
Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 1

Web Service Offerings Infrastruc-
ture (WSOI) – A Management In-

frastructure for XML Web Services

Vladimir Tosic, Wei Ma,

Bernard Pagurek, Babak Esfandiari

Research Report SCE-03-19
August 16, 2003

The Department of Systems and
Computer Engineering,

Carleton University, Ottawa, Canada
August 16, 2003

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 2

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 3

Web Service Offerings Infrastructure (WSOI) – A
Management Infrastructure for XML Web Services

Vladimir Tosic, Wei Ma, Bernard Pagurek, Babak Esfandiari

Department of Systems and Computer Engineering, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

Tel.:+1(613)520-2600x3548; Fax:+1(613)520-5727
{vladimir, weima, bernie, babak} @ sce.carleton.ca

Abstract. While the recent technologies for XML (Extensible Markup Lan-
guage) Web Services are an important step towards the goal of application-to-
application (A2A) and business-to-business (B2B) integration, they do not ad-
dress all management-related issues. Our Web Service Offerings Language
(WSOL) enables formal specification of important management information—
classes of service (modeled as service offerings), various types of constraint
(functional, QoS, access rights), and management statements (e.g., prices, pen-
alties, and management responsibilities)— for XML Web Services. To
demonstrate the usefulness of WSOL for the management of XML Web Serv-
ices and their compositions, we have developed a corresponding management
infrastructure, the Web Service Offerings Infrastructure (WSOI). WSOI en-
ables monitoring and accounting of WSOL service offerings and their dynamic
manipulation. To support monitoring of WSOL service offerings, we have ex-
tended the Apache Axis open-source SOAP engine with WSOI-specific mod-
ules, data structures, and management ports. To support dynamic manipulation
of WSOL service offerings, we have developed appropriate algorithms, proto-
cols, and management port types and built into WSOI modules and data struc-
tures for their implementation. Apart from provisioning of WSOL-enabled
XML Web Services, we are using WSOI to perform experiments comparing
dynamic manipulation of WSOL service offerings and alternatives.

1 Introduction and Motivation

Technologies for XML (Extensible Markup Language) Web Services attempt to
address the problem of application-to-application (A2A) and business-to-business
(B2B) integration using a set of standards based on XML. The three main Web Serv-
ice technologies are the SOAP protocol for XML messaging, the WSDL (Web Serv-
ice Description Language) language, and the UDDI (Universal Description, Discov-
ery, and Integration) directory. While there has been a lot of recent progress regard-
ing XML Web Services, a number of management-related issues have not yet been
studied completely. This paper presents a management infrastructure that explores
and addresses several of these issues.

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 4

An XML Web Service is “a software application identified by a URI (Uniform
Resource Identifier), whose interfaces and binding are capable of being defined,
described and discovered by XML artifacts and supports direct interactions with
other software applications using XML based messages via Internet-based protocols”
[1]. Hereafter, we use the term ‘Web Service’ as a synonym for the term ‘XML Web
Service’. Since Web Service technologies are intended for A2A and B2B integration,
their true power is leveraged through compositions (orchestrations) of Web Services.
By a consumer (requester) of a Web Service A we assume another Web Service that
is composed with A and collaborates with it, not a human end user. On the other
hand, we refer to A as the provider (supplier) Web Service. The composed Web
Services can be distributed over the Internet, run on different platforms, imple-
mented in different programming languages, and provided by different vendors.

When SOAP, WSDL, and UDDI were first published, we noticed the need for
enabling Web Services to provide multiple classes of service and to perform man-
agement activities, such as monitoring and dynamic (i.e., run-time) manipulation,
with them. By a ‘class of service’ we mean a discrete variation of the complete serv-
ice and quality of service (QoS) provided by one Web Service. Classes of service of
one Web Service refer to the same WSDL description, but differ in constraints and
management statements. For example, they can differ in usage privileges, service
priorities, response times guaranteed to consumers, verbosity of response informa-
tion, prices, payment models, and/or management entities. Using classes of service is
not as powerful as using custom-made service level agreements (SLAs), consumer
profiles, or separate Web Services. However, specification and, particularly, man-
agement of classes of service is generally simpler, faster, and incurs less run-time
overhead than alternatives [2]. For example, it is often much easier and faster for a
consumer to switch to another service offering of the same Web Service than to
search for a replacement Web Service or to renegotiate an SLA. We will discuss
switching and other mechanisms for dynamic manipulation of service offerings later
in the paper.

