <entry-id> <real>
7 :
8 <activity-list> -> <activity-list>
9 -1

5.3 SPEX: Software Performance Experiment Driver

SPEX, theSoftwarePerformanceExPeriment driver, was originally a Perl program used to generate and solve multiple
layered queueing network models. With version 5 of the solvers this functionality has been incorporated into the
lqiolib and lqx libraries used by the simulator and analytic solver. The primary benefit of this change is that
analytic solutions can run faster for reasons described in [11].

58

Key Paramater Arguments

One argument
a <entry-id> <real> Arrival Rate
A<entry-id> <activity-id> Start activity
p <entry-id> <int> Entry priority

One to three phase arguments
s <entry-id> <real> ... -1 Service Time. The entry’s<entry-id> and mean service

time value per phase.
c <entry-id> <real> ... -1 Coefficient of Variation

Squared.
The entry’s<entry-id> andCV2 value for
each phase.

f <entry-id> <int> ... -1 Call Order STOCHASTICor DETERMINISTIC
M<entry-id> <real> ... -1 Max Service Time† Output probability that the service time re-

sult exceeds the<real> parameter, per
phase.

Arguments for a single phase
H<int> <entry-id> <real> : <real> <opt-int> Histogram†: An <int> phase, followed by

a range from<real> to<real>, and an op-
tional<int> buckets.

Destination and one argument
F <entry-id> <real> -1 Forwarding Probability Source and Destination entries, and proba-

bility reply is forwarded.

Destination and one to three phase arguments
y <entry-id> <entry-id> <real> ... -1 Rendevous Rate Source and Destination entries, and rate per

phase.
z <entry-id> <entry-id> <real> ... -1 Send-no-Reply Rate Source and Destination entries, and rate per

phase.

Semaphores and Locks†
P<entry-id> Signal† Entry <entry-id> is used to signal a

semaphore task.
V<entry-id> Wait†
R<entry-id> Read lock†
U<entry-id> Read unlock†
W<entry-id> Write lock†
X<entry-id> Write unlock†

Table 5.5: Entry Specifiers

Key Paramater Arguments
one to three phase arguments

s Service Time. The entry’s<entry-id> and mean service time value per phase.
c Coefficient of Variation Squared. The entry’s<entry-id> andCV2 value for each phase.
f Call Order STOCHASTICor DETERMINISTIC

Destination and one to three phase arguments
y Rendevous Rate Source and Destination entries, and rate per phase.
z Send-no-Reply Rate Source and Destination entries, and rate per phase.

Table 5.6: Activity Specifiers

59

Post (or Join) lists
<activity-id>
<activity-id> + <activity-id> +...
<activity-id> & <activity-id> &...

Pre (or Fork) lists
<activity-id>
<activity-id> + <activity-id> +...
<activity-id> & <activity-id> &...

Table 5.7: Activity Lists

Control Variable Type of Value Default Value Program
$convergence limit <real> 0.00001 lqns
$iteration limit <int> 100 lqns
$print interval <int> 1 lqns
$coefficient of variation <real> 0.9 lqns
$model comment <string> ””
$number of blocks <int> 1 lqsim
$block time <int> 50000 lqsim
$seed value <int> – lqsim
$result precision <real> – lqsim
$warm up loops <int> – lqsim

Table 5.8: Spex Control Variables

SPEX augments the input file described in§5.2 by addingvariablesfor setting input values, aReport Information
(§5.3.2) used to format output, and an optionalConvergence Information(5.3.3) for feeding result values back into
input variables. Listing 5.1 shows these sections startingwith comments inred. The syntax of these sections are
described next in the order in which they appear in the input model.

5.3.1 Variables

SPEX variables are used to set and possibly vary various input values to the model, and to record results from the
solution of the model. There are four types of variables: control, scalar, array and observation. Control variables
are used to define parameters that control the execution of the solver. Scalar and array variables are used to set input
parameters to the model. Finally, observation variables are used to record results such as throughputs and utilizations.

Control Variables

Control variables are used to set parameters that are used tocontrol either the analytic solverlqns, or the simula-
tor lqsim. With the exception of$comment , all of these variables can be changed as SPEX executes, though this
behaviour may not be appropriate in many cases.

Scalar Variables

Scalar variables are used to set input values for the model and are initialized using any<ternary-expression> (?:)
using this syntax:

$name =<ternary-expression>

The<ternary-expression> may contain any variables defined previously or subsequently in the input file; order does
not matter. However, undefined variables and observation variables (more on these below) are not permitted. Refer to
Appendix A,§?? for the complete grammar for<ternary-expression>.

60

Key Phase Description Location
%u no Utilization processor declaration (p info)

yes task declaration (t info)
yes entry service declaration (s info)

%f no Throughput task declaration (t info)
no entry service declaration (s info)

%pu no Processor Utilization task declaration (t info)
no entry service declaration (s info)

%s yes Service Time entry service declaration (s info)
%v yes Service Time Variance entry service declaration (s info)
%fb no Throughput Bound entry service declaration (s info)
%pw yes Processor waiting time by taskentry service declaration (s info)
%w yes Call waiting time entry call declaration (y info)

no entry open arrival declaration (a info)

Table 5.9: Observation Key location

Array Variables

Array variables are used to specify a range of values that an input parameter may take on. There are two ways to
specify this information:

1 $name = [x, y, z, ...]
2 $name = [a : b, c]

The first form is used to set the variable$name to the values in the list,x , y , z , The second form is used the set
the variable$name from the valuea to b using a step size ofc . The value ofb must be greater thata, and the step
size must be positive. Regardless of the format, the values for array variables must be constants.

During the execution of the solver, SPEX iterates over all ofthe values defined for each array variable. If multiple
arrays are defined, then SPEX generates the cross-product ofall possible parameter values. Note that if a scalar
variable defined in terms of an array variable, then the scalar variable will be recomputed for each model generated by
SPEX.

Observation Variables

There is a set of special symbols that are used to indicate to spex which result values from the solution of the model
are of interest. This result indication has the following form:

%<key><phase> $var

where<key> is a one or two letter key indicating the type of data to be observed and<phase> is an optional integer
indicating the phase of the data to be observed. The data, once obtained from the results of the model, is placed into
the variable $var where it may be used in the Result Information section described below.

To obtain confidence interval info, the format is

%<key><phase>[confidence] $var1 $var2

where confidence can be 95 or 99, $var1 is the mean and $var2 is the half-width of the confidence interval
The location of a result indication determines the entity tobe observed. Table 5.9 describes each of the keys and

where they may be used.
For any key/location combination that takes a phase argument, if none is supplied then the sum of the values for

all phases is reported. This also happens if a phase of zero isgiven.

61

Listing 5.8: Report Information

1 R <int>
2 $var
3 $var = <expression>
4 -1

5.3.2 Report Information

The purpose of the report information section of the input file is to specify which variable values (including result
indications) are to be printed in the spex result file. The format of this section is shown in Listing 5.8.

There may be any number of report declarations, however, theinteger parameter toRmust either be the number of
report declarations present or zero5.

The<expression> may be any valid LQX expression as discussed above. Note thatin this section, the report
indication variables and the parameter variables may both be used together. The values of the variables listed in this
section are printed from left to right in the order that they appear in the input file separated by commas. This output
can then be used as input to Gnuplot or a spreadsheet such as Excel.

There is a special variable called$0 which represents the independent variable in the results tables (the x-axis in
plots). The variable$0 may be set to any expression allowing for flexibility in producing result tables. This variable
cannot be used as a parameter in the model.

5.3.3 Convergence Information

Spex allows a parameter value to be modified at the end of a model solution and then fed back in to the model. The
model is solved repeatedly until the parameter value converges. The convergence section is declared in a manner
similar to the result section:

Listing 5.9: Convergence Information

1 C <int>
2 $var
3 $var = <expression>
4 -1

Only this time, the convergence variables must be parameters. They cannot be result variables or tag variables.

5.3.4 Differeneces to SPEX 1

This section outlines differences in the syntax between SPEX version 1 and version 2. SPEX version 1 was processed
by a Perl program to convert the model into a conventional LQNmodel file. SPEX version 2 is now parsed directly
and converted into LQX internally.

Array Initialization

Lists used for array initialization must now be enclosed within square brackets (‘[]’). Further, the items must be
separated using commas. Figure 5.1 shows the old and new syntax.

Perl Expressions

Perl Expressions are no longer supported in SPEX 2.0. Rather, a subset of LQX expressions are used instead. For
SPEX convergence expressions, Perlif then else statements must be converted to use the ternary?: operator.
SPEX 2 cannot invoke Perl functions.

5The number is ignored; it is present in the syntax so that the report section matches the other sections.

62

1 $array = 1 2 3
2 $array = 1:10,2

(a) Spex 1

1 $array = [1, 2, 3]
2 $array = [1:10,2]

(b) Spex 2

Figure 5.1: x

Line Continuation

Line continuation, where a line is terminated by a backslash(‘\’), is not needed with Version 2 SPEX. All whitespace,
including newlines, is ignored.

Comments

In Version 1 of SPEX, all text before a dollar sign (‘$’), or either an upper case ‘G’ or ‘P’ at the start of a line, was
treated as a comment. Since Version 2 SPEX is parsed directly, all comments must start with the hash symbol (‘#’).

String Substitution

Version 2 SPEX does not support variable substitution of string parameters such as pragmas, and scheduling types.
This restriction may be lifted in future versions.

Pragmas

Version 1 SPEX did not require the hash symbol (‘#’) for setting pragmas. Version 2 SPEX does.

SPEX AGR

SPEX AGR is no longer supported.

5.3.5 SPEX and LQX

SPEX uses LQX to generate individual model files. All scalar paramaters are treated as globally scoped variables in
LQX. If the assignement expression for a scalar variable does not reference any array variables, it is set prior to the
iteration of any loop. Otherwise, the scalar variable is setduring the execution of the innermost loop of the program.

Array variables are used to generatefor loops in the LQX program. Each array variable generates a forloop, and
the loops are nested in the order of the definition of the arrayvariable. Local variables (i.e., without the ‘$’) store the
array values.

Finally, if SPEX convergence is used, a final innermost loop is created. This loop tests the variables defined in the
convergence section for change, and if any of the variables changes by a non-trivial amount, the loop repeats.

Listing 5.10 shows a model defined defined using SPEX syntax. Listing 5.11 shows the corresponding LQX
program generated by the model file.

63

Listing 5.10: SPEX file layout.

1 $m_client = [1, 2, 3]
2 $m_server = [1, 2, 3]
3 $s_server = $m_server / 2
4

5 P 2
6 p client i
7 p server s 0.1
8 -1
9

10 T 2
11 t client r client -1 client m $m_client % f $f_client
12 t server n server -1 server m $m_server %u $u_server
13 -1
14

15 E 2
16 s client 1 -1
17 y client server $s_server -1
18 s server 1 -1
19 -1
20

21 R 3
22 $0
23 $f_client
24 $u_server
25 -1

Listing 5.11: LQX Program for SPEX input.

1 m_client = [1, 2, 3]; // $m_client = [1,2,3]
2 m_server = [2, 3, 4]; // $m_server = [2,3,4]
3 foreach($m_client in m_client) {
4 foreach($m_server in m_server) {
5 $s_server = $m_client / 2; // $s_server = $m_client / 2;
6 solve();
7 $f_client = task("client"). throughput; // %f $res1
8 $u_server = task("server"). utilization; // %u $res2
9 println($0, ", ", $f_client, ", ", $u_server);

10 }
11 }

64

Chapter 6

Invoking the Analytic Solver “lqns”

The Layered Queueing Network Solver (LQNS) is used to solvedLayered Queueing Network models analytically.
Lqns reads its input fromfilename , specified at the command line if present, or from the standard input oth-
erwise. By default, output for an input filefilename specified on the command line will be placed in the file
filename.out . If the -p switch is used, parseable output will also be written intofilename.p . If XML input
or the-x switch is used, XML output will be written tofilename.lqxo . This behaviour can be changed using the
-ooutput switch, described below. If several files are named, then each is treated as a separate model and output
will be placed in separate output files. If input is from the standard input, output will be directed to the standard output.
The file name ‘- ’ is used to specify standard input.

The-ooutput option can be used to direct output to the fileoutput regardless of the source of input. Output
will be XML if XML input or if the -x switch is used, parseable output if the-p switch is used, and normal output
otherwise. Multiple input files cannot be specified when using this option. Output can be directed to standard output
by using-o- (i.e., the output file name is ‘- ’.)

6.1 Command Line Options

-a, --ignore-advisories
Ignore advisories. The default is to print out all advisories.

-b, --bounds-only
This option is used to compute the “Type 1 throughput bounds”only. These bounds are computed assuming no
contention anywhere in the model and represent the guaranteed not to exceed values.

-d, --debug=arg
This option is used to enable debug output.Arg can be one of:

activities Activities – not functional.

all Enable all debug output.

calls Print out the number of rendezvous between all tasks.

forks Print out the fork-join matching process.

interlock Print out the interlocking table and the interlocking between all tasks and processors.

joins Joins – not functional.

layers Print out the contents of all of the layers found in the model.

lqx Debug LQX parser.

overtaking Overtaking – not functional.

quorum Print out results from pseudo activities used by quorum.

65

xml Debug XML.

-e, --error=arg
This option is to enable floating point exception handling.Arg must be one of the following:

1. a Abort immediately on a floating point error (provided the floating point unit can do so).

2. d Abort on floating point errors. (default)

3. i Ignore floating point errors.

4. w Warn on floating point errors.

The solver checks for floating point overflow, division by zero and invalid operations. Underflow and inexact
result exceptions are always ignored.

In some instances, infinities will be propogated within the solver. Please refer to thestop-on-message-loss
pragma below.

-f, --fast
This option is used to set options for quick solution of a model using One-Step (Bard-Schweitzer) MVA. It is
equivalent to settingpragma mva=one-step, layering=batched, multiserver=conway

-H, --help=arg

-n, --no-execute
Read input, but do not solve. The input is checked for validity. No output is generated.

-o, --output=arg
Direct analysis results tooutput. A filename of ‘- ’ directs output to standard output. Iflqns is invoked with this
option, only one input file can be specified.

-p, --parseable
Generate parseable output suitable as input to other programs such aslqn2ps(1) andsrvndiff(1) . If input is
from filename , parseable output is directed tofilename.p . If standard input is used for input, then the
parseable output is sent to the standard output device. If the -ooutput option is used, the parseable output is
sent to the file nameoutput . (In this case, only parseable output is emitted.)

-P, --pragma=arg
Change the default solution strategy. Refer to the PRAGMAS section below for more information.

-r, --rtf
Output results using Rich Text Format instead of plain text.Processors, entries and tasks with high utilizations
are coloured in red.

-t, --trace=arg
This option is used to set tracing options which are used to print out various intermediate results while a model
is being solved.arg can be any combination of the following:

activities Print out results of activity aggregation.

convergence=arg Print out convergence arg after each submodel is solved. This option is useful for tracking
the rate of convergence for a model. The optional numeric argument supplied to this option will print out
the convergence value for the specified mva submodel, otherwise, the convergence value for all submodels
will be printed.

delta wait Print out difference in entry service time after each submodel is solved.

forks Print out overlap table for forks prior to submodel solution.

idle time Print out computed idle time after each submodel is solved.

