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Abstract 

 
Bottlenecks are a simple and well-understood 

phenomenon in service systems and queueing models. 
However in systems with layered resources bottlenecks 
are more complicated, because of simultaneous 
resource possession. Thus, the holding time of a 
higher-layer resource, such as a process thread, may 
include a small execution demand, but a large time to 
use other resources at a lower layer (such as a disk). A 
single saturation point may in fact saturate many other 
resources by push-back, making diagnosis of the 
problem difficult. This paper gives a new corrected 
definition of a layered bottleneck, and develops a 
framework for systematic detection of the source of a 
bottleneck, for applying improvements and for 
estimating their effectiveness. Many of the techniques 
are specific to layered bottlenecks. 
 
1 Introduction 

 
When a system is throughput-limited but none of 

the devices (processors, disks, bus, network) are 
saturated, the bottleneck is some other kind of 
resource. Here, these are called “layered bottlenecks”, 
using a model which describes computer systems, and 
many other systems. 

In simple service systems (“flat” resource systems) 
a job is using resources one at a time. The most 
heavily loaded server is the bottleneck, and if it is 
relieved by some means, the next most heavily loaded 
server takes over [7]. 

Layered bottlenecks arise from simultaneous 
resource possession. The holding time of a resource R 
may include waiting for and using other “lower” 
resources, one at a time. For example, while holding a 
process thread resource, a program may use the disk.  

A layered bottleneck resource B has the following 
features: 

1. B is a saturated resource, that is its units are all 
in use almost all the time. 

2. Resources “below” it are unsaturated. As an 
example, a processor may have low utilization 
in a memory bottleneck. 

3. It tends to spread saturation to resources which 
include it in their holding times. This is 
“pushback” of load away from the bottleneck.  

4. Thus, there may be many saturated resources 
which are not themselves the bottleneck. 

This makes the understanding of layered bottlenecks 
more difficult than flat resource system bottlenecks. 

Although bottlenecks are often considered an 
asymptotic property of systems which are heavily 
loaded, the present discussion considers the limiting 
factors in any system, regardless of the workload 
intensity. If a closed system is lightly loaded, its 
bottleneck is defined to be at the source of workload. 

Layered bottlenecks were described and named 
“software bottlenecks” in [11], but they were familiar 
to system and database programmers long before. The 
name layered bottlenecks recognizes that they are a 
feature of many kinds of resources, not only software. 

Layered bottlenecks have been described by many 
authors under a variety of names. Thrashing in virtual 
memory systems is a well-known example [7]. Maly et 
al described a bus bottleneck in a switch, which was 
layered over the processor and memory resources [9]. 
Dilley et al. found a process thread bottleneck in a web 
server [2], and threads were also featured in [11]. 
Smith and Williams give a tutorial example with a 
global lock which forms a layered bottleneck, and 
limits an ATM system to a very low throughput [16]. 
Cechet et al measured a web-based application with a 
throughput limit due to database lock contention [1]. 
Petriu et al. , and Xu et al., describe a sequence of 
steps to mitigate bottlenecks involving process 
threads, a buffer pool, class interference, and excessive 
synchronization [12], [18]. Gerndt et al describe a 
cache which is a bottleneck [5], due to thrashing.  

This paper describes a framework for 
understanding layered bottlenecks, gives an improved 
definition, and estimates the effect of the possible 
improvements (mitigations) in a given case. 

 
2 Layered Resources 

 
We may regard resources as servers with queues. 

Everything done during the holding time of a resource 
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T is part of its service time XT. If another resource t is 
used during this time, its service time is incorporated 
into XT, as is any time spent waiting to obtain t. Thus: 

Layered services are services which include other 
services and their waiting; they are a nested form 
of simultaneous resource possession. 

Resource T above depends on resource t, because t is 
required (always or sometimes) by the holding-time 
operations of T. The dependency can be shown as a 
directed graph with nodes for resources, and an arc 
from resource T to each resource t that it depends on 
(see Figure 1). We will say that T is in a higher layer 
than t. Attention is restricted to acyclic graphs (to 
exclude systems with resource deadlocks), and to 
resources which are released in reverse order to 
acquisition (giving nested holding times). Many 
extended queueing networks are layered. 
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Figure 1. Resource Dependency Graph 

 
In Figure 1, 
• each node T is labeled by (mT, ZT) where:  

- mT = the multiplicity of the resource T, 
- ZT = the “local service” part of the holding 

time of T (that is due only to T itself, and not 
to nested resource use), 

• each arc (T,t) is labeled by y(T,t), the mean 
number of requests to another resource t during a 
holding time of T, 

• the system has a closed workload driven by 
source node A, with 50 “users”, 

• the graph imposes a partial order on resources, 
ordered from top to bottom of Figure 1, 

• requests can jump over layers (not shown here), 
• the set of nodes connected by arcs directly from 

resource T will be called RequestedBy(T), those 
connected by arcs to T are the set RequestsTo(T). 