For the formal specification of classes of service (modeled as service offerings),
various types of constraint (functional, QoS, access rights) and management state-
ments (prices, penalties, management responsibilities), we have developed the Web
Service Offerings Language (WSOL). WSOL is compatible with and complemen-
tary to WSDL 1.1. To demonstrate monitoring and dynamic manipulation of WSOL
service offerings, we have developed the corresponding management infrastructure –
the Web Service Offerings Infrastructure (WSOI). WSOI monitoring activities
include measurement and calculation of used QoS metrics, evaluation of WSOL
constraints, and accounting of executed operations and evaluated constraints. WSOI
dynamic manipulation of WSOL service offerings achieves adaptation of a Web
Service composition without breaking relationships between provider and consumer
Web Services. While we have published several papers about WSOL [3, 4, 5], the
main topic of this paper is WSOI.

In this section, we introduced the topic of our research. In the next section, we
give a brief overview of related work, both our work on WSOL and the work of other
authors. Then, we summarize the primary and secondary goals and requirements for

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 5

<wsol:serviceOffering name = ”SO2”
 service = ”buyStock: buyStockService ”
 extends = ”tns: SO1”
 accountingParty = ”WSOL-SUPPLIERWS” >
 <wsol:constraint name = ”QoScons2”
 service = ”WSOL-ANY”
 portOrPortType = ”WSOL-EVERY” operation = ”WSOL-EVERY” >
 <expressionSchema:booleanExpression >
 <expressionSchema:arithmeticExpression >
 <expressionSchema:QoSmetric
 metricType = “QoSMetricOntology: ResponseTime ”
 service = ”WSOL-ANY”
 portOrPortType = ”WSOL-ANY” operation = ”WSOL-ANY”
 measuredBy = ”WSOL_INTERNAL” />
 </expressionSchema:arithmeticExpression>
 <expressionSchema:arithmeticComparator type = ”<” />
 <expressionSchema:arithmeticExpression >
 <wsol:numberWithUnitConstant>
 <wsol:value>0.3</wsol:value>
 <wsol:unit type = ”QoSMeasOntology: second ” />
 </wsol:numberWithUnitConstant>
 </expressionSchema:arithmeticExpression>
 </expressionSchema:booleanExpression>
 </wsol:constraint>
 …
 <wsol:price name = “Price1”
 service = “buyStock: buyStockService”
 portOrPortType = “buyStock: buyStockServicePort”
 operation = “buyStock: buySingleStockOperation” >
 <wsol:numberWithUnitConstant>
 <wsol:value>0.01</wsol:value>
 <wsol:unit type = “currencyOntology: CanadianDollar” />
 <wsol:numberWithUnitConstant>
 </wsol:price>
 …
 <wsol:managementResponsibility name = ”MangResp1” >
 <wsol:supplierResponsibility scope = ”tns: AccRght1” />
 <wsol:consumerResponsibility scope = ”tns: Precond3” />
 <wsol:independentResponsibility scope = ”tns: QoScons2”
 entity = ”http://www.someThirdParty.com ” />
 </wsol:managementResponsibility>
</wsol:serviceOffering>

Figure 1. Parts of an Example WSOL Service Offering

WSOI in Section 3. In Section 4, we present how WSOI implements the monitoring
of WSOL service offerings. In Section 5, we give an overview of mechanisms for
dynamic manipulation of WSOL service offerings, discuss how WSOI implements
them, and explain experiments in which we use WSOI to research these mecha-
nisms. We summarize conclusions and directions for future work in Section 6.

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 6

2 Related Work

2.1 Web Service Offerings Language (WSOL)

The main concept in WSOL [3, 4, 5] is a service offering (SO) – a formal represen-
tation of one class of service for a Web Service. It can contain formal definitions of
constraints, management statements, and/or reusability constructs:
1. Every WSOL constraint formally states some condition to be evaluated before

and/or after invocation of some operations or periodically, at particular date/time
instances. We have defined XML schemas for description of functional constraints
(e.g., pre- and post-conditions), quality of service (QoS) constraints (e.g. about re-
sponse times or availability), and access rights.

2. A WSOL statement is any construct, other than a constraint, that states manage-
ment information about the represented class of service. We have defined XML
schemas for statements for management responsibilities, validity periods, sub-
scription prices, pay-per-use prices, and monetary penalties to be paid if con-
straints are not met. Using the XML Schema mechanisms, WSOL can be ex-
tended with the formal specification of additional types of constraint and man-
agement statement.

