
1

Layered Bottlenecks and Their Mitigation

Greg Franks, Dorina Petriu, Murray Woodside, Jing Xu Peter Tregunno
Carleton University

{greg | petriu | cmw | xujing}@sce.carleton.ca

Alcatel
peter.d.tregunno@alcatel.com

Abstract

Bottlenecks are a simple and well-understood

phenomenon in service systems and queueing models.
However in systems with layered resources bottlenecks
are more complicated, because of simultaneous
resource possession. Thus, the holding time of a
higher-layer resource, such as a process thread, may
include a small execution demand, but a large time to
use other resources at a lower layer (such as a disk). A
single saturation point may in fact saturate many other
resources by push-back, making diagnosis of the
problem difficult. This paper gives a new corrected
definition of a layered bottleneck, and develops a
framework for systematic detection of the source of a
bottleneck, for applying improvements and for
estimating their effectiveness. Many of the techniques
are specific to layered bottlenecks.

1 Introduction

When a system is throughput-limited but none of

the devices (processors, disks, bus, network) are
saturated, the bottleneck is some other kind of
resource. Here, these are called “layered bottlenecks”,
using a model which describes computer systems, and
many other systems.

In simple service systems (“flat” resource systems)
a job is using resources one at a time. The most
heavily loaded server is the bottleneck, and if it is
relieved by some means, the next most heavily loaded
server takes over [7].

Layered bottlenecks arise from simultaneous
resource possession. The holding time of a resource R
may include waiting for and using other “lower”
resources, one at a time. For example, while holding a
process thread resource, a program may use the disk.

A layered bottleneck resource B has the following
features:

1. B is a saturated resource, that is its units are all
in use almost all the time.

2. Resources “below” it are unsaturated. As an
example, a processor may have low utilization
in a memory bottleneck.

3. It tends to spread saturation to resources which
include it in their holding times. This is
“pushback” of load away from the bottleneck.

4. Thus, there may be many saturated resources
which are not themselves the bottleneck.

This makes the understanding of layered bottlenecks
more difficult than flat resource system bottlenecks.

Although bottlenecks are often considered an
asymptotic property of systems which are heavily
loaded, the present discussion considers the limiting
factors in any system, regardless of the workload
intensity. If a closed system is lightly loaded, its
bottleneck is defined to be at the source of workload.

Layered bottlenecks were described and named
“software bottlenecks” in [11], but they were familiar
to system and database programmers long before. The
name layered bottlenecks recognizes that they are a
feature of many kinds of resources, not only software.

Layered bottlenecks have been described by many
authors under a variety of names. Thrashing in virtual
memory systems is a well-known example [7]. Maly et
al described a bus bottleneck in a switch, which was
layered over the processor and memory resources [9].
Dilley et al. found a process thread bottleneck in a web
server [2], and threads were also featured in [11].
Smith and Williams give a tutorial example with a
global lock which forms a layered bottleneck, and
limits an ATM system to a very low throughput [16].
Cechet et al measured a web-based application with a
throughput limit due to database lock contention [1].
Petriu et al. , and Xu et al., describe a sequence of
steps to mitigate bottlenecks involving process
threads, a buffer pool, class interference, and excessive
synchronization [12], [18]. Gerndt et al describe a
cache which is a bottleneck [5], due to thrashing.

This paper describes a framework for
understanding layered bottlenecks, gives an improved
definition, and estimates the effect of the possible
improvements (mitigations) in a given case.

2 Layered Resources

We may regard resources as servers with queues.

Everything done during the holding time of a resource

2

T is part of its service time XT. If another resource t is
used during this time, its service time is incorporated
into XT, as is any time spent waiting to obtain t. Thus:

Layered services are services which include other
services and their waiting; they are a nested form
of simultaneous resource possession.

Resource T above depends on resource t, because t is
required (always or sometimes) by the holding-time
operations of T. The dependency can be shown as a
directed graph with nodes for resources, and an arc
from resource T to each resource t that it depends on
(see Figure 1). We will say that T is in a higher layer
than t. Attention is restricted to acyclic graphs (to
exclude systems with resource deadlocks), and to
resources which are released in reverse order to
acquisition (giving nested holding times). Many
extended queueing networks are layered.

t1(20,0.01)

A(50,10)

t3(1,0.01)

B(5,0.01)

t4(5,0.2) t5(5,0.1) t6(3,0.05)

t2(15,0.5)

t7(1,0.01)

(1)

(2)
(3)

(4) (0.7)

(1)

(1)

(1)

Figure 1. Resource Dependency Graph

In Figure 1,
• each node T is labeled by (mT, ZT) where:

- mT = the multiplicity of the resource T,
- ZT = the “local service” part of the holding

time of T (that is due only to T itself, and not
to nested resource use),

• each arc (T,t) is labeled by y(T,t), the mean
number of requests to another resource t during a
holding time of T,

• the system has a closed workload driven by
source node A, with 50 “users”,

• the graph imposes a partial order on resources,
ordered from top to bottom of Figure 1,

• requests can jump over layers (not shown here),
• the set of nodes connected by arcs directly from

resource T will be called RequestedBy(T), those
connected by arcs to T are the set RequestsTo(T).