The topmost node A is special, as it has no requests. 
Such resources model closed sources of workload to 
the system. A represents mA entities which cycle 

forever, alternating between a think time of mean ZA 
and requests for resources which are top-level servers. 

 The leaf nodes (with double outlines) are ordinary 
queueing servers with mean service time ZT. The set of 
leaf nodes will be called Processors, as CPUs have 
this role in computer systems. They are not limited to 
CPUs, however. 

The service time XT of any resource T that is not a 
processor is defined recursively in terms of waiting 
times Wt and service times Xt of resources t, in the set  
RequestedBy(T) of nested requests:  

XT = ZT + Σt in RequestedBy(T)[y(T,t) (Wt + Xt)]     (1) 
Real systems tend to have many classes of requests, 
but for simplicity we will first assume a single class of 
requests to each resource. 

From the system or a model we can obtain 
performance measures for each resource: 
• XT = service time of T 
• WT = waiting time for requests to T 
• RT = response time = WT + XT 
• fT = throughput of resource T (acquisitions/sec) 
• UT = fT XT = utilization of T (mean number of 

busy units of the resource) 
• satT = the saturation level of T = UT/mT (utilization 

relative to the number of units of resource T) 
In a closed system each source of workload (such as A 
in Fig. 1) has throughput fA and the system response 
time is its cycle time mA / fA, minus its think time ZA: 

 

Response Delay at A = (mA / fA) - ZA 
 

 
2.1 Examples 

 
With these definitions we can show an example of 

performance measures for the system of Figure 1, with 
the parameters and result values in Table 1. 

The throughput at A, as a function of the number of 
users mA, follows a classic saturation curve shown in 
Figure 2. The fact that B is the one limiting the 
throughput is confirmed by the fact that an increase in  
mB yields a higher throughput. We obtain the 
following values for (mB, fA) when mB is varied: 

(5, 3.06), (7, 3.62), (9, 3.82), (>15, 3.87) 

On the other hand an increase in other resources (e.g. 
in mt1 ) does not change the throughput at all. 

 
Table 1.  Example: some parameters and results 

Res. 
T 

ZT 
(sec) 

XT 
(sec) 

mT fT 
/sec 

UT satT 

A 10.0 16.3 50 3.06 50 1 
t1 0.01 6.02 20 3.06 18.4 0.92 
t2 0.5 1.60 15 9.18 14.6 0.97 
t3 .01 0.01 1 6.12 0.06 0.06 
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B .01 0.543 5 9.18 4.98 0.996 
t4 0.2 0.2 5 6.43 1.29 0.26 
t5 0.1 0.1 5 9.18 0.92 0.18 
t6 0.05 0.063 3 36.7 2.31 0.77 
t7 0.01 0.01 1 36.7 0.37 0.37 
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Figure 2. Saturation as Load Increases 

 
A pattern emerges in Figure 3(a) which shows a 

bold outline for every task with satT > 0.9 (an ad hoc 
indicator of saturation of resource T). Upper layers are 
saturated, lower layers are not. The boundary resource 
B is the bottleneck which causes the saturation, and the 
set Above(B) is saturated by pushback. 

 

(a) as Figure 1 (b) with mt2 = 1500  
Figure 3. Resource Dependency Graph showing 

Saturated Resources in Bold 
 
Based on this pattern, a “bottleneck strength” 

measure was defined in [11]: 
BStrength-oldT = satT / (max t in RequestedBy(T) satt) 

The resource with the largest value was defined as the 
bottleneck. Table 2 shows the strength values for each 
task. Column 3 identifies B, with saturation over 0.9 
and “old” strength measure 1.29. 