3. The reusability constructs in WSOL enable easier specification of new service
offerings, e.g., by using inheritance (extension), inclusion, or template instantia-
tion. They also determine static relationships between WSOL service offerings,
which show similarities and differences between service offerings and do not
change during run-time.
Figure 1 shows example parts of the WSOL service offering SO2 for the buyS-

tockService Web Service. SO2 extends another service offering, SO1, and contains
the QoS constraint QoScons2, the pay-per-use price statement Price1, and the man-
agement responsibility statement MangResp1. The other constraints and statements
are left out for brevity.

In addition to service offerings, WSOL files can contain specifications of service

Figure 2. Partial UML Class Diagram for WSOL Concepts

WSOL File

SO SODR

1
1..*

0..* 0..*
2 0..*

Constraint Statement Reusability
Construct

1 1 1

0..*
0..* 0..*

1..*

1..*

Boolean
Expression

0..* 1

Expression

0..*

1

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 7

offerings dynamic relationships (SODRs). One such relationship states what serv-
ice offering is an appropriate replacement if particular constraints from the used
service offering cannot be met. Since SODRs can change during run-time (e.g., after
creation of a new service offering), they are specified outside service offerings to
avoid frequent modifications of service offering definitions. Figure 2 shows relation-
ships between the main WSOL concepts.

To verify the WSOL syntax, we have developed a WSOL parser, which we plan to
extend to a full WSOL compiler.

2.2 Other Related Works

Our work on WSOL draws from previous work on differentiated classes of service
and formal representation of constraints in other areas. While at the beginning of our
research there was no work of this kind for Web Services, several related works ap-
peared in the meantime.

The most important are the two recent languages for the formal, XML-based,
specification of custom-made SLAs for Web Service: the IBM’s Web Service Level
Agreements (WSLA) [6, 7] the HP’s Web Service Management Language
(WSML) [8, 9]. SLAs in these two languages contain QoS constraints and manage-
ment information, e.g., prices. Both WSLA and WSML are oriented towards man-
agement applications in inter-enterprise scenarios and are accompanied by appropri-
ate management infrastructures. While WSLA and WSML are more powerful in
some aspects, WSOL also has advantages, such as support for classes of service and
their dynamic manipulation, specification of different constraints and management
statements, broader set of reusability constructs, relative simplicity, and features with
lower run-time overhead [4].

Recently, several works related to the specification of policies or QoS for Web
Services have appeared, such as WS-Policy [10], DAML-S [11], and UX [12]. How-
ever, these works are not yet accompanied by research of management-related issues
and appropriate management infrastructures.

On the other hand, several companies— such as HP, Talking Blocks, Flamenco
Networks, and Actional— have products performing some management, often per-
formance management, of Web Services and/or Web Service compositions. Several
recent papers also concentrate on particular management functional areas, such as
security management [13], for Web Services. An important distinction between our
research and these products and papers is that our work is focused on the specifica-
tion, monitoring, and dynamic manipulation of classes of service for Web Services.
We are not aware of commercial products or academic works addressing these issues.

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 8

3 Goals and Requirements for the Web Service Offerings
Infrastructure (WSOI)

3.1 Primary Goals and Requirements

The WSOL language is not very useful without a management infrastructure that
monitors WSOL service offering. Consequently, the first goal for WSOI was to en-
able practical use of WSOL and thus demonstrate that WSOL can be used for the
monitoring and management of Web Services and Web Service compositions.

In addition, we were interested in researching dynamic adaptation of Web Service
compositions based on the manipulation of WSOL service offerings without human
intervention. Therefore, another essential goal for WSOI was to implement appro-
priate mechanisms for dynamic manipulation of service offerings and enable
experiments with them.

3.2 Secondary Goals and Requirements

Related to the latter primary goal, one of our secondary goals was to leave open the
possibility that, if needed, humans or external software managing Web Service com-
positions can be involved in the manipulation of WSOL service offerings.

Our vision was that WSOL and WSOI can accommodate relatively simple pro-
vider and consumer Web Services. We did not assume that Web Services are pro-
vided by enterprises who already have complex management frameworks and/or
application servers supporting management. One argument against monitoring and
management activities is their run-time overhead. Consequently, we researched and
built into WSOL and WSOI features with relatively low run-time overhead, such
as specification and manipulation of classes of service.

WSOL enables specification of management third parties, which perform moni-
toring independently from the provider and the consumer. WSOL management third
parties usually act as SOAP intermediaries, but can also act as probes. Consequently,
WSOI had to support management third parties.

It is often necessary to group monitoring and management information, e.g., for
the measurement or calculation of periodic QoS metrics, the evaluation of periodic
QoS constraints, the calculation of subscription prices, and the manipulation of serv-
ice offerings. One simple way to achieve this was to have WSOI support sessions.