66

interlock Print out interlocking adjustment before each submodel is solved.

joins Print out computed join delay and join overlap table prior tosubmodel solution.

mva=arg Print out the MVA submodel and its solution. A numeric argument supplied to this option will print
out only the specified mva submodel, otherwise, all submodels will be printed.

overtaking Print out overtaking calculations.

print Print out intermediate solutions at the print interval specified in the model. The print interval field in the
input is ignored otherwise.

quorum Print quorum traces.

throughput Print throughputs values.

variance Print out the variances calculated after each submodel is solved.

wait Print waiting time for each rendezvous in the model after it has been computed.

-v, --verbose
Generate output after each iteration of the MVA solver and the convergence value at the end of each outer
iteration of the solver.

-V, --version
Print out version and copyright information.

-w, --no-warnings
Ignore warnings. The default is to print out all warnings.

-x, --xml
Generate XML output regardless of input format.

-z, --special=arg
This option is used to select special options. Arguments of the formnnare integers while arguments of the form
nn.nare real numbers.Arg can be any of the following:

convergence-value=arg Set the convergence value toarg. Arg must be a number between 0.0 and 1.0.

full-reinitialize For multiple runs, reinitialize all processors.

generate=arg This option is used for debugging the solver. A directory namedarg will be created containing
source code for invoking the MVA solver directly.

ignore-overhanging-threadsIgnore the effect of the overhanging threads.

iteration-limit=arg Set the maximum number of iterations toarg. Arg must be an integer greater than 0. The
default value is 50.

man=arg Output this manual page. If an optionalarg is supplied, output will be written to the file nameedarg.
Otherwise, output is sent to stdout.

min-steps=arg Force the solver to iterate min-steps times.

mol-ms-underrelaxation=arg Set the under-relaxation factor toarg for the MOL multiserver approximation.
Arg must be a number between 0.0 and 1.0. The default value is 0.5.

overtaking Print out overtaking probabilities.

print-interval=arg Set the printing interval toarg. The -d or -v options must also be selected to display
intermediate results. The default value is 10.

single-stepStop after each MVA submodel is solved. Any character typed at the terminal except end-of-file
will resume the calculation. End-of-file will cancel single-stepping altogether.

skip-layer=arg Ignore submodelarg during solution.

67

tex=arg Output this manual page in LaTeX format. If an optionalarg is supplied, output will be written to the
file namedarg. Otherwise, output is sent to stdout.

underrelaxation=arg Set the underrelaxation toarg. Arg must be a number between 0.0 and 1.0. The default
value is 0.9.

If any one ofconvergence, iteration-limit, orprint-intervalare used as arguments, the corresponding value spec-
ified in the input file for general information, ‘G’, is ignored.

--convergence=arg
Set the convergence value toarg. Arg must be a number between 0.0 and 1.0.

--exact-mva
Use Exact MVA to solve all submodels.

--hwsw-layering

--iteration-limit=arg
Set the maximum number of iterations toarg. Arg must be an integer greater than 0. The default value is 50.

--srvn-layering
Solve the model using submodels containing exactly one server.

--squashed-layering
Use only one submodel to solve the model.

--method-of-layers
This option is to use the Method Of Layers solution approach to solving the layer submodels.

--processor-sharing
Use Processor Sharing scheduling at all fixed-rate processors.

--schweitzer-amva
Use Bard-Schweitzer approximate MVA to solve all submodels.

--stop-on-message-loss
Do not stop the solver on overflow (infinities) of open arrivals or send-no-reply messages.

--trace-mva

--underrelaxation=arg
Set the underrelaxation toarg. Arg must be a number between 0.0 and 1.0. The default value is 0.9.

--no-variance
Do not use variances in the waiting time calculations.

--reload-lqx
Re-run the LQX program without re-solving the models. Results must exist from a previous solution run. This
option is useful if LQX print statements are changed.

--debug-lqx
Output debugging informtion as an LQX program is being parsed.

--debug-xml
Output XML elements and attributes as they are being parsed.Since the XML parser usually stops when it
encounters an error, this option can be used to localize the error.

68

--debug-srvn

Lqns exits with 0 on success, 1 if the model failed to converge, 2 ifthe input was invalid, 4 if a command line
argument was incorrect, 8 for file read/write problems and -1for fatal errors. If multiple input files are being processed,
the exit code is the bit-wise OR of the above conditions.

6.2 Pragmas

Pragmasare used to alter the behaviour of the solver in a variety of ways. They can be specified in the input file
with “#pragma”, on the command line with the-P option, or through the environment variableLQNSPRAGMAS.
Command line specification of pragmas overrides those defined in the environment variable which in turn override
those defined in the input file. The following pragmas are supported. Invalid pragma specification at the command
line will stop the solver. Invalid pragmas defined in the environment variable or in the input file are ignored as they
might be used by other solvers.

cycles=arg
This pragma is used to enable or disable cycle detection in the call graph. Cycles may indicate the presence of
deadlocks.Arg must be one of:

allow Allow cycles in the call graph. The interlock adjustment is disabled.

disallow Disallow cycles in the call graph.

The default is disallow.

interlocking=arg
The interlocking is used to correct the throughputs at stations as a result of solving the model using layers [5].
This pragma is used to choose the algorithm used.Arg must be one of:

none Do not perform interlock adjustment.

throughput Perform interlocking by adjusting throughputs.

The default is throughput.

layering=arg
This pragma is used to select the layering strategy used by the solver.Arg must be one of:

batched Batched layering – solve layers composed of as many servers as possible from top to bottom.

batched-backBatched layering with back propagation – solve layers composed of as many servers as possible
from top to bottom, then from bottom to top to improve solution speed.

hwsw Hardware/software layers – The model is solved using two submodels: One consisting soley of the tasks
in the model, and the other with the tasks calling the processors.

mol Method Of layers – solve layers using the Method of Layers [14]. Layer spanning is performed by allowing
clients to appear in more than one layer.

mol-back Method Of layers – solve layers using the Method of Layers. Software submodels are solved top-
down then bottom up to improve solution speed.

squashedSquashed layers – All the tasks and processors are placed into one submodel. Solution speed may
suffer because this method generates the most number of chains in the MVA solution. See also-P mva.

srvn SRVN layers – solve layers composed of only one server. This method of solution is comparable to the
technique used by thesrvn solver. See also-P mva.

The default is batched-back.

69

multiserver=arg
This pragma is used to choose the algorithm for solving multiservers.Arg must be one of:

bruell Use the Bruell multiserver [2] calculation for all multiservers.

conway Use the Conway multiserver [4, 3] calculation for all multiservers.

reiser Use the Reiser multiserver [13] calculation for all multiservers.

reiser-ps Use the Reiser multiserver calculation for all multiservers. For multiservers with multiple entries,
scheduling is processor sharing, not FIFO.

rolia Use the Rolia [15, 14] multiserver calculation for all multiservers.

rolia-ps Use the Rolia multiserver calculation for all multiservers. For multiservers with multiple entries,
scheduling is processor sharing, not FIFO.

schmidt Use the Schmidt multiserver [16] calculation for all multiservers.

suri experimental.

The default multiserver calculation uses the the Conway multiserver for multiservers with less than five servers,
and the Rolia multiserver otherwise.

mva=arg
This pragma is used to choose the MVA algorithm used to solve the submodels.Arg must be one of:

exact Exact MVA. Not suitable for large systems.

fast Fast Linearizer

linearizer Linearizer.

one-stepPerform one step of Bard Schweitzer approximate MVA for eachiteration of a submodel. The default
is to perform Bard Schweitzer approximate MVA until convergence for each submodel. This option,
combined with-P layering=srvnmost closely approximates the solution technique used by thesrvn solver.

one-step-linearizerPerform one step of Linearizer approximate MVA for each iteration of a submodel. The
default is to perform Linearizer approximate MVA until convergence for each submodel.

schweitzerBard-Schweitzer approximate MVA.

The default is linearizer.

overtaking=arg
This pragma is usesd to choose the overtaking approximation. Arg must be one of:

markov Markov phase 2 calculation.

none Disable all second phase servers. All stations are modeled as having a single phase by summing the phase
information.

rolia Use the method from the Method of Layers.

simple Simpler, but faster approximation.

special ?

The default is rolia.

processor=arg
Force the scheduling type of all uni-processors to the type specfied.

fcfs All uni-processors are scheduled first-come, first-served.

hol All uni-processors are scheduled using head-of-line priority.

ppr All uni-processors are scheduled using priority, pre-emptive resume.

70

ps All uni-processors are scheduled using processor sharing.

The default is to use the processor scheduling specified in the model.

severity-level=arg
This pragma is used to enable or disable warning messages.

advisory

all

run-time

warning

The default is all.

stop-on-message-loss=arg
This pragma is used to control the operation of the solver when the arrival rate exceeds the service rate of a
server.Arg must be one of:

false Ignore queue overflows for open arrivals and send-no-reply requests. If a queue overflows, its waiting
times is reported as infinite.

true Stop if messages are lost.

The default is false.

tau=arg
Set the tau adjustment factor toarg. Arg must be an integer between 0 and 25. A value ofzerodisables the
adjustment.

threads=arg
This pragma is used to change the behaviour of the solver whensolving models with fork-join interactions.

exponential Use exponetial values instead of three-point approximations in all approximations [8].

hyper Inflate overlap probabilities based on arrival instant estimates.

mak Use Mak-Lundstrom [10] approximations for join delays.

none Do not perform overlap calculation for forks.

The default is hyper.

variance=arg
This pragma is used to choose the variance calculation used by the solver.

init-only Initialize the variances, but don’t recompute as the model is solved.

mol Use the MOL variance calculation.

no-entry By default, any task with more than one entry will use the variance calculation. This pragma will
switch off the variance calculation for tasks with only one entry.

none Disable variance adjustment. All stations in the MVA submodels are either delay- or FIFO-servers.

stochastic?

71

6.3 Stopping Criteria

Lqns computes the model results by iterating through a set of submodels until either convergence is acheived, or the
iteration limit is hit. Convergence is determined by takingthe root of the mean of the squares of the difference in
the utilization of all of the servers from the last two iterations of the MVA solver over the all of the submodels then
comparing the result to the convergence value specified in the input file. If the RMS change in utilization is less than
convergence value, then the results are considered valid.

If the model fails to converge, three options are available:

1. reduce the under-relaxation coefficient. Waiting and idle times are propogated between submodels during each
iteration. The under-relaxation coefficient determines the amount a service time is changed between each itera-
tion. A typical value is 0.7 - 0.9; reducing it to 0.1 may help.

2. increase the iteration limit. The iteration limit sets the upper bound on the number of times all of the submodels
are solved. This value may have to be increased, especially if the under-relaxation coefficient is small, or if the
model is deeply nested. The default value is 50 iterations.

3. increase the convergence test value. Note that the convergence value is the standard deviation in the change in
the utilization of the servers, so a value greater than 1.0 makes no sense.

The convergence value can be observed using-t convergenceflag.

6.4 Model Limits

The following table lists the acceptable parameter types for lqns. An error will be reported if an unsupported parameter
is supplied except when the value supplied is the same as the default.

Parameter lqns
Phases 3
Scheduling FIFO, HOL, PPR
Open arrivals yes
Phase type stochasic, deterministic
Think Time yes
Coefficient of variation yes
Interprocessor-delay yes
Asynchronous connections yes
Forwarding yes
Multi-servers yes
Infinite-servers yes
Max Entries 1000
Max Tasks 1000
Max Processors 1000
Max Entries per Task 1000

Table 6.1: LQNS Model Limits.

6.5 Diagnostics

Most diagnostic messages result from errors in the input file. If the solver reports errors, then no solution will be
generated for the model being solved. Models which generatewarnings may not be correct. However, the solver will
generate output.

72

Sometimes the model fails to converge, particularly if there are several heavily utilized servers in a submodel.
Sometimes, this problem can be solved by reducing the value of the under-relaxation coefficient. It may also be
necessary to increase the iteration-limit, particularly if there are many submodels. With replicated models, it may be
necessary to use ‘srvn’ layering to get the model to converge. Convergence can be tracked using the-t convergence
option.

The solver will sometimes report some servers with ‘high’ utilization. This problem is the result of some of the
approximations used, in particular, two-phase servers. Utilizations in excess of 10% are likely the result of failuresin
the solver. Please send us the model file so that we can improvethe algorithms.

73

Chapter 7

Invoking the Simulator “lqsim”

Lqsim is used to simulate layered queueing networks using the PARASOL [12] simulation system. Lqsim reads its
input from files specified at the command line if present, or from the standard input otherwise. By default, output for
an input filefilename specified on the command line will be placed in the filefilename.out . If the -p switch
is used, parseable output will also be written intofilename.p . If XML input is used, results will be written back to
the original input file. This behaviour can be changed using the-o outputswitch, described below. If several files are
named, then each is treated as a separate model and output will be placed in separate output files. If input is from the
standard input, output will be directed to the standard output. The file name ‘- ’ is used to specify standard input.

The -o outputoption can be used to direct output to the file or directory named outputregardless of the source
of input. Output will be XML if XML input is used, parseable output if the -p switch is used, and normal output
otherwise; multiple input files cannot be specified. Ifoutput is a directory, results will be written in the directory
namedoutput . Output can be directed to standard output by using-o- (i.e., the output file name is ‘- ’.)

7.1 Command Line Options

-A, --automatic=run-time[,precision[,skip]]
Use automatic blocking with a simulation block size ofrun-time. Theprecisionargument specifies the desired
mean 95% confidence level. By default, precision is 1.0%. Thesimulator will stop when this value is reached,
or when 30 blocks have run.Skipspecifies the time value of the initial skip period. Statistics gathered during
the skip period are discarded. By default, its value is 0. When the run completes, the results reported will be the
average value of the data collected in all of the blocks. If the -R flag is used, the confidence intervals will for
the raw statistics will be included in the monitor file.

-B, --blocks=blocks[,run-time[,skip]]
Use manual blocking withblocksblocks. The value ofblocksmust be less than or equal to 30. The run time for
each block is specified withrun-time. Skipspecifies the time value of the initial skip period.

-C, --confidence=precision[,initial-loops[,run-time]]
Use automatic blocking, stopping when the specified precision is met. The run time of each block is estimated,
based oninitial-loops running on each reference task. The default value forinitial-loops is 500. Therun-time
argument specifies the maximum total run time.

-d, --debug
This option is used to dump task and entry information showing internal index numbers. This option is useful
for determining the names of the servers and tasks when tracing the execution of the simulator since the Parasol
output routines do no emit this information at present. Output is directed to stdout unless redirected using-mfile.

-e, --error=error
This option is to enable floating point exception handling.

74

a Abort immediately on a floating point error (provided the floating point unit can do so).

b Abort on floating point errors. (default)

i Ignore floating point errors.

w Warn on floating point errors.

The solver checks for floating point overflow, division by zero and invalid operations. Underflow and inexact
result exceptions are always ignored.

In some instances, infinities will be propogated within the solver. Please refer to thestop-on-message-loss
pragma below.

