
Annotated UCM Linear Form, Version 1.0

EBNF
Annotated UCM Linear Form

The following document presents the Use Case Maps linear form in terms of annotated 
rules. The following conventions are used:

Diagrams

EBNF Rules
• Terms in plain font : rules
• Terms in bold font : keywords
• Terms in italic font : litterals
• [ Terms ] : Term is optional
• ( Terms )* : Zero or more Term
• ( Terms )+ : One or more Term
• Terms | Terms : Term1 or Term2

As for litterals, three of them are used in this document:

text : Sequence of any visible ASCII character (including space) without “*/”.
label : Sequence of -, _, a..z, A..Z, 0..9.
unsigned-integer : Sequence of 0..9.

Java-style comments (“//” format) will be allowed in linear form descriptions. For example:

model  MyModel  // This is a comment.

• Rectangles   (with plain font) : rules

• Ellipses   (with bold font) : keywords

• Rounded-corner rectangles   (with italic font): litterals
Last revision: February 1, 1998 11:55 am Page 1 of 13



Annotated UCM Linear Form, Version 1.0

f plu-

re
 free
1. Design and Model

design ::= design design-name root-maps [plugin-maps] (R1) 

design-name ::= label (R2) 

root-maps ::= root maps  { (model)+ } (R3) 

plugin-maps ::= plugin maps { (model)+ } (R4) 

model ::= model  model-name model-title structure-spec path-spec 
responsibility-spec [description] (R5) 

model-name ::= label (R6) 

model-title ::= description (R7) 

description ::= /* text */ (R8) 

A design is composed of a collection of root (top-level) maps and, possibly, of a collection o
gin maps. Each map is a model. A UCM model can be defined by the 4-tuple u = (n, s, p, r) where
n is the name of the model, s is the specification of the structural aspect of the model, p is the
specification of the path aspect of the model and r is the specification of responsibilities which a
referenced in s and p. Every named construction in this grammar has the possibility to hold a
format text description.

design design design-name root-maps
plugin-maps

design-name label

root-maps root maps { model }

plugin-maps plugin maps { model }

model model model-name model-title structure-spec path-spec responsibility-spec
description

model-name label

model-title description

description /* text */
Last revision: February 1, 1998 11:55 am Page 2 of 13



Annotated UCM Linear Form, Version 1.0

ation at
in two
bject, a

tances of
compo-

rocess,
ecifica-
uc-
a fixed
2. Structure Specification

structure-spec ::= structure [component-spec] [pool-spec] (R9) 

The structure specification gives the relationship between the structural entities and the loc
which responsibilities are executed. The structural entities of a UCM model can be divided 
differents categories: components and pools. The former can represent a process, an o
team, or other structures. Components, such as teams, may act as containers that hold ins
other components. Pools, by themselves, cannot perform responsibilities other than move 
nents in or out of a path. 

component-spec ::= components { (component ;)* } (R10) 

A model may or may not contain components.

component ::= component component-name [is a component-type] 
[responsibility-list] [other-atoms-list] [sub-structure-spec] 
component-attributes [description] (R11) 

component-attributes ::=[protected] [slot] [actual] [anchored] 
[replicated [replication-factor]] (R12) 

A component is identified by a name and can be attributed an arbitrary type (such as p
team, etc). It also holds a list of responsibility references. These references point to the sp
tion given later on (responsibility-spec). A component can be decomposed in a lower level str
ture and can be given properties like protected, slot, actual, anchored, and replicated. If 
quantity of a component is known in advance, it can be indicated by a replication factor.
 
component-name ::= label (R13) 

structure-spec structure
component-spec pool-spec

component-spec components {
component ;

}

component component component-name
is a component-type responsibility-list other-atoms-list sub-structure-spec

component-attributes
description

component-attributes
protected slot actual anchored replicated

replication-factor

component-name label

component-type label

responsibility-list responsibility references {
responsibility-name ;

}

other-atoms-list atoms references {
atom-name ;

}

atom-name label

sub-structure-spec included structure-spec

replication-factor unsigned-integer

pool-spec pools {
pool ;

}

pool pool pool-name

of
component-type

plugin-pool

responsibility-list actual anchored description

plugin-pool plugins {
model-name ;

}

pool-name label
Last revision: February 1, 1998 11:55 am Page 3 of 13



Annotated UCM Linear Form, Version 1.0

es tto

d pools.

