Soccerserver Manual
Ver. 5 Rev. 00 beta

(for Soccerserver Ver.5.00 and later)

Emiel Corten,Klaus Dorer
Fredrik Heintz, Kostas Kostiadis,
Johan Kummeneje, Helmut Myritz,
Itsuki Noda, Jukka Riekki,
Patrick Riley, Peter Stone,
Tralvex Yeap

mielko@wins.uva.nl klaus@cognition.iig.uni-freiburg.de
frehe@ida.liu.se kkosti@essex.ac.uk
johank@dsv.su.se myritz@informatik.hu-berlin.de
noda@etl.go.jp jpr@ees2.oulu.fi
priley+@andrew.cmu.edu Peter_Stone@zico.prodigy.cs.cmu.edu
tralvex@krdl.org.sg

July 3, 1999

Contents

1 Introduction

1.1 History o .
1.1.1 History of the Soccerserver
1.1.2 History of the RoboCup Simulation League
1.1.3 History of the Soccer Manual Effort

1.2 About This Manual e e e e

User’s Manual

2.1 Getting Started L e
2.1.1 Imstallation L e
2.1.2 How to Start Soccerserver L. Lo e e
2.1.3 How to Stop SOCCerserver o i v i e e e e e e e e e
2.1.4 sserver SCript o oL e e e e e e
2.1.5 Supported Platforms, Required Facilities and More Information

2.2 Whole Process of a Match

2.3 Parameters L e e e e e e e e e e e
2.3.1 Parameters of Soccerservero e e e e e e e
2.3.2 Commandline Options of Soccerserver,
2.3.3 Configuration File of Soccerserver
2.3.4 Parameters of Soccermonitort e e e e
2.3.5 Commandline Options of Soccermonitor
2.3.6 Configuration File of Soccermonitor

24 Rules. o e e
2.4.1 Rules Judged by the Server
24.2 Rules Judged by Human

2.5 The Coach-client e
2.5.1 Imtroduction L L
2.5.2 Coaching With or Without the Soccerserver Referee
2.5.3 CoachinginaReal Match
2.5.4 Coach Commands i e e e e e e
2.5.5 Initializing the Soccerserver for Coach Mode

Inside of Soccerserver

3.1 Field and Objects. e e
3.1.1 Field o e
3.1.2 Playersand Ball e
3.1.3 Movements of Objects L e e e e e e e
3.1.4 Player’'s Action o e e e e e e
315 Stamina e e e e e e e e e e e e

3.2 Sensor Information L e e e e e e e e e e e
3.2.1 Visual Information e e e e e e e e
3.2.2 Auditory Information e e e e
3.2.3 Sensory Information L e e e

3.3 S0CCErmOnitor v v v i e
3.3.1 From Server to Monitor e
3.3.2 From Monitor to Server e

3.4

Logplayer e e
3.4.1 Logfiles e e e

Table of Protocols

Al
A2
A3
A4
Ab
A6
AT
A8

Connection o e e e e e e e e e e e e e e e e
Client Control Commands i i i e e e e e e e e e e e e e e e e
Sensor Information L L e e e e e e e e e e e e
Offline Coach Control Commands it e e et e e e e
Online Coach Control Commands i et e e et e e e
Object Names L e e e e
Play Modes o . e
MeSSaZe - i e e e e

Robocup Simulation League FAQ

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Background on RoboCup
Introduction to Simulation League
Startup SOCCEISErVEr o i e e e e e e e e e e e e e e e
Making Clients e e e e
Visual Information e e e e
Inside of Soccerserver L L L L
Miscellanous e e e e e e e e e e e e e e e

Know How

Ci1

C.2

C.3

C4

Modeling o e e
C.1.1 Controlling Stamina e e e
C.1.2 Determining the Position on the Field
C.1.3 A Memory of Seen Objects e
C.1.4 7Ghost Objects” e e e
C.1.5 The Client’s View of the World
C.1.6 Some Words About Time
Synchronization e e e e e e e
C.2.1 A Method to Check the Synchronization
C.2.2 Inconsistent Information From the Server
C.2.3 Tracking Down Lost Commands
Debugging o e
C.3.1 Slowing Down Server and Clients
C.3.2 Usage of the Log Player for Debugging
C.3.3 Organization of Log Files
Software Technology o i i i e e e e e e e e e
C.4.1 Sourcecode Management e e e e e e e e e
C.4.2 Useful Resources i i i i e e e e
C.4.3 Quitting Clients Automatically
C.4.4 Getting Communication Right
C.4.5 Using server.confinthe Client

Chapter 1

Introduction

Soccerserver is a system that enables autonomous agents consisting of programs written in various various
languages to play a match of soccer (association football) against each other.

A match is carried out in a client/server style: A server, soccerserver, provides a virtual field and simulates
all movements of a ball and players. Each client controls movements of one player. Communication between
the server and each client is done via UDP /IP sockets. Therefore users can use any kind of programing systems
that have UDP/IP facilities.

The soccerserver consists of 2 programs, soccerserver and soccermonitor. Soccerserver is a server pro-
gram that simulates movements of a ball and players, communicates with clients, and controls a game according
to rules. Soccermonitor is a program that displays the virtual field from the soccerserver on the monitor using
the X window system. A number of soccermonitor programs can connect with one soccerserver, so we can
display field-windows on multiple displays.

A client connects with soccerserver by an UDP socket. Using the socket, the client sends commands
to control a player of the client and receives information from sensors of the player. In other words, a client
program is a brain of the player: The client receives visual and auditory sensor information from the server, and
sends control-commands to the server.

Each client can control only one player!?. So a team consists of the same number of clients as players.
Communications between the clients must be done via soccerserver using say and hear protocols. (See
section A.2.) One of purposes of soccerserver is evaluation of multi-agent systems, in which efficiency of com-
munication between agents is one of the criteria. Users must realise control of multiple clients by such restricted
communication.

1.1 History

In this section we will first describe the history of the soccerserver and thereafter the history of the RoboCup
Simulation League. To end the section we will also describe the history of the manual effort.

1.1.1 History of the Soccerserver

The first, preliminary, original system of soccerserver was written in September of 1993 by Itsuki Noda, ETL.
This system was built as a library module for demonstration of a programming language called MWP, a kind of
Prolog system that have multi-threads and high level program manipulation. The module was a closed system
and displayed a field on a character display, that is VT100.

The first version (version 0) of the client-server style server was written in July of 1994 on LISP system.
The server shows the field on X window system, but each player was shown in an alphabet character. It used
TCP/IP protocol for connections with clients. This LISP version of soccerserver became the original style of
the current soccerserver. Therefore, the current soccerserver uses S-expression for the protocol between clients
and the server.

The LISP version of soccerserver was re-written in C++ in August of 1995 (version 1). This version was
announced at the IJCAI workshop on Entertainment and AI/Alife held in Montreal, Canada, August 1995.

ITechnically, it is easy to cheat the server. Therefore this is a gentleman’s agreement.
2In order to test various kinds of systems, we may permit a client to control multiple players if the different control modules of
players are separated logically from each other in the client.

The development of version 2 started January of 1996 in order to provide the official server of preRoboCup-96
held at Osaka, Japan, November 1996. From this version, the system is divided into two modules, soccerserver
and soccerdisplay (currently, soccermonitor). Moreover, the feature of coach mode was introduced into the
system. These two features enabled researchers on machine learning to execute games automatically. Peter
Stone at Carnegie Mellon University joined the decision-making process for the development of the soccerserver
at this stage. For example, he created the configuration files that were used at preRoboCup-96.

After preRoboCup-96, the development of the official server for the first RoboCup, RoboCup-97 held at
Nagoya, Japan, August 1997, started immediately, and the version 3 was announced in February of 1997. Simon
Ch’ng at RMIT joined to decisions of regulations of soccerserver from this stage. The following features were
added into the new version:

e logplayer
e information about movement of seen objects in visual information
e capacity of hearing messages

The development of version 4 started after RoboCup-97, and announced November 1997. From this version,
the regulation are discussed on the mailing list organized by Gal Kaminka. As a result, many contributer joined
to the development. The version 4 had the following new features:

e more realistic stamina model

e goalie

handling offside rule

disabling players for evaluation
o facing direction of players in visual information
e sense_body command

The version 4 was used in Japan Open 98, RoboCup-98 and Pacific Rim Series 98.
The version 5 was used in Japan Open 99, and will also be used in RoboCup-99 in Stockholm during the
summer of 1999.

1.1.2 History of the RoboCup Simulation League
The RoboCup simulation league has had three main official events: preRoboCup-96, RoboCup-97, and RoboCup-

98. Research results have been reported extensively in the proceedings of the workshops and conferences asso-
ciated with these competitions. In this section, we focus mainly on the competitions themselves.

preRoboCup-96

preRoboCup-96 was the first robotic soccer competition of any sort. It was held on November 5-7, 1996 in
Osaka, Japan [2]. In conjunction with the TROS-96 conference, Pre-RoboCup-96 was meant as an informal,
small-scale competition to test the RoboCup soccerserver in preparation for RoboCup-97. 5 of the 7 entrants
were from the Tokyo region. The other 2 were from Ch’'ng at RMIT and Stone and Veloso from CMU.

The winning teams were entered by:

1. Ogawara (Tokyo University)

2. Sekine (Tokyo Institute of Technology)

3. Inoue (Waseda University)

4. Stone and Veloso (Carnegie Mellon University)

In this tournament, team strategies were generally quite straightforward. Most of the teams kept players in
fixed locations, only moving them towards the ball when it was nearby.

RoboCup-97

The RoboCup-97 simulator competition was the first formal simulated robotic soccer competition. It was held
on August 23-29, 1997 in Nagoya, Japan in conjunction with the IJCAI-97 conference [3]. With 29 teams
entering from all around the world, it was a very successful tournament.

The winning teams were entered by:

1. Burkhard et al. (Humboldt University)

2. Andou (Tokyo Institute of Technology)

3. Tambe et al. (ISI/University of Southern California)
4. Stone and Veloso (Carnegie Mellon University)

In this competition, the champion team exhibited clearly superior low-level skills. One of its main advantages
in this regard was its ability to kick the ball harder than any other team. Its players did so by kicking the ball
around themselves, continually increasing its velocity so that it ended up moving towards the goal faster than
was imagined possible. Since the soccerserver did not (at that time) enforce a maximum ball speed, a property
that was changed immediately after the competition, the ball could move arbitrarily fast, making it almost
impossible to stop. With this advantage at the low-level behavior level, no team, regardless of how strategically
sophisticated, was able to defeat the eventual champion.

At RoboCup-97, the RoboCup scientific challenge award was introduced. Its purpose is to recognize scientific
research results regardless of performance in the competitions. The 1997 award went to Sean Luke of the
University of Maryland ”for demonstrating the utility of evolutionary approach by co-evolving soccer teams in
the simulator league.”

RoboCup-98

The second international RoboCup championship, RoboCup-98, was held on July 2-9, 1998 in Paris, France [1].
It was held in conjunction with the ICMAS-98 conference.
The winning teams were entered by:

1. Stone et al. (Carnegie Mellon University)
2. Burkhard et al. (Humboldt University)

3. Corten and Rondema (University of Amsterdam)

'

. Tambe et al. (ISI/University of Southern California)

Unlike in the previous year’s competition, there was no team that exhibited a clear superiority in terms of
low-level agent skills. Games among the top three teams were all quite closely contested with the differences
being most noticeable at the strategic, team levels.

One interesting result at this competition was that the previous year’s champion team competed with minimal
modifications and finished roughly in the middle of the final standings. Thus, there was evidence that as a whole,
the field of entries was much stronger than during the previous year: roughly half the teams could beat the
previous champion.

The 1998 scientific challenge award was shared by Electro Technical Laboratory (ETL), Sony Computer Sci-
ence Laboratories, Inc., and German Research Center for Artificial Intelligence GmbH (DFKTI) for ” development
of fully automatic commentator systems for RoboCup simulator league.”

To encourage the transfer of results from RoboCup to the scientific community at large, RoboCup-98 was
the first to host the Multi-Agent Scientific Evaluation Session. 13 different teams participated in the session, in
which their adaptability to loss of team-members was evaluated comparatively. Each team was played against
the same fixed opponent (the 1997 winner, AT Humboldt’97) four half-games under official RoboCup rules.
The first half-game (phase A) served as a base-line. In the other three half-games (phases B-D), 3 players were
disabled incrementally: A randomly chosen player, a player chosen by the representative of the fixed opponent
to maximize ”damage” to the evaluated team, and the goalie. The idea is that a more adaptive team would be
able to respond better to these.

Very early on, even during the session itself, it became clear that while in fact most participants agreed
intuitively with the evaluation protocol, it wasn’t clear how to quantitatively, or even qualitatively, analyse the
data. The most obvious measure of the goal-difference at the end of each half may not be sufficient: some teams

seem to do better with less players, some do worse. Performance, as measured by the goal-difference, really
varied not only from team to team, but also for the same team between phases. The evaluation methodology
itself and analysis of the results became open research problems in themselves. To facilitate this line of research,
the data from the evaluation was made public at:

1.1.3 History of the Soccer Manual Effort

The first versions of the manual were written by Itsuki Noda, while developing the soccerserver, and around
version 3.00 there were several requests on an updated manual, to better correspond to the server as well as
enable newcomers to more easily participate in the RoboCup World Cup Initiative. In the fall of 1998 Peter
Stone initiated the Soccer Manual Effort, over which Johan Kummeneje took responsibility to organise and as
a result the Soccerserver Manual version 4.0 was released on the 1st of November 1998.

Since November, the soccerserver has changed version to 5.0 (currently 5.14) and is continously developed.
Therefore the Soccer Manual Effort has developed a new version, which you are currently reading.

1.2 About This Manual

This manual is the joint effort of the authors from a diverse range of universities, which build upon the original
work of Itsuki Noda.

If there are errors, inconsistencies, or oddities, please notify johank@dsv.su.se with the location of the error and
a suggestion of how it should be corrected.

We are always looking for anyone who has an idea on how to improve the manual, as well as proofread or
(re)write a section of the manual. If you have any ideas, or feel that you can contribute with anything to the
SoccerServer Manual Effort please mail johank@dsv.su.se.

The latest manual can be downloaded at http://www.dsv.su.se/~ johank/RoboCup/manual .

Acknowledgements

Besides the authors, we would also like to thank Stefan Sablatnég from the University of Ulm, Germany, and
Mike Hewett from University of Texas, USA, for a thorough proofreading of the soccermanual 4.00. We have
also received a lot of good suggestions from Erik Mattsson at the University of Karlskrona/Ronneby, Sweden,
Fredrik Heintz at Link6ping University. We are alsovery grateful for the work of the authors from the previous
versions of the manual that could not help out on this version:

e David Andre at Berkeley, University of California, USA.

e Pascal Gugenberger at Humboldt University, Berlin, Germany.

e Marius Joldos at Technical University of Cluj-Napoca, Romania.
o Paul Arthur Navratil at University of Texas, USA.

o Tomoichi Takahashi at Chubu University, Japan.

We would not have been able to do this manual without the above mentioned people®.

3The persons listed on the title page are the persons responsible for the different sections of the manual.

Chapter 2

User’s Manual

2.1 Getting Started

2.1.1 Installation

1. Get source files from the soccerserver site:

http://ci.etl.go.jp/ noda/soccer/server/index.html,

(a) click Download,
(b) get gziped file sserver-*.tar.gz by clicking

e Newest version, or
o FTP service of the Soccerserver is here

where * is the version number !.
2. Extract source files:
% gzip -dc sserver—*.tar.gz | tar xvf -
the following files and directories are created under the directory sserver-x.