Table 2. Bottleneck Strength Values 
 Case with mt2 = 15 Case with mt2=1500 

BStrength BStrength T  satT 
old new 

satT 
old new 

A 1 1/.92 
=1.09 

1/.996 
=1.004 

1 1/.92 
=1.09 

1/1 
=1.0 

t1 0.92 .92/.97 
=.95 

.92/.996 
=.92 

0.92 .92/.012 
=76.7 

.92/1 
=.92 

t2 0.97 .97/.996 
=.97 

.97/.996 
=.97 

0.012 .012/1 
=.012 

.012/1 
=.012 

t3 0.06 --- --- 0.06 --- --- 
B 0.996 .996/.77 

=1.29 
.996/.77 
=1.29 

1 1/.77 
=1.29 

1/.77 
=1.29 

t4 0.26 --- --- 0.26 --- --- 
t5 0.18 --- --- 0.18 --- --- 
t6 0.77 .77/.37 

=2.08 
.77/.37 
=2.08 

0.77   

t7 0.37 --- --- 0.37 --- --- 
 

However there is a defect in the measure 
BStrength-old, illustrated by modifying multiplicity m2 
to 1500, instead of 15. This gives Figure 3(b) and the 
saturation values on the left side of Table 2. The value 
of satt2 becomes very small, and the largest value of 
BStrength-old is at t1, even though B is still the factor 
which limits the throughput. The pushback is 
transmitted through t2 by its holding time, even 
though t2 itself is not saturated. 

This defect is corrected in the new definition: 
     BStrengthT = satT / satShadow(T)   (2) 
     Shadow(T) = arg max t in Below(T)  satt   (3) 
 

where arg maxt satt is the task t with the largest value 
of satt. Values of BStrength are shown in Table 2 for 
both cases, and correctly identify the bottleneck as 
task B. It has: 
• saturation over 0.9 (this threshold may depend on 

the goals of the system) 
• the largest value of BStrength. 
The effect of the bottleneck is to limit the system 
throughput. The maximum possible throughput at B is 
(5/XB)/sec = 9.2 requests/sec. The system throughput fA 
is proportional to fB: 

Throughput proportionality (Forced Flow Law): 
The rates of requests for all resources have fixed 
ratios.  

This follows from the mean number of requests made 
during a holding time of any resource T, to members 
of RequestedBy(T). Thus we can write: 

         fT = Σ t in RequestedBy(T) y(t,T) ft 
This homogeneous set of linear equations can be 

solved for every fT in terms of fA, with the constant of 
proportionality y(A,T): 

fT = y(A, T) fA                           (4) 
A ratio y(T,t)= y(A,t)/y(A,T) is defined for request 

frequencies of any resources T and t. Using y(T,t), Eq. 
(1) has the alternative form: 

XT = ZT + Σt [y(T,t) (Wt + Zt)]      (1a) 
Also, using Eq. (2) we can write the system 
throughput in terms of the bottleneck throughput fB: 

 fB = mB /XB = y(A,B) fA           
 fA = mB /(XB y(A,B))              (5) 
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Definition of a Layered Bottleneck 
A layered bottleneck is defined as a saturated 
resource which actively limits the system 
throughput. 
For bottleneck identification it is necessary to set an 

ad-hoc resource saturation threshold sat*. Then  
(a) if one or more resources in Processors has satt 

> sat*, then: 
    B = arg maxt ∈ Processors satt 

(b) else if one or more other resources has satt > 
sat*, B is any resource which satisfies both of: 

• satB > sat* 
• B = arg maxT ∉ Processors  BstrengthT 
 

2.2 Mitigation 
Eq (5) dominates the end-to-end performance of 

the saturated system. As in ordinary queueing 
networks, the performance of a bottlenecked system is 
relatively insensitive to changes in parameters away 
from the bottleneck. To relieve (mitigate) the 
bottleneck at B requires changing one or more of 
• y(A,B), the mean requests for B per end-to-end 

response, 
• XB, the mean holding time of B, 
• mB, the units of resource at B. 
Because Eq. (5) depends on contention delays via XB, 
bottlenecks can be identified only after evaluating 
performance. This may use measurement, simulation, 
or solution with a layered queueing solver.  

 
2.3 Analysis Tools 

Layered resources can be analyzed as layered 
queueing networks (LQNs), which are a class of 
extended queueing networks defined for this situation 
(and for more general cases, including open arrivals 
and multiple classes of service). Solution methods for 
LQNs have been described in [3][4][10][13][14]. 

