
1

Simple Web Server: Bottlenecks

Murray Woodside
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada
cmw@sce.carleton.ca

www.sce.carleton.ca/faculty/woodside.html

mailto:cmw@sce.carleton.ca

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

LQN for a Web server

 Server has entry demand 0.005 sec
 can be multithreaded

 Net delay represents total net delays that block a
server thread in a response

2

N Users with
a thinking time
of 5 sec.

Users Users

Server

Net delay
0.5 sec

DB
0.01

Disk
0.015 CPU

0.2 0.4 1

D DBP

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

3

Bottleneck in the web server...

 is a saturation point that causes it to run slowly
 a saturated resource that limits the throughput

 in a flat resource architecture one resource is saturated,

the rest are underutilized at that throughput

 in a layered architecture several resources may be
saturated
 resources above the bottleneck have increased holding times

due to pushback

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

4

Throughput saturation in the web server
f (throughput)

N users

M=30 threads

M=100 threads

M=300, 500, 1000 threads

...or

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

5

Bottleneck in a web server: use of threads

N users 500 500 500 500
M threads 10 30 100 inf
X server .512 .52 .52 .52
f thruput 19.5 58.2 90.6 90.6
W user wait 20.6 3.6 0.51 0.5
U server 10 30 47 47
U net 9.7 29.1 45.3 45.3
U CPU .097 .29 .45 .45

Server with M threads and
holding time X

N Users with
a thinking time
of 5 sec.

Users Users

Server

Net delay
0.5 sec

DB
0.01

Disk
0.015 CPU

0.005

0.2 0.4 1

D DBP

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

6

Pattern around the bottleneck

 users are always
“busy” (waiting or
“thinking”)
 saturated in a sense

 server is saturated

 devices and lower
servers are
unsaturated

Users Users
Server

Net delay DB Disk CPU
D DBP

....with sufficient server threads, the server is
unsaturated and the devices too... this is the ideal

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

7

Insight: Pattern for a “Software Bottleneck”

B’NECK

 a saturated server
 but.... a saturated server pushes

back on its clients
 the long waiting time becomes part

of the client service time!!
 result is often a cluster of saturated

tasks above the bottleneck
 thus: the “real” bottleneck is the

“lowest” saturated task
 its servers (including its processor)

are not saturated
 some or all of its clients are

saturated

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

8

Hourglass pattern shows saturation behaviour

above: tasks above the bottleneck are
saturated because of pushback delays
 there must be sufficient numbers to

build a queue
below: tasks below are unsaturated

because the bottleneck throttles the
load
 typically their load is spread across

several resources

saturated

unsaturated

bottleneck

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

9

Recognizing the “real” bottleneck

 a saturated task with unsaturated
servers and host

 look at resource utilizations
 look for a step downwards in

utilization, in descending the
heirarchy:
 sat
 sat
 sat: bottleneck
 unsat
 unsat

B’NECK

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

10

“Next bottleneck”

 if the capacity of bottleneck T1 can be
increased
 then lower task T2 with the max utilization

UT2 is the next bottleneck
 strength measure is UT1 / UT2
 processor or server “support”

 the potential throughput increase
 will raise UT2 to unity and saturate T2
 is bounded in ratio by the strength measure

 in practice the utilization of T2 may
increase more rapidly with throughput,
and T2 saturate at a lower throughput

 IEEE TSE paper 1995

T1

T2

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

11

Mitigation of a bottleneck (Peter Tregunno)
(1) provide additional resources at the bottleneck
 for a software server, provide multiple threads
 some “asynchronous server” designs provide unlimited

threads
 replicated servers can split the load and distribute it, but

give them each a processor
 for a processor, a multiprocessor (or faster CPU)

(2) reduce its service time to make it faster:
 reduced host demand (tighter code)
 reduced requests to its servers
 parallelism, optimism
 less blocking time (phase 1 time) at its servers

(3) divert load away from it

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

12

Use additional resources...
 a resource may be given additional (M servers)

 multiprocessor
 multithreaded task

 a (rough) rule of thumb for M, based on potential needs
for concurrency at a task T1:

M = min of { (1 + sum of resources of servers of T1),
 (sum of clients of T1) }

 increase the capacity of the bottleneck resource

 holding time drops, throughput increases
 lower resources see more load and also more waiting

 their utilization increases (bottleneck can move down
to the “next bottleneck”)

 however, a higher resource may also remain saturated
due to higher throughput

 bottleneck can move up, to a destination difficult to
predict.