% 1ls sserver-5.12

Acknowledgement Changes Changes”™
configurex* configure2x* drawcheck/
logplayer/ Makefile monitor/
prints.txt README recfile_change/
sampleclient/ server/ sserver*
sserver-csh.tmpl sserver-tcsh.tmpl sserver.tmpl

h

3. Change working directory to sserver—#* and read the file README.

% cd sserver-5.12
% more README
[Directories]
server/

Source files of soccerserver
monitor/

Source files of soccermonitor
sampleclient/

Source files of a very simple client

[How to Make]
(1) Do configure

1Version 5.12 is the newest one at April ’99. The example list is output for version 5.12.

(2) Do make

[How to Start]
(1) start \ss{}.
(2) start a couple of soccermonitors you want.

"sserver" is a sample script to invoke \ss{} and soccermonitor.

[Required Softwares]
GCC 2.7.0 or later
X11R5 or R6
Some old version of Rb may cause problems of display.

[Suppoted 0Ss]
Sun0S 4.1.x
Solaris 2.x
DEC 0SF1

%

4. Do “configure” according to README and answer questions about directories.

% configure

Do you use X11R6.x? [y or nl
[default=y]:y

Enter X11R6 includes directory.
[default=/usr/openwin/include] :

Enter X11R6 libraries directory.
[default=/usr/openwin/lib]:

Do you use dynamic linking? [y or nl
[default=y]:y

Enter compiler flag(s).
[default=-02 -pipe]:

Configuration Summary:
0S type = Sun0S_5
X11 revision = 6
X11 include PATH = /usr/openwin/include
X11 libraries PATH = /usr/openwin/lib
RUNPATH = -R/local/lib:/usr/openwin/lib
Link style = Dynamic
Compiler flag(s) = -02 -pipe

Creating Makefile...[server] [monitor] [sampleclient] [recfile_change] [logplayer] [drawcheck] .
Creating sserver script.
Done.

%
5. Do “make”.

% make
g++ -c -pipe -DSolaris -DSYSV main.C
g++ -c -pipe -DSolaris -DSYSV field.C

g++ -o drawcheck drawcheck.o netif.o -1m -lsocket -1lnsl -R/local/lib

t

If there are errors in Make, please check g++ environment in your system.

2.1.2 How to Start Soccerserver

1. Start sserver. sserver is shell script made by configure.

% sserver

Soccer Server Ver. 5.12

Copyright (C) 1995, 1996, 1997, 1998 Electrotechnical Laboratory.
Itsuki Noda, Yasuo Kuniyoshi and Hitoshi Matsubara.

wind factor: rand: 0.000000, vector: (0.000000, 0.000000)

A window of soccermonitor appears on CRT.

2. When all clients are ready, click the kick-off button on a window of soccermonitor. If you have not

yet programmed your own client, you can use the sample clients.

e using a sample included in the soccerserver software, you can get used to protocols between clients

and the soccerserver:

% cd sampleclient/

% 1s

clientx* client.c client.h client.o

Makefile Makefile.tmpl Makefile.tmpl2

tk32 5% client <--- connect Server with default parameters -
hocalhost 6000. You can change them as argument.

(init "Myteam") <--- This program sends ’stdin’ data to Server.

send 6000 : (init "Myteam")
recv 33097 : (init 1 1 before_kick_off)
<--- display data received from Server.

It says Left side, Uniform Number = 1 & PlayMode.

recv 33097 : (see 0 ((goal r) 66.7 33) ((flag r t) 55.7 3)
((flag p r t) 42.5 23) ((flag p r c) 53.5 43))
: <--- Continuosly displaying the recieving data,
you can key in (move 0 0), for example.
recv 33097 : (see 0 ((goal r) 66.7 33) ((flag r t) 55.7 3)
((flag p r t) 42.5 23) ((flag p r c) 53.5 43))

<--- You can notice messages appears in left
lower window of soccermonitor.

e The soccerserversite contains several sample clients. These programs have been contributed from
RoboCuppers and have not been updated to the newest soccerserverversion. So, you need to check
whether you are running the corresponding soccerserverversion. Changes file in distribution shows

the history of soccerserver.

2.1.3 How to Stop Soccerserver
1. Stop all clients.
2. Stop all soccermonitors by clicking the quit buttons.

3. Hit CNTL-C to terminate soccerserver, or kill soccerserver.

2.1.4 sserver Script

The script file “sserver” included in the distribution makes it simple to start and stop soccerserver. This script

does the following things:
1. Setup environment variables.
2. Fork “soccerserver” with standard configuration file.

3. Start“soccermonitor” with standard configuration file, and wait until it ends.

4. Kill “soccerserver”.
This script uses “sh”. You may modify the path of sh in the 1st line of the script and the parameters for

soccerserver and soccermonitor.

2.1.5 Supported Platforms, Required Facilities and More Information

Soccerserversupports the following platforms 2

e DEC OSF/l
e SunOS 4.1.x and Solaris 2.x

Soccerserver requires the following facilities.

e gcc versions 2.7.x or later
e libg++ version 2.7.x or later
e X11R5 or R6

Soccerserver is freely distributed from the following access point.
e http://ci.etl.go.jp/ "noda/soccer/server/index.html
For further information, please refer to the official RoboCup pages at
e http://www.robocup.org

Or, you can join the mailing list "robocup-sim-1@Qusc.edu” by sending a message to ”listproc@Qusc.edu” with
the BODY containing the following listproc command: ”sub robocup-sim-1 [your name]”. All messages sent to
"robocup-sim-1Qusc.edu” will automatically be distributed to all subscribers. Any comments and suggestions
are welcome to be sent to this list. You must be a subscriber to post a message to the mailing list.

2.2 Whole Process of a Match

A match organized by Soccerserver is carried out in the following steps:
1. Each client of each team connects with the server by an init command.

2. When all clients are ready to play, the match referee (a person who invokes the server) starts the match
by pressing the kick-off button of the server window. Then the first half starts.

The first half is 5 minutes®. When the first half finishes, the server suspends the match.
The half-time is 5 minutes. During the half-time, competitors can change client programs.

Before the second half, each client re-connects with the server by a reconnect command.

A

When all clients are ready, the referee starts the second half by pressing the kick-off button. Then the
second half starts.

=

The second half is also 5 minutes. After the second half, the server stops the match.

8. If the match is a draw, an extra half starts. The extra half ends immediately when a team gets a new goal
(Victory-goal style or sudden-death).
2.3 Parameters

In the Soccerserver System there are a number of parameters for the Soccerserver (soccerserver) and Soccer-
monitor (soccermonitor).

2Supported Platforms may change, please check README. Soccerserver should also run on Pentium with Linux.
3The length of a half may be changed.

10

2.3.1 Parameters of Soccerserver

Soccerserver has the following modifiable parameters:

Parameter Name | Used | Explanation
Value
goal_width 14.02 | Width of the goal. Default value: 7.32
player_size 0.3 Radius of a player. Default value: 1.0
player_decay 0.4 Decay rate of speed of a player. If this is 1.0 a player keeps
its speed, and if this is 0.0, a player loses its speed in one
simulation cycle. Default value: 0.5
player_rand 0.1 Amount of noise added in player’s movements and turns.
Default value: 0.1
player_weight 60.0 Weight of a player. This parameter concerns the wind
factor. Default value: 60.0
player_speed_max | 1.0 Maximum speed of a player during one simulation cycle
(i.e. the player can achieve a maximum speed of
10 m/sec) Default value: 32.0
stamina_max 3500 Maximum stamina of a player. Default value: 2500
stamina_inc_max 20.0 Amount of stamina that a player gains in a simulation cycle.
Default value: 20.0
recover_dec_thr 0.3 Decrement treshold for player’s recovery. Default value: 0.3
recover_dec 0.002 Decrement step for player’s recovery. Default value: 0.05
recover_min 0.5 Minimum player recovery. Default value: 0.1
effort_dec_thr 0.3 Decrement treshold for player’s effort capacity.
Default value: 0.4
effort_dec 0.05 Decrement step for player’s effort capacity.
Default value: 0.05
effort_inc_thr 0.6 Increment treshold for player’s effort capacity.
Default value: 0.9
effort_inc 0.1 Increment step for player’s effort capacity.
Default value: 0.05
effort_min 0.6 Minimum value for player’s effort capacity.
Default value: 0.1
hear_max 2 Maximum hearing capacity of a player. A player can listen
N(=hear_inc) messages and M(=hear_decay) simulation
cycles. Default value: 2
hear_inc 1 Minimum hearing capacity of a player. Default value: 1
hear_decay 2 Decay of hearing capacity of a player. Default value: 1
inertia_moment 5.0 Inertia moments of a player. It affects it’s moves.
Default value: 5.0
sense_body step 100 Interval of sense_body informations. Default value: 100
catchable_area_l 2.0 Goalie catchable area length. Default value: 2.0
catchable_area.w | 1.0 Goalie catchable area width. Default value: 1.0
catch_probability | 1.0 The probabilty for a goalie to catch the ball (if it is not

during the catch ban interval). Default value: 1.0

11

Parameter Name Used | Explanation
Value

catch_ban _cycle 5 The number of cycles for a goalie is banned from catching
the ball after a successful catch. Default value: 5

ball size 0.085 Radius of the ball. Default value: 0.15

ball decay 0.94 Decay rate of the ball. Default value: 0.8

ball_rand 0.05 Amount of noise added in the movements of the ball.
Default value: 0.2

ball_weight 0.2 Weight of the ball. This parameter concerns the wind
factor. Default value: 0.2

ball_speed_max 2.7 Maximum speed of the ball during one simulation cycle
(i.e. the ball can achieve a maximum speed of
27 m/sec) Default value: 32.0

wind _force 0.0 The amount of force of wind. Default value: 10.0

wind_dir 0.0 The direction of wind. Default value: 0.0

wind _rand 0.0 The amount of change of direction of wind.
Default value: 0.3

kickable_margin 0.7 The area within which the ball is kickable is:
kickable_area = kickable_margin + ball_size + player_size
Default value: 1.0

ckick_margin 1.0 Corner kick margin. Default value: 1.0

dash_power_rate 0.006 Rate of which Power argument in dash command is
multiplied. Default value: 0.1

kick_power _rate 0.016 Rate of which Power argument in kick command is
multiplied. Default value: 0.1

visible_angle 90.0 Angle of view cone of a player in the standard view mode
Default value: 90.0

audio_cut_dist 50.0 Maximum distance a message said by a player can reach.
Default value: 50.0

quantize_step 0.1 The step of quantization of distance for moving objects
(players and ball). Default value: 0.1

quantize_step_1 0.01 The step of quantization of distance for landmarks (flags,
lines and goals). Default value: 0.01

maxpower 100 Maximum value of Power in dash and kick commands.
Default value: 100

minpower -100 Minimum value of Power in dash and kick commands.
Default value: -30

maxmoment 180 Maximum value of Moment and Direction in turn and
kick commands. Default value: 180

minmoment -180 Minimum value of Moment and Direction in turn and
kick commands. Default value: -180

port 6000 The port number of UDP/IP that connects with
playerclients and soccermonitor.
Default value: 6000

coach_port 6001 The port number of UDP/IP that connects with
coachclients. Default value: 6001

olcoach_port 6002 The port number of UDP/IP that connects with
onlinecoachclients. Default value: 6002

say_coach_cnt_max | 128 Upper limit of the number of online coach’s messages.
Default value: 128

say_coach_msg size | 128 Upper limit of length of a online coach’s message.
Default value: 128

send_vi_step 100 Interval of online coach’s look. Default value: 100

12

Parameter Name Used | Explanation
Value

simulator_step 10 Length of period of simulation cycle. Unit is milli-second.
Default value: 100

send_step 150 Length of the interval for sending visual information to a
player in the standard view mode. Unit is milli-second.
Default value: 150

recv_step 10 Length of period of server’s polling sockets to clients. Unit
is milli-second. Default value: 20

half time 300 The length of a half time of a match. Unit is a simulation
cycle. The actual length of a match is 2 x half_time x
simulator step [ms]. Negative values mean infinite length.
Default value: 6000

say_msg_size 512 Maximum length of a message a player can say.
Default value: 256

use_offside on Flag for using offside rule [on/off]. Default value: on

offside_active_area_size | 9.15 The circular area having the ball oin its center within
which the player is considered to be offside.
Default value: 9.15

forbid kick_off offside | on Flag which indicates whether kick is forbidden [on] or
allowed [off] from an offside position. Default value: on

verbose off Flag indicating if supplemental text information concerning
errors should be supplied by soccerserver.
Default value: off

record_version 2 Indicates the type of record log to be created if record_log
is on. 2 means the new compressed version, 1 the old one.
Default value: 2

record_log off Flag indicating whether a record of the match is needed
[on/off]. Default value: off

send_log on Flag for send client command log [on/off].
Default value: on

max_neck_ang 90 Maximum value of Moment and Direction in turn_neck
command. Default value: 90

min neck_ang -90 Minimum value of Moment and Direction in turn_neck
command. Default value: 90

visible_distance 3.0 Maximum distance within which the player can see object out
of view cone. Default value: 3.0

wind_none false Option that switches the server encounts wind factor in object
movements. Default value: false

wind_random false Option that switches the server set wind factor randomly.
Default value: false

coach false Option that switches the server run as (off-line) Coach Mode.

Default value: false

2.3.2 Commandline Options of Soccerserver

A user can modify parameters described in Section 2.3.3. in the command line as follows.

% soccerserver [-ParameterName Valuel*

Soccerserver also accept following options.

-f ConfFileName
See Section 2.5.1.

-coach_w_referee

13

See Section 2.5.2.

2.3.3 Configuration File of Soccerserver

A user can also modify the parameters by specifying them in a configuration file usually named server.conf
as follows.

% soccerserver -f ConfFileName

In the configuration file, each line consists a pair of name and value of a parameter as follows.
ParameterName : Value

In the files, lines that start '#’ are ignored as commands.

With the following two lines it is possible to log a game (saved in game.rec) and the sended commands
from all players (game.log).

log-file : game.log
record : game.rec

2.3.4 Parameters of Soccermonitor

Soccermonitor has the following modifiable parameters.

Parameter Name | Used Explanation
Value

host localhost The host name on which soccerserver is running.
Default value: localhost

port 6000 The port number of UDP/IP of soccerserver.
Default value: 6000

length_magnify 4.0 Rate of magnification of size of the field.
Default value: 6.0

goal_width 14.02 Width of the goal. Default value: 7.32

print_log on Flag for display log of communication [on/off].
Default value: on

log_line 6 The size of log window. Default value: 6

print_mark on Flag for display marks on the field [on/off].
Default value: on

mark _file_name mark.xbm | File name to use for displaying the marks on the field.
Default value: mark.xbm

14

Parameter Name Used Explanation
Value
ball_file_name ball-s.xbm File name to use for displaying the ball.
Default value: ball.xbm
player_widget _size 12.0 Font to use for displaying the uniform number.
Default value: 1.0
player_widget_font | 5x8 Size of a player widget. Default value: fixed
uniform num _pos_x | 2 Position (X) of player’s uniform number.
Default value: 2
uniform num_pos_y | 8 Position (Y) of player’s uniform number.
Default value: 8
team 1 _color Gold Left side team color when game starts.
Default value: Gold
team r_color Red Right side team color when game starts.
Default value: Red
goalie_1_color Green Left side goalie color when game starts.
Default value: Green
goalie_r_color Purple Right side goalie color when game starts.
Default value: Purple
status_font 7x14bold Font used for status line displays [team name and score,
time, play_mode]. Default value: fixed
popup_msg on Flag for pop up and down “GOAL!” and “Offside!” [on/off].
Default value: off
goal label width 120 Goal message width for pop and down ”GOAL!!”.
Default value: 120
goal label font -adobe- Goal message font for pop and down »GOAL!!”.

times-bold-r-
* K G K K K

Default value: fixed

*_k_k_%

goal _score_width 40 Score message width for pop and down "GOAL!!”.
Default value: 40

goal _score_font -adobe- Score message font for pop and down "GOALI!!”.

times-bold-r-
*_k_QF K K_k_

Default value: fixed

*_k_ %k

offside label width | 120 Offside message width for pop and down "GOAL!!”.
Default value: 120

offside_label font -adobe- Offside message font for pop and down ”GOAL!!”.

times-bold-r-
Kk QA KKK

Default value: fixed

*_k_k_¥

eval off Flag for evaluation mode [on/off]. Used to allow
discarding (disabling) of players for team performance
evaluation when handicaped.
Default value: off

redraw_player off Flag for redrawing player widgets every cycle. The

option is needed to avoid a bug of XFree86 server for
SVGA and it makes soccermonitor heavy. So do not
use this option when soccermonitor works well
without it.

