
Layered Queueing Network
Modeling of Software Systems

Murray Woodside
5201 Canal Building

1

Building Security System (buffering)

• Two subsystems: CCTV storage, and door access control
• hope to manage up to 100 cameras
• Components, shown as UML with MARTE annotations:

SYSC4102/5101
LQN-examples slide 2 Building Security System

<<PAhost>>
ApplicCPU

<<PAresource>> LAN

VideoAcquisition <<PAhost>>
DB_CPU

Database

<<PAresource>>
SecurityCard

Reader

<<PAresource>>
DoorLock
Actuator

<<PAresource>>
Video

Camera

<<PAresource>>
Disk

{PAcapacity=2}

Video
Controller

AcquireProc

StoreProc

Buffer
Manager

AccessControl

Acces
Controller

<<PAresource>>
Buffer

{PAcapacity=$Nbuf}

SYSC4102/5101
LQN-examples slide 3 Door Access Scenario

getRights()

 User

<<PAresource>>
CardReader

<<PAresource>>
DoorLock

<<PAresource>>
Alarm

<<PAresource>>
Access

Controller

<<PAresource>>
Database

{PAcapacity=10}

<<PAresource>>
Disk

{PAcapacity=2}

readCard
admit (cardInfo)

readRights() [not_in_cache] readData()

checkRights()
[OK] openDoor()

[not OK] alarm()
[need to log?] logEvent()

writeRec()

enterBuilding

writeEvent()

<<PAstep>>
{PAextOp=(read, 1)}

<<PAopenLoad>>
{PAoccurencePattern = (‘poisson’, 0.5, ‘s’),
PArespTime =((‘req’,’percentile’,95, (1, ‘s’)),
 (‘pred’,’percentile’, 95, $UserR)) }

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (3, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

<<PAcontext>>

o

o

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’, (1.8, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,

(1.5, ‘ms’)), PAprob = 0.4}

<<PAstep>>
{PAdelay=(‘asmd’, ‘mean’,
(500, ‘ms’)), PAprob = 1}

<<PAstep>>
{PAprob = 0}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.3, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,

(0.2, ‘ms’), PAprob=0.2}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

o

1. Poisson arrivals of Users 2/s

User puts card
thru reader

2. Process card,
check rights

3. Open door
or record alarm

4. Write log of events
Requirement: 1 s response
 with 95% probability

SYSC4102/5101
LQN-examples slide 4 CCTV capture scenario

<<PAresource>>
Video

Controller

<<PAresource>>
AcquireProc

<<PAresource>>
BufferManager

<<PAresource>>
StoreProc

*[$N] procOneImage(i)

<<GRMacquire>>
allocBuf (b)

getImage (i, b)

passImage (i, b)

storeImage (i, b)

<<GRMrelease>>
releaseBuf (b)

freeBuf (b)

<<PAresource>>
Database

{PAcapacity=10}

writeImg (i, b)

getBuffer()

store (i, b)

<<PAstep>>
{PAdemand =(‘asmd’,
‘mean’, (1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms))}

<<PAcontext>>

o

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($P * 1.5, ‘ms’)),
PAextOp = (network, $P)}

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($B * 0.9, ‘ms’)),,
PAextOp=(writeBlock, $B)}

<<PAclosedLoad>>
{PApopulation = 1,
 PAinterval =((‘req’,’percentile’,95,
 (1, ‘s’)),
 (‘pred’,’percentile’, 95, $Cycle)) }

<<PAstep>>
{PArep = $N}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}o

o

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.9, ‘ms’))} <<PAstep>>

{PAdemand=(‘asmd’,
‘mean’, (1.1, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.2,’ms’))}

o

This object manages the
resource Buffer

o

1.Trigger camera
 read events

2. Put the image in
a buffer, send to

database

3. Store image in
database

Buffer operations:
• get
• release

(the N cameras
 were not
 modeled)

Video Capture subsystem Door Access subsystem

SYSC4102/5101
LQN-examples slide 5 The LQN Model

Shared
Resources

Each buffer must be emptied before it can be used for another
camera
• Thus the buffer is a resource that could have a queue, which

should be modeled as the pseudo-task Buffer
Model fragment without buffer How the buffer pool was
 modeled

SYSC4102/5101
LQN-examples slide 6 Handling of Buffering

forwarding call to a function of BufferManager

real task
BufferManager
and pseudo-
task Buffer

• The operations that require
holding the buffer are
executed by calls from the
buffer pool pseudo-task
Buffer

–separate from the buffer
manager task!!