rocess,
 not. A
n given

s.
component-type ::= label (R14) 

responsibility-list ::= responsibility references { (responsibility-name ;)* } (R15) 

other-atoms-list ::= atoms references { (atom-name ;)* } (R16) 

atom-name ::= label (R17) 

Responsibility references list names of responsibilities explicitly specified later on. Referenc
other atoms within the component are also considered.

sub-structure-spec := included structure-spec (R18) 

The decomposition of a component points back to a structure that can hold components an

replication-factor ::= unsigned-integer (R19) 

pool-spec ::= pools { (pool ;)* } (R20) 

A model may or may not contain pools.

pool ::= pool pool-name [of (component-type | plugin-pool)] [responsibility-
list] [actual] [anchored] [description] (R21) 

plugin-pool ::= plugins { (model-name ;)* } (R22) 

A pool is identified by a name and can be attributed an arbitrary component type (such as p
team, etc) or a list of plugins for dynamic stubs. It can be actual or formal, and anchored or
pool also holds a list of responsibility references. These references point to the specificatio
later on (responsibility-spec). Pools mainly serve the dynamic self-configuring aspect of UCM

pool-name ::= label (R23) 
Last revision: February 1, 1998 11:55 am Page 4 of 13



Annotated UCM Linear Form, Version 1.0

ces of a
 partial

 of the
 compo-
e ambi-
h thus
 this
ism is
3. Path Specification

path-spec ::= path specification [path-atoms-spec] [semi-path-list] [path-list] 
[path-composition-list] (R24) 

The path specification of a model details the differents scenarios and the causal sequen
map. The path atoms specify all the parts that make up a path. The semi-path list gives the
view of the sequencing of these atoms. The path list gives the full view of the sequencing
atoms since the semi-path are then listed in sequence to create a complete path. The path
sition list indicates how path related with one another. Semi-paths are necessary due to th
guity of unlabeled maps. Some atoms (stubs for example) hide the continuity of a pat
allowing several possibilities for path trajectory. Only explicit path labeling can eliminate
ambiguity. Since path labeling is optional at the time of creation, the semi-path mechan
required to capture unlabelled maps. 

path-atoms-spec ::= path atoms { (atom ;)* } (R25) 

A model may or may not contain path atoms.

atom ::= start-of-path | waiting-place | end-bar | responsibility-ref | join | 
fork | synchronization | stub | empty-segment (R26) 

path-spec path specification
path-atoms-spec semi-path-list path-list path-composition-list

path-atoms-spec path atoms {
atom ;

}

atom

start-of-path

waiting-place

end-bar

responsibility-ref

join

fork

synchronization

stub

empty-segment
Last revision: February 1, 1998 11:55 am Page 5 of 13



Annotated UCM Linear Form, Version 1.0

labelled
tions in

d and

tional
3.1 Atom: start-of-path

start-of-path ::= start start-of-path-id path-name-list out-segment [triggering-
event-list] [precondition-list] [description] (R27) 

A start of path is identified by a name and can be part of several paths at once. It has one 
out segment. The triggering event list gives the set of events that initiate the sequence of ac
a path. The precondition list must be satisfied in order for the sequence to start.

start-of-path-id ::= label (R28) 

path-name-list ::= part of paths { (path-name ;)+ } (R29) 

A path atom is always part of at least one path.

path-name ::= label (R30) 

out-segment-list ::= out segments { (out-segment-id ;)+ } (R31) 

out-segment ::= out out-segment-id (R32) 

out-segment-id ::= out label (R33) 

An out-segment is a point where a following path atom can connect. It is uniquely identifie
is referred to in the semi-path definitions.

triggering-event-list ::= triggering events { (event ;)* } (R34) 

A start of path or waiting place may or may not have triggering events.

event ::= label [description] (R35) 

precondition-list ::= preconditions { (condition ;)* } (R36) 

condition ::= label [description] (R37) 

A start of path or waiting place may have preconditions. A condition is a label with an op
description.

start-of-path start start-of-path-id path-name-list out-segment
triggering-event-list precondition-list description

start-of-path-id label

path-name-list part of paths { path-name ; }

path-name label

out-segment-list out segments { out-segment-id ; }

out-segment out out-segment-id

out-segment-id label

triggering-event-list triggering events {
event ;

}

event label
description

precondition-list preconditions {
condition ;

}

condition label
description
Last revision: February 1, 1998 11:55 am Page 6 of 13