Default value: off

2.3.5 Commandline Options of Soccermonitor

A user can modify parameters described in Section 1.4 in the command line as follows.

% soccermonitor [-ParameterName Value]*

15

2.3.6 Configuration File of Soccermonitor

A user can also modify the parameters by specifying them in a configuration file usually named monitor. conf
as follows.

% soccermonitor -f ConfFileName
In the configuration file, each line consists a pair of name and value of a parameter as follows.
ParameterName : Value

In the files, lines that start '#’ are ignored as commands.

2.4 Rules

This section describes the rule judged by the server and by humans.

2.4.1 Rules Judged by the Server

The soccerserver controls the match according to the following rules.

Goal

When a team scores, the referee announces the goal (broadcasts a message to all clients), updates the score,
suspends the match for 5 seconds, moves the ball to the centre mark, and changes the play-mode to kick_off .
While the referee suspends the match (5 seconds), clients must return to their own side. During this interval,
clients can use move commands. If a player remains in the opponent side after this period expires, the referee
moves the player to a random position within their own side (see ’Kick-off rule below.)

Kick-off

Just before a kick off (either before the game starts, or after every goal), all players must be in their own side.
If players are in the opponent side, the referee moves them into their own side to a randomly chosen position.
There is a period of 5 seconds for players to go back to their own side after a goal. During this 5-second interval,
clients can use the move command to move each player to a certain position immediately. After the 5-second
period expires, the server moves players located in the opponent side to a random position within their own
side.

Out of Field

When the ball is out of the field, the referee moves the ball to a proper position (a touchline, corner or goal-area)
and changes the play-mode to kick_in, corner_kick or goal_kick. In the case of a corner kick, the referee places
the ball at (1m, 1m)- inside the appropriate corner of the field.

Clearance

When the play-mode is kick_off , kick_in, or corner_kick, the referee removes all defending players located within
a circle centred on the ball with radius 9.15 meters. The removed players are then placed on the perimeter of
that circle.

When the play-mode is offside, all offending players are moved back to a non-offside position. Offending
players in this case are all players in the offside area, and all players inside 9.15 meters from the ball.

When the play-mode is goal_kick, all offending players are moved outside the penalty area. The offending
players cannot re-enter the penalty area while the goal kick takes place. The play-mode changes to play_on
immediately after the ball goes outside the penalty area.

16

Play-mode Control

When the play-mode is kick_off , kick_in, or corner_kick the referee changes the play-mode to play_on immediately
after the ball starts moving through a kick command.

Half-time and Time Up

The referee suspends the match when the first or the second half finishes. The default length of each half is 3000
simulation cycles (about 5 minutes). If the match is drawn after the second half, the match is extended. Extra
time continues until a goal is scored. The team that scores the first goal in extra time wins the game (sudden
death).

2.4.2 Rules Judged by Human

Fouls like “obstruction” are difficult to judge automatically because they concern players’ intentions. To resolve
such situations, the server provides an interface for human-intervention. This way, a human-referee can suspend
the match and give free kicks to either of the teams. The following are the guidelines that were agreed prior to
the RoboCup 1998 competition.

1. Surrounding the ball
2. Blocking the goal with too many players
Not putting the ball into play

Intentionally blocking the movement of other players

A

Abusing the goalie catch command (the goalie may not repeatedly kick and catch the ball to move the
ball in the penalty area).

Flooding the server with messages

A client should not send more than 3 or 4 commands per simulation cycle to the soccer server. Abuse may be
checked if the server is jammed, or upon request after a game.

Inappropriate Behaviour

If a player is observed to interfere with the match in an inappropriate way, the human-referee can suspend the
match and give a free kick to the opposite team.

2.5 The Coach-client

2.5.1 Introduction

As in human soccer, a match is played without interruptions from outside the field. So nobody (and no appli-
cation) except the players and the referee can influence and/or control the match. However, it would be very
useful if you could have more control over the game while developing player-clients. For instance, the possibility
to perform training sessions in which a certain action, such as dribbling, is tested in an automated way gives
you the opportunity to apply machine learning methods.

Therefore, a privileged client called the coach-client has been introduced. The coach-client has the following
capabilities:

e It can control the play-mode.

e It can broadcast audio messages. Such a message can consist of a command or some information intended
for one or more of the player-clients. Its meaning (and interpretation) is user-defined.

e It can move an object (any player or the ball) to any location on the field irrespective of the current
play-mode.

e It can get information about positions of all the (movable) objects on the field.

17

2.5.2 Coaching With or Without the Soccerserver Referee

By default, an internal referee module is active within the soccerserver that controls the match (see section 2.4.1).
If the coach is to have complete control over the match you must ask the soccerserver to deactivate the referee
module. In this mode it is the responsibility of the coach-client to regularly check the state of the game and
change the play-mode according to its (own) rules.

It is also possible for both the internal referee module and the coach-client to have control over the match. In
this mode the coach-client can, for instance, be used to control a training session or to give a player information
about its current performance so that it can adjust its behavior.

section 2.5.5 explains how to activate the soccerserver with the coach mode.

2.5.3 Coaching in a Real Match

Until 1998 it was not allowed to connect a coach-client during a real match. It was used only to develop and

train the player-clients.
From 1998 on a coach-client will probably also be allowed to participate in a real match. The idea is that such

a coach can observe and analyze the game and can give strategic information to its players.
The capabilities the coach can use during a real match will be limited to:

e getting information about the positions of the players and the ball.
e broadcasting and receiving audio messages.

As long as the coach can not guide its players step by step in their actions, allowing a coach at the match does
not necessarily violate the principle that players must be autonomous. So the limitations on the capabilities of
the coach should reflect the previous remark.

2.5.4 Coach Commands
The items labelled with the symbol o will probably not be allowed during a real match.

o (change mode PLAY_MODE)
Change the play-mode to PLAY_ MODE. PLAY_MODE must match one of the modes defined in sec-

tion A.7.
Note that for most play-mode requests the soccerserver will indeed only change the play-mode. The

position of the ball usually remains unchanged.
Possible replies by the soccerserver:

(ok change. mode)

The command succeeded.

(error illegal mode)
The specified mode was not valid.

(error illegal command form)

The PLAY_MODE argument was omitted.

o (move OBJECT X Y [VDirl)
This command will move OBJECT, which may be a player or the ball, to absolute position (X,Y) and
will, if VDir is specified, change its absolute direction to VDir. See Table 3.2 for information on how to
compose the name of a player or the ball.

Possible replies by the soccerserver:
(ok move)
The command succeeded.

(error illegal object_form)
The OBJECT specification was not valid.

(error illegal command form)
The position/direction specification was not valid.

o (check_ball)
Ask the soccerserver to check the position of the ball. Four states are defined:

18

— in_field
The ball is within the boundaries of the field.

goal_l
The ball is within the area assigned to the goal at the left side of the field.

— goal.r
The ball is within the area assigned to the goal at the right side of the field.

— out_of _field
The ball is somewhere else.
Note that the states goal 1 and goal_r do not necessary imply that the ball actually crossed the goal line.
Possible replies by the soccerserver:

(ok check ball TIME BALLPOSITION)]
BALLPOSITION will be one of the states specified above.

(look)

Get information about the positions of the following objects on the field:
— The left and right goals.
— The ball.
— All active players.

Possible replies by the soccerserver:

(ok look TIME (OBJ1 X1 Y1) (OBJ2 X2 Y2)...)
OBJi can be any of the objects mentioned above. See Table 3.2 for information about the way the
names for those objects are composed.

(say MESSAGE)
Broadcast the message MESSAGE to all clients. The format for MESSAGE is the same as for a player-
client.

Possible replies by the soccerserver:
(ok say)
The command succeeded.

(error illegal_command_form)
MESSAGE did not match the required format. It must be a string whose length is less than 512 and
it must consist of alphanumeric characters and/or the symbols () .+*/7<>_ .

(ear MODE)

Turn on or off the sending of auditory information to the coach. MODE must be one of on and off. If
(ear on) is sent, the server sends all auditory information to the coach-client in the same manner as to
player-clients. If (ear off) is sent, the server stops sending auditory information to the coach-client.

Possible replies by the soccerserver:

(ok ear on)

(ok ear off)
Both replies indicate that the command succeeded.

(error illegal mode)

MODE did not match on or off.

(error illegal command form)
The MODE argument was omitted.

19

2.5.5 Initializing the Soccerserver for Coach Mode

The soccerserver must be informed at start-up time that a coach-client will be used. Add the option ‘-coach’ to
the command line arguments of the soccerserver application when a coach-client is used and the internal referee
module of the server must be deactivated. Use the option ’-coach w_referee if the internal referee module
should remain active.

If the server is invoked with one of the coach modes, it prepares a UDP socket to which the coach-client
can connect. The default portnumber is 6001. If a different portnumber is needed you can set the new port by
assigning its value to the coach port parameter (see section 2.3.1).

The messages the server receives through a connection made to this port will be interpreted as commands
from a coach-client as described in section 2.5.4. Besides, the connection is used to transmit the information
intended for the coach to the coach-client.

20

Chapter 3

Inside of Soccerserver

3.1 Field and Objects
3.1.1 Field

The soccer field and all objects on it are 2-dimensional. There is no notion of height on any object. The
size of the field is 105m x 68m '.The width of the goals is 14.64m, which is twice the size of ordinary goals.
Experimentally, it was too difficult to score goals with the regular size.

3.1.2 Players and Ball

The players and the ball are treated as circles. All distances and angles used and reported are to the centers of
the circles. The action model is discrete (i.e. all moves within one time step occur simultaneously at the end of
the step). The length of time for a step is set by the simulator_step parameter. At the end of the step, the
server takes all action commands received and applies them to the objects on the field, using the current position
and velocity information to calculate a new position and velocity for each object (as described in section 3.1.3)

3.1.3 Movements of Objects

In each simulation step, movement of each object is calculated as following manner:

(Wi ulthy = (uk,v}) + (al,al): accelerate (3.1)
et oyt = (06,) + (ugtt, uytt): move
(Wi olth) = decay x (ult!, ubt!): decay speed
(alf',ak™) = (0,0): reset acceleration
where, (p,p},), and (v},v!) are respectively position and velocity of the object in timestep ¢. decay is a decay
parameter specified by ball decay or player_decay. (al, aé) is acceleration of object, which is derived from

Power parameter in dash (in the case the object is a player) or kick (in the case of a ball) commands in the
following manner:

(a';,a_fl) = Power x power_rate x (cos(6"),sin(6"))
where 6% is the direction of the object in timestep ¢ and power_rate is dash_power_rate or is calculated from
kick_power_rate as described in Table 3.1. In the case of a player, this is just the direction the player is facing.

In the case of a ball, its direction is given as the following manner:
t _ t . .
eball = ekicker + Direction

where gi)all and efdcker are directions of ball and kicking player respectively, and Direction is the second
parameter of a kick command.

IThe unit is meaningless, because parameters used in the simulation do not be decided based on the physical parameters, but
be tuned in order to make matches be meaningful as evaluation of multi-agent systems.

21

Collisions

If at the end of the simulation cycle, two objects overlap, then the objects are moved back until they do not
overlap. Then the velocities are multiplied by —0.1. Note that it is possible for the ball to go through a player
as long as the ball and the player never overlap at the end of the cycle.

Noise and Winds

In order to reflect unexpected movements of objects in real world, soccerserveradds noise to the movement of
objects and parameters of commands.
Concerned with movements, noise is added into Eq. 3.1 as follows:

(Ut;la UZH) = (v, U;) + (a}, a’;) + (frmax, frmax)

where fmax is a random number whose distribution is uniform over the range [-rmax,rmax]. rmax is a
parameter that depends on amount of velocity of the object as follows:

rmax = rand- |(vi,v;)|
where rand is a parameter specified by player_rand or ball_rand.
Noise is added also into the Power and Moment arguments of a command as follows:

argument = (1+7,,,4) - argument

3.1.4 Player’s Action
Sense Body

In previous versions of the server, there was a sense_body command which returned some information about
the state of the player. This command no longer exists in versions greater than 5.00. Instead, the following
information is sent automatically to every client every sense body_step milliseconds.
(sense body TIME

(viewmode QUALITY WIDTH)

(stamina STAMINA EFFORT)

(speed AMOUNT_-OF_SPEED)

(head_angle RELATIVE_HEAD_ANGLE)

(kick KICK_COUNT)

(dash DASH_COUNT)

(turn TURN_COUNT)

(say SAY_-COUNT)

(turnneck TURN_NECK_COUNT))

The Basic Actions

A list of all commands is given in Table 3.1 The basic actions require a little more description and are addressed
below.

e turn The moment argument can be between minmoment and maxmoment (—180 degrees and 180 degrees by
default). However, there is a concept of inertia that makes it more difficult to turn when you are moving.
Specifically, the actual angle the player is turned is as follows:

actual_angle = moment/ (1.0 + inertia_moment x player_speed) (3.2)

(Note that player_speed is the length of the player’s velocity vector,and is therefore always positive).
inertia moment is a parameter with default value 5.0. Therefore (with default values), when the player
is at max speed (1.0), the maximum effective turn he can do is +£30. However, notice that because you
can not dash and turn in the same cycle, the fastest that a player can be going when executing a turn is
player_speed max X player _decay, which means the effective turn (with default values) is +60.

e turn neck Each client has a neck which can be turned somewhat independently of its body. The angle of
the player’s head is the viewing angle of the player. The turn command changes the angle of the player’s
body while turn neck changes the angle of the player’s head relative to its body. The maximum relative

22

Table 3.1: Control Command

(turn Moment)

Change the direction of the player according to Moment. Moment should be between minmoment and
maxmoment (default is [—180,180]. The actual change of direction is reduced when the player is moving
quickly. See Section 3.1.4 for more info.

(turn-neck Angle)

Adds Angle to the clients neck angle (ie angle at which the view cone extends from the player) The neck
angle must be between [—90,90]. The neck angle is always relative to the angle of the player, so if a turn
command is issued, the view angle also changes. See Section 3.1.4 for more info.

(dash Power)

Increases the velocity of the player in the direction it is facing by Power x dash_power_rate. Power
should be between minpower and maxpower (default: [—30,100]). If power is negative, then the player is
effectively dashing backwards. See Section 3.1.4 for more info.

(kick Power Direction)

Kick the ball with Power in Direction if the ball is near enough (the distance to the ball is less than
kickable margin + ball_size + player_size.). Power should be between minpower and maxpower (de-
fault is [—30,100). Direction should be between minmoment and maxmoment (default is [—180,180]). See
Section 3.1.4 for more info.

(move X Y)

Move the player to the position (X,Y). The origin is the center mark, and the X-axis and Y-axis are
toward the opponent’s goal and the right touchline respectively. Thus, X is usually negative to locate a
player in its own side of the field.

This command is available only in the before kick_off mode, and for the goalie immediately after catching
the ball (see the catch) command.