Fast Optimistic Bound Analysis: A simple 
calculation based only on service times, and ignoring 
the waiting term Wt in Eq (1a), is often effective. It 
calculates an “optimistic holding time” XT

−, optimistic 
throughputs fA

− and fT
− and an “optimistic utilization” 

UT − all based on replacing Eq (1a) by: 
XT − = ZT + Σ t [y(T,t) Zt]      (1b) 

The optimistic system throughput fA
− is then the largest 

feasible value, given the capacities of all the resources. 
Every resource utilization must satisfy (using 
optimistic values): 

UT − = fT 
− XT − = fA 

− y(A,T) XT − =< mT 
so fA

− is set to the largest value that satisfies this for 
every resource T in the system. This gives: 

fA 
− = minT  [mT /[y(A,T) XT −] 

satT − = fA
− y(A,T) XT 

−/ mT 
This “Optimistic Bounds Analysis” is elaborated for 
multiclass sytems in [17]. It works on the assumption 
that large queues occur with reduced relative service 
capacity, so the optimistic saturation will be largest 
where the actual saturation is largest. This assumption 
is more effective for resources below the bottleneck 
than above it, but that is sufficient for locating the 
bottleneck resource. It gives substantial errors in 
holding times and utilizations for resources above the 
bottleneck because the long wait at the bottleneck 
resource should be included, and is not. However, 
exact utilization values for resources above the 
bottleneck are not needed for locating the bottleneck, 
for recommending a mitigation strategy, or for 
estimating its probable effect. 

 
2.4 Asymptotic Cases 

Special asymptotic cases are sketched in Figure 4. 
In Figure 4(a) the bottleneck is at the bottom, at a 
processor, showing what is normally regarded as a 
bottleneck, at a saturated device. The design of layered 
resources may reasonably be oriented to getting the 
maximum out of the physical processor resources, and 
thus towards pushing the bottleneck down to the 
processor layer.  

In Figure 4(b) it is at the top, at the load source. 
This is normally regarded as a non-saturated system as 
it does not have enough users to saturate it anywhere. 
The user “resources” are busy all the time in every 
closed system, since they perpetually cycle through 
their operations.  

Thus there is guaranteed to be a bottleneck 
somewhere in a closed layered resource system. When 
one bottleneck is relieved, another one takes over. The 
characteristics of this “next bottleneck” determine the 
effectiveness of each step in increasing the capacity. 

Figure 4. Asymptotic Cases 
 
It is not correct to think of eliminating system 

bottlenecks, only of improving performance to a 
desired level. There will be a bottleneck somewhere, 
but the resulting capacity and response time will be 
acceptable. 

 

 

 

A 

B 

B  

(a) Processor bottleneck (b) Source bottleneck 
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2.5 Multiple Classes and Open Workloads 
Multiple classes arise with multiple sources, or 

where a resource has classes of service. As in ordinary 
queueing, classes of service have different parameters 
and measures. For class C, ZT is replaced by ZT,C , XT 
by XT,C, UT by UT,C and y(T,t) by (y(T,C1;t,C2). The 
holding time calculation in Eq (1) becomes: 
XT,C1 = ZT,C1 + 
            Σt,C2 in RequestedBy(T,C1)[y(T,C1;t,C2)(Wt + Xt)] (7) 
Saturation is calculated independent of class, by 
summing the class utilizations UT = ΣC UT,C, and 
proceeding as for a single class. 

An open workload gives a stream of requests from 
outside the system to some class at some resource at a 
defined rate, balanced by departures. The request can 
be passed to other resources (with routing 
probabilities, including a probability of departing the 
system). Open requests form a distinct class, but 
during a holding time for an open request, nested 
requests can be made for other resources, including 
waiting for them to complete. Thus they can generate 
closed sub-behaviours. 

The LQNS analysis tool [3][4] models multiclass 
and open workloads in layered resource models. 

 
3 Patterns and Roles in Layered 

Bottlenecks 
 
From the viewpoint of the bottleneck resource B we 

can divide the system into three parts: 
• Above(B) = the set of resources that depend on B, 

directly or indirectly.  
• Below(B) = the set of resources that B depends on, 

directly or indirectly, 
• Beside(B) = the rest. 
There are also: 
• Sources = the set of load-generating resources, 
• RequestsTo(B) = the subset of Above(B) that 

depends directly on B, 
• RequestedBy(B) =  the subset of Below(B) that is 

requested directly by B 
• Processors = resources with no dependencies. 
These sets are indicated in Figure 5, for the same 
system as Figure 1. Processors have double outlines. 
The Shadow bottleneck Sh(B) is described below. 

The maximum number of concurrent requests to B 
is its available concurrency AvConcur(B). It can be 
computed recursively using 
AvConcur(A) = mA   for A in Sources                    (6) 
AvConcur (T) = Σt∈RequestsTo(T) (mint(AvConcur(t), mt) 

   for other resources T. 
 