Annotated UCM Linear Form, Version 1.0

 several
tart the
sfied in

 and is

labelled
 actions
ce the

itions.
3.2 Atom: waiting-place

waiting-place ::= wait waiting-place-id [ is a timer ] in-segment-list path-name-list 
out-segment-list [triggering-event-list] [precondition-list] 
[description] (R38) 

A waiting place is identified by a name and can be part of several paths at once. It can have
out segments and in segments. The triggering event list gives the set of things that res
sequence of actions in a path. The precondition list gives the conditions that must be sati
order for the sequence to restart. A waiting place can be timer.

waiting-place-id ::= label (R39) 

in-segment-list ::= in segments { (in-segment-id ;)+ } (R40) 

in-segment ::= in in-segment-id (R41) 

in-segment-id ::= label (R42) 

An in segment is a point where a preceeding path atom can connect. It is uniquely identified
referred to in the semi-path definitions.

3.3 Atom: end-bar

end-bar ::= end end-bar-id in-segment path-name-list [resulting-event-list] 
[postcondition-list] [description] (R43) 

An end of path is identified by a name and can be part of several paths at once. It has one 
in segment. The resulting event list gives the set of things that occur once the sequence of
in a path are completed. The postcondition list gives conditions that must be satisfied on
sequence is completed.

end-bar-id ::= label (R44) 

resulting-event-list ::= resulting events { (event ;)* } (R45) 

postcondition-list ::= postconditions { (condition ;)* } (R46) 

An end of path may or may not have resulting events, and it may or may not have postcond

waiting-place wait waiting-place-id
is a timer

in-segment-list path-name-list out-segment-list
triggering-event-list precondition-list description

waiting-place-id label

in-segment-list in segments { in-segment-id ; }

in-segment in in-segment-id

in-segment-id label

end-bar end end-bar-id in-segment path-name-list
resulting-event-list postcondition-list description

end-bar-id label

resulting-event-list resulting events {
event ;

}

postcondition-list postconditions {
condition ;

}

Last revision: February 1, 1998 11:55 am Page 7 of 13



Annotated UCM Linear Form, Version 1.0

cifica-

n
ic. The
e conti-
 stub
ub. For
3.4 Atom: responibility-ref

responsibility-ref ::= responsibility reference responsibility-name in-segment path-
name-list out-segment [description] (R47) 

A responsibility reference only merely places a responsibility along a path. It is not its spe
tion. Its name refers to a specified responsibility. It has only one out segment and one in segment.
It can be part of several paths.

responsibility-name ::= label (R48) 

3.5 Atom: stub

stub ::= fixed-stub | dynamic-stub (R49) 

fixed-stub ::= fixed stub stub-name in-segment-list path-name-list out-segment-
list [plugin] [description] (R50) 

dynamic-stub ::= dynamic stub stub-name in-segment-list path-name-list out-
segment-list [precondition-list] [postcondition-list] [plugin-list] 
[enforce-bindings][description] (R51) 

A stub is identified by name, it can have several in segments and out segments. Since a stub is a
abstraction of a sub-map, it also has one plug-in when fixed, and a plug-in list when dynam
paths that go through a stub need to be bound to the paths of the plug-in in order to ensur
nuity. This is done through explicit binding. The binding is declared in the definition of the
rather than at the plug-in level since the plugin only makes sense in the context of the st

responsibility-ref responsibility reference responsibility-name in-segment path-name-list out-segment
description

responsibility-name label

stub
fixed-stub

dynamic-stub

fixed-stub fixed stub stub-name in-segment-list path-name-list out-segment-list
plugin description

dynamic-stub dynamic stub stub-name in-segment-list path-name-list out-segment-list
precondition-list postcondition-list plugin-list enforce-bindings description

stub-name label

plugin-list plugins {
plugin ;

}

plugin plugin model-name
in-connections out-connections ignored-endings instance-values

in-connections in connections {
in-connection ;

}

in-connection in-segment-id with start-of-path-id

out-connections out connections {
out-connection ;

}

out-connection end-bar-id with out-segment-id

ignored-endings ignore {
start-of-path-id

end-bar-id
;

}

instance-values instantiate {
formal-to-value ;

}

formal-to-value label with label

enforce-bindings enforce {
path-binding ;

}

path-binding in-segment-id with out-segment-id
Last revision: February 1, 1998 11:55 am Page 8 of 13



