
1

Simple Web Server: Bottlenecks

Murray Woodside
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada
cmw@sce.carleton.ca

www.sce.carleton.ca/faculty/woodside.html

mailto:cmw@sce.carleton.ca

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

LQN for a Web server

 Server has entry demand 0.005 sec
 can be multithreaded

 Net delay represents total net delays that block a
server thread in a response

2

N Users with
a thinking time
of 5 sec.

Users Users

Server

Net delay
0.5 sec

DB
0.01

Disk
0.015 CPU

0.2 0.4 1

D DBP

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

3

Bottleneck in the web server...

 is a saturation point that causes it to run slowly
 a saturated resource that limits the throughput

 in a flat resource architecture one resource is saturated,

the rest are underutilized at that throughput

 in a layered architecture several resources may be
saturated
 resources above the bottleneck have increased holding times

due to pushback

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

4

Throughput saturation in the web server
f (throughput)

N users

M=30 threads

M=100 threads

M=300, 500, 1000 threads

...or

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

5

Bottleneck in a web server: use of threads

N users 500 500 500 500
M threads 10 30 100 inf
X server .512 .52 .52 .52
f thruput 19.5 58.2 90.6 90.6
W user wait 20.6 3.6 0.51 0.5
U server 10 30 47 47
U net 9.7 29.1 45.3 45.3
U CPU .097 .29 .45 .45

Server with M threads and
holding time X

N Users with
a thinking time
of 5 sec.

Users Users

Server

Net delay
0.5 sec

DB
0.01

Disk
0.015 CPU

0.005

0.2 0.4 1

D DBP

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

6

Pattern around the bottleneck

 users are always
“busy” (waiting or
“thinking”)
 saturated in a sense

 server is saturated

 devices and lower
servers are
unsaturated

Users Users
Server

Net delay DB Disk CPU
D DBP

....with sufficient server threads, the server is
unsaturated and the devices too... this is the ideal

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

7

Insight: Pattern for a “Software Bottleneck”

B’NECK

 a saturated server
 but.... a saturated server pushes

back on its clients
 the long waiting time becomes part

of the client service time!!
 result is often a cluster of saturated

tasks above the bottleneck
 thus: the “real” bottleneck is the

“lowest” saturated task
 its servers (including its processor)

are not saturated
 some or all of its clients are

saturated

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

8

Hourglass pattern shows saturation behaviour

above: tasks above the bottleneck are
saturated because of pushback delays
 there must be sufficient numbers to

build a queue
below: tasks below are unsaturated

because the bottleneck throttles the
load
 typically their load is spread across

several resources

saturated

unsaturated

bottleneck

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

9

Recognizing the “real” bottleneck

 a saturated task with unsaturated
servers and host

 look at resource utilizations
 look for a step downwards in

utilization, in descending the
heirarchy:
 sat
 sat
 sat: bottleneck
 unsat
 unsat

B’NECK

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

10

“Next bottleneck”

 if the capacity of bottleneck T1 can be
increased
 then lower task T2 with the max utilization

UT2 is the next bottleneck
 strength measure is UT1 / UT2
 processor or server “support”

 the potential throughput increase
 will raise UT2 to unity and saturate T2
 is bounded in ratio by the strength measure

 in practice the utilization of T2 may
increase more rapidly with throughput,
and T2 saturate at a lower throughput

 IEEE TSE paper 1995

T1

T2

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

11

Mitigation of a bottleneck (Peter Tregunno)
(1) provide additional resources at the bottleneck
 for a software server, provide multiple threads
 some “asynchronous server” designs provide unlimited

threads
 replicated servers can split the load and distribute it, but

give them each a processor
 for a processor, a multiprocessor (or faster CPU)

(2) reduce its service time to make it faster:
 reduced host demand (tighter code)
 reduced requests to its servers
 parallelism, optimism
 less blocking time (phase 1 time) at its servers

(3) divert load away from it

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

12

Use additional resources...
 a resource may be given additional (M servers)

 multiprocessor
 multithreaded task

 a (rough) rule of thumb for M, based on potential needs
for concurrency at a task T1:

M = min of { (1 + sum of resources of servers of T1),
 (sum of clients of T1) }

 increase the capacity of the bottleneck resource

 holding time drops, throughput increases
 lower resources see more load and also more waiting

 their utilization increases (bottleneck can move down
to the “next bottleneck”)

 however, a higher resource may also remain saturated
due to higher throughput

 bottleneck can move up, to a destination difficult to
predict.