The topmost node A is special, as it has no requests.
Such resources model closed sources of workload to
the system. A represents mA entities which cycle

forever, alternating between a think time of mean ZA
and requests for resources which are top-level servers.

 The leaf nodes (with double outlines) are ordinary
queueing servers with mean service time ZT. The set of
leaf nodes will be called Processors, as CPUs have
this role in computer systems. They are not limited to
CPUs, however.

The service time XT of any resource T that is not a
processor is defined recursively in terms of waiting
times Wt and service times Xt of resources t, in the set
RequestedBy(T) of nested requests:

XT = ZT + Σt in RequestedBy(T)[y(T,t) (Wt + Xt)] (1)
Real systems tend to have many classes of requests,
but for simplicity we will first assume a single class of
requests to each resource.

From the system or a model we can obtain
performance measures for each resource:
• XT = service time of T
• WT = waiting time for requests to T
• RT = response time = WT + XT
• fT = throughput of resource T (acquisitions/sec)
• UT = fT XT = utilization of T (mean number of

busy units of the resource)
• satT = the saturation level of T = UT/mT (utilization

relative to the number of units of resource T)
In a closed system each source of workload (such as A
in Fig. 1) has throughput fA and the system response
time is its cycle time mA / fA, minus its think time ZA:

Response Delay at A = (mA / fA) - ZA

2.1 Examples

With these definitions we can show an example of

performance measures for the system of Figure 1, with
the parameters and result values in Table 1.

The throughput at A, as a function of the number of
users mA, follows a classic saturation curve shown in
Figure 2. The fact that B is the one limiting the
throughput is confirmed by the fact that an increase in
mB yields a higher throughput. We obtain the
following values for (mB, fA) when mB is varied:

(5, 3.06), (7, 3.62), (9, 3.82), (>15, 3.87)

On the other hand an increase in other resources (e.g.
in mt1) does not change the throughput at all.

Table 1. Example: some parameters and results

Res.
T

ZT
(sec)

XT
(sec)

mT fT
/sec

UT satT

A 10.0 16.3 50 3.06 50 1
t1 0.01 6.02 20 3.06 18.4 0.92
t2 0.5 1.60 15 9.18 14.6 0.97
t3 .01 0.01 1 6.12 0.06 0.06

3

B .01 0.543 5 9.18 4.98 0.996
t4 0.2 0.2 5 6.43 1.29 0.26
t5 0.1 0.1 5 9.18 0.92 0.18
t6 0.05 0.063 3 36.7 2.31 0.77
t7 0.01 0.01 1 36.7 0.37 0.37

0
0.5

1
1.5

2
2.5

3
3.5

0 50 100 150

Population

Throughput
Saturation

Figure 2. Saturation as Load Increases

A pattern emerges in Figure 3(a) which shows a

bold outline for every task with satT > 0.9 (an ad hoc
indicator of saturation of resource T). Upper layers are
saturated, lower layers are not. The boundary resource
B is the bottleneck which causes the saturation, and the
set Above(B) is saturated by pushback.

(a) as Figure 1 (b) with mt2 = 1500
Figure 3. Resource Dependency Graph showing

Saturated Resources in Bold

Based on this pattern, a “bottleneck strength”

measure was defined in [11]:
BStrength-oldT = satT / (max t in RequestedBy(T) satt)

The resource with the largest value was defined as the
bottleneck. Table 2 shows the strength values for each
task. Column 3 identifies B, with saturation over 0.9
and “old” strength measure 1.29.

Table 2. Bottleneck Strength Values
 Case with mt2 = 15 Case with mt2=1500

BStrength BStrength T satT
old new

satT
old new

A 1 1/.92
=1.09

1/.996
=1.004

1 1/.92
=1.09

1/1
=1.0

t1 0.92 .92/.97
=.95

.92/.996
=.92

0.92 .92/.012
=76.7

.92/1
=.92

t2 0.97 .97/.996
=.97

.97/.996
=.97

0.012 .012/1
=.012

.012/1
=.012

t3 0.06 --- --- 0.06 --- ---
B 0.996 .996/.77

=1.29
.996/.77
=1.29

1 1/.77
=1.29

1/.77
=1.29

t4 0.26 --- --- 0.26 --- ---
t5 0.18 --- --- 0.18 --- ---
t6 0.77 .77/.37

=2.08
.77/.37
=2.08

0.77

t7 0.37 --- --- 0.37 --- ---

However there is a defect in the measure
BStrength-old, illustrated by modifying multiplicity m2
to 1500, instead of 15. This gives Figure 3(b) and the
saturation values on the left side of Table 2. The value
of satt2 becomes very small, and the largest value of
BStrength-old is at t1, even though B is still the factor
which limits the throughput. The pushback is
transmitted through t2 by its holding time, even
though t2 itself is not saturated.