–including the execution
of the release operation
by the buffer manager

–assumes the manager
has a dedicated thread
for release

• releaseBuf is executed by
storeImage, or bufEntry

SYSC4102/5101
LQN-examples slide 7 Handling of Buffering (2)

This model illustrates
• how we can model logical resources (the buffer pool)
• the use of forwarding
• the use of second phase to improve concurrency (later)

SYSC4102/5101
LQN-examples slide 8 Model Features

• Base case, one buffer, so one camera at a time
• Access-control responses are fine; the event rate was kept

constant at 2/s.
• Camera polling becomes too slow between 20 and 30

cameras
– try adding more buffers.

SYSC4102/5101
LQN-examples slide 9 Results #1

Ncam

Average
Response Time

Normalized Utilizations Prob of Missing Deadline

Cycle
(sec)

User (sec) AcqProc Buffer StoreProc AppCPU Cameras Doors

10 0.327 0.127 0.960 0.9998 0.582 0.549 0 0.031
20 0.655 0.138 0.963 0.9999 0.582 0.545 0.0007 0.036
30 0.983 0.133 0.964 0.9999 0.582 0.544 0.4196 0.038
40 1.310 0.129 0.965 0.9999 0.582 0.544 0.9962 0.034

Table 1. Simulation results for the base case

• cameras fixed at 40, vary the number of buffers NBuf
– disappointing: the miss probability levels out above 9% at

about 7 buffers.
• StoreProc is apparently the new bottleneck: try an additional

thread

SYSC4102/5101
LQN-examples slide 10 Results #2

NBuf

Average
Response Time

Normalized Utilizations
Prob of Missing

Deadline
Cycle
(sec)

User
(sec)

AcqProc Buffer StoreProc AppCPU Cam’s Doors

1 1.309 0.137 0.965 0.9999 0.583 0.544 0.9961 0.034
2 1.016 0.132 0.975 0.8762 0.800 0.702 0.5503 0.032
3 0.941 0.132 0.980 0.8235 0.893 0.756 0.2506 0.036
4 0.911 0.131 0.983 0.8042 0.936 0.782 0.1597 0.032
7 0.879 0.132 0.986 0.8136 0.984 0.810 0.0948 0.033

10 0.872 0.129 0.987 0.8437 0.995 0.817 0.0935 0.034

SYSC4102/5101
LQN-examples slide 11 Results #3

Success!
• Two threads on StoreProc combined with 4 buffers brings the

miss probability down well within spec of 1 second for each

No.
of

Store
Proc

Average Response
Time

Normalized Utilizations
Prob of Missing

Deadline

Cycle
(sec)

User
(sec)

AcqProc Buffer StoreProc AppCPU Cam’s Doors

1 0.911 0.131 0.983 0.8042 0.936 0.782 0.1597 0.032
2 0.756 0.137 0.946 0.5805 0.616 0.940 0.0022 0.035
3 0.743 0.139 0.932 0.5484 0.441 0.956 0.0015 0.039

40 cameras, Nuser = 100 doors, Nbuf = 4 buffers

• The saturated resource is AppProc
– making multiplicity = 2 allows 50 cameras

• The limitation is now at AcquireProc, due to a long service
time
– the time it takes to store the buffers is limiting
– multithreading alone is not the answer

• To allow an earlier start on the next camera, we can put the
calls from AcquireProc into phase 2, with multithreading
– early reply to VideoController moves the capture on to the

next camera much earlier
– allows the concurrent phase-2 Acquire tasks to run in

parallel
• Other adjustments are also possible

SYSC4102/5101
LQN-examples slide 12 Discussion

• By using phase 2 at AcquireProc and various multiplicities we
can get a capacity of 100 cameras.
– Even more capacity can be found with StoreProc.

• Another exploration approach: set multiplicities at inf and see
if specified delays are feasible at all, and what mulitplicity is
used (= utilizattion), then work down to specified delays.

SYSC4102/5101
LQN-examples slide 13 Results #4

Multiplicity
(Acquire,
 Buffer,
 Store,

App. CPU)

Average
Response Time Normalized Utilizations Prob of Missing

Deadline

Cycle
(sec)

User
(ms)

Acquire
Proc Buffer Store

Proc

App
CPU

Cam’s Doors

2, 4, 2, 2 1.250 0.133 0.988 0.923 0.886 0.710 0.9995 0.0332
2, 10, 6, 3 0.837 0.132 0.988 0.689 0.751 0.707 0.0057 0.0307
3, 10, 6, 3 0.768 0.134 0.983 0.895 0.910 0.769 0.0005 0.0352

100 cameras, Nuser = 100 doors, Nbuf = 10 buffers

	Layered Queueing Network Modeling of Software Systems�����Murray Woodside�5201 Canal Building
	Building Security System
	Door Access Scenario
	CCTV capture scenario
	The LQN Model
	Handling of Buffering
	Handling of Buffering (2)
	Model Features
	Results #1
	Results #2
	Results #3
	Discussion
	Results #4