A

B 

Beside(B) 

Below(B) 

Above(B) 

RequestsTo(B) 

RequestedBy(B) Sh(B)

Sources 

 
Figure 5. Resource roles relative to a bottleneck B 

 
The resources in Above(B) are saturated not by their 

own workload but because (WB + XB) is large due to 
congestion at B. Increased workload increases the 
queue at B and service times in Above(B).  

On the other hand the resources in Below(B) are 
protected by the bottleneck, which prevents traffic 
from reaching them. The workload intensity in 
Below(B) is independent of the load on the system as a 
whole, if B is saturated. Many admission controls are 
bottlenecks which are deliberately introduced. 

 
3.1 Taxonomy of Cases 

The performance properties of the resources in their 
roles relative to B determines what will work in 
mitigating the effect of the bottleneck. Cases include: 
• local bottleneck at B (ZB is the only or major part 

of XB): change is needed at B, 
• resource-supported bottleneck (the support is 

Shadow(B)): reducing y(B, Shadow(B)XShadow(B)) is  
indicated, 

• heavy bottleneck: if AvConcur(B) is much greater 
than mB and satB is near unity, then the queue 
length at B is large and large improvements are 
possible by changes to mB and XB . 

• light bottleneck: if AvConcur(B) is only slightly 
greater than mB, there is limited potential for 
improvement. 

 
3.2 Estimation of Effect 

In examining various kinds of mitigation, we will 
estimate the potential improvement using the holding 
times calculated in the base case. These values 
naturally change under the mitigation, so the estimates 
are only approximate extrapolations of conditions in 
the base case. They may be optimistic or pessimistic. 

 
4 Bottleneck Mitigation: Add 

Resources 
 
An obvious way to relieve a bottleneck is to 

provide more resources, in the form of more resource 
units. If mB is increased, Eq. (3) shows that throughput 
will increase in proportion to mB at first. However this 
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change may make little difference, depending on the 
system context. 

 
4.1 Max-Resources Analysis 

A simple way to estimate suitable values for all 
multiplicities is to replace the system values by the 
largest feasible value, for all resources except sources, 
and resources with load-dependent Zt, (the latter are 
simply too complex for this approach to be effective). 
Some resources by their nature exist in a single copy 
(an index page of a database and a critical section are 
two examples in software systems) or are constrained 
by economic factors. A derived max-resource 
performance model with these maximum values is 
solved, giving a bottleneck at resource Bmax, and a 
throughput fA,max. Then Bmax is a fundamental limiting 
resource. The multiplicity of each other resource T 
may be set to a value somewhat greater than its 
utilization UT,max, which is the mean number of busy 
resources in the max-resource case. 

However this only considers resource multiplicity 
as a source of performance constraint, and it does not 
find the best combination of economical and effective 
design changes. Increasing the multiplicity of 
resources may be simple (as in changing the size of a 
buffer pool or thread pool) or difficult (as in 
introducing concurrency into sequential code).  

 
4.2 Case of Leaf Node Bottleneck  

If sufficient resources are added at a leaf node B 
they will reach the maximum number of concurrent 
requests that can be made by the dependent resources 
which we will call the available concurrency 
AvConcur(B). If AvConcur(B)>mB then throughput at 
B increases, but is limited to a new value f*B given by: 

f*B = AvConcur(B)/XB = [AvConcur(B)/mB] fB 
at which the resource B is starved of requests. This 
limits the system to a throughput estimated as: 

f*A,starve = f*B / y(A,B)   (8) 
and the bottleneck migrates to another resource, as 
considered below. 
 
4.3 Case of non-Leaf-Node Bottleneck 

If mB is increased B may become starved by limited 
available concurrency, or a resource below B may 
become saturated. A good candidate for this is the 
resource t in Below(B) with the largest value of satt, 
which we will call the Shadow Bottleneck: 

Shadow(B) = arg max t in Below(B) (satt) 
Assuming Xt stays the same and throughput increases 
due to larger mB, resource Shadow(B) will be the new 
bottleneck, giving a new system throughput f*A: 

f*A,shadow = y(A, Shadow(B)) f*Shadow(B) 
       = y(A, Shadow(B)) mShadow(B)/XShadow(B) 
       = (satB/satShadow(B)) fA      

        = BStrength(B) fA              (9) 
In Figure 1, resource t6 is the Shadow Bottleneck 
because its saturation value of 0.77 is the highest in 
Below(B) (which is {t4, t5, t6}); it is labeled Sh(B) in 
Figure 5. The limit on improvement is the smaller of 
f*A,starve and f*A,shadow. 