-houtput
Generate comma separated values for the service time distribution data. Ifoutputis a directory, the output file
name will be the name of a the input file with a.csv extension. Otherwise, the output will be written to the
named file.

-mfile
Direct all output generated by the various debugging and tracing options to the monitor filefile, rather than to
standard output. A filename of ‘- ’ directs output to standard output.

-n, --no-execute
Read input, but do not solve. The input is checked for validity. No output is generated.

-o, --output=output
Direct analysis results to output. A file name of ‘- ’ directs output to standard output. Ifoutputis a directory,
all output from the simulator will be placed there with filenames based on the name of the input files processed.
Otherwise, only one input file can be processed; its output will be placed inoutput.

-p, --parseable
Generate parseable output suitable as input to other programs such asMultiSRVN(1)andsrvndiff(1). If input is
from filename , parseable output is directed tofilename.p . If standard input is used for input, then the
parseable output is sent to the standard output device. If the -o outputoption is used, the parseable output is
sent to the file name output. (In this case, only parseable output is emitted.)

-P, --pragma=pragma
Change the default solution strategy. Refer to the PRAGMAS chapter (§7.3) below for more information.

-R, --raw-statistics
Print the values of the statistical counters to the monitor file. If the -A , -B or -C option was used, the mean
value, 95th and 99th percentile are reported. At present, statistics are gathered for the task and entry, cycle time
task, processor and entry utilization, and waiting time formessages.

-S, --seed=seed
Set the initial seed value for the random number generator. By default, the system time from timetime(3) is
used. The same seed value is used to initialize the random number generator for each file when multiple input
files are specified.

-t, --trace=traceopts
This option is used to set tracing options which are used to print out various steps of the simulation while it is
executing.Traceoptsis any combination of the following:

driver Print out the underlying tracing information from the Parasol simulation engine.

processor=regex Trace activity for processors whose name matchregex. If regexis not specified, activity on all
processors is reported.Regexis regular expression of the type accepted byegrep(1).

task=regex Trace activity for tasks whose name matchregex. If regexis not specified, activity on all tasks is
reported. pattern is regular expression of the type accepted byegrep(1).

75

eventsregex[:regex] Display only events matching pattern. The events are: msg-async, msg-send, msg-receive,
msg-reply, msg-done, msg-abort, msg-forward, worker-dispatch, worker- idle, task-created, task-ready,
task-running, task-computing, task-waiting, thread-start, thread-enqueue, thread-dequeue, thread-idle, thread-
create, thread-reap, thread-stop, activity-start, activity-execute, activity-fork, and activity-join.

msgbuf Show msgbuf allocation and deallocation.

timeline Generate events for the timeline tool.

-T, --run-time=run-time
Set the run time for the simulation. The default is 10,000 units. Specifying-T after either-A or -B changes the
simulation block size, but does not turn off blocked statistics collection.

-v, --verbose
Print out statistics about the solution on the standard output device.

-V, --version
Print out version and copyright information.

-w, --no-warnings
Ignore warnings. The default is to print out all warnings.

-x, --xml
Generate XML output regardless of input format.

-zspecialopts
This flag is used to select special options. Arguments of the form n are integers while arguments of the form
n.n are real numbers.Specialoptsis any combination of the following:

print-interval=nn Set the printing interval ton. Results are printed afternn blocks have run. The default value
is 10.

global-delay=n.n Set the interprocessor delay to nn.n for all tasks. Delays specified in the input file will override
the global value.

--global-delay
Set the inter-processor communication delay to n.n.

--print-interval
Ouptut results after n iterations.

--restart
Re-run the LQX program without re-solving the models unlessa valid solution does not exist. This option is
useful if LQX print statements are changed, or if a subset of simulations has to be re-run.

--debug-lqx
Output debugging informtion as an LQX program is being parsed.

--debug-xml
Output XML elements and attributes as they are being parsed.Since the XML parser usually stops when it
encounters an error, this option can be used to localize the error.

7.2 Return Status

Lqsim exits 0 on success, 1 if the simulation failed to meet the convergence criteria, 2 if the input was invalid, 4 if a
command line argument was incorrect, 8 for file read/write problems and -1 for fatal errors. If multiple input files are
being processed, the exit code is the bit-wise OR of the aboveconditions.

76

7.3 Pragmas

Pragmas are used to alter the behaviour of the simulator in a variety of ways. They can be specified in the input file
with “#pragma”, on the command line with the-P option, or through the environment variableLQSIM PRAGMAS.
Command line specification of pragmas overrides those defined in the environment variable which in turn override
those defined in the input file.

The following pragmas are supported. An invalid pragma specification at the command line will stop the solver.
Invalid pragmas defined in the environment variable or in theinput file are ignored as they might be used by other
solvers.

scheduling=enum
This pragma is used to select the scheduler used for processors. Enumis any one of the following:

default Use the scheduler built into parasol for processor scheduling. (faster)

custom Use the custom scheduler for scheduling which permits more statistics to be gathered about processor
utilization and waiting times. However, this option invokes more internal tasks, so simulations are slower
than when using the default scheduler.

default-natural Use the parasol scheduler, but don’t reschedule after the end of each phase or activity. This
action more closely resembles the scheduling of real applications.

custom-natural Use the custom scheduler; don’t reschedule after the end of each phase or activity.

messages=n
Set the number of message buffers ton. The default is 1000.

stop-on-message-loss=bool
This pragma is used to control the operation of the solver when the arrival rate exceeds the service rate of a
server. The simulator can either discard the arrival, or it can halt. The meanings ofboolare:

false Ignore queue overflows for open arrivals and send-no-reply requests. If a queue overflows, its waiting
times is reported as infinite.

true Stop if messages are lost.

reschedule-on-async-send=bool
In models with send-no-reply messages, the simulator does not reschedule the processor after an asynchronous
message is sent (unlike the case with synchronous messages). The meanings ofboolare:

true reschedule after each asynchronous message.

false reschedule after each asynchronous message.

7.4 Stopping Criteria

It is important that the length of the simulation be chosen properly. Results may be inaccurate if the simulation run is
too short. Simulations that run too long waste time and resources.

Lqsim usesbatch means(or the method of samples) to generate confidence intervals.With automatic blocking,
the confidence intervals are computed after the simulationsruns for three blocks plus the initial skip period If the root
or the mean of the squares of the confidence intervals for the entry service times is within the specified precision, the
simulation stops. Otherwise, the simulation runs for another block and repeats the test. With manual blocking, lqsim
runs the number of blocks specified then stops. In either case, the simulator will stop after 30 blocks.

Confidence intervals can be tightened by either running additional blocks or by increasing the block size. A rule
of thumb is the block size should be 10,000 times larger than the largest service time demand in the input model.

77

7.5 Model Limits

The following table lists the acceptable parameter types and limits for lqsim. An error will be reported if an unsup-
ported parameter is supplied except when the value suppliedis the same as the default.

Parameter lqsim
Phases 3
Scheduling FIFO, HOL, PPR, RAND
Open arrivals yes
Phase type stochastic, deterministic
Think Time yes
Coefficient of variation yes
Interprocessor-delay yes
Asynchronous connections yes
Forwarding yes
Multi-servers yes
Infinite-servers yes
Max Entries unlimited
Max Tasks 1000
Max Processors 1000
Max Entries per Task unlimited

Table 7.1: Lqsim Model Limits

78

Chapter 8

Error Messages

Error messages are classified into four categories ranging from the most severe to the least, they are: fatal, error,
advisory and warning. Fatal errors will cause the program toexit immediately. All other error messages will stop
the solution of the current model and suppress output generation. However, subsequent input files will be processed.
Advisory messages occur when the model has been solved, but the results may not be correct. Finally, warnings
indicate possible problems with the model which the solver has ignored.

8.1 Fatal Error Messages

• Internal error

Something bad happened...

• No more memory

A request for memory failed.

• Model has no (activity|entry|task|processor)

This should not happen.

• Activity stack for " identifier" is full.

The stack size limit for taskidentifierhas been exceeded.

• Message pool is empty. Sending from " identifier" to " identifier".

Message buffers are used when sending asynchronous send-no-reply messages. All the buffers have been used.

8.2 Error Messages

• (task|processor) " identifier": Replication not supported. lqsim

The simulator does not support replication. The model can be“flattened” usingrep2flat(1).

• n.nReplies generated by Entry " identifier".

This error occurs when an entry is supposed to generate a reply because it accepts rendezvous requests, but the
activity graph does not generate exactly one reply. Common causes of this error are replies being generated by
two or more branches of an AND-fork, or replies being generated as part of a LOOP1.

1Replies cannot be generated by branches of loops because thenumber of iterations of the loop is random, not deterministic

79

• Activity " identifier" is a start activity.

The activity namedidentifier is the first activity in an activity graph. It cannot be used ina post-precedence
(fork-list).

• Activity " identifier" previously used in a fork."

The activityidentifierhas already been used as part of a fork expression. Fork listsare on the right hand side of
the-> operator in the old grammar, and are thepost-precedence expressions in the XML grammar. This error
will cause a loop in the activity graph.

• Activity " identifier" previously used in a join."

The activityidentifierhas already been used as part of a join list. Join lists are on the left hand side of the->
operator in the old grammar, and are thepre-precedence expressions in the XML grammar. This error willcause
a loop in the activity graph.

• Activity " identifier" requests reply for entry " identifier" but none pending. lqsim

The simulator is trying to generate a reply from entryidentifier, but there are no messages queued at the entry.
This error usually means there is a logic error in the simulator.

• An error occured while compiling the LQX program found in fil e: filename‘ . lqx

A syntax error was found in the LQX program found in the filefilename. Refer to earlier error messages.

• An error occured executing the LQX program found in file: filename. lqx

A error occured while executing the the LQX program found in the filefilename. Refer to earlier error messages.

• Attribute " attribute" is missing from " type" element.

The attribute namedattributefor thetype -element is missing.

• Attribute ’ attribute’ is not declared for element ’ element’

The attribute namedattributefor elementis not defined in the schema..

• Cannot create (processor|processor for task|task) " identifier". lqsim

Parasol could not create an object such as a task or processor.

• Cycle in activity graph for task " identifier", back trace is " list".

There is a cycle in the activity graph for the task namedidentifier. Activity graphs must be acyclic.List identifies
the activities found in the cycle.

• Cycle in call graph, backtrace is " list".

There is a cycle in the call graph indicating either a possible deadlock or livelock condition. A deadlock can
occur if the same task, but via a different entry, is called inthe cycle of rendezvous indentified bylist. A livelock
can occur if the same task and entry are found in the cycle.

In general, call graphs must be acyclic. If a deadlock condition is identified, thecycles=allowpragma can be
used to suppress the error. Livelock conditions cannot be suppressed as these indicate an infinite loop in the call
graph.

• Data for n phases specified. Maximum permitted is m.

The solver only supportsm phases (typically 3); data forn phases was specified. If more thanm phases need to
be specified, use activities to define the phases.

• Datatype error: Type:InvalidDatatypeValueException, Me ssage: message

• Delay from processor " identifier" to processor " identifier" previously specified. lqsim

Inter-processor delay...

80

• Derived population of n.n for task " identifier" is not valid." lqns

The solver finds populations for the clients in a given submodel by traversing up the call graphs from all the
servers in the submodel. If the derived population is infinite, the submodel cannot be solved. This error usually
arises when open arrivals are accepted by infinite servers.

• Destination entry " dst-identifier" must be different from source entry " src-identifier".

This error occurs whensrc-identifieranddst-identifierspecify the same entry.

• Deterministic phase " src-identifier" makes a non-integral number of calls (n.n) to
entry dst-identifier.

This error occurs when a deterministic phase or activity makes a non-integral number of calls to some other
entry.

• Duplicate unique value declared for identity constraint of element ’ task’.

One or more activities are being bound to the same entry. Thisis not allowed, as an entry is only allowed to
be bound to one activity. Check allbound-to-entry attributes for all activities to ensure this constraint is
being met.

• Duplicate unique value declared for identity constraint of element ’ lqn-model’.

This error indicated that an element has a duplicate name – the parser gives the line number to the start of
the second instance of duplicate element. The following elements must have unique name attributes, but the
uniqueness does not span elements. Therefore a processor and task element can have the same name attribute,
but two processor elements cannot have the same name attribute.

The following elements must have a uniquename attribute:

– processor

– task

– entry

• Empty content not valid for content model:’ element’

(result-processor,task)

• Entry " identifier" accepts both rendezvous and send-no-reply messages.

An entry can either accept synchronous messages (to which itgenerates replies), or asynchronous messages (to
which no reply is needed), but not both. Send the requests to two separate entries.

• Entry " identifier" has invalid forwarding probability of n.n.

This error occurs when the sum of all forwarding probabilities from the entryidentifier is greater than 1.

• Entry " entry-identifier" is not part of task " task-identifier".

An activity graph part of tasktask-identiferreplies toentry-identifier. However,entry-identifierbelongs to
another task.

• Entry " identifier" is not specified.

An entry is declared but not defined, either using phases or activities. An entry is “defined” when some parameter
such as service time is specified.

• Entry " identifier" must reply; the reply is not specified in the activity graph .

The entryidentifieraccepts rendezvous requests. However, no reply is specifiedin the activity graph.

• Entry " identifier" specified using both activity and phase methods.

Entries can be specified either using phases, or using activities, but not both..

81

• Entry " identifier" specified as both a signal and wait.

A semaphore task must have exactly one signal and one wait entry. Both entries have the same type..

• Expected end of tag ’ element’

The closing tag forelementwas not found in the input file.

• External synchronization not supported for task " identifier" at join " join-list". lqns

The analytic solver does not implement external synchronization.

• External variables are present in file " filename, but there is no LQX program
to resolve them. lqx

The input model contains a variable of the form “$var ” as a parameter such as a service time, multiplicty,
or rate. The variables are only assigned values when an LQX program executes. Since no LQX program was
present in the model file, the model cannot be solved.

• Fan-ins from task " from-identifier" to task " to-identifier" are not identical for all
calls. lqns

All requests made from taskfrom-identifierto taskto-identifiermust have the same fan-in and fan-out values.

• Fan-out from (activity|entry|task) " src-identifier" (n * n replicas) does not match fan-in
to (entry|processor) " dst-identifier" (n * n). lqns

This error occurs when the number of replicas atsrc-identifiermultiplied by the fan-out for the request todst-
identifier does not match the number of replicas atdst-identifiermultiplied by the fan-in for the request from
src-identifier. A fan-in or fan-out of zero (a common error case) can arise when the ratios of tasks to processors
is non-integral.

• Fewer entries defined (n) than tasks (m).

A model was specified with more tasks than entries. Since eachtask must have at least one entry, this model is
invalid.

• Group " identifier" has no tasks.

The group named byidentifierhas no tasks assigned to it. A group requires a minimum of one task.

• Group " identifier" has invalid share of n.n.

The share value ofn.n for groupidentifier is not between the range of0 < n.n <= 1.0.

• Infinite throughput for task " identifier". Model specification error. lqns

The response time for the taskidentifier is zero. The likely cause is zero service time for all calls made by the
task.

• Initial delay of n.n is too small, n client(s) still running. lqsim

This error occurs when theinitial-loopsparameter for automatic blocking is too small.