T1 {M}

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

13

Comments on additional resources... e.g.
increasing threading levels
 Useful with a strong software bottleneck
 Potential throughput at bottleneck <= fb *Bb

 f = throughput
 B = ratio of utilizations (relative to saturation) at the bottleneck, to its

highest utilized server.
 B > 1 at a bottleneck

 Optimal threading level is usually found through experiment
 first rule of thumb is to use the sum of threads or multiplicities of its

servers
 second rule, increase multiplicity by factor B (to provide the additional

throughput)

 Cost is usually minimal (low overhead), unless software design
is explicitly singlethreaded

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

14

Comments on replication of task & processor

 meaning, add more hardware…
 Useful with a weak processor supported software bottleneck

(threading helps strong bottlenecks)
 Reduction in utilization of the bottleneck task proportional

to p/n (where p is the percentage of total service time that a
task spends blocked due to processor contention, and n is the
number of processors added)

 Only effective when processor contention is high

 other ways to increase resource accessibility: more
read access, less exclusive access

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

15

Comments on reducing processing demands

 ... write faster code…
 Only applicable for processor supported software

bottlenecks
 The utilization gain is only proportional to the

reduction in total processing demands
 For a strong server supported software bottleneck, the

underlying problem is blocking, not slow software at
the bottleneck.

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

16

Other ways to reduce holding time

 anticipation (prefetching)
 other optimistic operations
 parallelism in a server
 asynchronous operations

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

17

Comments on decreasing interactions

 for example, batching multiple requests
 if synchronous requests can be bundled together - server still

has to be the same amount of work, but n times less waiting
(waiting for rendezvous acceptance) required at the client

 effective when bottleneck is weak (long rendezvous
delays are a product of high server utilizations, high
server utilization = weak bottleneck)

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

18

Papers on the research

 Simeoni, Inverardi, DiMarco, Balsamo, “Model-based performance
prediction in software development”, IEEE TSE May 2004 pp 295-310

 “The Layered Queueing Tutorial”, available at www.layeredqueues.org
 D. B. Petriu, M. Woodside, “A Metamodel for Generating Performance

Models from UML Designs”, UML 2004, Lisbon, Oct. 2004.
 P. Maly, C.M. Woodside, "Layered Modeling of Hardware and Software,

with Application to a LAN Extension Router", Proc. TOOLS 2000, pp 10-24
 J.E. Neilson, C.M. Woodside, D.C. Petriu and S. Majumdar, "Software

Bottlenecking in Client-Server Systems and Rendezvous Networks", IEEE
TSE, v. 21, pp. 776-782, Sept. 1995.

 D. C. Petriu and C. M. Woodside, "Performance Analysis with UML," in the
volume "UML for Real", edited by B. Selic, L. Lavagno, and G. Martin, .
Kluwer, 2003, pp. 221-240

 F. Sheikh and C.M. Woodside, "Layered Analytic Performance Modelling
of a Distributed Database System", Proc. 1997 International Conf. on
Distributed Computing Systems, May 1997, pp. 482-490.

Understanding Software Performance Limitations
Nokia Boston Workshop Sept 2004 © C. M. Woodside 2004

19

Papers (2)

 M. Woodside, D.B. Petriu, K. H. Siddiqui, "Performance-related
Completions for Software Specifications", Proc ICSE 2002.

 C.M. Woodside, "A Three-View Model for Performance Engineering of
Concurrent Software", IEEE TSE, v. 21, No. 9, pp. 754-767, Sept. 1995.

 Pengfei Wu, Murray Woodside, and Chung-Horng Lung, "Compositional
Layered Performance Modeling of Peer-to-Peer Routing Software," in Proc
23rd IPCCC, Phoenix, Ariz., April 2004

 Tao Zheng, Murray Woodside, "Heuristic Optimization of Scheduling and
Allocation for Distributed Systems with Soft Deadlines", Proc. TOOLS
2003, Urbana, Sept 2003, pp 169-181, LNCS 2794.

 Jing Xu, Murray Woodside, Dorina Petriu "Performance Analysis of a
Software Design using the UML Profile for Schedulability, Performance and
Time", Proc. TOOLS 2003, Urbana, Sept 2003, pp 291 - 310, LNCS 2794.

 other papers on layered queueing by Perros, Kahkipuro, Menasce, and many
others (see www.layeredqueues.org).

	Simple Web Server: Bottlenecks
	LQN for a Web server
	Bottleneck in the web server...
	Throughput saturation in the web server
	Bottleneck in a web server: use of threads
	Pattern around the bottleneck
	Insight: Pattern for a “Software Bottleneck”
	Hourglass pattern shows saturation behaviour
	Recognizing the “real” bottleneck
	“Next bottleneck”
	Mitigation of a bottleneck (Peter Tregunno)
	Use additional resources...
	Comments on additional resources... e.g. increasing threading levels	
	Comments on replication of task & processor
	Comments on reducing processing demands
	Other ways to reduce holding time
	Comments on decreasing interactions
	Papers on the research
	Papers (2)