This defect is corrected in the new definition:
 BStrengthT = satT / satShadow(T) (2)
 Shadow(T) = arg max t in Below(T) satt (3)

where arg maxt satt is the task t with the largest value
of satt. Values of BStrength are shown in Table 2 for
both cases, and correctly identify the bottleneck as
task B. It has:
• saturation over 0.9 (this threshold may depend on

the goals of the system)
• the largest value of BStrength.
The effect of the bottleneck is to limit the system
throughput. The maximum possible throughput at B is
(5/XB)/sec = 9.2 requests/sec. The system throughput fA
is proportional to fB:

Throughput proportionality (Forced Flow Law):
The rates of requests for all resources have fixed
ratios.

This follows from the mean number of requests made
during a holding time of any resource T, to members
of RequestedBy(T). Thus we can write:

 fT = Σ t in RequestedBy(T) y(t,T) ft
This homogeneous set of linear equations can be

solved for every fT in terms of fA, with the constant of
proportionality y(A,T):

fT = y(A, T) fA (4)
A ratio y(T,t)= y(A,t)/y(A,T) is defined for request

frequencies of any resources T and t. Using y(T,t), Eq.
(1) has the alternative form:

XT = ZT + Σt [y(T,t) (Wt + Zt)] (1a)
Also, using Eq. (2) we can write the system
throughput in terms of the bottleneck throughput fB:

 fB = mB /XB = y(A,B) fA
 fA = mB /(XB y(A,B)) (5)

4

Definition of a Layered Bottleneck
A layered bottleneck is defined as a saturated
resource which actively limits the system
throughput.
For bottleneck identification it is necessary to set an

ad-hoc resource saturation threshold sat*. Then
(a) if one or more resources in Processors has satt

> sat*, then:
 B = arg maxt ∈ Processors satt

(b) else if one or more other resources has satt >
sat*, B is any resource which satisfies both of:

• satB > sat*
• B = arg maxT ∉ Processors BstrengthT

2.2 Mitigation
Eq (5) dominates the end-to-end performance of

the saturated system. As in ordinary queueing
networks, the performance of a bottlenecked system is
relatively insensitive to changes in parameters away
from the bottleneck. To relieve (mitigate) the
bottleneck at B requires changing one or more of
• y(A,B), the mean requests for B per end-to-end

response,
• XB, the mean holding time of B,
• mB, the units of resource at B.
Because Eq. (5) depends on contention delays via XB,
bottlenecks can be identified only after evaluating
performance. This may use measurement, simulation,
or solution with a layered queueing solver.

2.3 Analysis Tools

Layered resources can be analyzed as layered
queueing networks (LQNs), which are a class of
extended queueing networks defined for this situation
(and for more general cases, including open arrivals
and multiple classes of service). Solution methods for
LQNs have been described in [3][4][10][13][14].

Fast Optimistic Bound Analysis: A simple
calculation based only on service times, and ignoring
the waiting term Wt in Eq (1a), is often effective. It
calculates an “optimistic holding time” XT

−, optimistic
throughputs fA

− and fT
− and an “optimistic utilization”

UT − all based on replacing Eq (1a) by:
XT − = ZT + Σ t [y(T,t) Zt] (1b)

The optimistic system throughput fA
− is then the largest

feasible value, given the capacities of all the resources.
Every resource utilization must satisfy (using
optimistic values):

UT − = fT
− XT − = fA

− y(A,T) XT − =< mT
so fA

− is set to the largest value that satisfies this for
every resource T in the system. This gives:

fA
− = minT [mT /[y(A,T) XT −]

satT − = fA
− y(A,T) XT

−/ mT
This “Optimistic Bounds Analysis” is elaborated for
multiclass sytems in [17]. It works on the assumption
that large queues occur with reduced relative service
capacity, so the optimistic saturation will be largest
where the actual saturation is largest. This assumption
is more effective for resources below the bottleneck
than above it, but that is sufficient for locating the
bottleneck resource. It gives substantial errors in
holding times and utilizations for resources above the
bottleneck because the long wait at the bottleneck
resource should be included, and is not. However,
exact utilization values for resources above the
bottleneck are not needed for locating the bottleneck,
for recommending a mitigation strategy, or for
estimating its probable effect.

2.4 Asymptotic Cases

Special asymptotic cases are sketched in Figure 4.
In Figure 4(a) the bottleneck is at the bottom, at a
processor, showing what is normally regarded as a
bottleneck, at a saturated device. The design of layered
resources may reasonably be oriented to getting the
maximum out of the physical processor resources, and
thus towards pushing the bottleneck down to the
processor layer.