(catch Direction)

Tries to catch the ball in direction Direction. Direction should be in [—180,180]. This command is
permitted only for goalie clients. The player (goalie) can catch the ball when the ball is in the rectangle
with width is goalie_catchable area w (default=1), length is goalie_catchable_area 1 (default=2) and
the direction is Direction. The probability the catch is successful if it is in the rectangle is given by the
parameter catch _probability. Also note that the goalie can only do 1 catch every few cycles (specified
by the catch ban_cycle parameter). If the goalie tries to catch again during the ban cycle, the command
is ignored. If the catch is successful, the server goes into free kick mode. Once it has caught the ball, the
goalie can move within the penalty box with the move command. The ball moves with the agent. However,
a catch does not immediatly change the position or facing direction of the goalie.

(say Message)

Broadcast Message to all players. Message is informed immediately to clients as sensor information in the
(hear ...) format described below. Message must be a string with length less than 512 characters, and
consists of alphanumeric characters and the symbols “+-*/_. () ”. There is a maximum distance that
messages can be heard. See the section on auditory information for specifics.

(change view ANGLE_WIDTH QUALITY)

Change angle of view cone and quality of visual information. ANGLE_-WIDTH must be one of wide (=180
degrees), normal (= 90 degrees) and narrow (=45 degrees). QUALITY must be one of high and low.
In the case of high quality, the server begins to send detailed information about positions of objects to
the client. In the case of low quality, the server begins to send reduced information about positions (only
directions, no distance) of objects to the client. Default values of angle and quality are normal and high
respectively.

On the other hand, the frequency of visual information sent by the server changes according to the angle
and the quality: In the case that the angle is normal and the quality is high, the information is sent every
150 milli-sec. (The interval is modifiable by specifying send_step in the parameter file.) When the angle
changes to wide the frequency is halved, and when the angle changes to narrow the frequency is doubled.
When the quality is low, the frequency is doubled. For example, when the angle is narrow and the quality
is low, the information is sent every 37.5 milli-sec.

23

angle for the player’s neck is 90 degrees to either side. Remember that the neck angle is relative to the
player’s body so if the client issues a turn command, the viewing angle changes even if no turn neck
command is issued.

Also, turn neck commands can be executed in the same cycle as turn, dash, and kick commands.
turn neck is not affected by momentum like turn is. The argument for a turn neck command must be
in the range [—180, 180] since the resulting neck angle must be in [—90, 90].

e dash The dash is essentially a small push in the direction that the player is facing. It is not a sustained run.
In order to have a sustained run, multiple dash commands must be sent. The power passed to the dash
command is multiplied by dash_power_rate (default .01) and the effort (see Section 3.1.5) and applied in
the direction that the player is facing. dash is a small acceleration and does not set the players velocity.
With negative power, the agent dashes backwards, but it consumes twice the stamina (see Section 3.1.5).

e kick The kick is very similar to the dash except that it accelerates the ball instead of the player. If the
player tries to kick when the ball is further than the kickable area (which is equal to the player_size
+ball_size +kickable margin), there is no effect. The one important difference between dashes and
kicks is how the kick power rate is figured. Let dir_diff be the absolute value of the angle of the ball
relative to the direction the player is facing (if the ball is directly ahead, this would be 0). Let dist_ball
be the distance from the center of the player to the ball. Then the kick power rate is figured as follows:

kick _power rate x (1 — .25 x dir_diff /180 — .25 x (dist_ball — player_size — ball_size)/kickable margin)

Basically, this means that the most powerful kick can be done when the ball is directly in front of the
player and very close to him, and drops off as both distance and angle increase.

3.1.5 Stamina

Each player has its own stamina. There are three relevant parameters:
e stamina: used up when dashing and replenished slightly each cycle
e effort: determines how effective dashing is
e recovery: controls how much stamina is recovered each cycle

The player can dash only with Power lower than the current stamina. The stamina decreases by the Power.
The details are as follows: If the client dashes:

Stamine := max(Stamina — Power,0)

Effective_Power := effort x min(Power, Stamina)

The dash that is actually executed uses the Effective_Power.

In the equations given above for decreasing stamina, no mention was given for the sign of Power. A negative
power can be given to the dash command, causing the agent to run backwards. The difference is that using a
negative power causes twice the stamina to be consumed.

Every cycle (whether the client dashes or not), the three parameters can be affected.

e Stamina Stamina increases slightly every cycle. As recovery decreases, less stamina is recovered.

stamina = min(stamina max, stamina + recovery X stamina_inc max)

e Effort The basic idea is that if stamina gets low, effort decreases (with a minimum value given by
effort min) and if stamina gets high enough, then effort increases with a maximum of 1.0. Specifically:

max(effort min, effort — effort_dec) if stamina < effort_dec_thr X stamina max
effort = { min(1.0, effort + effort_inc) if stamina > effort_int thr x stamina max
effort otherwise

e Recovery This is similar to effort except that recovery never increases.

recovery = .
ik { recovery otherwise

One other point is the order which the different values are changed. First the stamina value is decreased (if
there is a dash). Next, the recovery value is changed, then the effort. Finally, stamina is recovered.

24

max(recoverymin, recovery — recovery_dec) if stamina < recovery dec_thr x stamina max

3.2 Sensor Information

3.2.1 Visual Information
Format
Visual information arrives from the server in the following basic format:

(ObjName Distance Direction DistChng DirChng BodyDir HeadDir)
ObjName == (player Teamname UniformNumber)

| (goal [11r])

| (ball)

| (flag <)

| (flag [1lclr] [tIb])

| (flag p [1Ir] [tlcl®bl)

| (flag g [11r] [tIbl)

| (flag [1lrlt|b] 0)

| (flag [tIb] [1lr] [10]20]30/40(50]1)

| (flag [1]r] [tIb] [10]20]301)

| (line [1lr[t|bl)

Distance, Direction, DistChng and DirChng are calculated in the following way:

Pre = Pzt — Pzxo (3.3)
Pry = Pyt — Pyo (3.4)
Vre = Vgt — Vgo (3.5)
Ury = Uyt — Uyo (3.6)
Distance = /p?, + P2, (3.7)
Direction = arctan (pry/prz) — o (3.8)
erz = Prg/Distance (3.9)
ery = DPry/Distance (3.10)
DistChng = (Vrg * €r5) + (Vry * €7y) (3.11)
DirChng = [(—(vrg * €ry) + (Vry * €r5))/ Distance] x (180/7) (3.12)

where (pgt, pye) is the absolute position of the target object, (pzo,Pyo) is the absolute position of the sensing
player, (va:,vy) is the absolute velocity of the target object, (vzo,vy0) is the absolute velocity of the sensing
player, and a, is the absolute direction the sensing player is facing. The absolute facing direction of a player is
the sum of the BodyDir and the HeadDir of that player. In addition to it, (prs, pry) and (vrg, vry) are respectively
the relative position and the relative velocity of the target, and (e, e,y) is the unit vector that is parallel to the
vector of the relative position. BodyDir and HeadDir are only included if the observed object is a player, and is
the body and head directions of the observed player relative to the body and head directions of the observing
player. Thus, if both players have their bodies turned in the same direction, then BodyDir would be 0. The
same goes for HeadDir.

The (goal r) object is interpreted as the center of the right hand side goalline. (flag c) is a virtual flag
at the center of the field. (flag 1 b) is the flag at the lower left of the field. (flag p 1 b) is a virtual flag at
the lower right corner of the penalty box on the left side of the field. (flag g 1 b) is a virtual flag marking
the right goalpost on the left goal. The remaining types of flags are all located 5 meters outside the playing
field. For example, (flag t 1 20) is 5 meters from the top sideline and 20 meters left from the center line. In
the same way, (flag r b 10) is 5 meters right of the right sideline and 10 meters below the center of the right
goal. Also, (flag b 0) is 5 meters below the midpoint of the bottom sideline.

In the case of (1ine ...), Distance is the distance to the point where the center line of the player’s view
crosses the line, and Direction is the direction of the line.

Currently there are 55 flags (the goals counts as flags) and 4 lines to be seen. All of the flags and lines are
shown in Fig. 3.1.

25

Table 3.2: Sensor Information

(see Time ObjInfo ObjInfo ...)
Transmits visual information from the server. Time indicates the current time. ObjInfo is information
about a visible object in the following format:

(ObjName Distance Direction DistChng DirChng BodyDir HeadDir)
ObjName = (player Teamname UniformNumber)

| (goal [11r1)

| (ball)

| (flag c)

| (flag [1lclr] [tIbl)

| (flag p [11r] [tlclbl)

| (flag g [11r] [tIb])

| (flag [1lrltlb]l 0)

| (flag [tIb]l [1lr]l [101201301401501)

| (flag [11r] [t|b] [10120130])

| (1ine [1lr[tl®l)

where Distance is the relative distance and Direction is the relative direction of the object, DistChng
and DirChng are respectively the radius- and angle-components of change of the relative position of
the object. DistChng and DirChng are only sketchy values and not very exact. BodyDir and HeadDir
are the direction of the body and the head of the player, they are only included if the object is a
player. For more detail, please see section 3.2.1.

The characters “1, ¢, r, t, b” in flags and lines means left, center, right, top and bottom and
indicates where on the field the flag is positioned. “p” means that the flag is indicating the penalty
area and “g” means that the flag indicates a goalpost. For more information about the positions of
the flags see Fig. 3.1.

In the case of (1ine ...), Distance is the distance to the point where the center line of the player’s
view crosses the line, and Direction is the direction of line.

As the distance to another player becomes larger and larger, more and more information about the
player is lost. The quality of the information also depends on the change view commands. The
exact detail of how this works is described in section 3.2.1

(hear Time Direction Message)

Auditory information is delivered to the client in this manner. Direction is the direction of the sender.
In the case that the sender is the client itself, Direction is ‘self’. Time indicates the current time.
This message is sent immediately when a client sends a (say Message) command.

Judgments of the referee are also broadcast using this form. In this case, Direction is ‘referee’.

Possible judgements are as follows:
before kick off, kick_off 1, kick off r, kick_in_1, kick_in r, corner kick 1,

corner kick r, offside_1, offside_r, goal kick_1, goal kick.r, free kick_l,
free kick.r, play_on, half_time, time up, extend, foul_Side_UniformNumber,
goal_Side_Point.

(sense_body Time
(viewmode ViewQuality ViewWidth)
(stamina Stamina Effort)
(speed AmountOfSpeed)
(head_angle HeadDirection)
(kxick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turnneck TurnNeckCount))

Gives the status of the player’s body. The ViewQuality is one of high and low and View Width is one
of narrow, normal, and wide. AmountOfSpeedis a rough approximation of the amount of the players’
speed. HeadDirection is the relative direction of the players head. The Count variables are the total
number of commands of that type executed by the server. For more information see section 3.2.3.

26

(flag t1 50) (flagt1 30) (flagt110) (flagt0) (flagtr 10) (flagtr 30) (flagtr 50)

)))))))))))
(flag t | 40) (flag t120) (flagtr 20) (flag t r 40)
/ ¢ (flagrt)’
(flag1 t30) @ (g9 (linet) flagey ® (flagrt30)
/(Iinel) (Iiner)\

(flaglt20)) @ —+——@ (flagplt) (flagprt) @—— @ (flagrt20)
(flag1 t 10) @ ® (flagrt 10)
(flagg| t) (flagigrt)

(flag ¢)

(flagl 0) @ (godl 1) ® (flagplc)) (flagprc) @ (gval 1) ® (flagr0)
(flagg | b) (flag g r b)

(flagl b10) @ ® (flagrb10)
(flaglb20) @ |— @ (flagplb) (flagprb) @—— @ (flagrb20)

flag| b 30) @ line b)
(alb3® | 1ag1v) NG (fagct) (fagb) (earb3o
® ® ®
(flag b1 40) (flag b1 20) (flagbr 20) (flag b r 40)
)))))))))))
(flag b1 50) (flagb 1 30) (flagh110) (flagb0) (flagbr 10) (flag b r 30) (flag b r 50)

Figure 3.1: The flags and lines in the simulation.

Range of View

The visible sector of a player is dependant on several factors. First of all we have the server parameters
sense_step and visible_angle which determines the basic time step between visual information and how many
degrees the players’ normal view cone is. The current default values are 150 milli-seconds and 90 degrees. The
player can also influence the frequency and quality of the information by changing View Width and ViewQuality.
How this is done is described in Section 3.1. To calculate the current view_frequency and view_angle of the
agent use equations 3.13 and 3.14.

view_frequency = sense_step * view_quality factor x view_width factor (3.13)

where view_quality factor is 1 iff ViewQuality is high and 0.5 iff ViewQuality is low, view_width factor is
2 iff ViewWidth is narrow, 1 iff ViewWidth is normal, and 0.5 iff ViewWidth is wide.

view_angle = visible angle x view_ width _factor (3.14)

where view width factor is 0.5 iff ViewWidth is narrow, 1 iff ViewWidth is normal, and 2 iff ViewWidth is
wide.

The player can also “see” an object if it’s within visible distance meters of the player. If the objects is
within this distance but not in the view cone then the player can know only the type of the object (ball, player,
goal or flag), but not the exact name of the object. Moreover, in this case, the capitalized name, that is “Ball”,
“Player”, “Goal” and “Flag’, is used as the name of the object rather than “ball”, “player”, “goal” and
“f 1ag’7 A

The following example and Fig. 3.2 are taken from [5].

The meaning of the view_angle parameter is illustrated in Fig. 3.2. In this figure, the viewing agent is
the one shown as two semi-circles. The light semi-circle is its front. The black circles represent objects in the
wold. Only objects within view_angle®/2, and those within visible distance of the viewing agent can be
seen. Thus, objects b and g are not visible; all of the rest are.

As object fis directly in front of the viewing agent, its angle would be reported as 0 degrees. Object e would
be reported as being roughly -40°, while object d is at roughly 20°.

27

@ Client whose vision perspectiveis being illustrated

visible dlstance b. -7

- N\ \\ e. \\
J@ ﬁ h v \
"~ \ . |
) C. - !
[I

\V|ew angle, /o |

f' | 7) / field width
e /
/

_ _ -
unum_far_length @ -)

unum_too far_length '+ - — - /@
‘team_far IengthT“ L7
team_too_far length _ _ — - =~ Y
- field_length >

Figure 3.2: The visible range of an individual agent in the soccer server. The viewing agent is the one shown as
two semi-circles. The light semi-circle is its front. The black circles represent objects in the world. Only objects
withing view_angle®/2, and those within visible_distance of the viewing agent can be seen. unum far_length,
unum_too_far_length, team far length, and team too_far_length affect the amount of precision with which
a players’ identity is given.

Also illustrated in Fig. 3.2, the amount of information describing a player varies with how far away the player
is. For nearby players, both the team and the uniform number of the player are reported. However, as distance
increases, first the likelihood that the uniform number is visible decreases, and then even the team name may
not be visible. It is assumed in the server that unum _far_length < unum too_far_length < team far_length
< team_too_far_length. Let the player’s distance be dist. Then

o If dist < unum_far_length, then both uniform number and team name are visible.

e If unum far length < dist < unum too_far_length, then the team name is always visible, but the prob-
ability that the uniform number is visible decreases linearly from 1 to 0 as dist increases.

o If dist > unum_too_far_length, then the uniform number is not visible.
o If dist < team_far_length, then the team name is visible.

o If team far length < dist < team too_far_length, then the probability that the team name is visible
decreases linearly from 1 to 0 as dist increases.

o If dist > team_too_far_length, then the team name is not visible.

For example, in Fig. 3.2, assume that all of the labeled circles are players. Then player ¢ would be identified
by both team name and uniform number; player d by team name, and with about a 50% chance, uniform
number; player e with about a 25% chance, just by team name, otherwise with neither; and player f would be
identified simply as an anonymous player.