T1 {M}

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

13

Comments on additional resources... e.g.
increasing threading levels
 Useful with a strong software bottleneck
 Potential throughput at bottleneck <= fb *Bb

 f = throughput
 B = ratio of utilizations (relative to saturation) at the bottleneck, to its

highest utilized server.
 B > 1 at a bottleneck

 Optimal threading level is usually found through experiment
 first rule of thumb is to use the sum of threads or multiplicities of its

servers
 second rule, increase multiplicity by factor B (to provide the additional

throughput)

 Cost is usually minimal (low overhead), unless software design
is explicitly singlethreaded

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

14

Comments on replication of task & processor

 meaning, add more hardware…
 Useful with a weak processor supported software bottleneck

(threading helps strong bottlenecks)
 Reduction in utilization of the bottleneck task proportional

to p/n (where p is the percentage of total service time that a
task spends blocked due to processor contention, and n is the
number of processors added)

 Only effective when processor contention is high

 other ways to increase resource accessibility: more
read access, less exclusive access

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

15

Comments on reducing processing demands

 ... write faster code…
 Only applicable for processor supported software

bottlenecks
 The utilization gain is only proportional to the

reduction in total processing demands
 For a strong server supported software bottleneck, the

underlying problem is blocking, not slow software at
the bottleneck.

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

16

Other ways to reduce holding time

 anticipation (prefetching)
 other optimistic operations
 parallelism in a server
 asynchronous operations

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

17

Comments on decreasing interactions

 for example, batching multiple requests
 if synchronous requests can be bundled together - server still

has to be the same amount of work, but n times less waiting
(waiting for rendezvous acceptance) required at the client

 effective when bottleneck is weak (long rendezvous
delays are a product of high server utilizations, high
server utilization = weak bottleneck)

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

18

Papers on the research

 Simeoni, Inverardi, DiMarco, Balsamo, “Model-based performance
prediction in software development”, IEEE TSE May 2004 pp 295-310

 “The Layered Queueing Tutorial”, available at www.layeredqueues.org
 D. B. Petriu, M. Woodside, “A Metamodel for Generating Performance

Models from UML Designs”, UML 2004, Lisbon, Oct. 2004.
 P. Maly, C.M. Woodside, "Layered Modeling of Hardware and Software,

with Application to a LAN Extension Router", Proc. TOOLS 2000, pp 10-24
 J.E. Neilson, C.M. Woodside, D.C. Petriu and S. Majumdar, "Software

Bottlenecking in Client-Server Systems and Rendezvous Networks", IEEE
TSE, v. 21, pp. 776-782, Sept. 1995.

 D. C. Petriu and C. M. Woodside, "Performance Analysis with UML," in the
volume "UML for Real", edited by B. Selic, L. Lavagno, and G. Martin, .
Kluwer, 2003, pp. 221-240

 F. Sheikh and C.M. Woodside, "Layered Analytic Performance Modelling
of a Distributed Database System", Proc. 1997 International Conf. on
Distributed Computing Systems, May 1997, pp. 482-490.

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

19

Papers (2)

 M. Woodside, D.B. Petriu, K. H. Siddiqui, "Performance-related
Completions for Software Specifications", Proc ICSE 2002.

 C.M. Woodside, "A Three-View Model for Performance Engineering of
Concurrent Software", IEEE TSE, v. 21, No. 9, pp. 754-767, Sept. 1995.

 Pengfei Wu, Murray Woodside, and Chung-Horng Lung, "Compositional
Layered Performance Modeling of Peer-to-Peer Routing Software," in Proc
23rd IPCCC, Phoenix, Ariz., April 2004

 Tao Zheng, Murray Woodside, "Heuristic Optimization of Scheduling and
Allocation for Distributed Systems with Soft Deadlines", Proc. TOOLS
2003, Urbana, Sept 2003, pp 169-181, LNCS 2794.

 Jing Xu, Murray Woodside, Dorina Petriu "Performance Analysis of a
Software Design using the UML Profile for Schedulability, Performance and
Time", Proc. TOOLS 2003, Urbana, Sept 2003, pp 291 - 310, LNCS 2794.

 other papers on layered queueing by Perros, Kahkipuro, Menasce, and many
others (see www.layeredqueues.org).

	Simple Web Server: Bottlenecks
	LQN for a Web server
	Bottleneck in the web server...
	Throughput saturation in the web server
	Bottleneck in a web server: use of threads
	Pattern around the bottleneck
	Insight: Pattern for a “Software Bottleneck”
	Hourglass pattern shows saturation behaviour
	Recognizing the “real” bottleneck
	“Next bottleneck”
	Mitigation of a bottleneck (Peter Tregunno)
	Use additional resources...
	Comments on additional resources... e.g. increasing threading levels	
	Comments on replication of task & processor
	Comments on reducing processing demands
	Other ways to reduce holding time
	Comments on decreasing interactions
	Papers on the research
	Papers (2)