Finally, we intended that a WSOL compiler would be able to automatically gen-
erate, without programmer intervention, WSOI modules that measure and/or calcu-
late QoS metrics, evaluate WSOL constraints, and perform accounting.

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 9

4 Monitoring of WSOL Service Offerings

Figure 3 shows modules in WSOI. WSOI modules can be categorized into WSOL
service offering monitoring modules, WSOL service offering manipulation modules,
and modules used for both activities. In this section, we discuss how WSOI imple-
ments monitoring activities, while in the next section we will discuss manipulation
of WSOL service offerings.

The part of WSOI that performs monitoring of WSOL service offerings is based
on extensions of Apache Axis (Apache eXtensible Interaction System) [14], a popu-
lar open-source SOAP engine implemented in Java. A SOAP engine is an applica-

Figure 3. Modules in the Web Service Offerings Infrastructure (WSOI)

 WSOL SO monitoring WSOL SO manipulation

 Data structures

MessageContext

 soTable hashtable (key = SO name, value = SOData object)

 sessionTable (key = session ID, value = WSOISessionData object)
 consumerTable (key = consumer ID, value = ConsumerData object)

 Modules implementing Service Offering Management (SOM) ports

SessionMgmt

SOInfo SONotification

SOComparisons

 SOM-Prov SOM-Cons

SOM-AccP

SODRMgmt

SOM-MgmtP

SOSecurity

Standard Axis modules

Timer module SOMgmtDecions module

 WSOI-specific handlers and chains

WSOIChain chain

QoS-measurement WSOI handlers

Constraint-evaluation WSOI handlers

SOInput handler SOOutput handler

AccountingInput handler AccountingOutput handler

WSOISessionHandler

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 10

tion that receives, processes, and sends SOAP messages. We run Axis using the
popular Apache Tomcat open-source application server.

Axis has a modular, flexible, and extensible architecture based on configurable
chains of pluggable SOAP message processing components, called handlers. An
Axis handler can perform message processing, e.g., measurement of QoS metrics or
evaluation of constraints. It can also alter the processed SOAP message, e.g.,
add/remove headers. An Axis chain is an ordered, pipelined collection of handlers.
Every Axis chain can also be treated as a handler. Axis handlers exchange informa-
tion through an instance of the MessageContext class, which contains information
about the request message, the response message, and a bag of properties. Axis han-
dlers can use the MessageContext properties for decisions related to message proc-

Figure 4. An Example of Message Processing in Provider-side WSOI, based on Axis

req.

res.

op.
call

WSOI (extends Apache Axis)

Pr

… SH

SH

SOI

SOO …

WSOIChain

RTB

RTS

AI

AO QCE

Legend:
req. request (input) message
res. response (output) message
… standard Axis modules, executed for all Web Services
SH WSOISessionHandler, performs session management activities
SOI SOInput, reads WSOL information from SOAP headers and writes it

into appropriate message context properties
SOO SOOutput, reads WSOL information from message context properties

and writes it into SOAP headers
WSOIChain WSOIChain, examines the context of an operation invocation and

description of the current service offering and dynamically constructs
the chain of appropriate WSOI-specific handlers

AI AccountingInput, records the request message
AO AccountingOutput, uses the information from the message context to

calculate prices and eventual penalties to be paid
QCE QoSConstraintEvaluation, evaluates the QoS constraint limiting re-

sponse time, stores result into the message context
RTB RequestTimeBegin, stores into the message context the start time for

measuring response time
RTS RequestTimeStop, stores into the message context the stop time for

measuring response time and the difference between this stop time
and the start time stored by RequestTimeBegin

Pr Provider, standard Axis module that dispatches the call to the Java
object implementing the requested operation

op. call operation call, i.e., the Java language call to the implementation of the
Web Service’s operation

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 11

essing and can modify these properties. Axis can be used for providers, consumers,
and SOAP message intermediaries, such as WSOL management third parties.

In WSOI, specialized Axis handlers perform WSOL-related measurement and
calculation of QoS metrics, evaluation of constraints, and accounting activities.
Hereafter, we refer to these handlers and their chains as ‘WSOI-specific handlers
and chains’ (see Figure 3). Some design decisions for WSOI-specific handlers were
discussed in [2]. While a WSOL compiler will be able to generate WSOI-specific
handler automatically from WSOL files, we have manually implemented some of
these handlers in our WSOI prototype.