Unreliability of Information about Far Objects

In the case that an object in sight is a ball or a player, the value of distance to the object is quantized in the
following manner:

d = Quantize(exp(Quantize(log(d),0.1)),0.1) (3.15)

28

where d and d’ are the exact distance and quantized distance respectively, and

Quantize(V,Q) = ceiling(V/Q) - Q (3.16)

This means that players can not know the exact positions of very far objects. For example, when distance is
about 100.0 the maximum noise is about 10.0, while when distance is less than 10.0 the noise is less than 1.0.
In the case of flags and lines, the distance value is quantized in the following manner.

d = Quantize(exp(Quantize(log(d), 0.01)),0.1) (3.17)

3.2.2 Auditory Information
Format

Auditory information is transmitted by the server in the following format:
(hear Time Direction Message)

Direction is the direction of the sender. In the case that the sender is the client itself, Direction is ‘self’.
Time indicates the current time. This message is sent immediately when a client sends a (say Message)
command. Judgments of the referee are also broadcast using this form. In this case, Direction is ‘referee’.
Possible messages from the referee are as follows:

before kick off, kick off 1, kick off r, kick_in_1, kick_in_r, corner kick_1, corner kick.r,
goal kick_1, goal kick.r, free kick_1, free kick.r, offside_1, offside_r, play_on, half _time,
time_up, extend, foul_Side.UNum, goal_Side_Point,

Range of Communication

A message said by a player is transmitted only to players within 50 meters from that player. For example, a
defender, who may be near his own goal, can hear a message from his goal-keeper but a striker who is near the
opponent, goal can not hear the message. Messages from the referee can be heard by all players.

Capacity of Hear

A player can hear only 1 message from each team during each 2 simulation cycles.

If several messages arrive from the same team at the same time one message is chosen according to the order
of arrival.

This rule does not include messages from the referee, or messages from oneself. In other words, a player can
say a message and hear a message from another player in the same timestep.

3.2.3 Sensory Information
Format

Starting from version 5.x of the server sends a (sense body) to each player every sense_step, currently 100,
milli-seconds. The format is:

(sense_body Time
(viewmode ViewQuality ViewWidth)
(stamina Stamina Effort)
(speed AmountOfSpeed)
(head_angle HeadDirection)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn_neck TurnNeckCount))

Gives the status of the player’s body. The ViewQuality is one of high and low and ViewWidth is one of
narrow, normal, and wide. They are important factors in the quality and frequence of the visual information.
AmountOfSpeed is a rough approximation of the amount of the players’ speed. If the direction of the speed is

29

needed it has to be estimated in some other way. HeadDirection is the relative direction of the players head. The
Count variables are the total number of commands of that type executed by the server. For example DashCount
= 134 means that the player has made 134 dashes so far.

3.3 Soccermonitor

Soccermonitor and soccerserver are connected via UDP/IP on port 6000 (default).

3.3.1 From Server to Monitor

Soccerserver and logplayer send dispinfo_t structs to the soccermonitor. Dispinfo_t contains a union
with three different types of information:

1. showinfo_t: information needed to draw the scene
2. msginfo_t : contains the messages from the players and the referee shown in the bottom windows

3. drawinfo_t: information for monitor to draw circles, lines or points (not used by the server)

The size of dispinfo_t is determined by its largest subpart (msg) and is 2052 bytes (the union causes some
extra network load and may be changed in future versions). In order to keep compatibility between different
platforms, values in dispinfo_t are represented by network byte order.

Following is a description of these structs and the ones contained:

showinfo_t:

typedef struct {
short enable ;
short side ;
short unum ;
short angle ;
short X
short vy
} pos_t ;
values of the elements can be

enable:
state of the object. Players not on the field (and the ball) have state DISABLE. The

other bits of enable allow monitors to draw the state and action of a player more detailed
(server/types.h).

DISABLE (0x00)
STAND (0x01)
KICK (0x02)
KICK_FAULT (0x04)
GOALIE (0x08)
CATCH (0x10)
CATCH_FAULT (0x20)
side:
side the player is playing on. LEFT means from left to right, NEUTRAL is the ball
(server/types.h).
LEFT 1
NEUTRAL O
RIGHT -1
unum:

uniform number of a player ranging from 1 to 11

30

angle:

angle the agent is facing ranging from -180 to 180 degrees, where -180 is view to the left
side of the screen, -90 to the top, 0 to the right and 90 to the bottom.

X, y:

position of the player on the screen. (0, 0) is the midpoint of the field, x increases to
the right, y to the bottom of the screen. Values are multiplied by SHOWINFO_SCALE (16)
to reduce aliasing, so field size is PITCH_LENGTH * SHOWINFO_SCALE in x direction and
PITCHWIDTH * SHOWINFO_SCALE in y direction.

typedef struct {

char name[16]; /* name of the team */
short score; /* current score of the team */
} team_t ;

typedef struct {
char pmode ;
team_t team[2] ;
pos_t pos[MAX_PLAYER * 2 + 1] ;
short time ;
} showinfo_t ;

a showinfo_t struct is passed every cycle (100 ms) to the monitor and contains the state and positions
of players and the ball.

values of the elements can be

pmode:

currently active playmode of the game (server/types.h)

PM_Null,
PM_BeforeKickOff,
PM_TimeQOver,
PM_PlayOn,
PM_Kick0ff_Left,
PM_KickOff_Right,
PM_KickIn_Left,
PM_KickIn_Right,
PM_FreeKick_Left,
PM_FreeKick_Right,
PM_CornerKick_Left,
PM_CornerKick_Right,
PM_GoalKick_Left,
PM_GoalKick_Right,
PM_AfterGoal_Left,
PM_AfterGoal_Right,
PM_Drop_Ball,
PM_0ffSide_Left,
PM_OffSide_Right,
PM_MAX

team:
structs containing the teams (see above). Index 0 is for team playing from left to right.
pos:

position information of player (see above). Index 0 is the ball, indices 1 to 11 is for team[0]
(left to right) and 12 to 21 for team][1].

time:

current time ranging from 1 to 12000 (in extra time)

31

msginfo_t:

typedef struct {

short board ;

char message[2048] ;
} msginfo_t ;

board:

indicates the type of message. A message with type MSG_BOARD is a message of the referee
for the left text window, LOG_BOARD are messages from and to the players. (server/param.h)

MSG_BOARD 1
LOG_BOARD 2

message:

zero terminated string containing the message.

drawinfo_t:

allows the server to tell the monitor to draw simple graphics elements.

typedef struct {

short X ;

short y ;

char color [COLOR_NAME_MAX] ;
} pointinfo_t ;

typedef struct {

short X

short vy

short r ;

char color [COLOR_NAME_MAX] ;
} circleinfo_t ;

typedef struct {

short x1 ;
short yi1 ;
short X2 ;
short y2 ;

char color [COLOR_NAME_MAX] ;
} lineinfo_t ;

typedef struct {
short mode ;
union {
pointinfo_t pinfo ;
circleinfo_t cinfo ;
lineinfo_t linfo ;
} object ;
} drawinfo_t ;

mode:

determines the kind of message the union object contains (server/param.h)

DrawClear 0
DrawPoint 1
DrawCircle 2
DrawLine 3

32

dispinfo_t:

container for the different messages from server to monitor.

typedef struct {
short mode ;

union {
showinfo_t show ;
msginfo_t msg ;
drawinfo_t draw ;
} body ;

} dispinfo_t ;

mode: determines the kind of message the union body contains. NO_INFO indicates no valid info
contained (never sent by the server), BLANK_MODE tells the monitor to show a blank screen (used by
logplayer) (server/param.h).

NO_INFO
SHOW_MODE
MSG_MODE
DRAW_MODE
BLANK_MODE

B W= O

3.3.2 From Monitor to Server
The monitor can send to the server the following commands:
(dispinit)
sent to the server as first message to register as monitor (opposed to a player, that connects
on port 6000 as well)
(dispstart)
sent to start (kick off) a game, start the second half or extended time. Ignored, when the
game is already running.
(dispfoul x y side)

sent to indicate a foul situation. x and y are the coordinates of the foul, side is LEFT (1)
for a free kick for the left team, NEUTRAL (0) for a drop ball and RIGHT (-1) for a free
kick for the right team.

(dispdiscard side unum)

sent to show a player the red card (kick him out). side can be LEFT or RIGHT, unum is
the number of the player (1 - 11).

3.4 Logplayer

The logplayer allows you to replay recorded games. If enabled (server commandline: -record LOGFILE,
server.conf file: record log : on), the server writes the information sent to the soccermonitors into a logfile
using the specified logfile version (-record_version [1/2], record_version : 2). This files can be read in by the
logplayer and sent to connected soccermonitors. To watch logfiles just call logplayer with the logfilename
as argument, start a soccermonitor and then use the buttons on the logplayer window to start, stop, play
backward, play stepwise, ...

3.4.1 Logfiles
Version 1

Logfiles of version 1 (server versions up to 4.16) are a stream of consecutive dispinfo_t chunks. Due to the
structure of dispinfo_t as a union, a lot of bytes have been wasted leading to impractical logfile sizes. This
lead to the introduction of a new logfile format 2.

33

Version 2

Version 2 logfile protocol tries to avoid redundant or unused data for the price of not having uniform data
structs. The format is as follows:

head of the file:

the head of the file is used to autodetect the version of the logfile. If there is no head,
Unix-version 1 is assumed.

3 chars "ULG’ : indicating that this is a Unix logfile (to distinguish from Windows format)
char version : version of the logfile format

body:

the rest of the file contains the data in chunks of the following format:
short mode:

this is the mode part of the dispinfo_t struct (see soccermonitor)
SHOW_MODE for showinfo_t information
MSG_MODE for msginfo_t information

If mode is SHOW_MODE, a showinfo_t struct is following.
If mode is MSG_MODE, next bytes are

short board : containing the board info
short length: containing the length of the message (including zero terminator)
string msg : length chars containing the message

Other info such as DRAW_MODE and BLANK_MODE are not saved to logfiles. There is still room for optimization
of space. The teamnames could be part of the head of the file and only stored once. The unum part of a player
could be implicitly taken from array indices, ... If someone likes to do, feel free...

Be aware of, that information chunks in version 2 do not have the same size, so you can not just seek SIZE
bytes back in the stream when playing logfiles backward. You have to read in the whole file at once or (as is
done) have at least to save stream positions of the showinfo_t chunks to be able to play logfiles backward.

In order to keep compatibility between different platforms, values are represented by network byte order.

34

Appendix A

Table of Protocols

A.1 Connection

from client to server

from server to client

(bye)

(init TeamName [(version VerNum)] [(goalie)])

TeamName == (—|_|a — z|A — Z|0 — 9)*

(init Side UniformNumber PlayMode)
Side :=1|r
UniformNumber := 1 ~ 11
PlayMode ::= one of play modes
(error no_more_team or_player)

(reconnect TeamName UniformNumber)

TeamName == (—|_|a — 2|A — Z|0 — 9)*

(init Side UniformNumber PlayMode)
Side :=1|r
UniformNumber := 1 ~ 11
PlayMode ::= one of play modes
(error nomore_team or_player)
(error reconnect)

35

A.2 Client Control Commands

from a client to the server

Only one per turn

(catch Direction)
Direction ::= -180 ~ 180 degrees.

Yes

(change view Width Quality) No
Width ::= narrow | normal | wide
Quality ::= high | low
(dash Power) Yes
Power ::= -100 ~ 100
Note: backward dash consumes double stamina.
(kick Power Direction) Yes
Power ::= 0 ~ 100
Direction ::= -180 ~ 180 degrees.
(move X Yes
X:=-54~ 54
Y =-32~ 32
(say Message) No
Message ::= a message (See section A.8.)
(sense_body) No
The server returns
(sense body TIME
(viewmode {high | low} {narrow | normal | wide})
(stamina STAMINA EFFORT)
(speed AMOUNT-OF_SPEED)
(head_angle HEAD_ANGLE)
(kick KICK_COUNT)
(dash DASH_COUNT)
(turn TURN_COUNT)
(say SAY_-COUNT)
(turnneck TURN_NECK_COUNT))
(turn Moment) Yes
Moment ::= -180 ~ 180 degrees.
(turnneck ANGLE) Yes

ANGLE ::= -90 ~ 90 degrees.
turn_neck is relative to to the direction of the body.
Can be invoked at the same cycle as a turn, dash or kick.

The server may respond to the above commands with the errors:
(error unknown_command)
(error illegal _command form)

36

A.3 Sensor Information

from the server to a client

(hear Time Sender Message)

Time ::= simulation cycle of the soccerserver
Sender ::= referee | self | Direction
Direction ::= -180 ~ 180 degrees.
Message ::= a message sent by a say command
(see Time ObjInfo ObjInfo ...)
Time ::= simulation cycle of the soccerserver
ObjInfo ::= (ObjName Distance Direction DistChange DirChange BodyFacingDir HeadFacingDir) |

(ObjName Distance Direction DistChange DirChange |
(ObjName Distance Direction) |
(ObjName Direction)
ObjName ::= one of object name (See section A.6.)
Distance ::= positive real number
Direction ::= real number
DistChange ::= real number
DirChange ::= real number
FaceDir ::= real number

37

A.4 Offline Coach Control Commands

from coach client to server

from server to coach client

(change mode NewPlayMode)
NewPlayMode ::= one of play modes

(ok change. mode)
(error illegal_command_form)
(error illegal_mode)

(check_ball)

(ok check. ball Time Status)
Time ::= simulation cycle of the soccerserver
Status = in_field | goal_Side | out_of field

(ear OnOfp (ok ear OnOff)

OnOff ::= on | off (error illegal_command form)
(eye OnOff) (ok eye OnOfp

OnOff ::= on | off (error illegal command form)
(1look) (ok look Time ObjInfo ObjInfo ...)

Time ::= simulation cycle of the soccerserver
ObjInfo ::== (ObjName Pos) |
(ObjName Pos Velocity) |
(ObjName Pos Angles Velocity)
ObjName ::= one of object names
Pos:=XY
X ::= real number
Y ::= real number
Velocity ::= VelX VelY
VelX ::= Velocity in X
VelY ::= Velocity in Y
Angles ::= Body_Angle Neck_Angle
Body_Angle ::= The angle of the body
Neck_Angle ::= Angle of neck relative to Angle_Body

(move ObjectName X Y [Anglel)
ObjectName ::= one of object names
X::=-54~ b4
Y. =-32~ 32
Angle ::= -180 ~ 180 degrees

(ok move)
(error illegal object_form)
(error illegal _command form)

(say Message)
Message := a message (See sec-
tion A.8.)