• Invalid fan-in of n: source task " identifier" is not replicated. lqns

The fan-in value for a request specifies the number of replicated source tasks making a call to the destination.
To correct this error, the source task needs to be replicatedby a multiple ofn.

• Invalid fan-out of n: destination task " identifier" has only m replicas. lqns

The fan-out valuen is larger than the number of destination tasksm. In effect, the source will have more than
one request arc to the destination.

82

• Invalid path to join " join-list" for task " identifier": backtrace is " list".

The activity graph for taskidentifer is invalid because the branches to the joinjoin-list do not all originate from
the same fork.List is a dump of the activity stack when the error occurred.

• Invalid probability of n.n.

The probability ofn.n is not between the range of zero to one inclusive. The likely cause for this error is the
sum of the probabilities either from an OR-fork, or from forwarding from an entry, is greater than one.

• Name "identifier" previously defined.

The symbolidentiferwas previously defined. Tasks, processors and entries must all be named uniquely. Activi-
ties must be named uniquely within a task.

• Model has no reference tasks.

There are no reference tasks nor are there any tasks with openarrivals specified in the model. Reference tasks
serve as customers for closed queueing models. Open-arrivals serve as sources for open queueing models.

• No calls from (entry|activity) " from-identifier" to entry " to-identifier". lqns

This error occurs when the fan-in or fan-out parameter for a request are specifiedbeforethe actual request type.
Switch the order in the input file.

• No group specified for task " task identifier" running on processor " proc identifier" using
fair share scheduling.

Task task identifier has no group specified, yet it is running on processorproc identifier which is using com-
pletely fair scheduling.

• No signal or wait specified for semaphore task " identifier".

Taskidentifierhas been identified as a semaphore task, but neither of its entries has been designated as a signal
or a wait.

• Non-reference task " identifier" cannot have think time.

A think time is specified for a non-reference task. Think times for non-reference tasks can only be specified by
entry.

• Non-semaphore task " identifer" cannot have a (signal—wait) for entry " entry".

Theentry is designated as either a signal or a wait. However,identifier is not a semaphore task.

• Number of (entries|tasks|processors)is outside of program limits of (1, n).

An internal program limit has been exceeded. Reduce the number of objects in the model.

• Number of paths found to AND-Join " join-list" for task " identifier" does not match
join list."

During activity graph traversal, one or more of the branchesto the joinjoin-list either originate from different
forks, or do not originate from a fork at all.

• Open arrival rate of n.n to task " identifier" is too high. Service time is n.n. lqns

The open arrival rate ofn.n to entryidentifier is too high, so the input queue to the task has overflowed. This
error may be the result of a transient condition, so thestop-on-message-losspragma (c.f.§6.2) may be used to
suppress this error. If the arrival rate exceeds the servicetime at the time the model converges, then the waiting
time results for the entry will show infinity. Note that if a task accepts both open and closed classes, an overflow
in the open class will result in zero throughput for the closed classes.

83

• OR branch probabilities for OR-Fork " list" for task " identifier" do not sum to 1.0;
sum is n.n.

All branches from an or-fork must be specified so that the sum of the probabilities equals one.

• Processor " identifier" has invalid rate of n.n.

The processor rate parameter is used to scale the speed of theprocessor. A value greater than zero must be used.

• Processor " identifier" using CFS scheduling has no group."

If the completely fair share scheduler is being used, there must be at least one group defined for the processor.

• Reference task " identifier" cannot forward requests.

Reference tasks cannot accept messages, so they cannot forward.

• Reference task " task-identifier", entry " entry-identifier" cannot have open arrival stream.

Reference tasks cannot accept messages.

• Reference task " task-identifier", entry " entry-identifier" receives requests.

Reference tasks cannot accept messages.

• Reference task " task-identifier", replies to entry " entry-identifier" from activity " activity-
identifier)".

Reference tasks cannot accept messages, so they cannot generate replies. The activityactivity-identifierreplies
to entryentry-identifier.

• Required attribute ’ attribute’ was not provided

The attribute namedattribute is missing for the element.

• Semaphore "wait" entry " entry-identifier" cannot accept send-no-reply requests.

An entry designated as the semaphore “wait” can only accept rendezvous-type messages because send-no-reply
messages and open arrivals cannot block the caller if the semaphore is busy.

• Start activity for entry " entry-identifier" is already defined. Activity " activity-
identifier" is a duplicate.

A start activity has already been defined. This one is a duplicate.

• Symbol " identifier" not previously defined.

All identifiers must be declared before they can be used.

• Task " identifier" cannot be an infinite server."

This error occurs whenever a reference task or a semaphore task is designated as an infinite server. Reference
tasks are the customers in the model so an infinite reference task would imply an infinite number of customers2.
An infinite semaphore task implies an infinite number of buffers – no blocking at the wait entry would ever
occur.

• Task " identifier" has activities but none are reachable.

None of the activities foridentifier is reachable. The most likely cause is that the start activity is missing.

• Task " identifier" has no entries.

No entries were defined foridentifier.

2An infinite source of customers should be represented by openarrivals instead.

84

• "Task " identifier" has n entries defined, exactly m are required.

The taskidentifierhasn entries,m are required. This error typically occurs with semaphore tasks which must
have exactly two entries.

• Task " task-identifier", Activity " activity-identifer" is not specified.

An activity is declared but not defined.. An activity is “defined” when some parameter such as service time is
specified.

• Task " task-identifier", Activity " activity-identifer" makes a duplicate reply for Entry
" entry-identifier".

An activity graph is making a reply to entryentry-identifiereven though the entry is already in phase two. This
error usually occurs when more than one reply toentry-identifieris specified in a sequence of activities.

• Task " task-identifier", Activity " activity-identifer" makes invalid reply for Entry " entry-
identifier".

An activity graph is making a reply to entryentry-identifiereven though the activity is not reachable..

• Task " task-identifier", Activity " activity-identifer" replies to Entry " entry-identifier" which
does not accept rendezvous requests.

The activity graph specifies a reply to entryentry-identifiereven though the entry does not accept rendezvous
requests. (The entry either accepts send-no-reply requests or open arrivals).

• Unknown element ’ element’

Theelementis not expected at this point in the input file.Elementmay not be spelled incorrectly, or if not, in
an incorrect location in the input file.

8.3 Advisory Messages

• Invalid convergence value of n.n, using m.m. lqns

The convergence value specified in the input file is not valid.The analytic solver is usingm.m instead.

• Invalid standard deviation: sum= n.n, sum sqr= n.n, n= n.n.

When calculating a standard deviation, the difference of the sum of the squares and the mean of the square of
the sum was negative. This usually implies an internal errorin the simulator.

• Iteration limit of n is too small, using m. lqns

The iteration limit specified in the input file is not valid. The analytic solver is usingm instead.

• Messages dropped at task identifier for open-class queues.

Asynchronous send-no-reply messages werelost at the tasktask. This message will occur when thestop-on-
message-losspragma (c.f.§6.2) is set to ignore open class overflows. Note that if a task accepts both open and
closed classes, an overflow in the open class will result in zero throughput for the closed classes.

• Model failed to converge after n iterations (convergence test is n.n, limit is
n.n). lqns

Sometimes the model fails to converge, particularly if there are several heavily utilized servers in a submodel.
Sometimes, this problem can be solved by reducing the value of the under-relaxation coefficient. It may also
be necessary to increase the iteration-limit, particularly if there are many submodels. With replicated models,
it may be necessary to use ‘loose’ layering to get the model toconverge. Convergence can be tracked using
-t convergence.

85

• No solve() call found in the lqx program in file: filename. solve() was invoked
implicitly.

An LQX program was found in filefilename. However, the functionsolve() was not invoked explictity. The
program was executed to completion, after whichsolve() was called using the final value of all the variables
found in the program.

• Replicated Submodel n failed to converge after n iterations (convergence test
is n.n, limit
is m.m). lqns

The inner “replication” iteration failed to converge....

• Service times for (processor) identifierhave a range of n.n - n.n. Results may not
be valid. lqns

The range of values of service times for a processor using processor sharing scheduling is over two orders of
magnitude. The results may not be valid.

• Specified confidence interval of n.n% not met after run time of n.n. Actual
value is n.n%. lqsim

• Submodel n is empty. lqns

The call graph is interesting, to say the least.

• Underrelaxation ignored. n.n outside range [0-2), using m.m. lqns

The under-relaxation coefficient specified in the input file is not valid. The solver is usingm.m instead3.

• The utilization of n.n at (task|processor) identifierwith multiplicity m is too high.

This problem is the result of some of the approximations usedby the analytic solver. The common causes are
two-phase servers and the Rolia multiserver. Ifidentifer is a multiserver, switching to the Conway approxima-
tion will often help. Values ofn.n in excess of 10% are likely the result of failures in the solver. Please send us
the model file so that we can improve the algorithms.

8.4 Warning Messages

• (activity|entry|task|processor) " identifier" is not used.

The object is not reachable. This may indicate an error in thespecification of the model.

• (Processor|Task) " identifier" is an infinite server with a multiplicity of n.

Infinite servers must always have a multiplicty of one. This error is caused by specifying bothdelayscheduling
and a multiplicity for the named task or processor. The multiplicity attribute is ignored.

• schedscheduling specified for (processor|task) " identifier" is not supported.

The solver does not support the specified scheduling type. First-in, first-out scheduling will be used instead.

• Activity " identifier" has no service time specified.

No service time is specified foridentifier.

• Coefficient of variation is incompatible with phase type at (entry|task)" identifier"
(phase|activity) " identifier". lqns

A coefficient of variation is specified at a using stochastic phase or activity.

3Values of under-relaxation from1 < n ≤ 2 are more correctly called over-relaxation.

86

• Entry " identifier" does not receive any requests.

Entry identifier is part of a non-reference task. However, no requests are made to this entry.

• Entry " identifier" has no service time specified for any phase.

No service time is specified for entryidentifier.

• Entry " identifier" has no service time specified for phase n.

No service time is specified for entryidentifier, phasen.

• Histogram requested for entry " identifier", phase n -- phase is not present. lqsim

A histogram for the service time of phasen of entry identifierwas requested. This entry has no corresponding
phase.

• Priority specified (n) is outside of range (n, n). (Value has been adjusted
to n). lqsim

The priorityn is outside of the range specified.

• No quantum specified for PS scheduling discipline. FIFO use d." lqsim

A processor using processor sharing scheduling needs a quantum value when running on the simulator.

• No requests made from from-identifier to to-identifier. lqns

The input file has a rendezvous or send-no-reply request witha value of zero.

• Number of (processors|tasks|entries) defined (n) does not match number specified (m).

The processor task and entry chapters of the original input grammar can specify the number of objects that
follow. The number specified does not match the actual numberof objects. Specifyingzeroas a record count is
valid.

• Parameter is specified multiple times.

A parameter is specified more than one time. The first occurance is used.

• Processor " identifier" is not running fair share scheduling."

A group was defined in the model and associated with a processor using a scheduling discipline other than
completely fair scheduling.

• Processor " identifier" has no tasks.

A processor was defined in the model, but it is not used by any tasks. This can occur if none of the entries or
phases has any service time.

• Queue Length is incompatible with task type at task identifier. lqns

A queue length parameter was specified at a task which does notsupport bounded queues.

• Reference task " identifier" does not send any messages."

Reference tasks are customers in the model. This reference task does not visit any servers, so it serves no
purpose.

• Reference task " identifier" has more than one entry defined.

Reference tasks typically only have one entry. The named reference task has more than one. Requests are
generated in proportion to the service times of the entries.

• Task " task-identifier" with priority is running on processor " processor-identifier" which
does not have priority scheduling.

Processors running with FCFS scheduling ignore priorities.

87

• Value specified for (fanin|fanout), n, is invalid. lqns

The value specified for a fan-in or fan-out is not valid and will be ignored.

• The x feature is not supported in this version.

Featurex is not supported in this release.

8.5 Input File Parser Error Messages

• error: not well-formed (invalid token)

This error occurs when an XML input file is expected, but some other input file type was given.

• Parse error.

An error was detected while processing the XML input file. Seethe list below for more explantion:

– The primary document entity could not be opened. Id= URI while parsing file-
name.

This error is generated by the Xerces when the Uniform resource indicator(URI) specified as the argument
to thexsi:noNamespaceSchemaLocation attribute of thelqn-model element cannot be opened.
This argument must refer to a valid location containing the LQN schema files.

– The key for identity constraint of element ’ lqn-model’ is not found.

When this message appears, Xerces doesnot provide many hints on where the actual error occurs be-
cause it always gives a line number which points to the end of the file (i.e. where the terminating tag
</lqn-model> is).

In this case, the following three points should be inspectedto ensure validity of the model:

1. All synchronous calls have adest attribute which refers to a valid entry.

2. All asynchronous calls have adest attribute which refers to a valid entry.

3. All forwarding calls have adest attribute which refers to a valid entry.

If it is not practical to manually inspect the model, run the XML file through another tool like XMLSpy or
XSDvalid which will report more descriptive errors.

– The key for identity constraint of element ’ task’ is not found.

When this error appears, it means there is something wrong within thetask element indicated by the line
number. Check that:

∗ The nameattribute of all reply-entry elements refers to a valid entry name, which exists
within the same task as the task activity graph.

∗ All activities which contain the attributebound-to-entry have a valid entry name that exists
within the same task as the task activity graph.

– The key for identity constraint of element ’ task-activities’ is not found.

When this error appears, it means there is something wrong within the task-activities element
indicated by the line number.

Check that:

∗ All activities referenced within theprecedence elements refer to activities which are defined for
that particular task activity graph.

∗ Thename attribute of allreply-activity elements refers to an activity defined within the men-
tionedtask-activities element.

∗ The head attribute of allpost-loop elements refers to an activity defined within the mentioned
task-activities element.

88

∗ All post-LOOP elements which contain the optional attributeend , refers to an activity defined within
the mentionedtask-activities element.

– Not enough elements to match content model : elements

((run-control,plot-control,solver-params,processor),slot)

8.6 LQX Error messages

• Runtime Exception Occured: Unable to Convert From: ‘¡¡uninitialized¿¿’To: ‘Array’

An unitialized variable is used where an array is expected (like in a foreach loop).

89

Chapter 9

Known Defects

9.1 MOL Multiserver Approximation Failure

The MOL multiserver approximation sometimes fails when theservice time of the clients to the multiserver are signif-
icantly smaller than the service time of the server itself. The utilization of the multiserver will be too high. Sometimes,
the problem can be solved by changing the mol-underrelaxation. Otherwise, switch to the more-expensive Conway
multiserver approximation.

9.2 Chain construction for models with multi- and infinite-servers

9.3 No algorithm for phased multiservers OPEN class.

9.4 Overtaking probabilities are calculated using CV=1

9.5 Need to implement queue lengths for open classes.

90

Appendix A

Traditional Grammar

This chapter gives the formal description of Layered Queueing Network input file and parseable output file grammars
in extended BNF form. For the nonterminals the notation〈nonterminalid〉 is used, while the terminals are written
without brackets as they appear in the input text. The notation {· · ·}m

n
, wheren ≤ m means that the part inside the

curly brackets is repeated at leastn times and at mostm times. Ifn = 0, then the part may be missing in the input
text. The notation〈· · ·〉opt means that the non-terminal is optional.