In Figure 4(b) it is at the top, at the load source.
This is normally regarded as a non-saturated system as
it does not have enough users to saturate it anywhere.
The user “resources” are busy all the time in every
closed system, since they perpetually cycle through
their operations.

Thus there is guaranteed to be a bottleneck
somewhere in a closed layered resource system. When
one bottleneck is relieved, another one takes over. The
characteristics of this “next bottleneck” determine the
effectiveness of each step in increasing the capacity.

Figure 4. Asymptotic Cases

It is not correct to think of eliminating system

bottlenecks, only of improving performance to a
desired level. There will be a bottleneck somewhere,
but the resulting capacity and response time will be
acceptable.

A

B

B

(a) Processor bottleneck (b) Source bottleneck

5

2.5 Multiple Classes and Open Workloads
Multiple classes arise with multiple sources, or

where a resource has classes of service. As in ordinary
queueing, classes of service have different parameters
and measures. For class C, ZT is replaced by ZT,C , XT
by XT,C, UT by UT,C and y(T,t) by (y(T,C1;t,C2). The
holding time calculation in Eq (1) becomes:
XT,C1 = ZT,C1 +
 Σt,C2 in RequestedBy(T,C1)[y(T,C1;t,C2)(Wt + Xt)] (7)
Saturation is calculated independent of class, by
summing the class utilizations UT = ΣC UT,C, and
proceeding as for a single class.

An open workload gives a stream of requests from
outside the system to some class at some resource at a
defined rate, balanced by departures. The request can
be passed to other resources (with routing
probabilities, including a probability of departing the
system). Open requests form a distinct class, but
during a holding time for an open request, nested
requests can be made for other resources, including
waiting for them to complete. Thus they can generate
closed sub-behaviours.

The LQNS analysis tool [3][4] models multiclass
and open workloads in layered resource models.

3 Patterns and Roles in Layered

Bottlenecks

From the viewpoint of the bottleneck resource B we

can divide the system into three parts:
• Above(B) = the set of resources that depend on B,

directly or indirectly.
• Below(B) = the set of resources that B depends on,

directly or indirectly,
• Beside(B) = the rest.
There are also:
• Sources = the set of load-generating resources,
• RequestsTo(B) = the subset of Above(B) that

depends directly on B,
• RequestedBy(B) = the subset of Below(B) that is

requested directly by B
• Processors = resources with no dependencies.
These sets are indicated in Figure 5, for the same
system as Figure 1. Processors have double outlines.
The Shadow bottleneck Sh(B) is described below.

The maximum number of concurrent requests to B
is its available concurrency AvConcur(B). It can be
computed recursively using
AvConcur(A) = mA for A in Sources (6)
AvConcur (T) = Σt∈RequestsTo(T) (mint(AvConcur(t), mt)

 for other resources T.

A

B

Beside(B)

Below(B)

Above(B)

RequestsTo(B)

RequestedBy(B) Sh(B)

Sources

Figure 5. Resource roles relative to a bottleneck B

The resources in Above(B) are saturated not by their

own workload but because (WB + XB) is large due to
congestion at B. Increased workload increases the
queue at B and service times in Above(B).

On the other hand the resources in Below(B) are
protected by the bottleneck, which prevents traffic
from reaching them. The workload intensity in
Below(B) is independent of the load on the system as a
whole, if B is saturated. Many admission controls are
bottlenecks which are deliberately introduced.

3.1 Taxonomy of Cases

The performance properties of the resources in their
roles relative to B determines what will work in
mitigating the effect of the bottleneck. Cases include:
• local bottleneck at B (ZB is the only or major part

of XB): change is needed at B,
• resource-supported bottleneck (the support is

Shadow(B)): reducing y(B, Shadow(B)XShadow(B)) is
indicated,

• heavy bottleneck: if AvConcur(B) is much greater
than mB and satB is near unity, then the queue
length at B is large and large improvements are
possible by changes to mB and XB .

• light bottleneck: if AvConcur(B) is only slightly
greater than mB, there is limited potential for
improvement.

3.2 Estimation of Effect

In examining various kinds of mitigation, we will
estimate the potential improvement using the holding
times calculated in the base case. These values
naturally change under the mitigation, so the estimates
are only approximate extrapolations of conditions in
the base case. They may be optimistic or pessimistic.

4 Bottleneck Mitigation: Add

Resources

An obvious way to relieve a bottleneck is to

provide more resources, in the form of more resource
units. If mB is increased, Eq. (3) shows that throughput
will increase in proportion to mB at first. However this

6

change may make little difference, depending on the
system context.