(ok say)
(error illegal_command_form)

(error unknown_command)

(error illegal_command_form)

(hear Time Sender Message)

Time ::= simulation cycle of the soccerserver
Sender ::= name of the sender
Message ::= a message

38

A.5 Online Coach Control Commands

from coach client to server from server to coach client
(bye)
(check_ball) (ok check_ball Time Status)
Time ::= simulation cycle of the soccerserver
Status := in_field | goal_Side | out_of field
(eye OnOfp (ok eye OnOfp
OnOff ::= on | off (error illegal _command_form)
(look) (ok look Time ObjInfo ObjInfo ...)
Time ::= simulation cycle of the soccerserver

ObjInfo ::= (ObjName Pos) |
(ObjName Pos Velocity) |
(ObjName Pos Angles Velocity)
ObjName ::= one of object names
Pos:=XY
X ::= real number
Y ::= real number
Velocity ::= VelX VelY
VelX ::= Velocity in X
VelY ::= Velocity in Y
Angles ::= Body_Angle Neck_Angle
Body_Angle ::= The angle of the body
Neck_Angle ::= Angle of neck relative to Angle_Body

(say Message) (ok say)
Message := a message (See sec- (error illegal_command_form)
tion A.8.) (warning cannot_say_while_playon)

(error unknown_command)

(error illegal _command_form)

(hear Time Sender Message)
Time ::= simulation cycle of the soccerserver
Sender ::= name of the sender
Message ::= a message

A.6 Object Names

(ball)

(player TeamName UniformNumber)
(player Side UniformNumber)
(goal Side)

(flag c)

(flag g {1 | r} {t | b})
(flagp {1 | r} {t | c [b})

(flag {1 | r| t | b} 0)

(flag {1 | c | r} {t | B})

(flag {1 | £} {t | b} {10 | 20 | 30})

(flag {t | b} {1 | r} {10 | 20 | 30 | 40 | 50})
(line {1 | r| t | b})

Object Names Sensed by Short Distance Sensor

(Ball)
(Player)
(Flag)
(Goal)

39

A.7 Play Modes

before_kick_off
corner_kick_Side
free_kick_Side
goal kick_Side
kick_in_Side
kick_off_Side
play_on
time_over

Messages from the referee

foul_Side

goal_Side

half_time

time_up

time_up_without_a_team

time_extended one of play modes (See section A.7.)

A.8 Message

Restriction of Messages

A Message said by clients must be an ASCII string less than 512 characters !

alphabets and symbols in “() .+-%/7<>_".

, which consists of numbers,

IThe length limitation is modifiable by parameters. See section 2.3.

40

Appendix B

Robocup Simulation League FAQ

The FAQ is the collective effort of Noda, Gal, Tralvex, Say Poh and Eldwin.

B.1 Background on RoboCup

What is the RoboCup initiative

The Robot World Cup Initiative (RoboCup) is an attempt to foster research in various technological fields
by providing a standard problem where wide range of technologies can be integrated and examined. For this
purpose, RoboCup chose to use soccer game, and organize RoboCup: The Robot World Cup Soccer Games and
Conferences. The idea is to build increasingly advanced physical and synthetic agents that can play soccer at
increasing level. Our landmark goal is to have a humanoid robot team play against the best human soccer team
under official FIFA rules sometime around the middle of next century.

The RoboCup Federation is an international non-profit organization, registered in Geneva, which was estab-
lished in 1997 for the purposes of encouraging, promoting and strengthening RoboCup research. This initiative
is currently being pursued by approximately 1500 researchers in 16 different countries.

For more information and details, consult the General Resources section below.

[Gal]

What technological fields are involved?

At first glance, RoboCup seems to deal only with issues from the field of Robotics. However, the RoboCup
challenge actually touches on many fields. Here’s a partial list:

e In Artificial Intelligence and Robotics: Multi-agent environments, collaborative and individual plan-
ning and execution, opponent modeling, distributed and individual learning (both off-line and on-line),
adaptation, strategy planning, sensor fusion, knowledge acquisition, real-time reasoning, visions, natural
language processing (both for synthetic commentators, and for the players, which need to interact with a
human referee), crowd behavior, teleoperation, and more.

e In electrical engineering, it touches on fault-tolerant hardware, real-time support, robust storage de-
vices (imagine a hard disk being thrown to the ground due to a tackle...), sensors, control, etc.

e In Virtual Environments and Distributed Simulations, it touches on real-time multi-cast proto-
cols (for running simulated games on the Internet - see more on this later in this FAQ), real-time 3D
visualization, multi-player protocols, teleoperation, etc.

In addition, there’s need for lightweight but tough materials (otherwise the robots will be too heavy, or
become dented with every fall), and for batteries/power-sources that actually power a human-size robot for 90
minutes or more. There’s need for robust, fault-tolerant joints and gears that can stand some bumps, and the
list goes on and on.

The challenge is not limited to soccer-playing robots. Far from it we would like to see more and more
applications grow from this domain into other fields. For example, there’s already some work on a multi-agent
commentator team, in which different synthetic experts work together to produce commentary on the game,
much like the human teams seen so often on TV. Some people are considering modeling the fans, and their

41

influence on the team, to examine issues in crowd behavior. Others still are looking into robot coaches, and so
on.

[Gal]
How do I participate in the competition?

Any and all teams, whether research-oriented or not, are welcome to participate in the competitions. Some
teams just participate for the fun of it (especially in the Simulator League); some are serious research-oriented
teams that also publish the results of their research. See below for more details.

Currently, RoboCup competitions have the following leagues. Specific information on each league can be
found in the resource lists in the sections describing each league and in the resources section.

e Simulator League for Synthetic (Software) Agents
e Small Robot League (5 robots per team)
e Full Set Small Robot League (11 robots per team)
e Middle Size Robot League
The followings are currently leagues for exhibition games and demonstrations:
e Legged Robot League
e Expert Robot League
e Humanoid League

[Gal]
General Resources and Contacts
The RoboCup Web Page:
http://www.robocup.org/
The RoboCup General Mailing List:
Send a subscribe command to majordomo@csl.sony.co.jp with ”subscribe robocup” in the body of the mes-

sage.
National and Regional Committees:

e Brazil National Committee:

e Euro-RoboCup (European Community Committee):

e French National Committee:
e German National Committee:
e Italian National Committee:
e Japan National Committee:
e Scandinavian National Committee:
e Singapore National Committee:
e U.S. National Committee:
[Gal]

42

Simulation-related Resources and Contacts

RoboCup:
http://www.robocup.org/
RoboCup Simulator:
RoboCup Simulation League Resources:
<http://jsaic.krdl.org.sg/robocup/ftp/resources/>
RoboCup Simulation Mailing List:
robocup-sim-1@Qusc.edu
To Join, send a ”subscribe robocup-sim-1” request to <listproc@usc.edu>.
Or visit: <http://www.isi.edu/soar/galk/RoboCup/robocup-sim-1>/ RoboCup Simulation Code Archives:
Contain code samples, libraries, etc.
[Gal]

B.2 Introduction to Simulation League

What is the RoboCup Simulator?

The RoboCup simulator is a soccer physical simulation system, which allows virtual soccer players to compete
in a dynamic, complex, uncertain multi-agent environment. The soccerserverattempts to provide a challenging
environment for Al research, by allowing researchers to concentrate on designing brains for the simulated bodies
of the players.

The simulation system is run as a client/server system, with a central simulator server communicating with
22 player clients. Each client receives sensory data - visual, auditory, and internal - about its own local view of
the world (from its own position), and can send command such as move, run (with power), turn, kick, etc.
[Gal]

What platforms does the simulation run on?

The simulator is written in C and C++, and can compile out-of-the-box on many flavors of Unix, including
SunOS, Solaris, Linux, and others. It may also be made to run on Windows, but we don’t know of any attempts
to do so, successful or otherwise.

[Gal]

What platforms can I build players for?

The server communicates with player clients via UDP sockets. You can build your clients on any platform you
with, as long as they can communicate with the server. Some use Unix, some use Windows. Implementation
languages include C, C++, Lisp, Soar (rule-based language), and Java.

[Gal]

Can I run a game across the Internet?

Yes, although it may be slow.
[Gal]

Whats all this stuff about Gentlemens Agreement?

The simulated environment is very challenging, but like many software systems it has bugs and loopholes. For
instance, players are only supposed to communicate with each other via the simulation by using simulated shouts.
There is nothing, however, that prevents client programs from using private inter-process communications to
bypass the server. However, we expect teams not to use this even though it may practically be feasible, since it
works against the aims of the initiative.

The RoboCup Simulation Steering Committee will be releasing ethical guidelines, which explain this further.
[Gal]

43

B.3 Startup Soccerserver

When I attempt to run soccermonitor, I get the message ld.so: 1libSM.so0.6: not
found

In this case, please try the following instructions.

4

e 1. Change directory to “ monitor/ ”.

o 2. Edit setting of “XLIB” in “ Makefile ” as follows (adding ¢ -1SM -lICE ” options).
XLIB = -L/opt/X11R6/lib -1Xaw -1SM -lICE -1Xmu -1Xt 1Xext $(XLINK_Dynamic) -1X11

e 3. Remake soccermonitor.

[Noda]

When I attempt to run soccermonitor, I get the message ld.so: 1ib?77.s0.7?77: not
found

You must configure LD_LIBRARY _PATH in sserver script by hand. For example, you may change the 3rd lines
of sserver as follows:

setenv LD_LIBRARY _PATH /usr/X11R6/lib:/usr/ucblib:/usr/lib:/lib
[Noda]

When I start the Soccerserver, I get a message saying can not bind local ad-
dress.Why?

Can not bind local address usually happens when there is an old soccerserverprocess running. Try
ps -aux || grep soccerserver

If there are old processes running, kill them and try again.

[Noda]

I run sserver script, and I got the following messages:

[1] 23967

SoccerserverVer. 4.06

Copyright 1995, 1996, 1997, 1998 Electrotechnical Laboratory.

Itsuki Noda, Yasuo Kuniyoshi and Hitoshi Matsubara.

Wind factor: rand: 0.000000, vector: (0.000000, 0.000000)

Error: Cant open display:

Add ”setenv DISPLAY console_name:0.0” to sserver (shell script). Examples of ”console_name” are pluto,
galileo, etc. Then execute sserver again. If it fails, make sure that you are running on the Unix Server. An

alternative is using application program ”eXodus”, which acts as a server console.
[Say Poh/Rex]

What is the recommended directory for X11R67?

This varies from machine to machine. Try ” /usr/local/X11R6”, if you encounter problems when trying to make
soccerserverusing ” /usr/openwin/”.
[Say Poh/Rex]

When I start Soccerserver, why do I get a message: cant bind local address?

Can’t bind local address usually happens when there is a previous soccerserverprocess running. Try:
ps -ef || more
If there are previous soccerserverprocess running, kill them and try again. Please note that you must kill the
soccerserverand soccermonitor processes after use. Same applies to the client processes.
[Say Poh/Rex]

44

I tried to get Soccerserverto compile on my Linux box.

As with most things, the usual steps of ”configure then make” didn’t work on the first try for me. I'm run-
ning RedHat 5.0 Linux, I’ve got gcc-2.8.0 installed, 'm using X11R6. It looks to me like the include files
<iostream.h> and <strstream.h> are missing from my machine. Where can I find these 2 include files? Any
other ideas?

e Suggestion 1: You have to use g++ instead of gcc. "iostream.h” is a common c++ file, so if you
can’t find that, you probably can’t find any of the c++ files. On some linux box, it can be found in
” Jusr /include/g++/iostream.h”. Try using the ’locate’ command if you can’t find it.

e Suggestion 2: Do a "which g++” command. On most systems, what this returns is a link to where
all the gnu goodies reside. ’cd’ to the directory pointed to by the link. The libraries reside in ../lib and
subdirs. Also, you may need to set your LD_LIBRARY_PATH environment variable to contain paths to
the libraries soccerserveruses.

[Say Poh/Rex]

B.4 Making Clients

Why does the sample client continuously receive

recv 2035 : (see 0 ((goal r) 73 -7) ((lag r t) 84.8 -31) ((flag r b)
76.7 18) ((lag p r t) 63.4 -28) ((lag p r ¢) 56.8 -10) ((lag pr b)
56.8 10) ((ball) 22.2 -26 0 0) ((line) 72.2 -90)
is that just the automatic sensory response from the server to the clients?
Yes. This is visual sensor information sent from the server every 300ms. This means,
Now, TIME is 0 (may be before kick-off),
right goal (goal r) is 73m far away and 7 degrees left
flags of top-right corner is 84.8m far away and 31 degrees left

ball is 22.2m far away and 26 degrees left, and its speed is (0,0)

The server also sends auditory information that informs messages from referee and other players. These
information is sent automatically, so you should make a client that always polls the socket that connects to the

server.
[Noda]

How do I set up a connection to the server as non-blocking?

Here is a sample of C/C++ code to set up a socket connection as non-blocking.
/*
* Open UDP socket.
*/
if((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0){
return sock ; /* Can’t open socket. */
}
val = fentl(sockfd, F_.GETFL, 0) ;
/* 5/17/96 Dave found that O_-NONBLOCK didn’t work for setting up a*/
/* non-blocking socket. O_NDELAY seems to work, though! */
/* val |= O_NONBLOCK ;*
val |= 0_NDELAY;
fentl(sockfd, F_.SETFL, val) ;
[Noda]

45

My clients can not get newest visual information, because a couple of messages
from the server are on the queue of the socket. How do clients get the newest
message from the queue?

Here is a sample of C/C++ code that clean up queue and get the newest “see” information. If there are multiple
“see” messages on the socket, this code prints the old ones, but skips them. This makes sure all hear messages
are received, though.

if(FD_ISSET (sock.socketfd, &readfds)){

/*n = receive_message(buf, MAXMESG, sock, &port) ; */

/*keep receiving messages until the socket is empty™*/

while((n = receive_message(tmp, MAXMESG, sock, &port)) > 0)

int copy = TRUE; /* in general, copy tmp to buf */

if (MessageCounter > 0) /* not first time through while */

if (initialized && tmp[l]=="h’)/* New msg is a hear */

ParseSensoryData(buf, Memry); /* parse the sound */

if (Memry->HeardNewSound ()) /* respond to it */

Communicate(behavior, Memry, &sock);

Memry->ClearSound(); /* Undo the sound bit */

copy = FALSE; /* Leave the last msg in buf */

#if PRINT_MISSED_MSGS

else if (initialized)

printf(“Player %d-%c skipped a message %.40s ...\n

before %.40s ...\n”,

Memry->MyNumber ,Memry->MySide,buf ,tmp) ;

#endif
if (copy)
strepy (buf,tmp);
if (buf[l] == ’h’) /* also stop if it’s a “hear” */
break;
MessageCounter++;
MessageCounter = 0;
[Noda]

Im trying to run Ogalets or Sekines clients, but players do not work well. Why?

Unfortunately, Ogalets and Sekine’s clients are for sserver-2.78. Protocol of sserver has been changed in sserver-
3.xx, so now, these clients can not analyze sensor information sent from the server.

In order to test these clients, please get sserver-2.78.
[Noda]

I came across FD_ZERO, FD_SET, FD_ISSET functions in the client program.
What do they mean?

Here is the excerpts from "man select” command:
select(3C) C Library Functions select(3C)
NAME
select - synchronous I/O multiplexing
SYNOPSIS
#include <sys/time.h>
#include <sys/types.h>
int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
void FD_SET (int fd, fd_set &fdset);
void FD_CLR (int fd, fd_set &fdset);
int FD_ISSET(int fd, fd_set &fdset);
void FD_ZERO(fd_set &fdset);
MT-LEVEL

46

MT-Safe
DESCRIPTION

select() examines the I/0 file descriptor sets whose addresses are passed in readfds, writefds, and exceptfds
to see if any of their file descriptors are ready for reading, are ready for writing, or have an exceptional condition
pending, respectively. Out-of-band data is the only exceptional condition. nfds is the number of bits to be
checked in each bit mask that represents a file descriptor; the file descriptors from 0 to nfds -1 in the file
descriptor sets are examined. On return, select() replaces the given file descriptor sets with subsets consisting
of those file descriptors that are ready for the requested operation. The return value from the call to select() is
the number of ready file descriptors.

The file descriptor sets are stored as bit fields in arrays of integers. The following macros are provided for
manipulating such file descriptor sets: FD_ZERO() initializes a file descriptor set fdset to the null set. FD_SET()
includes a particular file descriptor fd in fdset. FD_CLR/() removes fd from fdset. FD_ISSET() is nonzero if fd
is a member of fdset, zero otherwise. The behavior of these macros is undefined if a file descriptor value is less
than zero or greater than or equal to FD_SETSIZE. FD_SETSIZE is a constant defined in jsys/select.h;.

