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LQN for a Web server 

 Server has entry demand 0.005 sec 
 can be multithreaded 

 Net delay represents total net delays that block a 
server thread in a response 
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Bottleneck in the web server... 

 is a saturation point that causes it to run slowly 
 a saturated resource that limits the throughput 

 
 in a flat resource architecture one resource is saturated, 

the rest are underutilized at that throughput 
 

 in a layered architecture several resources may be 
saturated 
 resources above the bottleneck have increased holding times 

due to pushback 
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Throughput saturation in the web server 
f (throughput) 

N users 

M=30 threads 

M=100 threads 

M=300, 500, 1000 threads 

...or 
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Bottleneck in a web server: use of threads  

N users   500  500  500  500   
M threads  10  30  100  inf   
X server  .512 .52  .52  .52   
f thruput  19.5 58.2 90.6 90.6  
W user wait  20.6 3.6  0.51 0.5   
U server  10  30  47  47   
U net   9.7  29.1 45.3 45.3  
U CPU   .097 .29  .45  .45   
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Pattern around the bottleneck 

 users are always 
“busy” (waiting or 
“thinking”) 
 saturated in a sense 

 server is saturated 
 

 devices and lower 
servers are 
unsaturated 

Users Users 
Server 

Net delay DB Disk CPU 
D DBP 

....with sufficient server threads, the server is 
unsaturated and the devices too... this is the ideal 
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Insight: Pattern for a “Software Bottleneck” 

B’NECK 

 a saturated server 
 but.... a saturated server pushes 

back on its clients 
 the long waiting time becomes part 

of the client service time!! 
 result is often a cluster of saturated 

tasks above the bottleneck 
 thus: the “real” bottleneck is the 

“lowest” saturated task 
 its servers (including its processor) 

are not saturated 
 some or all of its clients are 

saturated 
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Hourglass pattern shows saturation behaviour 

above: tasks above the bottleneck are 
saturated because of pushback delays 
 there must be sufficient numbers to 

build a queue 
below: tasks below are unsaturated 

because the bottleneck throttles the 
load  
 typically their load is spread across 

several resources 
 

saturated 

unsaturated 

bottleneck 
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Recognizing the “real” bottleneck 

 a saturated task with unsaturated 
servers and host 

 look at resource utilizations 
 look for a step downwards in 

utilization, in descending the 
heirarchy: 
 sat 
 sat 
 sat: bottleneck 
 unsat 
 unsat 

B’NECK 
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“Next bottleneck” 

 if the capacity of bottleneck T1 can be 
increased  
 then lower task T2 with the max utilization 

UT2 is the next bottleneck 
 strength measure is UT1 / UT2 
 processor or server “support” 

 the potential throughput increase  
 will raise UT2 to unity and saturate T2 
 is bounded in ratio by the strength measure 

 in practice the utilization of T2 may 
increase more rapidly with throughput, 
and T2 saturate at a lower throughput 

 IEEE TSE paper 1995 

T1 
  

 
T2 
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Mitigation of a bottleneck (Peter Tregunno) 
(1)  provide additional resources at the bottleneck 
 for a software server, provide multiple threads 
 some “asynchronous server” designs provide unlimited 

threads 
 replicated servers can split the load and distribute it, but 

give them each a processor 
 for a processor, a multiprocessor (or faster CPU) 

(2)  reduce its service time to make it faster:  
 reduced host demand (tighter code) 
 reduced requests to its servers 
 parallelism, optimism 
 less blocking time (phase 1 time) at its servers 

(3) divert load away from it 
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Use additional resources... 
 a resource may be given additional (M servers) 

 multiprocessor 
 multithreaded task 

 a (rough) rule of thumb for M, based on potential needs 
for concurrency at a task T1:  

M = min of  {  (1 + sum of resources of servers of T1),   
           (sum of clients of T1) } 

 
 increase the capacity of the bottleneck resource 

 holding time drops, throughput increases 
 lower resources see more load and also more waiting 

 their utilization increases (bottleneck can move down 
to the “next bottleneck”) 

 however, a higher resource may also remain saturated 
due to higher throughput 

 bottleneck can move up, to a destination difficult to 
predict. 

T1        {M} 
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Comments on additional resources... e.g. 
increasing threading levels  
 Useful with a strong software bottleneck 
 Potential throughput at bottleneck <= fb *Bb 

 f = throughput 
 B = ratio of utilizations (relative to saturation) at the bottleneck, to its 

highest utilized server. 
 B > 1 at a bottleneck 

 Optimal threading level is usually found through experiment  
 first rule of thumb is to use the sum of threads or multiplicities of its 

servers 
 second rule, increase multiplicity by factor B (to provide the additional 

throughput) 

 Cost is usually minimal (low overhead), unless software design 
is explicitly singlethreaded 
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Comments on replication of task & processor 

 meaning, add more hardware… 
 Useful with a weak processor supported software bottleneck 

(threading helps strong bottlenecks) 
 Reduction in utilization of the bottleneck task proportional 

to p/n (where p is the percentage of total service time that a 
task spends blocked due to processor contention, and n is the 
number of processors added) 

 Only effective when processor contention is high 
 

 other ways to increase resource accessibility: more 
read access, less exclusive access 
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Comments on reducing processing demands 

 ... write faster code… 
 Only applicable for processor supported software 

bottlenecks 
 The utilization gain is only proportional to the 

reduction in total processing demands 
 For a strong server supported software bottleneck, the 

underlying problem is blocking, not slow software at 
the bottleneck. 
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Other ways to reduce holding time 

 anticipation (prefetching) 
 other optimistic operations 
 parallelism in a server 
 asynchronous operations 
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Comments on decreasing interactions 

 for example, batching multiple requests 
 if synchronous requests can be bundled together - server still 

has to be the same amount of work, but n times less waiting 
(waiting for rendezvous acceptance) required at the client  

 effective when bottleneck is weak (long rendezvous 
delays are a product of high server utilizations, high 
server utilization = weak bottleneck) 
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