4.1 Max-Resources Analysis

A simple way to estimate suitable values for all
multiplicities is to replace the system values by the
largest feasible value, for all resources except sources,
and resources with load-dependent Zt, (the latter are
simply too complex for this approach to be effective).
Some resources by their nature exist in a single copy
(an index page of a database and a critical section are
two examples in software systems) or are constrained
by economic factors. A derived max-resource
performance model with these maximum values is
solved, giving a bottleneck at resource Bmax, and a
throughput fA,max. Then Bmax is a fundamental limiting
resource. The multiplicity of each other resource T
may be set to a value somewhat greater than its
utilization UT,max, which is the mean number of busy
resources in the max-resource case.

However this only considers resource multiplicity
as a source of performance constraint, and it does not
find the best combination of economical and effective
design changes. Increasing the multiplicity of
resources may be simple (as in changing the size of a
buffer pool or thread pool) or difficult (as in
introducing concurrency into sequential code).

4.2 Case of Leaf Node Bottleneck

If sufficient resources are added at a leaf node B
they will reach the maximum number of concurrent
requests that can be made by the dependent resources
which we will call the available concurrency
AvConcur(B). If AvConcur(B)>mB then throughput at
B increases, but is limited to a new value f*B given by:

f*B = AvConcur(B)/XB = [AvConcur(B)/mB] fB
at which the resource B is starved of requests. This
limits the system to a throughput estimated as:

f*A,starve = f*B / y(A,B) (8)
and the bottleneck migrates to another resource, as
considered below.

4.3 Case of non-Leaf-Node Bottleneck

If mB is increased B may become starved by limited
available concurrency, or a resource below B may
become saturated. A good candidate for this is the
resource t in Below(B) with the largest value of satt,
which we will call the Shadow Bottleneck:

Shadow(B) = arg max t in Below(B) (satt)
Assuming Xt stays the same and throughput increases
due to larger mB, resource Shadow(B) will be the new
bottleneck, giving a new system throughput f*A:

f*A,shadow = y(A, Shadow(B)) f*Shadow(B)
 = y(A, Shadow(B)) mShadow(B)/XShadow(B)
 = (satB/satShadow(B)) fA

 = BStrength(B) fA (9)
In Figure 1, resource t6 is the Shadow Bottleneck
because its saturation value of 0.77 is the highest in
Below(B) (which is {t4, t5, t6}); it is labeled Sh(B) in
Figure 5. The limit on improvement is the smaller of
f*A,starve and f*A,shadow.

4.4 Migration of the Bottleneck

Predictions about the impact of a change are based
on performance values at a nominal configuration, and
must be checked. With that caveat,
• a bottleneck may migrate down to a Shadow

bottleneck
• or up to a higher layer due to starvation of B.
In the latter case, a good candidate is the resource
whose multiplicity is limiting in the min function in
Eq (6), for AvConcur(B).

4.5 Recommendation:

Increased resources are useful:
• for processor bottlenecks with a large value of the

ratio [AvConcur(B)/mB]
• for higher-level bottlenecks that satisfy both of

o a large value of satB/satShadow(B)
o a large value of the ratio [AvConcur(B)/mB]

If other factors cannot be changed, suitable resource
levels can be found for all resources at once, by
solving the derived max-resource model.

Examples: In computer systems: process pools,

thread pools, buffer pools, and multiprocessing limits
are software resources whose multiplicity can be
increased. Multiprocessors and cluster sizes can be
increased. In networks: window sizes for flow control,
admission controls, links in parallel are all examples.

5 Bottleneck Mitigation: Reduce the

Bottleneck Holding Time

The second factor that can give improvement is to

reduce the holding time XB of the bottleneck resource.
From Eq (1a) there are three ways to do this:
• reduce the local service time ZB, or any local

service time Zt that is included in XB,
• reduce the requests to lower level resources.
• parallelize some local service, or some set of

requests.
The impact of reducing any Zt is given by Eq. (1a).

If a request parameter between any pair of tasks in
B U Below(B) is reduced by an amount ∆y, the
reduction in y(B,t) for any t has the linear form

∆y(B,t) = a + b∆y (10)
and the reduction in XB :

∆ XB = Σt [∆y(B,t)(Wt + Zt)].

7

Then Eq (4) gives
f*A = fA /(1 - ∆ XB / XB)

(for a decrease in holding time, ∆ XB is positive). The
limit to the improvement will come from rising
throughputs which saturate some other resource. One
possibility is Shadow(B), whose utilization rises with
fA; another is that a resource in Beside(B) may saturate
and move the bottleneck there.

5.1 Recommendation

Look for a term with a large contribution in Eq
(1a), and reduce it. For parallelization, the effect on
reducing XB depends on the relative delays of the
parallel paths and the overhead introduced to launch
them.

Examples: Batching of requests can be effective if
the combined requests contribute less in Eq (1a); gains
are made when the overhead of the combined
operation is lower (communications and scheduling
times). Smith and Williams describe principles that
can be applied to reduce the workload of computer
programs [16], with examples.