 
4.4 Migration of the Bottleneck 

Predictions about the impact of a change are based 
on performance values at a nominal configuration, and 
must be checked. With that caveat, 
• a bottleneck may migrate down to a Shadow 

bottleneck  
• or up to a higher layer due to starvation of B.  
In the latter case, a good candidate is the resource 
whose multiplicity is limiting in the min function in 
Eq (6), for AvConcur(B). 

 
4.5 Recommendation:  

Increased resources are useful:  
• for processor bottlenecks with a large value of the 

ratio [AvConcur(B)/mB] 
• for higher-level bottlenecks that satisfy both of 

o a large value of satB/satShadow(B) 
o a large value of the ratio [AvConcur(B)/mB] 

If other factors cannot be changed, suitable resource 
levels can be found for all resources at once, by 
solving the derived max-resource model. 

 
Examples: In computer systems: process pools, 

thread pools, buffer pools, and multiprocessing limits 
are software resources whose multiplicity can be 
increased. Multiprocessors and cluster sizes can be 
increased. In networks: window sizes for flow control, 
admission controls, links in parallel are all examples.  

 
5 Bottleneck Mitigation: Reduce the 

Bottleneck Holding Time 
 
The second factor that can give improvement is to 

reduce the holding time XB of the bottleneck resource. 
From Eq (1a) there are three ways to do this: 
• reduce the local service time ZB, or any local 

service time Zt that is included in XB, 
• reduce the requests to lower level resources. 
• parallelize some local service, or some set of 

requests. 
The impact of reducing any Zt is given by Eq. (1a).  

If a request parameter between any pair of tasks in 
B U Below(B) is reduced by an amount ∆y, the 
reduction in y(B,t) for any t has the linear form 

∆y(B,t) = a + b∆y      (10) 
and the reduction in XB : 

∆ XB = Σt [∆y(B,t)( Wt + Zt)]. 
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Then Eq (4) gives 
f*A = fA /( 1  -  ∆ XB / XB) 

(for a decrease in holding time, ∆ XB is positive). The 
limit to the improvement will come from rising 
throughputs which saturate some other resource. One 
possibility is Shadow(B), whose utilization rises with 
fA; another is that a resource in Beside(B) may saturate 
and move the bottleneck there. 
 
5.1 Recommendation 

Look for a term with a large contribution in Eq 
(1a), and reduce it. For parallelization, the effect on 
reducing XB depends on the relative delays of the 
parallel paths and the overhead introduced to launch 
them.  

Examples: Batching of requests can be effective if 
the combined requests contribute less in Eq (1a); gains 
are made when the overhead of the combined 
operation is lower (communications and scheduling 
times). Smith and Williams describe principles that 
can be applied to reduce the workload of computer 
programs [16], with examples. 
 
6 Mitigation: Reduce requests for B 

 
A potent way to increase the saturation throughput 

is to reduce the value of y(A,B), so the bottleneck is 
simply used less. This employs changes to the request 
parameters y(t,t’) in the Above(B) set. Eq. (10) makes  
∆y(A,B) = a + b∆y, and by Eq (5), the new system 
throughput bound can be predicted as roughly 

     f*A = fA /[1 − ∆y(A,B) /y(A,B)]     (11) 
(for a decrease in requests, ∆y(A,B) is positive). 

Improvement is limited by starvation, as for 
reduced holding time, but has more potential because 
other resources also have fewer requests. Resources in 
Below(B) see constant load at the increased 
throughput, and resources in Above(B) and 
Independent(B) may or may not see increased load, 
depending on the point where requests are reduced. To 
determine the limit: 
• Apply Eq (10) find ∆y(A,t) for each t  
• Apply Eq (11) with t in place of B, to give a 

virtual system throughput f**A,t for a new 
bottleneck at t. 

• as ∆y increases, test to discover if some resource t 
causes a lower virtual throughput than B. If so, 
this t is the “next bottleneck” and f**A,t is the 
resulting throughput. 

 
6.1 Recommendation 

Decreasing the requests to the bottleneck is 
recommended when it also reduces requests to other 

tasks above B. That is, the higher the resource where 
the change is made, the better. 

Examples: batching of requests to B, or to a 
resource above B, is effective here also. 