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the selection to complete. If
timeout is a NULL pointer, the select() blocks indefinitely. To effect a poll, the timeout argument should be a
non-NULL pointer, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as NULL pointers if no file descriptors are of interest.
RETURN VALUES

select() returns the number of ready file descriptors contained in the file descriptor sets or - 1 if an error
occurred. If the time limit expires, then select() returns 0.

ERRORS

The call fails if:

EBADF One of the I/0 file descriptor sets specified an invalid I/0 file descriptor.

EINTR A signal was delivered before any of the selected events occurred, or the time limit expired.

EINVAL A component of the pointed-to time limit is outside the acceptable range:

t_sec must be between 0 and 108, inclusive. t_usec must be greater than or equal to 0, and less than 106.
SEE ALSO

poll(2), read(2), write(2)

NOTES

The default value for FD_SETSIZE (currently 1024) is larger than the default limit on the number of open
files. In order to accommodate programs that may use a larger number of open files with select(), it is possible
to increase this size within a program by providing a larger definition of FD_SETSIZE before the inclusion of
<sys/types.h>.

The file descriptor sets are always modified on return, even if the call returns as the result of a timeout.
[Say Poh/Rex]

What is the correct behavior when a player receives the ”half time” message?
Should he close the connection with a ”bye” command and reconnect after a break?
Does the server keep running during the half-time break?

The server keeps running at halftime. Since teams sometimes like to change their behaviors at halftime (keep
in mind that halftime only lasts a minute or two - no time for serious code changes), you can disconnect and
reconnect the players. But if you would like, you are welcome to keep your team running through the half-time
break.

[Say Poh/Rex]

What are ”quantize_step” and ”quantize_step_1” found in the Soccerserver’s con-
figuration file (server.conf)?

These are parameters that the server uses to determine how fine values are reported to you, (whether 5.23423423423
should be reported as 5.2, 5.3, 5.234). It should not affect the client program implementation.
[Say Poh/Rex]

There are different types of parameters for stamina, recover and effort in the Soc-
cerserver’s configuration file (server.conf). How do they work?

Given parameters:

47

maximum and recovery step of player’s stamina (default 2500.0, 50.0)
stamina_max : 2000.0

stamina_inc_max : 20.0

decriment threshold ,decriment step and minimum of player’s recovery
(default 0.3, 0.05, 0.1)

recover_dec_thr : 0.3

recover_dec : 0.002

recover_min : 0.5

decriment threshold, decriment step, incriment threshold, incriment step
and minimum of player’s effort (default 0.4, 0.05, 0.9, 0.05, 0.1)
effort_dec_thr : 0.5

effort_dec : 0.02

effort_inc_thr : 0.8

effort_inc : 0.02

effort_min : 0.5

There are 3 parameters involed here:

e 1. stamina [0, max_stamina]
e 2. recovery [recover_min, 1]

o 3. effort [effort_min, 1]

recovery and effort are actually multipliers.
Assuming that the stamina scale looks something like this:
— Max stamina, (2000.0)
- effort_inc_thr (0.8)

- effort_dec_thr (0.5)

- recover_dec_thr (0.3)

—0

Whenever we execute a dash command, our stamina is reduced. If we continue to dash further, our stamina
is reduced further. If our stamina is reduced below effort_dec_thr (0.5) * max_stamina (2000.0) = 1000.0, for
every simulation cycle we stay below this value, our effort is decreased by effort_dec (0.02). Assuming our
stamina was below the 1000.0 mark for 5 cycles, then our effort would be reduced by effort_dec (0.02) * 5 =
0.1. So if we started with an effort of 1, now our effort would be 1 - 0.1 = 0.9. Thereafter, when we dash 100,
we are actually dashing a value of 0.9 * 100 = 90. Currently, in the server, our stamina is only deducted 90,
the amount that was actually used. So, in fact, assuming we really want to dash 100, we can ask for 111.111,
so that 100 is actually applied. I think this is a bug that they haven’t removed yet. The original intention was
that a player is penalised 100 but actually 90 is used.

At the other end of the scale, we have effort_inc_thr. When your stamina goes above this threshold (ef-
fort_inc_thr * max_stamina), for every cycle that you stay above a value of effort_inc is added to your effort.

Similarly, for recover_dec_thr, for every cycle that your stamina goes below the threshold (recover_dec_thr *
max_stamina) your recovery is reduced by recover_dec. Once you recovery is reduced, it NEVER gets back to
one. It’s only replenish at half-time. Your recovery affects how fast your stamina recovers. For every simulation
cycle, you are given some stamina.
[Say Poh/Rex]

48

How much stamina is given to you at every simulation cycle?

recovery * stamina_inc_max
So, you can see that the less recovery you have the slower you recover after an energy-draining sprint.
[Say Poh/Rex]

In Soccerserverversion 4.18 (sserver-4.18), there is a part ”stamina -= fabs(power)”.
How does it work?

This is part of the stamina model. The more tired a player is (i.e. effort < 1), the more energy it needs to go
at the same speed. Another way to look at it is, the same amount of energy produces lesser speed.
[Say Poh/Rex]

Human can’t assign free_kicks or drop_balls upon holding the mouse click in the
soccermonitor. How do I overcome this problem?

Try disabling the Num Lock found on the keyboard.

[Say Poh/Rex]

Every Soccerserverrelease has new changes to it. Where can I reference for those
changes made?

Refer to the ”Changes” file that comes together with the soccerserver.
[Say Poh/Rex]
What are the different versions of Soccerserver’s protocols that I can use?

Basically, there are 2 different versions of the protocols, version 3 & 4. Below is the comparsion between the 2
versions. You can also refer to question 7 for location of reference.

Version 3 protocol Version 4 protocol
?(init TEAMNAME)” to initialize an agent ” (init TEAMNAME (version 4.00))”
to initialize an agent.
No goal-keeper implementation allowed. Can init. an agent to be a goal-keeper by

? (init TEAMNAME (version 4.00) (goalie))”.

Commands like ’catch’; ’sense_body’ are not available Commands like ’catch’, ’sense_body’ are available.

Only 12 different flags in ’see’ info. 53 flags altogether, and player has an additional
parameter (facedir) in ’see’ info.

[Say Poh/Rex]

Tell me more about ’sense_body’ command.

The following is just Noda’s policy (this means that this is not an official policy):

e (sense_body) is introduced for help to know rough information about player’s body. As same as other
sensors like ’see’ and ’"hear’, it does not guarantee to report correct information. So it is not good to
assume a mechanism above. If you build a client that assumes such mechanism, it may not work when we
change model of simulation in future.

e Another thing is that if you send a command every 20ms, the server becomes too busy to execute the
commands on time. In such case, we may change sserver to limit to accept only a sense_body command
per 100ms.

And this is simulator committee’s policy:

e It is intended that the server promptly responds to all sense_body commands. But it is not intended
for clients to send sense_body commands very frequently to the server. Such frequent command execu-
tion tends to cause network collisions. Because the soccerserveruses UDP/IP, if collisions occur, some
information is lost. The problem is that this loss also affects another team who does not use frequent
commands.

49

e To avoid jamming the server with too many commands, we ask that you limit your clients to no more
than 3 or 4 commands per cycle (simulator step = 100 msec) to the server. For example, on a given cycle,
each client on your team could send 1 turn/dash/kick, 1 say, 1 sense_body, and perhaps a change_view; or
1 turn/dash/kick and 2 or 3 sense_bodys.

e As usual, this is not a strict rule, but rather a general guideline for reasonable behavior. Nobody will be
disqualified if one client sends 7 commands to the server on a single cycle. But if we find that clients are
consistently sending too many commands per cycle, the team will be asked to change its code.

[Say Poh/Rex]

How do I migrate from version 3 to version 4 protocol?

Make sure that you are using sserver-4.xx, in order to migrate. (In order for goal-keeper’s ’catch’ command to
work properly, please use sserver-4.17 or later).

Now search for ” (init TEAMNAME)” in your client implementation, where TEAMNAME is the team name
you wish to initialize to. For example:

sprintf(init_mesg,” (init %s)\n”,t-name);

where t_name is TEAMNAME. Replace it with ” (init TEAMNAME (version 4.00))”. For example:

sprintf(init_mesg,” (init %s (version 4.00))\n” t_name);

or 7 (init TEAMNAME (version 4.00) (goalie))” for goal-keeper. For example:

sprintf(init_mesg,” (init %s (version 4.00) (goalie))\n” t_name);

After that, you have to change your client implementation according with effect to the additional flags and
facedir found in ’see’ info. The additional flags are:

center mark (flag c)

goal posts (flag g 1 t) left-top

(flag g 1 b) left-bottom

(flag g r t) right-top

(flag g r b) right-bottom

flags outside of the pitch (5 meters outside from the edge of the pitch)

(lag TB LR XX)

(lag LR TB YY)

TB ::= [t—Db]

LR ::= [l—1]

XX = [10—20—30—40—50]

YY ::= [10—20—30]

(flag TBLR 0)

TBLR ::= [t—b—1—1]

As for the facedir, it tells the direction that player is facing. The format is:

((player TEAMNAME UNUM) DIST DIR DISTCHANGE DIRCHANGE FACEDIR)

For example,

P=> <=Q Q’s FACEDIR is 180.

P=> Q Q’s FACEDIR is 90.

V [Say Poh/Rex]

What are the guidelines that will be followed by the human referee at the simulator
competition?

So far, the fouls are:

e surrounding the ball,

blocking the goal with too many players

not putting the ball back into play after a free kick,

intentionally blocking the movement of other players,

the goalie repeatedly kicking and catching to move the ball in the penalty area,

50

e sending more than 3 or 4 commands per client per cycle to the simulator (checked if the server is being
jammed or upon request after a game),

e anything else deemed to be ”"ungentlemanly” play judged by the referee.
[Say Poh/Rex]

B.5 Visual Information

Are the following two values the same?

DirChng=-1 , DistChng=-.334
DirChng=179, DistChng=.334
No. If the client receives
(ObjName Dist Dir DistChng DirChng)
the actual relative movement (Vx, Vy) is:
Vx = DistChng * cos(Dir) + (p /180) * DirChng * Dist * sin(Dir)
Vy = DistChng * sin(Dir) + (p /180) * DirChng * Dist * cos(Dir)
where Vx is a component that is parallel to the facing direction of the player, and Vy is a component that is
vertical to the facing direction.
[Noda]

Does it always keep ||DirChng|| < 90?7

If the player is stationary and the ball moves from relative position (Dist, Ang)
(10,15) to position (10,17) in the last simulator step (.1 second), then DirChng
would be the angle of the ball motion relative to the player and DistChng would
be the ABSOLUTE distance the ball traveled. Even though the balls distance to
the player remained constant, DistChng would not be 07?7

No. In this case, DistChng should be 0, or near of 0. DirChng may be near of 2.0.
[Noda]

If the player moves, the vector of the players ABSOLUTE motion is subtracted from
the balls ABSOLUTE motion vector. DistChng is the magnitude of the resulting
vector and DirChng is its angle relative to the players direction?

No. Suppose that players motion and position are (Vx,Vy) and (Px,Py) respectively, and balls motion and
position are (Ux,Uy) and (Qx,Qy) respectively. Then, relative vector of motion (Wx,Wy) is

(WX7WY) = (UXJUY) - (VX7VY)

The relative position vector of ball (Rx, Ry) and its unit vector (Ex,Ey) are

(RX,RY) = (QxaQY) - (PXJPY)

R = (R2x + R2y)

(Ex,Ey) = (Rx/R,Ry/R)

Then, radius component (Dr = DistChng) and angle component (Da = DirChng) of the relative movement
(Wx,Wy) are

Dr = (Wx * Ex) + (Wy * Ey)

Da = (180/p) * (Wx * Ey - Wy * Ex) / R

The inverse translation is as follows:

Suppose that Dr, Da, Rx, Ry, Vx and Vy are given. Then,

R = (R2x + R2y)

(Ex,Ey) = (Rx/R,Ry/R)

Wx =Dr * Ex - (Da * p/180) * R * Ey

Wy = Dr * Ey + (Da * p/180) * R * Ex

(Ux,Uy) = (Vx,Vy) + (Wx,Wy)

These equations are theoretical and noise-less environment. Actually, the server adds various noises and
quantizes values, so that the inverse translation is not so simple.
[Noda]

51

B.6 Inside of Soccerserver

The soccerservermanual says that the magnitude of the noise in the ball motion
varies in proportion to the parameter ball rand.

Does the magnitude of the noise mean the standard deviation of the guassian determines its next position? Or
is it some other meaning?

Generally soccerserveruses unformed distribution of noise. This means that, if ball_rand parameter (=mag-
nitude of noise) is R, then the noise value is in [-R,R], and the density of probability is the same in the domain
[-R,R]. In other words, the probability that the noise is in [x,x+dx] is,

P(noise is in [x,x+dx]) = (1/2R) * dx ; if x is in [-R,R]

= 0 ; otherwise

Standard deviation s of this distribution is:

s2 =R-R (1/2R) * x2 * dx

= (1/2R) * —=x3/3—R-R

=R2/3
[Noda]

The scores on the soccermonitor wrap very soon, going into negative numbers if
the score gets too big. This is a problem when using the same soccerserverfor a
large number of evaluations. Can I suggest using ints or longs for the scores instead
of chars or shorts?

Internally, soccerserveruses int for score. So you need not care about it. The referee reports correct score when
a team gets a goal.

We use char for communication between soccerserverand soccermonitor in order to reduce the amount of the
communication.

[Noda]

What are the units of player_size and ball size? Does these parameters specify
radius or diameter?

The units are meters. They specify radius of the objects.
[Noda]

What are the units of player weight and ball weight? What are the units of
wind_force and ball weight?

There are no correspondence between this unit and physical unit systems. *_weight specifies the stiffness against
wind effect. If weight is large, effect of force of the wind is small, and if the weight is small, the effect is large.
Actually, wind accelerates the velocity of objects every simulation cycle in the following manner:

vel.x += vel.r * (wind.x / weight * WIND_WEIGHT)

vel.,y += vel.r * (wind.y / weight * WIND_WEIGHT)

where (vel.x,vel.y) is objects velocity, vel.r is amount of movement of the object (= |(vel.x,vel.y)|),
(wind.x,wind.y) is a vector of strongness of the wind, and WIND_WEIGHT is a constant parameter (=10000).

wind_force is amount of force of wind. This is equal to | (wind.x,wind.y)— (absolute value of the wind
vector) in the above equation.
[Noda]

wind_dir is 0 means that wind flows to north?
No. Left-to-right on the display is 0 degree.

[Noda]

What are the units of maxpower and minpower?

These do not correspond to the physical parameters. It specifies the degree of power. For example, if the client
send (dash 100), then the velocity of its player will change as follows:

52

vel.x += 100 * dash_power_rate * cos(dir)
vel.,y += 100 * dash_power_rate * sin(dir)

where (vel.x,vel.y) is the velocity of the player, dash_power_ rate is a parameter specified in file server.conf,

and dir is the direction the player is facing.

[Noda]

Are the units of maxmoment and minmoment degrees?

Yes.
[Noda]

B.7 Miscellanous

How reliable is the message transmission?

Method 1: Half-asychronous transmission. Transmits 76 messages, then stops for 10 cycles.

Test run number

Total number Sent

Total number Received

Total number Lost

Percentage Received

1 2856 1948 908 68.21%
2 2856 1946 910 68.14%
3 2862 1951 911 68.17%
4 2854 1945 909 68.15%
5 2852 1945 907 68.20%

Method 2: Half-asychronous transmission. Transmits 76 messages, then stops for 20 cycles.