6 Mitigation: Reduce requests for B

A potent way to increase the saturation throughput

is to reduce the value of y(A,B), so the bottleneck is
simply used less. This employs changes to the request
parameters y(t,t’) in the Above(B) set. Eq. (10) makes
∆y(A,B) = a + b∆y, and by Eq (5), the new system
throughput bound can be predicted as roughly

 f*A = fA /[1 − ∆y(A,B) /y(A,B)] (11)
(for a decrease in requests, ∆y(A,B) is positive).

Improvement is limited by starvation, as for
reduced holding time, but has more potential because
other resources also have fewer requests. Resources in
Below(B) see constant load at the increased
throughput, and resources in Above(B) and
Independent(B) may or may not see increased load,
depending on the point where requests are reduced. To
determine the limit:
• Apply Eq (10) find ∆y(A,t) for each t
• Apply Eq (11) with t in place of B, to give a

virtual system throughput f**A,t for a new
bottleneck at t.

• as ∆y increases, test to discover if some resource t
causes a lower virtual throughput than B. If so,
this t is the “next bottleneck” and f**A,t is the
resulting throughput.

6.1 Recommendation

Decreasing the requests to the bottleneck is
recommended when it also reduces requests to other

tasks above B. That is, the higher the resource where
the change is made, the better.

Examples: batching of requests to B, or to a
resource above B, is effective here also.

7 Asynchronous Resource Use

It is possible to reduce the bottleneck holding time

by modifying not the entire holding time of its
RequestsTo set, but just the part of the holding time
that requires the simultaneous resource B. If part of the
requested operation can be performed without B, it
may increase performance. To describe this, the model
of layered service must be extended to include:

Partly asynchronous service: a resource holding
time is divided into two parts, which we will call
phase 1 and phase 2. When resource T requests t,
Phase 1 at t blocks the requesting resource T for
only the phase 1 holding time Xt1 . Phase 2 at t is
executed either immediately after, or some time
later, and is not included in any other resource
holding time.
Each phase p of the holding time of resource T has

a complete set of request parameters: a local service
time ZTp, request rates y(T,p; t) to other resources, and
a holding time XTp. Then Eq (1) is modified to an
equation for each phase at T, and nested holding of
any other resource t only includes phase 1:

XTp = ZTp + Σt in RequestedBy(T)[y(T,p;t)(Wt + Xt1)] (1b)
The resource utilization includes both phases:

UT = fT (XT1 + XT2)
The effect of asynchronous service at some T below

B is to reduce the holding time of B, by propagating
less delay upwards. If an amount ∆xT can be shifted to
second phase, the reduction in holding time of B is
y(B,T)∆xT, and as long as the bottleneck remains at B
the new system bottleneck bound is

f*A = [XB/(XB – y(B,T)∆xT] fA
However it is less effective than simple reduction of
holding time, since the total holding time of T is still
effective and T may saturate.

7.1 Recommendation

Apply asynchronous service wherever functionally
permissible, as it is a no-lose option.

Examples: delayed writes in file systems and
databases, operations which execute autonomously
once initiated.

8 Load-Dependent Demands

Some resources have the additional feature that

their demands depend on the intensity of the applied
load.

8

Figure 6. Throughput versus clients (fA vs mA) for a
locking bottleneck (from [1])

For example, [1] describes an application with a

lock management bottleneck in a MySQL database
which causes throughput not just to saturate, but to
drop sharply beyond a certain point. This is
characteristic of cases where increasing congestion
creates additional management overhead. Examples
include optimistic locking (where high contention
causes a high rate of transaction restarts), in thrashing
in database buffers used as caches, and in virtual
memory thrashing.

We shall assume that all the available customers of
a bottleneck are in contention for it, which is
approximately true; this number is AvConcur(B) given
by Eq. (6). Then the dependence makes ZT, y(T,t) and
hence XT to be functions of AvConcur(B). Figure 6
compares implementations of a system that includes a
database, in which throughputs show the effect of
load-dependent bottleneck. In the cases with simple
saturation (the highest and lowest curves, which level
off) the authors [1] detected processor saturation; in
the cases with declining throughput no processor was
saturated and they described a “locking bottleneck”. It
shows the clear signs of load-dependent saturation
with AvConcur(B) = mA.

In general, if there is a load-dependent resource T
then Eq. (3) for the limiting system throughput can be
written as:

fA = mB /[y(A,B) XB(AvConcur(B))]
Supposing that AvConcur(B)= mA throughout the
range in Figure 6, then in the rising curve on the left
of Figure 6 the bottleneck is the load source, whereas
in the falling curve it is a load-dependent lock-related
resource, with a holding time that rises with mA.