 
7 Asynchronous Resource Use 

 
It is possible to reduce the bottleneck holding time 

by modifying not the entire holding time of its 
RequestsTo set, but just the part of the holding time 
that requires the simultaneous resource B. If part of the 
requested operation can be performed without B, it 
may increase performance. To describe this, the model 
of layered service must be extended to include:  

Partly asynchronous service: a resource holding 
time is divided into two parts, which we will call 
phase 1 and phase 2. When resource T requests t, 
Phase 1 at t blocks the requesting resource T for 
only the phase 1 holding time Xt1 . Phase 2 at t is 
executed either immediately after, or some time 
later, and is not included in any other resource 
holding time.  
Each phase p of the holding time of resource T has 

a complete set of request parameters: a local service 
time ZTp, request rates y(T,p; t) to other resources, and 
a holding time XTp. Then Eq (1) is modified to an 
equation for each phase at T, and nested holding of 
any other resource  t only includes phase 1: 

XTp = ZTp + Σt in RequestedBy(T)[y(T,p;t)(Wt + Xt1)]   (1b) 
The resource utilization includes both phases: 

UT = fT (XT1 + XT2) 
The effect of asynchronous service at some T below 

B is to reduce the holding time of B, by propagating 
less delay upwards. If an amount ∆xT can be shifted to 
second phase, the reduction in holding time of B is 
y(B,T)∆xT, and as long as the bottleneck remains at B 
the new system bottleneck bound is 

f*A = [XB/(XB – y(B,T)∆xT] fA 
However it is less effective than simple reduction of 
holding time, since the total holding time of T is still 
effective and T may saturate. 
  
7.1 Recommendation 

Apply asynchronous service wherever functionally 
permissible, as it is a no-lose option. 

Examples: delayed writes in file systems and 
databases, operations which execute autonomously 
once initiated. 
 
8 Load-Dependent Demands 

 
Some resources have the additional feature that 

their demands depend on the intensity of the applied 
load.  
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Figure  6. Throughput versus clients (fA vs mA) for a 
locking bottleneck (from [1]) 

 
For example, [1] describes an application with a 

lock management bottleneck in a MySQL database 
which causes throughput not just to saturate, but to 
drop sharply beyond a certain point. This is 
characteristic of cases where increasing congestion 
creates additional management overhead. Examples 
include optimistic locking (where high contention 
causes a high rate of transaction restarts), in thrashing 
in database buffers used as caches, and in virtual 
memory thrashing. 

We shall assume that all the available customers of 
a bottleneck are in contention for it, which is 
approximately true; this number is AvConcur(B) given 
by Eq. (6). Then the dependence makes ZT, y(T,t) and 
hence XT to be functions of AvConcur(B). Figure 6 
compares implementations of a system that includes a 
database, in which throughputs show the effect of 
load-dependent bottleneck. In the cases with simple 
saturation (the highest and lowest curves, which level 
off) the authors [1] detected processor saturation; in 
the cases with declining throughput no processor was 
saturated and they described a “locking bottleneck”. It 
shows the clear signs of load-dependent saturation 
with AvConcur(B) = mA. 

In general, if there is a load-dependent resource T 
then Eq. (3) for the limiting system throughput can be 
written as: 

fA = mB /[y(A,B) XB(AvConcur(B))] 
Supposing that AvConcur(B)= mA throughout the 
range in Figure 6,  then in the rising curve on the left 
of Figure 6 the bottleneck is the load source, whereas 
in the falling curve it is a load-dependent lock-related 
resource, with a holding time that rises with mA. 
 

 
9 Case Study 

 

 This section considers a distributed telephone 
switch, based loosely on an industrial project. 
Historically, the architecture of voice switches has 
been dominated by the need for increased capacity and 
performance. For instance, a description of Lucent’s 
5ESS architecture [15]  emphasizes continual 
performance improvement, the tradeoffs between 
performance and other properties, call flows and 
delays, overload control, and software resource 
engineering. Standards govern acceptable delays to 
receive dial tone, and to obtain an indication of a 
connection.  

 

 Class
   V
Switch

Up to 
200 000
attached 
lines

VoP

Switch
Gateway

VoP

Switch
Gateway

 Class
   V
Switch

Database
SCP

 Class

Switch
   IV

Packet
Switch

Core 

Voice Channel

Signaling Channel

Call

Agent
Connection

Figure 7. Abstract view of a telephone network 

9.1 Architecture of a Class IV Voice-over-Packet 
(VoP) Switch 
A Class IV switch connects Class V switches that 
actually have subscribers connected. This system 
distributes the functionality of a Class IV switch as 
shown in Figure 7, using a packet switch as a 
switching fabric. The Call Connection Agent includes: 
• Line Information Database (DB)  
• Call Processing Server (COCO): call routing 

decisions and coordination of connectivity. 
• SS7 Interface (SS7): to the public network.  
• H248 component: interface to the VoP network.  