A.1 Input File Grammar

〈LQN input file〉 → 〈general info〉 〈processorinfo〉 〈group info〉
opt

〈task info〉 〈entry info〉
{〈activity info〉}0

| 〈parameterlist〉 〈processorinfo〉 〈group info〉
opt

〈task info〉 〈entry info〉
{〈activity info〉}0 〈report info〉

opt
〈convergenceinfo〉

opt

A.1.1 SPEX Parameters

〈parameterlist〉 → {〈variable def〉}np
1

〈variable def〉 → 〈variable〉 = 〈ternary expr〉
| [〈 expressionlist〉]
| [〈real〉 : 〈real〉 , 〈real〉]

A.1.2 General Information

〈general info〉 → G 〈comment〉 〈conv val〉 〈it limit〉 〈print int〉
opt

〈underrelaxcoeff〉
opt

〈end list〉

〈comment〉 → 〈string〉 /∗ comment on the model∗/

〈convval〉 → 〈real〉 /∗ convergence value∗/ ‡

〈it limit〉 → 〈integer〉 /∗ max. nb. of iterations∗/ ‡

〈print int〉 → 〈integer〉 ‡
/∗ intermed. res. print interval∗/

〈underrelaxcoeff〉 → 〈real〉 /∗ under relaxation coefficient∗/ ‡

〈end list〉 → -1 /∗ end of list mark ∗/

〈string〉 → " 〈text〉 "

A.1.3 Processor Information

〈processorinfo〉 → P 〈np〉 〈p decl list〉

〈np〉 → 〈integer〉 /∗ total number of processors∗/

91

〈p decl list〉 → {〈p decl〉}np
1 〈end list〉

〈p decl〉 → p 〈proc id〉 〈schedulingflag〉 〈quantum〉
opt

〈multi serverflag〉
opt

〈replication flag〉
opt

〈proc rate〉
opt

〈proc id〉 → 〈integer〉 | 〈identifier〉
/∗ processor identifier∗/

〈schedulingflag〉 → f /∗ First come, first served∗/
| h /∗ Head Of Line ∗/
| p /∗ Priority, preemeptive∗/
| c 〈real〉 /∗ completely fair scheduling∗/
| s 〈real〉 /∗ processor sharing∗/
| i /∗ Infinite or delay ∗/
| r /∗ Random ∗/

〈quantum〉 → 〈real〉 | 〈variable〉

〈multi serverflag〉 → m 〈copies〉 /∗ number of duplicates∗/
| i /∗ Infinite server ∗/

〈replication flag〉 → r 〈copies〉 /∗ number of replicas∗/

〈proc rate〉 → R 〈ratio〉 | 〈variable〉 /∗ Relative proc. speed∗/

〈copies〉 → 〈integer〉 | 〈variable〉

〈ratio〉 → 〈real〉 | 〈variable〉

A.1.4 Group Information

〈group info〉 → U 〈ng〉 〈g decl list〉 〈end list〉

〈ng〉 → 〈integer〉 /∗ total number of groups∗/

〈g decl list〉 → {〈g decl〉}ng
1 〈end list〉

〈g decl〉 → g 〈group id〉 〈group share〉 〈cap flag〉
opt

〈proc id〉

〈group id〉 → 〈identifier〉

〈group share〉 → 〈real〉 | 〈variable〉

〈cap flag〉 → c

A.1.5 Task Information

〈task info〉 → T 〈nt〉 〈t decl list〉

〈nt〉 → 〈integer〉 /∗ total number of tasks∗/

〈t decl list〉 → {〈t decl〉}nt
1 〈end list〉

〈t decl〉 → t 〈task id〉 〈task schedtype〉 〈entry list〉 〈queuelength〉
opt

〈proc id〉 〈taskpri〉
opt

〈think time flag〉
opt

〈multi serverflag〉
opt

〈replication flag〉
opt

〈group flag〉
opt

| i 〈from task〉 〈to task〉 〈fan in〉
| o 〈from task〉 〈to task〉 〈fan out〉

〈task id〉 → 〈integer〉 | 〈identifier〉
/∗ task identifier ∗/

〈taskschedtype〉 → r /∗ reference task∗/
| n /∗ non-reference task∗/
| h /∗ Head of line ∗/
| f /∗ FIFO Scheduling∗/
| i /∗ Infinite or delay server∗/
| p /∗ Polled scheduling at entries∗/
| b /∗ Bursty Reference task∗/
| S /∗ Semaphore∗/

92

| Z /∗ Semaphore – initially empty∗/

〈entry list〉 → {〈entry id〉}net1 〈end list〉
/∗ taskt hasnet entries ∗/

〈entry id〉 → 〈integer〉 | 〈identifier〉
/∗ entry identifier ∗/

〈queuelength〉 → q 〈integer〉 /∗ open class queue length∗/

〈taskpri〉 → 〈integer〉 /∗ task priority, optional ∗/

〈group flag〉 → g 〈identfier〉 /∗ Group for scheduling∗/

〈from task〉 → 〈task id〉 /∗ Source task∗/

〈to task〉 → 〈task id〉 /∗ Destination task∗/

〈fan in〉 → 〈integer〉 /∗ fan in to this task∗/

〈fan out〉 → 〈integer〉 /∗ fan out from this task∗/

A.1.6 Entry Information

〈entry info〉 → E 〈ne〉 〈entry decl list〉

〈ne〉 → 〈integer〉 /∗ total number of entries∗/

〈entry decl list〉 → {〈entry decl〉}1 〈end list〉

/∗ k = maximum number of phases∗/

〈entry decl〉 → a 〈entry id〉 〈arrival rate〉
| A 〈entry id〉 〈activity id〉
| F 〈from entry〉 〈to entry〉 〈p forward〉
| H 〈entry id〉 〈phase〉 〈hist min〉 ’:’ 〈hist max〉 〈hist bins〉 〈hist type〉
| M 〈entry id〉 {〈maxservicetime〉}k1 〈end list〉
| P 〈entry id〉 /∗ Signal Semaphore∗/
| V 〈entry id〉 /∗ Wait Semaphore∗/
| Z 〈entry id〉 {〈think time〉}k1 〈end list〉
| c 〈entry id〉 {〈coeff of variation〉}k1 〈end list〉
| f 〈entry id〉 {〈ph typeflag〉}k1 〈end list〉
| p 〈entry id〉 〈entry priority〉
| s 〈entry id〉 {〈servicetime〉}k1 〈end list〉
| y 〈from entry〉 〈to entry〉 {〈rendezvous〉}k1 〈end list〉
| z 〈from entry〉 〈to entry〉 {〈sendno reply〉}k1 〈end list〉

〈arrival rate〉 → 〈real〉 | 〈variable〉 /∗ open arrival rate to entry∗/

〈coeffof variation〉 → 〈real〉 | 〈variable〉 /∗ squared service time coefficient of variation∗/

〈from entry〉 → 〈entry id〉 /∗ Source of a message∗/

〈hist bins〉 → 〈integer〉 /∗ Number of bins in histogram.∗/

〈hist max〉 → 〈real〉 /∗ Median service time.∗/

〈hist min〉 → 〈real〉 /∗ Median service time.∗/

〈hist type〉 → log | linear | sqrt /∗ bin type. ∗/

〈maxservicetime〉 → 〈real〉 /∗ Median service time.∗/

〈p forward〉 → 〈real〉 /∗ probability of forwarding ∗/

〈phase〉 → 1 | 2 | 3 /∗ phase of entry∗/

〈ph typeflag〉 → 0 /∗ stochastic phase∗/
| 1 /∗ deterministic phase∗/

〈rate〉 → 〈real〉 | 〈variable〉 /∗ nb. of calls per arrival ∗/

〈rendezvous〉 → 〈real〉 | 〈variable〉 /∗ mean number of RNVs/ph∗/

93

〈sendno reply〉 → 〈real〉 | 〈variable〉 /∗ mean nb.of non-blck.sends/ph∗/

〈servicetime〉 → 〈real〉 | 〈variable〉 /∗ mean phase service time∗/

〈think time〉 → 〈real〉 | 〈variable〉 /∗ Think time for phase.∗/

〈to entry〉 → 〈entry id〉 /∗ Destination of a message∗/

A.1.7 Activity Information

〈activity info〉 → 〈activity defn list〉 〈activity connections〉
opt

〈end list〉

/∗ Activity definition. ∗/

〈activity defn list〉 → {〈activity defn〉}na1

〈activity defn〉 → c 〈activity id〉 〈coeff of variation〉 /∗ Sqr. Coeff. of Var. ∗/
| f 〈activity id〉 〈ph typeflag〉 /∗ Phase type ∗/
| H 〈entry id〉 〈hist min〉 ’:’ 〈hist max〉 〈hist bins〉 〈hist type〉
| M 〈activity id〉 〈maxservicetime〉
| s 〈activity id〉 〈ph serv time〉 /∗ Service time ∗/
| Z 〈activity id〉 〈think time〉 /∗ Think time ∗/
| y 〈activity id〉 〈to entry〉 〈rendezvous〉 /∗ Rendezvous∗/
| z 〈activity id〉 〈to entry〉 〈sendno reply〉 /∗ Send-no-reply ∗/

/∗ Activity Connections. ∗/

〈activity connections〉 → : 〈activity conn list〉

〈activity conn list〉 → 〈activity conn〉 {; 〈activity conn〉}na1

〈activity conn〉 → 〈join list〉
| 〈join list〉 -> 〈fork list〉

〈join list〉 → 〈reply activity〉
| 〈and join list〉
| 〈or join list〉

〈fork list〉 → 〈activity id〉
| 〈and fork list〉
| 〈or fork list〉
| 〈loop list〉

〈and join list〉 → 〈reply activity〉 {& 〈reply activity〉}na1 〈quorumcount〉
opt

〈or join list〉 → 〈reply activity〉 {+ 〈reply activity〉}na1

〈and fork list〉 → 〈activity id〉 {& 〈activity id〉}na1

〈or fork list〉 → 〈prob activity〉 {+ 〈prob activity〉}na1

〈loop list〉 → 〈loop activity〉 {, 〈loop activity〉}na
0 〈end activity〉

opt

〈prob activity〉 → (〈real〉) 〈activity id〉

〈loop activity〉 → 〈real〉 * 〈activity id〉

〈endactivity〉 → , 〈activity id〉

〈reply activity〉 → 〈activity id〉 〈reply list〉
opt

〈reply list〉 → [〈entry id〉 {, 〈entry id〉 }ne
0]

〈quorumcount〉 → (〈integer〉) /∗ Quorum ∗/

A.1.8 SPEX Report Information

〈report info〉 → R 〈nr〉 〈report decl list〉

94

A.1.9 SPEX Convergence Information

〈convergenceinfo〉 → C 〈nc〉 〈convergencedecl list〉

A.1.10 Expressions

〈ternary expression〉 → 〈or expression〉 ? 〈or expression〉 : 〈or expression〉
| 〈or expression〉

〈or expression〉 → 〈or expression〉 | 〈and expression〉 /∗ Logical OR ∗/
| 〈and expression〉

〈and expression〉 → 〈and epxression〉 & 〈compareexpression〉 /∗ Logical AND ∗/
| 〈compareexpression〉

〈compareexpression〉 → 〈compareexpression〉 == 〈expression〉
| 〈compareexpression〉 != 〈expression〉
| 〈compareexpression〉 < 〈expression〉
| 〈compareexpression〉 <= 〈expression〉
| 〈compareexpression〉 > 〈expression〉
| 〈compareexpression〉 >= 〈expression〉
| 〈expression〉

〈expression〉 → 〈expression〉 + 〈term〉
| 〈expression〉 − 〈term〉
| 〈term〉

〈term〉 → 〈term〉 * 〈power〉
| 〈term〉 / 〈power〉
| 〈term〉 % 〈power〉 /∗ Modulus ∗/
| 〈power〉

〈power〉 → 〈prefix〉 ** 〈power〉 /∗ Exponentiation, right associative∗/
| 〈prefix〉

〈prefix〉 → ! 〈factor〉 /∗ Logical NOT ∗/
| 〈factor〉

〈factor〉 → (〈expression〉)
| 〈identifier〉 (〈expressionlist〉)
| 〈variable〉 [〈expressionlist〉]
| 〈variable〉
| 〈double〉

〈expressionlist〉 → 〈expression〉 {, 〈expression〉 }0

〈int〉 → /∗ Non negative integer∗/

〈double〉 → /∗ Non negative double precision number∗/

A.1.11 Identifiers

Identifiers may be zero or more leading underscores (‘’), followed by a character, followed by any number of charac-
ters, numbers or underscores. Punctuation characters and other special characters such as the dollar-sign (‘$’) are not
permitted. The following,p1 , foo bar , and P 21 proc are valid identifiers, while21 and$proc are not.

A.1.12 Variables

SPEX variables all start with a dollar-sign (‘$’) followed by any number of characters, numbers or underscores (‘’).
The following,$s1 , $1 , and$ x are all valid variables. SPEX variables are treated as global symbols by the underly-
ing LQX program. Variables used to store arrays will also generate alocal variable of the same name, except without
the leading dollar-sign.