9 Case Study

 This section considers a distributed telephone
switch, based loosely on an industrial project.
Historically, the architecture of voice switches has
been dominated by the need for increased capacity and
performance. For instance, a description of Lucent’s
5ESS architecture [15] emphasizes continual
performance improvement, the tradeoffs between
performance and other properties, call flows and
delays, overload control, and software resource
engineering. Standards govern acceptable delays to
receive dial tone, and to obtain an indication of a
connection.

 Class
 V
Switch

Up to
200 000
attached
lines

VoP

Switch
Gateway

VoP

Switch
Gateway

 Class
 V
Switch

Database
SCP

 Class

Switch
 IV

Packet
Switch

Core

Voice Channel

Signaling Channel

Call

Agent
Connection

Figure 7. Abstract view of a telephone network

9.1 Architecture of a Class IV Voice-over-Packet
(VoP) Switch
A Class IV switch connects Class V switches that
actually have subscribers connected. This system
distributes the functionality of a Class IV switch as
shown in Figure 7, using a packet switch as a
switching fabric. The Call Connection Agent includes:
• Line Information Database (DB)
• Call Processing Server (COCO): call routing

decisions and coordination of connectivity.
• SS7 Interface (SS7): to the public network.
• H248 component: interface to the VoP network.

The gateway switch has a node controller (CTL) and
connects to an intra-switch network using:
• H248 interface
• Call Control (CACO)
• A module SVC that terminates the connection

requests and has an interface to the packet switch.
• line cards (interfaces) called NLC and ILC.
The packet switch has similar modules SVC, CTL,
NLC and ILC.

9.2 Resources in the Distributed Switch

All of these modules are multithreaded concurrent
processes which behave as resources in our model, and
all have their own (single) processors. Figure 8 shows
a resource graph for the system, with nodes shown as
parallelograms. Each node represents a software

9

resource (many of them multithreaded) with a
processor (not shown).

H248Ip

COCO

DB SS7OutIp

SS7InIp

Orig V

CACO

GwH248

CTL ILCNLC

SVC
CTL ILCNLC

SVC

CTL ILCNLC

SVC

CACO

GwH248

Term V

CallConnection
Agent

Orig
GWCore

Switch

Term
GW

 5

 4

 3

 1

 2

Figure 8. Resource Graph for the Switch. Each
node shown has an associated processor node

There are four subsystems, with a source that

represents an originating Class V switch, with mOrigV =
1000 users and think time ZA = 3.6 sec to represent a
potential for 500,000 call requests per hour. An LQNS
model based on Figure 8 was populated with
parameters that roughly represent an actual prototype
product with a loosely related resource structure, and
solved. The initial model carried 280,000 calls/hour,
and had a connection delay of 2.8 seconds with a
bottleneck at the COCO node (Strength = 9.6, with
Shadow(COCO) being node H248Ip).

9.3 Bottleneck Mitigation

Two steps of bottleneck mitigation were carried out.
In the first, mCOCO was increased from 10 to 110. The
new throughput was 463,000 calls/hour with a
connection delay of 284 ms. The new bottleneck was
CACO1 (the CACO node on the left) with Strength =
1.55. We notice that the shadow node did not become
the bottleneck in this case, but it is in the saturated
path from the top to CACO1. The new Shadow node is
CTL1, the CTL node on the left (since SVC has a very
high multiplicity).

In the second step mCACO1 was increased from 4 to
9. The final throughput was 490,320 calls/hour, with a
connection delay of 68 ms. (this source can only reach
500,000/hour with zero response delay, so this is an
excellent result). The final bottleneck is starvation at
the source, which means that this configuration has
capacity for additional traffic without saturating. The
model-based recommendations were very similar to
those developed by the project team. Table 3
summarizes some of the key results for the three
configurations.

Table 3. Some Results for the Model in Figure 8.

Node Saturation values, written as U/m
 Case I Case II Case III
SS7In IP 150/150=1.0 150/150=1.0 19.3/150
COCO 10/10=1.0

(bottleneck)
73.6/110
=0.67

19.3/110
=0.175

H248Ip 2.1/20
(shadow)

19.97/20 5.5/20

COCO_Proc 0.086/1 0.141/1 0.150/1
CACO1 1.92/4 3.98/4=.995

(bottleneck)
5.2/9=0.61

CTL1 0.174/1 0.257/1
(shadow)

0.27/1

SVC1 1.84/20
=0.92

3.84/20
= 0.192

5.05/20
= 0.252

10 Conclusions

A framework for the systematic analysis and

mitigation of layered bottlenecks has been described,
including a taxonomy of cases and a detailed study of
the effectiveness of the different possible changes. It is
not surprising that many of the changes prescribed are
related to Smith and Williams’ principles for
improving performance in general [16], but they take a
specific form here. Space has precluded the inclusion
of a great many examples, but the references help to
supply this deficiency.