The gateway switch has a node controller (CTL) and 
connects to an intra-switch network using: 
• H248 interface 
• Call Control (CACO) 
• A module SVC that terminates the connection 

requests and has an interface to the packet switch. 
• line cards (interfaces) called NLC and ILC.  
The packet switch has similar modules SVC, CTL, 
NLC and ILC. 

 
9.2 Resources in the Distributed Switch 

All of these modules are multithreaded concurrent 
processes which behave as resources in our model, and 
all have their own (single) processors. Figure 8 shows 
a resource graph for the system, with nodes shown as 
parallelograms. Each node represents a software 
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resource (many of them multithreaded) with  a 
processor (not shown). 
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CTL ILCNLC

SVC
CTL ILCNLC

SVC

CTL ILCNLC

SVC
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GwH248

Term V

CallConnection
Agent

Orig
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Switch

Term
GW

 5 

 4 

 3 

 1 

 2 

 
 
Figure 8. Resource Graph for the Switch. Each 
node shown has an associated processor node 

 
There are four subsystems, with a source that 

represents an originating Class V switch, with mOrigV = 
1000 users and think time ZA = 3.6 sec to represent a 
potential for 500,000 call requests per hour. An LQNS 
model based on Figure 8 was populated with 
parameters that roughly represent an actual prototype 
product with a loosely related resource structure, and 
solved. The initial model carried 280,000 calls/hour, 
and had a connection delay of 2.8 seconds with a 
bottleneck at the COCO node (Strength = 9.6, with 
Shadow(COCO) being node H248Ip). 

 
9.3 Bottleneck Mitigation 

Two steps of bottleneck mitigation were carried out. 
In the first, mCOCO was increased from 10 to 110. The 
new throughput was 463,000 calls/hour with a 
connection delay of 284 ms. The new bottleneck was 
CACO1 (the CACO node on the left) with Strength = 
1.55. We notice that the shadow node did not become 
the bottleneck in this case, but it is in the saturated 
path from the top to CACO1. The new Shadow node is 
CTL1, the CTL node on the left (since SVC has a very 
high  multiplicity).  

In the second step mCACO1 was increased from 4 to 
9. The final throughput was 490,320 calls/hour, with a 
connection delay of 68 ms. (this source can only reach 
500,000/hour with zero response delay, so this is an 
excellent result). The final bottleneck is starvation at 
the source, which means that this configuration has 
capacity for additional traffic without saturating. The 
model-based recommendations were very similar to 
those developed by the project team. Table 3 
summarizes some of the key results for the three 
configurations. 

 
Table 3. Some Results for the Model in Figure 8. 

Node Saturation values, written as U/m 
 Case I Case II Case III 
SS7In IP 150/150=1.0 150/150=1.0 19.3/150 
COCO 10/10=1.0 

(bottleneck) 
73.6/110 
=0.67 

19.3/110 
=0.175 

H248Ip 2.1/20 
(shadow) 

19.97/20 5.5/20 

COCO_Proc 0.086/1 0.141/1 0.150/1 
CACO1 1.92/4 3.98/4=.995 

(bottleneck) 
5.2/9=0.61 

CTL1 0.174/1 0.257/1 
(shadow) 

0.27/1 

SVC1 1.84/20 
=0.92 

3.84/20 
= 0.192 

5.05/20 
= 0.252 

 
 

10 Conclusions 
 
A framework for the systematic analysis and 

mitigation of layered bottlenecks has been described, 
including a taxonomy of cases and a detailed study of 
the effectiveness of the different possible changes. It is 
not surprising that many of the changes prescribed are 
related to Smith and Williams’ principles for 
improving performance in general [16], but they take a 
specific form here. Space has precluded the inclusion 
of a great many examples, but the references help to 
supply this deficiency.  

New definitions were given for the bottleneck 
strength measure first stated in [11], which deals with 
heavily provisioned resources in the bottleneck zone, 
and for a layered bottleneck. The latter depends on the 
value of a saturation threshold sat* which must be 
chosen. If it is chosen too close to unity, no bottleneck 
will be found, and the analysis can be repeated with a 
smaller value. In a well balanced system there is no 
single bottleneck, and further improvement may 
require many simultaneous changes. 

Not discussed here, but also relevant to removing 
bottlenecks in distributed computer systems, is re-
allocation of processes to processors. An approach is 
described in [8] to optimize the allocations of layered 
resources. 
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