Annotated UCM Linear Form, Version 1.0

 satis-

by the

ignored
 in the
ub.

tiated,

 in the
dynamic stubs, the runtime binding occurs only if the pre- and postconditions of the stub are
fied by those of the plug-in.

stub-name ::= label (R52) 

plugin-list ::= plugins { (plugin ;)* } (R53) 

A stub definition may or may not contain plugins.

plugin ::= plugin model-name [in-connections] [out-connections] [ignored-
endings] [instance-values] (R54) 

A plugin refers to a UCM model that can replace the stub. The binding of the two is defined 
in connections, the out connections, and the ignored endings. 

in-connections ::= in connections { (in-connection ;)+ } (R55) 

There must be at least one in connection.

in-connection ::= in-segment-id with start-of-path-id (R56) 

An in connection joins an in segment of the stub with a start of path from the plugin map.

out-connections ::= out connections { (out-connection ;)+ } (R57) 

There must be at least one out connection.

out-connection ::= end-bar-id with out-segment-id (R58) 

An out connection joins an out segment of the stub to an end of path of the plugin map.

ignored-endings ::= ignore { ((start-of-path-id | end-bar-id) ;)* } (R59) 

Ignored endings specify the paths of the plugin that are not concerned or that should be 
when the binding occurs. Any other paths from the plugin that have not been mentionned
binding are considered local paths that may execute but do affect the map that holds the st

instance-values ::= instantiate { ( formal-to-value ; )* } (R60) 

formal-to-value ::= label with label (R61) 

Formal parameters within the plug-in model (such as formal components) can be instan
with a value, at run-time when the plug-in is selected.

enforce-bindings ::= enforce { (path-binding ;)* } (R62) 

path-binding ::= in-segment-id with out-segment-id (R63) 

Bindings can also be enforced at stub definition time in order to preserve path continuity
stub. Plug-ins that do not satisfy this constraint will not be selected.
Last revision: February 1, 1998 11:55 am Page 9 of 13



Annotated UCM Linear Form, Version 1.0

ral
e 

n 
3.6 Atoms: join and fork

join ::= join join-id in-segment-list path-name-list out-segment 
[description] (R64) 

A join is identified by a name and has several in segments and only one out segment.

join-id ::= label (R65) 

fork ::= fork fork-id in-segment path-name-list out-segment-list 
[description] (R66) 

A fork is identified by a name and has several out segments and only one in segment.

fork-id ::= label (R67) 

3.7 Atom: synchronization

synchronization ::= synchronization synchronization-id entry-point-list path-name-
list out-segment-list [description] (R68) 

A synchronization (sometimes called and-join or and-fork) is identified by a name and has seve
out segments. In the case of this atom, the in segments are replaces by entry points because thin
segments can be enriched with a timeout capacity.

synchronization-id ::= label (R69) 

entry-point-list ::= entry points { (entry-point ;)+ } (R70) 

A synchronization has at least one entry point.

entry-point ::= in-segment-id [timer with timeout path out-segment] (R71) 

An entry point is an in segment that can have a timeout property. With this property comes aout
segment declaration for the case where the timeout occurs.

join join join-id in-segment-list path-name-list out-segment
description

join-id label

fork fork fork-id in-segment path-name-list out-segment-list
description

fork-id label

synchronization synchronization synchronization-id entry-point-list path-name-list out-segment-list
description

synchronization-id label

entry-point-list entry points { entry-point ; }

entry-point in-segment-id
timer with timeout path out-segment
Last revision: February 1, 1998 11:55 am Page 10 of 13



Annotated UCM Linear Form, Version 1.0

oint or

evious
hs that

used to

en the 
3.8 Atom: empty-segment

empty-segment ::= empty empty-segment-id [failure point] [shared] in-segment 
path-name-list out-segment [precondition-list] [postcondition-list] 
[description] (R72) 

An empty segment is used to add attributes to a path such as the indication of a failure p
that the responsibilities preceeding and following it are shared. It has one in segment and one out
segment. It might also contain preconditions for the next atom or postconditions of the pr
atom. This feature is especially useful for conditions associated to stubs and goals (pat
cross components) when UCMs describe agent systems.

empty-segment-id ::= label (R73) 

4. Semi-Path Construction

semi-path-list ::= semi paths { ( semi-path ; ) * } (R74) 

A model may or may not have semi-paths.
semi-path ::= semi path semi-path-id link-list (R75) 

semi-path-id ::= label (R76) 