95

A.2 Output File Grammar

〈LQN output file〉 → 〈general〉 〈bound〉
opt

〈waiting〉
opt

〈wait var〉
opt

〈snr waiting〉
opt

〈snr wait var〉
opt

〈drop prob〉
opt

〈join〉
opt

〈service〉
opt

〈variance〉
opt

<exceeded> opt

{<distribution> }0 〈thpt ut〉 〈openarrivals〉
opt

〈processor〉

〈from entry〉 → 〈entry name〉 /∗ Source entry id.∗/

〈to entry〉 → 〈entry name〉 /∗ Destination entry id.∗/

〈entry name〉 → 〈identifier〉

〈taskname〉 → 〈identifier〉

〈proc name〉 → 〈identifier〉

〈float phaselist〉 → {〈real〉} 〈end list〉

〈real〉 → 〈float〉 | 〈integer〉

A.2.1 General Information

〈general〉 → 〈valid〉 〈convergence〉 〈iterations〉 〈n processors〉 〈n phases〉

〈valid〉 → V 〈yesor no〉

〈yesor no〉 → y | Y | n | N

〈convergence〉 → C 〈real〉

〈iterations〉 → I 〈integer〉

〈n processors〉 → PP 〈integer〉

〈n phases〉 → NP 〈integer〉

A.2.2 Throughput Bounds

〈bound〉 → B 〈nt〉 {〈boundsentry〉}nt
1 〈end list〉

〈boundsentry〉 → 〈taskname〉 〈real〉

〈nt〉 → 〈integer〉 /∗ Total number of tasks∗/

A.2.3 Waiting Times

〈waiting〉 → W 〈ne〉 {〈waiting t tbl〉}nt
1 〈end list〉

〈waiting t tbl〉 → 〈taskname〉 : 〈waiting e tbl〉 〈end list〉 〈waiting a tbl〉
opt

〈waiting e tbl〉 → {〈waiting entry〉}ne
0

〈waiting entry〉 → 〈from entry〉 〈to entry〉 〈float phaselist〉

〈ne〉 → 〈integer〉 /∗ Number of Entries∗/

〈waiting a tbl〉 → : {〈waiting activity〉}na
0 〈end list〉

〈waiting activity〉 → 〈from activity〉 〈to entry〉 〈float phaselist〉

〈na〉 → 〈integer〉 /∗ Number of Activities∗/

A.2.4 Waiting Time Variance

〈wait var〉 → VARW〈ne〉 {〈wait var t tbl〉}nt
1 〈end list〉

〈wait var t tbl〉 → 〈taskname〉 : 〈wait var e tbl〉 〈end list〉 〈wait var a tbl〉
opt

〈wait var e tbl〉 → {〈wait var entry〉}ne
0

〈wait var entry〉 → 〈from entry〉 〈to entry〉 〈float phaselist〉

〈wait var a tbl〉 → : {〈wait var activity〉}na
0 〈end list〉

96

〈wait var activity〉 → 〈from activity〉 〈to entry〉 〈float phaselist〉

A.2.5 Send-No-Reply Waiting Time

〈snr waiting〉 → Z 〈ne〉 {〈snr waiting t tbl〉}nt
1 〈end list〉

〈snr waiting t tbl〉 → 〈taskname〉 : 〈snr waiting e tbl〉 〈end list〉 〈snr waiting a tbl〉
opt

〈snr waiting e tbl〉 → {〈snr waiting entry〉}ne
0

〈snr waiting entry〉 → 〈from entry〉 〈to entry〉 〈float phaselist〉

〈snr waiting a tbl〉 → : {〈snr waiting activity〉}na
0 〈end list〉

〈snr waiting activity〉 → 〈from activity〉 〈to entry〉 〈float phaselist〉

A.2.6 Send-No-Reply Wait Variance

〈snr wait var〉 → VARZ 〈ne〉 {〈snr wait var t tbl〉}nt
1 〈end list〉

〈snr wait var t tbl〉 → 〈taskname〉 : 〈snr wait var e tbl〉 〈end list〉 〈snr wait var a tbl〉
opt

〈snr wait var e tbl〉 → {〈snr wait var entry〉}ne
0

〈snr wait var entry〉 → 〈from entry〉 〈to entry〉 〈float phaselist〉

〈snr wait var a tbl〉 → : {〈snr wait var activity〉}na
0 〈end list〉

〈snr wait var activity〉 → 〈from activity〉 〈to entry〉 〈float phaselist〉

A.2.7 Arrival Loss Probabilities

〈drop prob〉 → DP 〈ne〉 {〈drop prob t tbl〉}nt
1 〈end list〉

〈drop prob t tbl〉 → 〈taskname〉 : 〈drop prob e tbl〉 〈end list〉 〈drop prob a tbl〉
opt

〈drop prob e tbl〉 → {〈drop prob entry〉}ne
0

〈drop prob entry〉 → 〈from entry〉 〈to entry〉 〈float phaselist〉

〈drop prob a tbl〉 → : {〈drop prob activity〉}na
0 〈end list〉

〈drop prob activity〉 → 〈from activity〉 〈to entry〉 〈float phaselist〉

A.2.8 Join Delays

〈join〉 → J 〈ne〉 {〈join t tbl〉}nt
1 〈end list〉

〈join t tbl〉 → 〈taskname〉 : 〈join a tbl〉 〈end list〉

〈join a tbl〉 → {〈join entry〉}na
0

〈join entry〉 → 〈from activity〉 〈to activity〉 〈real〉 〈real〉

A.2.9 Service Time

〈service〉 → X 〈ne〉 {〈servicet tbl〉}nt
1 〈end list〉

〈servicet tbl〉 → 〈taskname〉 : 〈servicee tbl〉 〈end list〉 〈servicea tbl〉
opt

〈servicee tbl〉 → {〈serviceentry〉}ne
0

〈serviceentry〉 → 〈entry name〉 〈float phaselist〉

〈servicea tbl〉 → : {〈serviceactivity〉}na
0 〈end list〉

〈serviceactivity〉 → 〈activity name〉 〈float phaselist〉

97

A.2.10 Service Time Variance

〈variance〉 → VAR 〈ne〉 {〈variancet tbl〉}nt
1 〈end list〉

〈variancet tbl〉 → 〈taskname〉 : 〈variancee tbl〉 〈end list〉 〈variancea tbl〉
opt

〈variancee tbl〉 → {〈varianceentry〉}ne
0

〈varianceentry〉 → 〈entry name〉 〈float phaselist〉

〈variancea tbl〉 → : {〈varianceactivity〉}na
0 〈end list〉

〈varianceactivity〉 → 〈activity name〉 〈float phaselist〉

A.2.11 Probability Service Time Exceeded

〈variance〉 → VAR 〈ne〉 {〈variancet tbl〉}nt
1 〈end list〉

A.2.12 Service Time Distribution

〈distribution〉 → D 〈entry name〉 〈statistics〉 {〈hist bin〉}0 〈end list〉
| D 〈task name〉 〈activity name〉 〈statistics〉 {〈hist bin〉}0 〈end list〉

〈statistics〉 → 〈phase〉 〈mean〉 〈stddev〉 〈skew〉 〈kurtosis〉

〈hist bin〉 → 〈begin〉 〈end〉 〈probability〉 {〈bin conf〉}20

〈mean〉 → 〈real〉 /∗ Distribution mean ∗/

〈stddev〉 → 〈real〉 /∗ Distribution standard deviation∗/

〈skew〉 → 〈real〉 /∗ Distribution skew ∗/

〈kurtosis〉 → 〈real〉 /∗ Distribution kurtosis ∗/

〈probability〉 → 〈real〉 /∗ 0.0 - 1.0 ∗/

〈bin conf〉 → % 〈conf level〉 〈real〉

A.2.13 Throughputs and Utilizations

〈thpt ut〉 → FQ 〈nt〉 {〈thpt ut task〉}nt
1 〈end list〉

〈thpt ut task〉 → 〈taskname〉 〈net〉 {<thpt ut entry> }net
1 〈end list〉 〈thpt ut task total〉

opt

〈thpt ut entry〉 → 〈entry name〉 〈entry info〉 {〈thpt ut confidence〉}0

〈entry info〉 → 〈throughput〉 〈utilization〉 〈end list〉 〈total util〉

〈throughput〉 → 〈real〉 /∗ Task Throughput∗/

〈utilization〉 → 〈float phaselist〉 /∗ Per phase task util.∗/

〈total util〉 → 〈real〉

〈thpt ut task total〉 → 〈entry info〉
{〈thpt ut conf〉}0

〈thpt ut conf〉 → % 〈conf level〉 〈entry info〉

〈conf level〉 → 〈integer〉

A.2.14 Arrival Rates and Waiting Times

〈openarrivals〉 → R 〈no〉 {〈openarvl entry〉}no
1 〈end list〉

〈no〉 → 〈integer〉 /∗ Number of Open Arrivals∗/

〈openarvl entry〉 → 〈from entry〉 〈to entry〉 〈real〉 〈real〉
| 〈from entry〉 〈to entry〉 〈real〉 Inf

98

A.2.15 Utilization and Waiting per Phase for Processor

〈processor〉 → {〈proc group〉}n processors

1 〈end list〉

〈proc group〉 → P 〈proc name〉 〈nt〉 {〈proc task〉}nt
1 〈end list〉 〈proc total〉

opt

〈proc task〉 → 〈taskname〉 〈proc task info〉 {〈proc entry info〉}ne
1 〈end list〉 〈task total〉

opt

〈proc task info〉 → 〈ne〉 〈priority〉 〈multiplicity〉
opt

〈priority〉 → 〈integer〉 /∗ Prio. of task ∗/

〈multiplicity〉 → 〈integer〉 /∗ Number of task instances∗/

〈proc info〉 → 〈entry name〉 〈proc entry info〉 {〈proc entry conf〉}0

〈proc entry info〉 → 〈utilization〉 〈scheddelay〉 〈end list〉

〈scheddelay〉 → 〈float phaselist〉 /∗ Scheduling delay∗/

〈proc entry conf〉 → % 〈integer〉 〈proc entry info〉

〈task total〉 → 〈real〉 {〈proc total conf〉}0

〈proc total〉 → 〈real〉 {〈proc total conf〉}0 〈end list〉

〈proc total conf〉 → % 〈integer〉 〈real〉

99

Bibliography

[1] The Apache Software Foundation.Xerces C++ Documentation.

[2] S. C. Bruell, G. Balbo, and P. V. Afshari. Mean value analysis of mixed, multiple class
BCMP networks with load dependent service centers.Performance Evaluation, 4(4):241–260, 1984.
doi:10.1016/0166-5316(84)90010-5 .

[3] Adrian E. Conway. Fast approximate solution of queueingnetworks with multi-server chain-dependent FCFS
queues. In Ramon Puigjaner and Dominique Potier, editors,Modeling Techniques and Tools for Computer
Performance Evaluation, pages 385–396. Plenum, New York, 1989.

[4] Edmundo de Souza e Silva and Richard R. Muntz. Approximate solutions for a class of
non-product form queueing network models. Performance Evaluation, 7(3):221–242, 1987.
doi:10.1016/0166-5316(87)90042-3 .

[5] Greg Franks. Traffic dependencies in client-server systems and their effect on performance prediction. InIEEE
International Computer Performance and Dependability Symposium, pages 24–33, Erlangen, Germany, April
1995. IEEE Computer Society Press.doi:10.1109/IPDS.1995.395840 .

[6] Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, and Salem Derisavi. Enhanced modeling and
solution of layered queueing networks.IEEE Transactions on Software Engineering, 35(2):148–161, March–
April 2009. doi:10.1109/TSE.2008.74 .

[7] Roy Gregory Franks.Performance Analysis of Distributed Server Systems. PhD thesis, Department of Systems
and Computer Engineering, Carleton University, Ottawa, Ontario, Canada, December 1999.

[8] Xianghong Jiang. Evaluation of approximation for response time of parallel task graph model. Master’s thesis,
Department of Systems and Computer Engineering, Carleton University, Canada, April 1996.

[9] Lianhua Li and Greg Franks. Performance modeling of systems using fair share scheduling with layered queue-
ing networks. InProceedings of the Seventeenth IEEE/ACM International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems(MASCOTS 2009), pages 1–10, London, Septem-
ber 21–23 2009.doi:10.1109/MASCOT.2009.5366689 .

[10] Victor W. Mak and Stephen F. Lundstrom. Predicting performance of parallel computations.IEEE Transactions
on Parallel and Distributed Systems, 1(3):257–270, July 1990.doi:10.1109/71.80155 .

[11] Martin Mroz and Greg Franks. A performance experiment system supporting fast mapping of system issues. In
Fourth International Conference on Performance Evaluation Methodologies and Tools, Pisa, Italy, October 20–
22 2009.doi:10.4108/ICST.VALUETOOLS2009.7807 .

[12] John E. Neilson. PARASOL: A simulator for distributed and/or parallel systems. Technical Report SCS TR-192,
School of Computer Science, Carleton University, Ottawa, Ontario, Canada, May 1991.

[13] Martin Reiser. A queueing network analysis of computercommunication networks with win-
dow flow control. IEEE Transactions on Communications, 27(8):1199 – 1209, August 1979.
doi:10.1109/TCOM.1979.1094531 .

100

http://dx.doi.org/10.1016/0166-5316(84)90010-5
http://dx.doi.org/10.1016/0166-5316(87)90042-3
http://dx.doi.org/10.1109/IPDS.1995.395840
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1109/MASCOT.2009.5366689
http://dx.doi.org/10.1109/71.80155
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7807
http://dx.doi.org/10.1109/TCOM.1979.1094531

[14] J. A. Rolia and K. A. Sevcik. The method of layers.IEEE Transactions on Software Engineering, 21(8):689–700,
August 1995.doi:10.1109/32.403785 .

[15] Jerome Alexander Rolia.Predicting the Performance of Software Systems. PhD thesis, Univerisity of Toronto,
Toronto, Ontario, Canada, January 1992.

[16] Rainer Schmidt. An approximate MVA algorithm for exponential, class-dependent multiple servers.Performance
Evaluation, 29(4):245–254, 1997.doi:10.1016/S0166-5316(96)00048-X .

[17] C. U. Smith and L. G. Williams. A performance model interchange format.Journal of Systems and Software,
49(1):63–80, 1999.doi:10.1016/S0164-1212(99)00067-9 .

[18] C. U. Smith and L. G Williams.Performance Solutions: A Practical Guide to Creating Responsive, Scalable
Software. Object Technology Series. Addison Wesley, 2002.

[19] Connie U. Smith and Catalina M. Lladó. Performance model interchange format (PMIF 2.0): XML definition
and implementation. InProceedings of the First International Conference on the Quantative Evaluation of
Systems (QEST), pages 38–47, Enschede, the Netherlands, September 27–30 2004. IEEE Computer Society
Press.doi:10.1109/QEST.2004.1348017 .

[20] C. Murray Woodside, John E. Neilson, Dorina C. Petriu, and Shikharesh Majumdar. The stochastic rendezvous
network model for performance of synchronous client-server-like distributed software.IEEE Transactions on
Computers, 44(8):20–34, August 1995.doi:10.1109/12.368012 .

[21] Murray Woodside and Greg Franks. Tutorial introduction to layered modeling of software performance. Revision
6554.

[22] Xiuping Wu. An approach to predicting peformance for component based systems. Master’s thesis, Department
of Systems and Computer Engineering, Carleton University,Ottawa, Ontario, Canada, August 2003. Available
from: ftp://ftp.sce.carleton.ca/pub/cmw/xpwu-mthesis.pdf .