Test run number

Total number Sent

Total number Received

Total number Lost

Percentage Received

1 2664 1955 709 73.39%
2 2660 1950 710 73.31%
3 2660 1950 710 73.31%
4 2665 1952 713 73.25%
) 2671 1956 715 73.23%

Method 3: Synchronous transmission, i.e. Send then wait to receive that message

Test run number

Total number Sent

Total number Received

Total number Lost

Percentage Received

1 2836 2836 0 100%
2 2816 2816 0 100%
3 2834 2834 0 100%
4 2812 2812 0 100%
5 2812 2812 0 100%

The above tests were done for one half of the full game, i.e. 3000 simulation cycles, with 2 teams (against CMU-
nited) of 1 player (goalkeeper) each in idle state (no kicking of ball). One thing to take note of is, it takes one
or less simulation cycle to receive sent message.

[Say Poh/Rex]

53

Appendix C

Know How

The creation of an agent is a major undertaking that involves solving a wide variety of problems. In this chapter
we try to hint at solutions for a series of common problems that have to be solved independently of the actual
scientific approach.

Please note that this is a very incomplete collection of individual experiences.

C.1 Modeling

In this section we want to give useful hints that concern the modeling aspect of a client.

C.1.1 Controlling Stamina

The soccerserver’s stamina model requires agents to save and spend energy as a partially replenishable resource.
Since the stamina parameter recovery is non-replenishable, agents are best off if they avoid depleting it (the
only exception is when the game is about to end).

To avoid depleting their recovery, agents should monitor their stamina using the sense_body command. If
the stamina is within 100 of the recovery threshold (recover_dec_thr * stamina max), then the power of a
dash should be limited to the difference between the current stamina and the recovery threshold. While the
player may be limited to dashing with a power of 20 (stamina_inc_max) for some time, it will still be able to
recover stamina at the maximum possible rate.

Another way of conserving stamina is by moving slowly (dash with power 40 or so) when adjusting positions
on the field. In general, it is only necessary to dash at full speed when trying to get to the ball before an
opponent.

C.1.2 Determining the Position on the Field

Most RoboCup agents try to figure out their absolute position on the field from the lines and markers they see.
There is a variety of ways to do this. Unfortunately the example implementation of the triangulation is not very
accurate and sometimes even incorrect. The following approach has given fairly accurate positions.

In a first step you calculate the absolute view direction of the agent from a line. Since the intersection angle
between the line and the agent’s view direction is given without any added error, the result is very accurate. If
the agent sees more than one line, it can ignore the line that it sees from the outside (this is the closer line). If
the agent doesn’t see any line, some alternative algorithm must be used to determine the view direction (such
as taking it from an internal world model or using markers).

Now the agent can calculate a vector from its position to the marker by adding its view direction to the polar
coordinates of the flag position it receives. By subtracting it from the (known) global position of the marker,
the agent gets its absolute position. You can compute one such position per seen flag and then take some sort
of weighted average to further increase the accuracy.

An example implementation can be found in the file Field.cc of the AT Humboldt 98 source code, which
is publicly available at
http://www.ki.informatik.hu-berlin.de/RoboCup/RoboCup98/ATHI8.tar.gz.

54

C.1.3 A Memory of Seen Objects

Since clients have limited vision angles, objects on the field can come in and out of view to a particular client.
While mobile objects may not stay in the same position when they are out of view, they also cannot move more
than a certain distance per simulator cycle. Therefore, agents should “remember” the last known position of an
object while becoming less and less confident in the accuracy of this information.

One simple implementation is to keep a confidence variable for each mobile object. Set the confidence in an
object’s position to a maximum value when it is seen and then multiply the confidence by some fraction every
cycle that it is not seen. When the confidence reaches some threshold, it can be considered forgotten.

Since the ball can move faster than players, confidence in the ball’s location should decay more quickly.
Nevertheless, an agent should be able to turn away from the ball to move to a new position without forgetting
the ball’s location entirely.

C.1.4 ”Ghost Objects”

A frequently made mistake in the implementation of such a memory of seen objects results in what we call
”ghost objects”. During RoboCup-98 it seemed several times that agents were following a ghost ball.

What happens is this: When merging the memory of seen objects with the current visual information, it
is very tempting to simply keep all objects the agent currently doesn’t see. Now if, for example, the agent’s
memory says the ball is in front of the agent, but the agent doesn’t see it there (because, actually, the ball is
behind the agent), the agent still keeps in its memory the old, obviously faulty position of the ball. And it keeps
running towards this imaginary ball somewhere in front of it.

Of course, the right thing to do is check if the agent should have seen the object before deciding to keep the
object’s position. If the agent should have seen it but didn’t, the position is obviously incorrect and should be
discarded.

C.1.5 The Client’s View of the World

It can be very time consuming and cumbersome to debug the agent’s internal model of its environment. One
approach is to visualize it either using an adapted version of the soccer monitor or to write a separate program.
The individual belief of an agent can then be easily compared to the "real” world as visualized by the soccer
monitor.

C.1.6 Some Words About Time

In general, the server time increments by 1 on every simulator cycle. However, there are occasions (after goals
and after offsides calls) during which the simulator clock stops. If your clients base their behaviors on time in
any way (e.g. sending a sense_body command every 10 cycles), they may become confused when the server time
stops.

One possible solution is to represent time as an ordered pair (t,s) where t is the server time and s is the
number of cycles since the clock has stopped. When the clock is moving, s is always 0. Thus, t always matches
the server time, but with appropriate arithmetic functions defined, agents can still reason about the number of
simulator cycles between events.

For an example of such an implemented time structure, see the CMUnited-98 source code available at
http://www.cs.cmu.edu/ pstone/RoboCup/CMUnited98-sim.html.

C.2 Synchronization

Synchronization between client and server is an important and very intricate issue. The server cycles may be
longer than you think, commands may be lost, and information coming from the server may be inconsistent.

C.2.1 A Method to Check the Synchronization

The Soccerserver produces a log file that records every incoming command if its config file contains the line:

log_file: game.log

55

Of course, you can use any other file name instead of game.log. Using the UNIX command grep you can
easily extract all the commands the server received during one cycle and/or those coming from a particular
agent.

If you find more than one main command like dash or kick per agent per cycle, the agent is too fast and
commands were lost. If you don’t find any commands from an agent for a particular cycle, the agent is too slow
and thus not as effective as it could be.

C.2.2 Inconsistent Information From the Server

The soccerserver does not guarantee that its internal information is always instantaneously consistent: it reaches
a consistent state at the end of every simulator cycle. For example, all body commands (turn, dash, kick, and
catch) have their effects at the end of each simulation cycle.

One problem that this inconsistency causes relates to estimating an agent’s angle. You may want your agent
to update its belief of the angle that it’s facing based on a turn command sent. In this way, it can keep a
correct world view even if it doesn’t receive visual information. However, it is important to be careful to notice
whether the previous visual information already reflected the turn or not. Otherwise, your agent may wrongly
incorporate the effects of the same turn twice. An agent may determine whether the server already incorporated
the turn before sending visual information by checking whether its facing angle (determined by the angle of the
closest line) is closer to the previous vision angle or closer to the expected vision angle after executing the turn.

Another problem occurs when you try to evaluate sense_body results. If you have sent a dash in the current
cycle, the sense body answer already reflects the reduced stamina value; the number of dashes is also already
increased. But the speed is not updated until the end of the cycle, so you still get the old value.

C.2.3 Tracking Down Lost Commands

If your agents aren’t responding as well as you think they should, one thing to check is whether or not the
server is executing all the commands your agents are sending. You can check this by seeing if the counts of
turns, dashes, and kicks returned in response to sense_body commands match up with the number of commands
actually sent.

Under normal network conditions, the server should be able to execute all commands if only one is sent every
simulator cycle. Therefore, you may want to have your agents print out error messages if several messages are
being missed. You will then know to check the network or to slow down the simulator (see Section C.3.1).

While you may consider re-sending messages that have been missed, it is difficult to do so in a reliable and
sensible way. Instead, we recommend slowing down the simulator, running fewer players, or moving to a faster
network.

C.3 Debugging

Debugging a client in a pseudo-real-time environment is difficult. There are different approaches. Probably you
will have to combine several. Don’t underestimate the debugging time in your project time plan.

C.3.1 Slowing Down Server and Clients

If you don’t have the resources to run all clients and the server at full speed, you can train under accurate
conditions by slowing down the server and clients. For example, by slowing down the simulation to half the
normal speed, we were able to run the server, the monitor, and all 22 clients on a single 266 MHz Pentium
without having any commands missed. If you slow down the server, be sure to slow down the clients as well.

To slow down the server, you should change two parameters in server.conf: simulator_step and send_step.
Be sure to keep them in the same 2:3 ratio. For example, to run the simulator at half-speed, set simulator_step
to 200 and send_step to 300. If you still want your match to have the same number of cycles, you also have to
increase the duration of the match in seconds as given in the half_time parameter accordingly.

If you run the server significantly slower than real-time, you may want to record your trials while you are
away from the computer and then play them back at full speed using the logplayer program.

A convenient way to ensure that the simulator and the clients are running at the same speed is to have them
both read the same configuration file (see Section C.4.5).

56

C.3.2 Usage of the Log Player for Debugging

Use the logplayer to play back sequences and see, cycle by cycle, the actions taken. Particularly kicks and
catches can be noticed. Every kick is shown by changing the border of the circle that represents the kicking
player. A catch changes the color of the whole circle.

You can make the soccerserver create a log by adding the lines

record_log: off
record: game.rec

to the config file of the server. The first line means that the server should not include the log info in the
record of the game. The second line defines the name under which the game record is saved.

Output time-stamped debugging info of your agents to compare with what you see on the logplayer. Be
aware that writing a lot of debugging info to disk may slow down your agents so much that they can’t keep up
with the server. You may have to slow down the server and/or reduce the amount of debug info your agents
produce. Also, you might just turn on debugging for some or even just one agent of your team.

C.3.3 Organization of Log Files

When debugging, it is often useful to know exactly what sensor information was received and actuator commands
were sent by each client. A convenient way to do that is to have each client open a file named according to its
team name and uniform number. It can then write its input and output strings to the file as it goes.

This information is especially useful when stepping through a recorded sequence one cycle at a time. However,
take care to turn this function off when you want to run at maximum speed: all the file writing can slow things
down significantly.

For an example of clients that save all of their input and output, see the CMUnited-98 team available
at http://www.cs.cmu.edu/ “pstone/RoboCup/CMUnited98-sim.html. If clients are started with the flag -
save_log, they will save their input and output to files.

C.4 Software Technology

The development of a reasonably successful RoboCup-Agent is a considerable software project. For example,
the team AT Humboldt 98 has more than 20,000 lines of code. Getting any program of that size to work within
a given time span is a non-trivial task. Having someone on the team that has at least some software construction
experience is extremely helpful.

Besides experience, the use of certain tools and practices can improve the efficiency of your development
process tremendously. This section is a loose collection of topics related to the general software development
aspect of creating a RoboCup agent.

C.4.1 Sourcecode Management

Unless you have a lot (more than one year) of time, you will probably want to develop the agent as a group.
This means that you have to coordinate concurrent development between more several developers. A source
code management system is very helpful here.

There are several non-commercial source code management systems available. During the development of
AT Humboldt 98 the system CVS was used. It is much less restrictive than the system RCS it is based on. For
example, it allows several developers to edit the same project file and merges the changes. For more information,
see the CVS manual. Another such system is PRCS. It is more tailored towards smaller projects and is simpler
to use. One the other hand it is newer and less thoroughly tested than CVS.

The CVS manual can be found at http://www.loria.fr/"molli/cvs/doc/cvs_toc.html.

The PRCS home page is located at http://www.XCF.Berkeley.EDU/"jmacd/prcs.html.

C.4.2 TUseful Resources

Even if this is not your first software development project, you might find some of these pointers helpful

e GDB is THE source-level debugger for C and C++ code. Use it to step through your program, find out
why it core-dumped, or attach it to a running process to find the endless loop where it got stuck. Gdb
should be part of most UNIX installations. You can download it from one of the many FTP sites for GNU

57

software; a list of these sites can be found at http://www.gnu.org/order/ftp.html. An online-manual
is available, for example at http://www.cs.tu-bs.de/softech/info/gdb toc.html.

e DDD (Data Display Debugger) is a graphical front-end to several source-level debuggers, among them
gdb. Move the mouse over a variable of your source-code and DDD displays its current value. More
information can be found on the DDD homepage at http://www.cs.tu-bs.de/softech/ddd/.

e Code Complete is THE practical guide to software development. It is full of hints to write elegant,
self-documenting, maintainable code. Especially the sections ”Naming Data” and ” Layout and Style” can
be extremely helpful.

Code Complete: A Practical Handbook of Software Construction, Steve McConnell, Microsoft Press, 1993.
Reviews can be found e.g. at http://www.amazon.com (search for ”code complete”).

C.4.3 Quitting Clients Automatically

Although it’s not so hard to write a script to kill your clients when you are done with a run, you may find it
more convenient if they exit automatically when the server is killed. You can make this happen by keeping track
of how many timed action cycles go by between sensor information messages from the server. If a client hasn’t
heard from the server in several seconds, it is probably safe to exit.

C.4.4 Getting Communication Right

Communication between the client and the server is done via UDP/IP, the so-called connectionless IP protocol.
This means that data is exchanged in individual packets, and the protocol doesn’t guarantee that the packets
arrive in the order they are sent or that they arrive at all.

In order to send data to the server, you have to create a communication end point, called socket. The system
gives you a number, the socket descriptor, that you use from then on to work with the socket. You have to use
the following system functions to set up a UDP communication in the UNIX environment:

1. gethostbyname, inet_addr(), and inet_ntoa are Internet address manipulation and lookup functions that
you use to initialize the client and the host address structures.

2. socket() creates a new socket and returns the socket descriptor.
. setsockopt sets socket characteristics such as the receive buffer size.
. bind() connects the socket to a port of the local machine.

. sendto() is used to send data to a host.

3
4
5
6. select() can be used to check if data from the server is available at the socket.
7. recyfrom() is used to receive the data.

8

. close() is used to close the socket when the agent terminates.

The detailed description of these commands can be found in the UNIX man pages or in a book about network
programming such as [4].

For an implementation example look at the files Communicator.h and Communicator.cc of AT Humboldt
98, which are available at http://www.ki.informatik.hu-berlin.de/RoboCup/RoboCup98/ATHI8.tar.gz.

C.4.5 Using server.conf in the Client

A good deal of the server’s behavior is governed by its configuration file, server.conf. The speed of the
simulation, the size of the player, the maximum ball speed, etc. are all server parameters.

Just as the server reads in the configuration file, your clients should read the very same file. In fact, you can
use the very code from the server (the function Stadium::GetOption() in field.C). If you use these parameters
rather than any hard-coded numbers, it will be easy for you to adapt your clients to different simulator conditions.

For example, it is tempting to write your clients such that they will kick the ball whenever it is within 1.885
meters. However, it will probably be worth the effort to write a BalllsKickable() function which returns TRUE
when the ball is within kickablemargin + ball_size + player_size meters.

58

Not only will you be able to adjust to changes in the server defaults, but you will also be able to customize
your clients to react differently when the offsides rule is not used, etc.

While it is generally good to parameterize your code, in this case it is particularly good to tie your client
parameters to the server parameters.

59

Bibliography

[1] Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot Soccer World Cup II. Springer Verlag,

Berlin, 1999.
[2] Hiroaki Kitano, editor. Proceedings of the IROS-96 Workshop on RoboCup, Osaka, Japan, November 1996.
[3] Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I. Springer Verlag, Berlin, 1998.

[4] W.R. Stevens. UNIX Network Programming. Prentice Hall, 1990.

[S o T W}

[5] Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis, Carnegie Mellon University, December

1998.

60