New definitions were given for the bottleneck
strength measure first stated in [11], which deals with
heavily provisioned resources in the bottleneck zone,
and for a layered bottleneck. The latter depends on the
value of a saturation threshold sat* which must be
chosen. If it is chosen too close to unity, no bottleneck
will be found, and the analysis can be repeated with a
smaller value. In a well balanced system there is no
single bottleneck, and further improvement may
require many simultaneous changes.

Not discussed here, but also relevant to removing
bottlenecks in distributed computer systems, is re-
allocation of processes to processors. An approach is
described in [8] to optimize the allocations of layered
resources.

Acknowledgements
This research was supported by Research Canada

through its program of Discovery Grants. The authors
are grateful to the referees for their suggestions, which
improved the paper.

11 References

10

[1] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel, "Performance Comparison of Middle-
ware Architectures for Generating Dynamic Web
Content," in Proc. Middleware 2003, LNCS 2672, Rio de
Janeiro, June 2003, pp. 242-261.

[2] J. Dilley, R. Friedrich, T. Jin, and J. Rolia, "Web Server
Performance measurement and modeling techniques,"
Performance Evaluation, vol. 33, pp. 5-26, 1998

[3] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia,
and M. Woodside, “Performance Analysis of Distributed
Server Systems”, Proc. Sixth Int. Conf. on Software
Quality (6ICSQ), Ottawa, Canada, 1996, pp. 15-26.

[4] G. Franks, P. Maly, M. Woodside, D. C. Petriu, and A.
Hubbard, Layered Queueing Network Solver and
Simulator User Manual, Real-time and Distributed
Systems Lab, Carleton University, Ottawa, 2005.
Available at http://www.sce.carleton.ca/rads/lqn/lqn-
documentation/

[5] M. Gerndt and A. Krumme, "A Rule-based Approach for
Automatic Bottleneck Detection in Programs on Shared
Virtual Memory Systems," Proc. 1997 IEEE Workshop
on High-Level Programming Models and Supportive
Environments (HIPS '97), Genf, 1997, pp. 93-101.

[6] G. Hills, J.A. Rolia, G. Serazzi, “Performance
Engineering of Distributed Software Process
Architectures”, Proc Int. Conf. on Performance Tools
(Tools 95), Heidelberg, LNCS 977, Springer, 1995, pp.
357-371.

[7] R. Jain, The Art of Computer Systems Performance
Analysis, John Wiley & Sons Inc., 1991

[8] M. Litoiu, J.A. Rolia, "Object Allocation for Distributed
Applications with Complex Workloads," Proc. 11th Int.
Conf. on Performance Tools (Tools 2000), LNCS 1786,
Schaumberg, IL, Mar. 2000, pp. 25-39.

[9] P. Maly and C. M. Woodside, "Layered Modeling of
Hardware and Software, with Application to a LAN

Extension Router," Proc 11th Int Conf on Performance
Tools (Tools 2000), Chicago, Mar. 2000, pp. 10 - 24.

[10] D. Menasce, "Two-Level Iterative Queueing Model of
Software Contention," Proc. Modeling Analysis and
Simulation of Computer and Telecom Systems
(MASCOTS 2002), Fort Worth, 2002, pp. 267-280.

[11] J. E. Neilson, C. M. Woodside, D. C. Petriu, and S.
Majumdar, "Software Bottlenecking in Client-Server
Systems and Rendez-vous Networks," IEEE Trans.
Software Engineering, v. 21, n. 9 pp. 776-782, Sep. 1995

[12] D. Petriu and M. Woodside, "Analysing Software
Requirements Specifications for Performance," Proc. Int.
Workshop on Software and Performance (WOSP 02),
Rome, July 2002, pp. 1 - 9.

[13] S. Ramesh and H. G. Perros, "A Multilayer Client-
Server Queueing Network Model with Synchronous and
Asynchronous Messages," IEEE Trans on Software
Engineering, vol. 26, no. 11 pp. 1086-1100, 2000.

[14] J. A. Rolia and K. C. Sevcik, "The Method of Layers,"
IEEE Trans. on Software Engineering, v. 21, n. 8 pp.
689-700, August 1995.

[15] Richard Singer, “Overview of 5ESS R-2000 switch
performance,” in Proc. Int. Workshop on Software and
Performance, WOSP’98, Santa Fe, New Mexico, USA,
Oct. 1998, pp. 7 – 13

[16] C. U. Smith and L. G. Williams, Performance
Solutions. Addison-Wesley, 2002.

[17] P. Tregunno, Practical Analysis of Software
Bottlenecks, MASc thesis, Carleton University, 2003

[18] J. Xu, M. Woodside, and D. Petriu, "Performance
Analysis of a Software Design using the UML Profile for
Schedulability, Performance and Time," Proc. 13th Int.
Conf. on Performance Tools (Tools ‘03), Urbana, USA,
Sept. 2003.