101

http://dx.doi.org/10.1109/32.403785
http://dx.doi.org/10.1016/S0166-5316(96)00048-X
http://dx.doi.org/10.1016/S0164-1212(99)00067-9
http://dx.doi.org/10.1109/QEST.2004.1348017
http://dx.doi.org/10.1109/12.368012
ftp://ftp.sce.carleton.ca/pub/cmw/xpwu-mthesis.pdf

Index

--automatic , 74
--blocks , 74
--bounds-only , 65
--confidence , 74
--convergence , 68
--debug , 65, 74
--debug-lqx , 68, 76
--debug-srvn , 69
--debug-xml , 68, 76
--error , 66, 74
--exact-mva , 68
--fast , 66
--global-delay , 76
--help , 66
--hwsw-layering , 68
--ignore-advisories , 65
--iteration-limit , 68
--method-of-layers , 68
--no-execute , 66, 75
--no-variance , 68
--no-warnings , 67, 76
--output , 66, 75
--parseable , 66, 75
--pragma , 66, 75
--print-interval , 76
--processor-sharing , 68
--raw-statistics , 75
--reload-lqx , 68
--restart , 76
--rtf , 66
--run-time , 76
--schweitzer-amva , 68
--seed , 75
--special , 67
--squashed-layering , 68
--srvn-layering , 68
--stop-on-message-loss , 68
--trace , 66, 75
--trace-mva , 68
--underrelaxation , 68
--verbose , 67, 76
--version , 67, 76
--xml , 67, 76

-> , 80,seeprecedence
-A , 25, 74–76
-B , 25, 74–76
-C , 25, 74, 75
-H , 66
-P , 66, 69, 70, 75, 77
-R , 74, 75
-S , 75
-T , 76
-V , 67, 76
-a , 65
-b , 65
-d , 65, 67, 74
-e , 66, 74
-f , 66
-h , 75
-m, 74, 75
-n , 66, 75
-o , 11, 65, 66, 74, 75
-p , 65, 66, 74, 75
-r , 66
-t , 25, 66, 72, 73, 75, 85
-v , 67, 76
-w , 67, 76
-x , 65, 67, 76
-z , 67, 76
?:, 60, 62
[], 62
#, 55, 63
#pragma, 55
$0, 62
$block time , 60
$coefficient of variation , 60
$comment , 60
$convergence limit , 60
$iteration limit , 60
$model comment , 60
$number of blocks , 60
$print interval , 60
$result precision , 60
$seed value , 60
$warm up loops , 60
\, 63

102

-> , 80

asynchronous connections, 72
coefficient of variation, 72
entry

maxium, 72
forwarding, 72
infinite server, 72
interprocessor delay, 72
multi-server, 72
open arrival, 72
phase

maximum, 72
type, 72

processor
maximum, 72

scheduling, 72
task

maximum, 72
think time, 72

active server, 3
activities, 65, 66
activity, 1, 3, 4,5, 5, 30

connection, 38,seeprecedence, 94
defined, 85
demand, 30
error, 85
LQN, 58
not reachable

error, 85
reply, 1, 7, 8

error, 81
reschedule, 77
results, 32
service time, 16
start, 84

activity, 30, 33
activity graph, 1, 5, 30, 33

connection, 32
error, 83, 88
semantics, 8
start, 32
task, 30

activity list
LQN, 60

Activity-CallGroup, 32
activity-graph , 28
ActivityDefBase, 30, 32
ActivityDefType , 30, 32
ActivityEntryDefType , 30
ActivityGraphBase, 30, 31
ActivityListType , 33

ActivityLoopListType , 33, 34
ActivityLoopType , 33, 34
ActivityMakingCallType , 32
ActivityOrType , 33, 34
ActivityPhasesType, 30, 32
ActivityType , 33
ActivtyDefType, 30, 32
ActivtyEntryDefType , 32
ActivtyPhasesType, 32
advisory

ignore, 65
advisory, 71
all, 65, 71
allow, 69
AND-fork, 1, 8

reply
error, 79

and-fork, 94
AND-join, 8, 94
AndJoinListType , 33
and fork, 8
and join, 8
arcs, 1, 3
arrival loss probabilities, 15
arrival rate, 71, 77
async-call, 32
asynchronous connections, 78
attribute

activity-graph, 28
attribute, 88
begin, 37
bin, 18
bin-size, 37
bound-to-entry, 30, 32, 81, 88
call-order, 32
calls-mean, 32
cap, 27
conf-95, 37
conf-99, 37
conv-val, 25
conv val, 25
count, 34
description, 24
dest, 28, 32, 88
elapsed-time, 25
end, 34, 37, 89
first-activity, 32
host-demand-cvsq, 32
host-demand-mean, 32
initially, 28
it limit, 25
iterations, 25

103

join-variance, 36
join-waiting, 36
loss-probability, 36
lqn-schema-version, 24
lqncore-schema-version, 24
max, 18, 37
max-service-time, 17, 32
mid-point, 37
min, 18, 37
missing

error, 80, 84
multiplicity, 26, 28
name, 24, 26–28, 30–34, 81, 88
not declared

error, 80
number-bins, 18, 37
open-arrival-rate, 30
open-wait-time, 36
param, 25
phase, 30, 32
phaseX-proc-waiting, 36
phaseX-service-time, 36
phaseX-service-time-variance, 36
phaseX-utilization, 36
platform-info, 25
print int, 25
priority, 28, 30
prob, 32, 34, 37
prob-exceed-max-service-time, 36
proc-utilization, 36
proc-waiting, 36
quantum, 26
queue-length, 28
quorum, 33
replication, 26, 28
scheduling, 26, 28
sempahore, 30
service-time, 36
service-time-distribution, 18
service-time-variance, 36
share, 27
solver-info, 25
source, 28
speed-factor, 26
squared-coeff-variation, 36
system-cpu-time, 25
think-time, 28, 32
throughput, 36
throughput-bound, 36
type, 27, 30
underrelaxcoeff, 25
unique name, 81

unique phase, 38
user-cpu-time, 25
utilization, 36
valid, 25
value, 25, 28
waiting, 36
waiting-variance, 36
x-samples, 18
xml-debug, 24
xsi:noNamespaceSchemaLocation, 88

attribute , 88
automatic blocking, 74, 77, 82
autonomous phase, 5

Bard-Schweitzer, 70
batch means, 77
batched, 69
batched layers, 69
batched-back, 69
begin , 37
bin , 18
bin-size , 37
block

automatic, 74, 77, 82
manual, 74, 77
simulation, 13, 74
size, 74, 77

bound-to-entry , 30, 32, 81, 88
bounds

throughput, 65
branch

AND, 1, 8, 83
deterministic, 8
exit, 8
loop count, 8, 33
OR, 1, 84
probability, 1, 8, 33, 83, 84

bruell, 70
buffers, 4

call graph, 69, 86
call order, 7, 32
Call-List-Group, 32
call-order , 32
calls, 65
calls-mean , 32
cap , 27
chain, 13
class

closed, 83, 85
open, 83, 85

closed model, 5
coefficient of variation, 5,7, 32, 36, 59, 78, 93, 94

104

error, 86
command line, 74, 77

incorrect, 69, 76
comment

LQN, 55
components, 21
concurrency, 4
conf-95 , 37
conf-99 , 37
confidence intervals, 74, 77
confidence level, 74
constraint checking, 38
contention delay, 13
conv-val , 25
conv val , 25
Convergence

SPEX, 62
convergence, 72

error, 85
failure, 69, 72, 73, 76
test value, 13
value, 68,72, 72, 91

error, 85
convergence, 66
convergence-value, 67
conway, 70
copyright, 67, 76
count , 34
counters

statistical, 75
customer, 4, 5
cycle

activity graph
error, 80

call graph
error, 80

detection, 69
cycle-time

entry, 75
task, 75

cycles, 69
cycles=allow, 80

d
LQN

pragma, 55
deadlock, 69, 80
debug, 65
delay

contention, 13
interprocessor, 76

delta wait, 66

demand, 1, 30, 32
description , 24
dest , 28, 32, 88
deterministic, 7
directed graph, 5
disallow, 69
distribution

exponential, 7
gamma, 7
Pareto, 7
service time, 75

driver, 75
duplicate

identifier
error, 83

parameter
error, 87

start activity
error, 84

unique value
error, 81

egrep, 75
elapsed-time , 25
element

activity, 30, 33
Activity-CallGroup, 32
async-call, 32
Call-List-Group, 32
duplicate name

error, 81
entry, 27
entry-phase-activities, 30
forwarding, 30
histogram-bin, 35
lqn-model, 24, 88
overflow-bin, 35
plot-control, 24
post, 33
post-loop, 88
pragma, 24, 25
pre, 33
precedence, 30, 88
processor, 24
quorum, 33
reply-activity, 30, 31, 88
reply-element, 31
reply-entry, 30, 88
result-activity, 32
result-entry, 30
result-forwarding, 32
result-general, 24, 25

105

result-join-delay, 32
result-processor, 26
result-task, 27
run-control, 24
service, 27
service-time-distribtion, 32
slot, 24
solver-params, 24, 25
sync-call, 32
task, 26, 88
task-activities, 27, 30, 88, 89
underflow-bin, 35
unkown

error, 85
end , 34, 37, 89
entry, 1, 3, 4,5–7

activity, 81
defined, 81
different

error, 81
error, 81, 84
LQN, 57
maximum, 78
message type

error, 81
parameters, 1
phase, 81
priority, 4
service time, 59
signal, 5, 82, 83
type

error, 81, 82
wait, 5, 82–84

entry, 27
entry-phase-activities, 30
EntryActivityDefType , 32
EntryActivityGraph , 30
EntryMakingCallType , 32
EntryType , 27, 29–31
environment variable

override, 77
environment variable, 69, 77
error, 88

activity, 85
not reachable, 85
reply, 81

activity graph, 83, 88
AND-fork

reply, 79
attribute

missing, 80, 84
not declared, 80

coefficient of variation, 86
convergence, 85

value, 85
cycle

activity graph, 80
call graph, 80

duplicate
identifier, 83
parameter, 87
start activity, 84
unique value, 81

element
duplicate name, 81
unkown, 85

entry, 81, 84
different, 81
message type, 81
type, 81, 82

external variable, 82
fan-in, 82, 83, 88
fan-out, 82, 83, 88
fatal, 69, 76
fork, 83
fork-list, 80
forward, 84, 88
forwarding

probability, 81
group, 84, 87

share, 82
tasks, 82

infinite server, 81
iteration limit, 85
join, 83
join-list, 80
LOOP

reply, 79
LQX, 80

execution, 82
maximum phases, 80
message

pool, 79
model, 82
multiplicity, 86
not defined, 84
not reachable, 84, 86
open arrival, 81, 83, 84
OR-fork, 84
Parasol, 80
phase

deterministic, 81
population

infinite, 81

106

post-precedence, 80
pre-precedence, 80
primary document, 21, 88
priority, 87
probability, 83
processor

creation, 80
not used, 87
rate, 84
sharing, 86, 87

program limit, 83
queue length, 87
reference task, 83, 84, 87
rendezvous, 87, 88
replication, 79, 82

iteration, 86
reply, 79, 80, 84

duplicate, 85
invalid, 85

reply-activity, 88
response time, 82
scheduling, 86

completely fair, 83, 84, 87
schema, 88
semaphore task, 83–85
send-no-reply, 79, 85, 87, 88
server

task, 87
service time, 86, 87
stack size, 79
standard deviation, 85
start activity, 80, 84
synchronization, 82
tag

end, 82
task creation, 80
think time, 83
throughput

infinite, 82
under-relaxation coefficient, 86
utilization

high, 86
wait, 84
Xerces, 88

events, 76
exact, 70
Excel, 62
exit

success, 69, 76
exponential, 71
external variable

error, 82

false, 71
fan-in,9, 92

error, 82, 83, 88
fan-out,9, 92

error, 82, 83, 88
FanInType, 28
FanOutType, 28
fast, 70
fcfs, 70
file

debug, 75
monitor, 74, 75
tracing, 75

first-activity , 32
floating point

exception, 66, 74
infinity, 66, 75

fork, 1, 5, 71
error, 83
precedence, 8

fork-list, 8, 33
error, 80

forks, 65, 66
forward

error, 84, 88
forwarding, 1, 5, 9, 32, 78, 83

probability, 83
error, 81

forwarding, 30
forwarding probability, 93
full-reinitialize, 67

generate, 67
global-delay, 76
Gnuplot, 62
Grammar

XML, 21
XML), 38

grammar
original, 87

group, 4,
textbf4

error, 84, 87
LQN, 56
share, 82

error, 82
tasks

error, 82
group share, 92
GroupType, 26, 27

hardware-software layers, 69
histogram, 35, 93, 94

107

no phase, 87
overflow, 18
statistics, 18
underflow, 18

histogram-bin, 35
HistogramBinType, 35, 37
hol, 70
holding time, 1
host-demand-cvsq , 32
host-demand-mean , 32
hwsw, 69
hyper, 71

icon
stacked, 1

identifier
duplicate, 83
LQN, 55

identifiers, 95
idle time, 66
ignore-overhanging-threads, 67
infinite loop

call graph, 80
infinite server, 78

error, 81
infinity, 66, 71, 75, 77, 83
init-only, 71
initial-loops, 74, 82
initially , 28
input

invalid, 69, 76
multiple, 76
XML, 11, 24, 65, 74

interlock, 69
interlock, 65, 67
interlocking, 69
interprocessor delay, 78
it limit , 25
iteration limit, 13, 25,72, 72, 73, 85, 91

error, 85
iteration-limit, 67
iterations , 25

join, 1, 5, 16, 71
and, 33
delay, 11,16, 32, 36, 71, 97
error, 83
precedence, 8
quorum, 8, 33
variance, 16, 36

join-list, 8, 33, 94
error, 80

join-variance , 36

join-waiting , 36
joins, 65, 67

lambda, 18
layer

spanning, 1
Layered Queueing Network, 1, 3
layering

batched, 69
loose, 85
method of, 69
Method of Layers, 69
squashed, 69
srvn, 69
strategy, 69

layering, 69
layers

hardware-software, 69
layers, 65
length

simulation, 77
limits

lqns, 72
lqsim, 78

line continuation, 63
Linearizer, 70
linearizer, 70
livelock, 80
LOOP, 8, 94

reply
error, 79

loop, 8, 33
loop count, 8, 33
loss probability, 36
loss-probability , 36
lqiolib, 58
LQN, 55–58

activity, 58, 59
activity list, 60
comment, 55
entry, 57, 59
group, 56
identifier, 55
multiplicity, 56
parameter, 55
pragma

d, 55
processor, 56
task, 57
white space, 53

lqn-core.xsd, 21
lqn-model, 24, 88

108

lqn-schema-version , 24
lqn-sub.xsd, 21
lqn.xsd, 21
lqn2ps, 11
lqncore-schema-version , 24
LqnModelType, 24
LQNS, 65

parameters, 55
lqns, 11, 21

convergence value, 25
LQNSPRAGMAS, 69
lqsim, 21

scheduling, 4, 87
LQSIM PRAGMAS, 77
LQX, 39–52, 63, 68, 76

debug, 68, 76
error, 80
execution

error, 82
intrinsic types,39–40
Operators,40

lqx, 58, 86
lqx, 65

mak, 71
Mak-Lundstrom, 71
MakingCallType , 32, 33
man, 67
manual blocking, 74
markov, 70
max, 18, 37
max-service-time , 17, 32
maximum phases

error, 80
maximum service time, 93, 94
message,seerequest

asynchronous, 5
buffers, 77
pool

error, 79
synchronous, 5

messages, 77
meta model, 3
Method of Layers, 69

variance, 71
method of layers, 69
method of samples, 77
mid-point , 37
min , 18, 37
min-steps, 67
model

comment, 91

error, 82
mol, 69, 71
mol-back, 69
mol-ms-underrelaxation, 67
monitor file, 74
msgbuf, 76
multi-server, 78
multiplicity, 1, 9

error, 86
infinite server, 86
LQN, 56

multiplicity , 26, 28
multiserver, 1

algorithm, 70
approximation

error, 86
Bruell, 70
Conway, 70, 86
default, 70
Reiser, 70
Rolia, 70, 86
Schmidt, 70

multiserver, 70
MultiSRVN, 75
MVA, 70

Bard-Schweitzer, 68, 70
exact, 68, 70
Linearizer, 70

mva, 67, 70

name, 24, 26–28, 30–34, 81, 88
no-entry, 71
node, 3
none, 69–71
not defined

error, 84
not reachable

error, 84, 86
number of iterations, 13
number-bins , 18, 37

on-off behaviour, 8
one-step, 70
one-step-linearizer, 70
open arrival, 30, 78, 84, 85

error, 81, 83, 84
loss probability, 97
overflow, 71, 77
waiting time,18, 98

open model, 5
open-arrival-rate , 30
open-wait-time , 36
OR-fork, 8, 83

109

error, 84
or-fork, 94
OR-join, 8, 94
OrListType , 33
or fork, 8
or join, 8
output, 66, 75

conversion, 11
csv, 75
human readable, 11
parseable, 11, 74, 75
XML, 11, 65, 74

OutputDistributionType , 32, 35, 37
OutputResultForwardingANDJoinDelay, 32
OutputResultJoinDelayType, 35, 36
OutputResultType, 26, 27, 32, 35
over relaxation, 86
overflow, 66, 71, 75, 77
overflow-bin, 35
overlap calculation, 71
overtaking, 70