A semi-path is a set of contiguous atoms that form an unambiguous partial path. The rules 
delimit a semi-path are :

• an ambiguous atom is one that has more than one out segment or in segment.
• a semi-path starts with a start of path or with an ambiguous atom.
• a semi-path ends with an end of path or with an ambiguous atom.
• a semi-path cannot hold an ambiguous atom that is not at its extremities.
• the legal regular expression for a semi-path would be :

“ (start-of-path|ambiguous-atom) unambiguous-atom* (end-of-path|ambiguous-atom)”
• two contiguous semi-paths share the ambiguous atom (this atom acts as the link betwe

two).

link-list ::= links { (link ;)+ } (R77) 

link ::= link out-segment-id with in-segment-id (R78) 

empty-segment empty empty-segment-id
failure point shared

in-segment path-name-list out-segment
precondition-list postcondition-list description

empty-segment-id label

semi-path-list semi paths {
semi-path ;

}

semi-path semi path semi-path-id link-list

semi-path-id label

link-list links { link ; }

link link out-segment-id with in-segment-id
Last revision: February 1, 1998 11:55 am Page 11 of 13



Annotated UCM Linear Form, Version 1.0

-paths,

ronous
ace of
5. Path Construction

path-list ::= paths { (path ;)* } (R79) 

A model may or may not contain paths.

path ::= path path-name (semi-path-id | connection-list) [description] (R80) 

A path is identified by a name and can be composed of a connection list, which links semi
or it can simply refer to a semi-path.

connection-list ::= connections { (semi-path-connection ;)+ } (R81) 

A connection list is made of at least one semi-path connection.

semi-path-connection ::= connect semi-path-id with semi-path-id (R82) 

6. Path Composition

path-composition-list ::= path compositions { (path-composition ;)* } (R83) 

A model may or may not contain path compositions.

path-composition ::= join path path-name and path-name through ( end end-bar-id | 
empty empty-segment-id ) and ( start start-of-path-id | wait 
waiting-place-id ) (R84) 

A path composition is the junction of two paths. The triggering path uses an end bar (synch
interaction) or an empty segment (in-passing interaction) on the start point or a waiting pl
the triggered path.

path-list paths {
path ;

}

path path path-name
semi-path-id

connection-list description

connection-list connections { semi-path-connection ; }

semi-path-connection connect semi-path-id with semi-path-id

path-composition-list path compositions {
path-composition ;

}

path-composition join path path-name and path-name through
end end-bar-id

empty empty-segment-id
and

start start-of-path-id

wait waiting-place-id
Last revision: February 1, 1998 11:55 am Page 12 of 13



Annotated UCM Linear Form, Version 1.0

 to in

th.

th.
7. Responsibility Specification

responsibility-spec ::= responsibilities { (responsibility ;)* } (R85) 

A model may or may not contain responsibilities.

responsibility ::= responsibility responsibility-name [action :  (dynamic-resp | 
raise | handle )] [description] (R86) 

A responsibility specification uniquely identifies a responsibility which can then be refered
the structure of the model, in the path definitions, or in both.

dynamic-resp ::= ( move | move-stay | create |copy | destroy ) ( in | out ) 
[sourcepool pool-name] (R87) 

A dynamic responsibility performs an action on data/components/plug-ins, in or out of a pa

raise ::= raise exception exception-id handle with path-name (R88) 

The raise exception responsibility indicates that an exception will be handled by another pa

exception-id ::= label (R89) 

handle ::= handle exception exception-id (R90) 

The handle responsibility indicates that it handles the exception of another path.

responsibility-spec responsibilities {
responsibility ;

}

responsibility responsibility responsibility-name

action :

dynamic-resp

raise

handle

description

dynamic-resp

move

move-stay

create

copy

destroy

in

out sourcepool pool-name

raise raise exception exception-id handle with path-name

exception-id label

handle handle exception exception-id
Last revision: February 1, 1998 11:55 am Page 13 of 13


	1. Design and Model
	2. Structure Specification
	3. Path Specification
	3.1 Atom: start-of-path
	3.2 Atom: waiting-place
	3.3 Atom: end-bar
	3.4 Atom: responibility-ref
	3.5 Atom: stub
	3.6 Atoms: join and fork
	3.7 Atom: synchronization
	3.8 Atom: empty-segment

	4. Semi-Path Construction
	5. Path Construction
	6. Path Composition
	7. Responsibility Specification