Markov, 70
Method of Layers, 70

overtaking, 65, 67, 70

param , 25
parameter

LQN, 55
Parasol, 74, 75

error, 80
Pareto distribution, 5
Performance Model Interchange Format, 3
Perl

SPEX, 62
phase, 1, 5, 6

asynchronous, 1
autonomous, 5
deterministic

error, 81
maximum, 78
reply, 7
reschedule, 77
results, 32
second, 1
service time, 16
type, 78, 93, 94

phase , 30, 32
phases

approximation
error, 86

phaseX-proc-waiting , 36
phaseX-service-time , 36

phaseX-service-time-variance , 36
phaseX-utilization , 36
platform-info , 25
plot-control, 24
population

infinite
error, 81

post, 33
post-loop, 88
post-precedence, 8

error, 80
ppr, 70
pragma, 55, 66, 69, 75, 77

invalid, 69
command line, 77
input file, 77

pragma, 24, 25
pre, 33
pre-precedence, 8

error, 80
precedence, 3, 5,8, 38

activity, 1
and-fork, 8
and-join, 8
loop, 8
or-fork, 8
or-join, 8
quourm-join, 8
sequence, 8

precedence, 30, 88
PrecedenceType, 30, 33, 34
precision

simulation, 74
primary document

error, 21, 88
print, 67
print interval, 25, 91

lqns, 25
print-interval, 67, 76
print int , 25
prioity

premptive-resume, 70
priority

entry, 4, 93
error, 87
head of line, 4, 70
highest, 4
inversion, 4
preemptive resume, 4
preemptive resume, 4
processor, 4

priority , 28, 30

110

prob , 32, 34, 37
prob-exceed-max-service-time , 36
probability

branch, 8, 33, 83
error, 83
forwarding, 81, 83

proc-utilization , 36
proc-waiting , 36
processor, 1, 3,3–4

creation
error, 80

LQN, 56
maximum, 78
not used

error, 87
priority, 4
queueing, 16
rate

error, 84
scheduling, 56, 70, 77

completely fair, 92
custom, 77
natural, 77
sharing, 92

sharing,4, 26, 70, 86, 92
error, 86, 87

trace, 75
utilization, 18, 77
waiting, 77

processor, 24, 70, 75
processor sharing, 71
ProcessorType, 26
program limit

error, 83
ps, 71

quantum, 4, 87, 92
quantum , 26
queue, 1
queue length, 92

error, 87
queue-length , 28
queueing delay

processor, 11
task, 11

queueing model
closed, 5, 83
customers, 83
open, 5, 83

queueing network
extended, 1
layered, 1

queueing time, 15
processor,18, 36,99
variance, 15

quorum, 94
quorum, 33, 65, 67
quorum , 33
quorum join, 8
QUORUM-join, 8
quorum join, 8, 33

random number
generation, 75

reference
task, 57

reference task,5, 57, 74
bursty,5, 7
error, 83, 84, 87

reiser, 70
reiser-ps, 70
remote procedure call, 3
rendezvous, 1, 3, 5, 7, 9, 32, 79, 93, 94

cycle, 80
delay,15, 36, 96
error, 87, 88
reference task, 5
variance,15, 36, 96

rep2flat, 79
replication,9

convergence, 85
error, 79, 82
flatten, 79
iteration

error, 86
processor, 92
ratio, 82
simulator, 79
task, 92

replication , 26, 28
reply, 1

activity, 1, 5, 30
duplicate

error, 85
error, 79, 80, 84
explicitly, 7
implicit, 7
invalid

error, 85
phase, 5

reply-activity
error, 88

reply-activity, 30, 31, 88
reply-element, 31

111

reply-entry, 30, 88
request, 1, 3,9, 32

asynchronous, 1
blocked, 1
forward, 1
reply, 1
synchronous, 1
types, 9

reschedule
activity, 77
phase, 77

reschedule-on-async-send, 77
resource

passive, 5
possession, 1

simultaneous, 1
software, 1

response time
error, 82

result-activity, 32
result-entry, 30
result-forwarding, 32
result-general, 24, 25
result-join-delay, 32
result-processor, 26
result-task, 27
ResultContentType, 35, 36
results

activity, 32
intermediate, 66
phase, 32
valid, 13

rolia, 70
rolia-ps, 70
root mean square, 77
round robin, 4
run time

simulation, 74, 76
run-control, 24
run-time, 71

scheduling, 78
cfs, 4
completely fair, 4, 26, 27, 56

error, 83, 84, 87
delay, 86
error, 86
fair share, 57
FCFS, 56, 57, 87
fifo, 3, 4
head of line, 26
head-of-line, 56, 57

priority, 4
processor, 26, 56, 70, 92
processor sharing, 4, 87
random, 4
round robin, 4
semaphore, 92
task, 4, 28, 92

scheduling, 77
scheduling , 26, 28
schema

constraints, 35
error, 88

schmidt, 70
schweitzer, 70
seed, 75
semaphore

counting, 5
service time, 18
signal, 93
utilization, 18
wait, 84

semaphore task,5, 59, 82
error, 83–85

sempahore , 30
send-no-reply, 1, 9, 32, 77, 93, 94

delay,15, 97
error, 79, 85, 87, 88
loss probability,15
overflow, 71, 77
variance,15, 97

server
active, 3
infinite, 81
pure, 3
synchronize, 8
task

error, 87
service

class, 1, 4
request, 1

service, 27
service time, 5, 11,16–17, 18, 32, 36, 87, 93, 94, 97

demand, 77
distribution, 11,18, 75, 98
distributions, 18
entry, 77
error, 86, 87
exceeded, 98
histogram, 35
kurtosis, 18
maximum, 93, 94
maximum exceeded, 17

112

mean, 18
phase one, 15, 16
probability exceeded,17, 36
skew, 18
standard deviation, 18
variance,17, 17, 36, 98

service-time , 36
service-time-distribtion, 32
service-time-distribution , 18
service-time-variance , 36
severity-level, 71
share, 4

cap, 4, 27
exceed, 4
guarantee, 4, 27

share , 27
signal, 5, 59, 82, 83
simple, 70
simulation

block, 74, 76
statistics, 74

single-step, 67
SingleActivityListType , 33
skip, 74
skip period, 74, 77
skip-layer, 67
slice, 5, 7,7–8
slot, 24
solution

statistics, 76
solve()

implicit, 86
solver-info , 25
solver-params, 24, 25
source , 28
special, 70
speed-factor , 26
SPEX, 53,58–63

AGR, 63
arrays, 62
convergence, 53, 62
grammar

convergence, 95
expressions, 95
paramters, 91
report, 94

if-then-else, 62
LQX, 62
parameter

control, 55
parameters, 53
Perl, 62

report, 62
results, 53
ternary expressions, 60, 62
Variables, 55
variables, 95,60–95

array, 61
control, 60
observation, 61
scalar, 60

versions, 62
spex

variables, 60
squared-coeff-variation , 36
squashed, 69
squashed layers, 69
srvn, 69
srvn layers, 69
srvndiff, 75
stack size

error, 79
standard deviation

error, 85
standard input, 66, 75
start activity

error, 80, 84
statistical counters, 75
statistics, 74, 76

blocked, 25
simulation, 76

step() , 13
stochastic, 7
stochastic, 71
stop-on-message-loss, 71, 75, 77, 83, 85
stopping criteria, 77
submodel

population, 81
suri, 70
sync-call, 32
synchronization

error, 82
synchronization server, 8
synchronization task,5
system-cpu-time , 25

tag
end

error, 82
task, 1, 3,4–5

LQN, 57
maximum, 78
queue, 4
reference, 5, 57, 74, 84, 87

113

bursty,5, 5
semaphore, 5, 82–85
server, 87
synchronization, 5
trace, 75

task, 26, 75, 88
task creation

error, 80
task-activities, 27, 30, 88, 89
TaskActivityGraph , 30
TaskType, 26–28
tau, 71
tex, 68
think time, 57, 78, 92–94

entry, 83
error, 83

think-time , 28, 32
thread, 1
threads, 71
three-point approximation, 71
throughput, 11,18, 36, 98

bounds, 11,13, 36, 65, 96
infinite

error, 82
interlock, 69
zero, 83, 85

throughput, 67, 69
throughput , 36
throughput-bound , 36
time, 75
timeline, 76
trace

processor, 75
task, 75

tracing, 66, 75
true, 71
type

ActivityDefBase, 30, 32
ActivityDefType, 30, 32
ActivityEntryDefType, 30
ActivityGraphBase, 30, 31
ActivityListType, 33
ActivityLoopListType, 33, 34
ActivityLoopType, 33, 34
ActivityMakingCallType, 32
ActivityOrType, 33, 34
ActivityPhasesType, 30, 32
ActivityType, 33
ActivtyDefType, 30, 32
ActivtyEntryDefType, 32
ActivtyPhasesType, 32
AndJoinListType, 33

EntryActivityDefType, 32
EntryActivityGraph, 30
EntryMakingCallType, 32
EntryType, 27, 29–31
FanInType, 28
FanOutType, 28
GroupType, 26, 27
HistogramBinType, 35, 37
LqnModelType, 24
MakingCallType, 32, 33
OrListType, 33
OutputDistributionType, 32, 35, 37
OutputResultForwardingANDJoinDelay, 32
OutputResultJoinDelayType, 35, 36
OutputResultType, 26, 27, 32, 35
PrecedenceType, 30, 33, 34
ProcessorType, 26
ResultContentType, 35, 36
SingleActivityListType, 33
TaskActivityGraph, 30
TaskType, 26–28

type , 27, 30

under-relaxation, 85
under-relaxation coefficient, 91

error, 86
underflow-bin, 35
underrelax coeff , 25
underrelaxation, 68
user-cpu-time , 25
utilization

entry, 36, 75
high, 85

error, 86
processor, 11,18, 18, 36, 75, 77,99
semaphore,18, 18
task, 11,18, 36, 75, 98

utilization , 36

valid , 25
value , 25, 28
Variables

SPEX, 55
variables

parameters, 62
report indication, 62
spex, 60

variance, 71
initialize only, 71
Method of Layers, 71
service time, 17

variance, 67, 71
version, 67, 76

114

wait, 5, 82, 83
error, 84

wait, 67
wait() , 13
waiting

processor, 77
waiting , 36
waiting time, 18, 75

open arrival,18, 36, 98
waiting-variance , 36
warning

ignore, 67, 76
warning, 71
white space

LQN, 53

x-samples , 18
Xerces, 35, 38, 88

error, 88
error messages, 38
validation, 38

XML, 65, 74
debug, 68, 76
input, 65
validation, 38

xml, 66
XML Grammar,21
XML Grammar), 38
xml-debug , 24
XMLSpy, 38
XSDvalid, 38
xsi:noNamespaceSchemaLocation , 88

115

	The Layered Queueing Network Model
	Model Elements
	Processors
	Groups
	Tasks
	Entries
	Activities
	Precedence
	Requests

	Multiplicity and Replication
	A Brief History

	Results
	Header
	Analytic Solver (lqns)
	Simulator (lqsim)

	Type 1 Throughput Bounds
	Mean Delay for a Rendezvous
	Variance of Delay for a Rendezvous
	Mean Delay for a Send-No-Reply Request
	Variance of Delay for a Send-No-Reply Request
	Arrival Loss Probabilities
	Mean Delay for a Join
	Service Times
	Service Time Variance
	Probability Maximum Service Time Exceeded
	Service Time Distributions for Entries and Activities
	Semaphore Holding Times
	Throughputs and Utilizations per Phase
	Arrival Rates and Waiting Times
	Utilization and Waiting per Phase for Processor

	XML Grammar
	Basic XML File Structure
	Schema Elements
	LqnModelType
	ProcessorType
	GroupType
	TaskType
	FanInType and FanOutType
	EntryType
	ActivityGraphBase
	TaskActivityGraph
	ActivityDefBase
	MakingCallType
	PrecedenceType
	OutputResultType
	OutputResultJoinDelayType
	OutputDistributionType
	HistogramBinType

	Schema Constraints

	LQX Users Guide
	Introduction to LQX
	Input File Format
	Writing Programs in LQX
	Program Input/Output and External Control
	Actual Example of an LQX Model Program

	API Documentation
	Built-in Class: Array
	Built-in Global Methods and Constants

	API Documentation for the LQN Bindings
	LQN Class: Document
	LQN Class: Processor
	LQN Class: Group
	LQN Class: Task
	LQN Class: Entry
	LQN Class: Phase
	LQN Class: Activity
	LQN Class: Call
	Confidence Intervals

	LQN Input File Format
	Lexical Conventions
	White Space
	Comments
	Identifiers
	Variables

	LQN Model Specification
	Pragmas
	General Information
	Processor Information
	Group Information
	Task Information
	Entry Information
	Activity Information

	SPEX: Software Performance Experiment Driver
	Variables
	Report Information
	Convergence Information
	Differeneces to SPEX 1
	SPEX and LQX

	Invoking the Analytic Solver ``lqns''
	Command Line Options
	Pragmas
	Stopping Criteria
	Model Limits
	Diagnostics

	Invoking the Simulator ``lqsim''
	Command Line Options
	Return Status
	Pragmas
	Stopping Criteria
	Model Limits

	Error Messages
	Fatal Error Messages
	Error Messages
	Advisory Messages
	Warning Messages
	Input File Parser Error Messages
	LQX Error messages

	Known Defects
	MOL Multiserver Approximation Failure
	Chain construction for models with multi- and infinite-servers
	No algorithm for phased multiservers OPEN class.
	Overtaking probabilities are calculated using CV=1
	Need to implement queue lengths for open classes.

	Traditional Grammar
	Input File Grammar
	SPEX Parameters
	General Information
	Processor Information
	Group Information
	Task Information
	Entry Information
	Activity Information
	SPEX Report Information
	SPEX Convergence Information
	Expressions
	Identifiers
	Variables

	Output File Grammar
	General Information
	Throughput Bounds
	Waiting Times
	Waiting Time Variance
	Send-No-Reply Waiting Time
	Send-No-Reply Wait Variance
	Arrival Loss Probabilities
	Join Delays
	Service Time
	Service Time Variance
	Probability Service Time Exceeded
	Service Time Distribution
	Throughputs and Utilizations
	Arrival Rates and Waiting Times
	Utilization and Waiting per Phase for Processor