In different contexts, different WSOI-specific handlers are used. A context is de-
termined by the full name of the invoked operation (containing Web Service, port,
and operation names), the name of the service offering, and the name of the man-
agement party in which this handler is used. We have developed an XML file format
describing the order of WSOI-specific handlers used in a particular context. Such
XML files can be generated by a WSOL compiler or human Web Service administra-
tors. Inside WSOI, the information about the used WSOI-specific handlers and their
order is stored in attributes of the SOData class, discussed in more detail in Subsec-
tion 5.2. While loading of information from the mentioned XML files into SOData
attributes is planned for future work, we have manually created representative SO-
Data instances in the current WSOI prototype.

The WSOIChain class is the crucial WSOI module for the monitoring of WSOL
service offerings. It contains code that dynamically constructs the chain of appropri-
ate WSOI-specific handlers for the given context.
Several WSOI-specific handlers are used by all management parties. For efficiency
reasons, they are implemented outside the WSOIChain chain. One of them is
WSOISessionHandler (SH) that performs session management activities. Further, the
WSOI-specific handlers ServiceOfferingInput (SOI) and ServiceOfferingOutput
(SOO) exchange the management information between MessageContext properties
and SOAP headers (see Figure 4). While MessageContext properties are used to
transport WSOL-related management information between WSOI modules, SOAP
headers are used to transport this information between management parties.

Figure 4 shows an example configuration of handlers inside the provider-side
WSOI. In this example, the provider Web Service measures response time, evaluates
a QoS constraint limiting this response time, and performs accounting.

The measurement or calculation of periodic QoS metrics and evaluation of peri-
odic constraints differs from the example in Figure 2. It is initiated by Timer, a
special active WSOI-specific module. Timer invokes WSOIChain, which creates and
executes a chain of WSOI-specific handlers. The results can be stored locally and/or
reported to other management parties in a special notification message.

WSOI data structures and modules used for the manipulation of WSOL service of-
ferings will be discussed in Subsection 5.2.

We have performed a number of experiments to demonstrate that WSOI can be
used for monitoring of Web Services and to estimate the overhead that such monitor-
ing places on Web Services. We have run a simple provider Web Service using Axis
and using WSOI and measured average response time and average Java Virtual

Table 1a. Description of an Experiment Comparing Average Response Time and Average
Provider-side JVM Memory Usage of Apache Axis and WSOI, both Running over Apache Tomcat

Description Axis WSOI
Number of Web Services 2 (consumer and provider) 2 (consumer and provider)
Distribution Different computers in a local

network
Different computers in a local
network

Provider Web Services Simple stock notification
Web Service

Simple stock notification
Web Service

Number of evaluated con-
straints

0 3 (1 pre-condition, 1 post-
condition, 1 QoS constraint)

Number of exchanged SOAP
messages

2 (1 request and 1 reply) 2 (1 request and 1 reply)

Start time for measuring
response time

Consumer sends the SOAP
request message

Consumer sends the SOAP
request message

Stop time for measuring
response time

Consumer receives the SOAP
reply message

Consumer receives the SOAP
reply message

How was the average re-
sponse time calculated?

1000 tests were run, then the
average was calculated

1000 tests were run, then the
average was calculated

Software participating in
provider-side JVM memory
usage

Tomcat, standard provider-
side Axis modules, Java
implementation of the pro-
vider

Tomcat, standard provider-
side Axis modules, WSOIS-
essionHandler, other WSOI-
specific modules, Java im-
plementation of the provider

How was the average JVM
memory usage calculated?

For 1000 continuous test
runs, JVM memory usage was
periodically measured every
20 ms, then the average was
calculated

For 1000 continuous test
runs, JVM memory usage
was periodically measured
every 20 ms, then the average
was calculated

Table 1b. Results of the Experiment Comparing Average Response Time and Average Provider-
side JVM Memory Usage of Apache Axis and WSOI, Both Running over Apache Tomcat

Measured
Value [Units]

Axis (= A) WSOI (= B) Difference
(= B-A)

Relative Dif-
ference (= (B-
A)/A) [%]

Response time
[ms]

140 161 21 15.00 %

JVM memory
usage [bytes]

6 135 821 6 397 559 261 738 4.27 %

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 12

Figure 5. A UML Sequence Diagram of Consumer-initiated Switching of Service Offerings

C: Consumer P: Provider A: Accounting &
Management

3. switchSO

2. block

7.initAndFinal

9. unblock

4. checkSwitch

6. initAndFinal

1. switchSO

8. switchingOK

5. switchingOK

Machine (JVM) memory usage. Table 1a describes one such experiment, while Table
1b shows its results. In our opinion, the 15% increase in response time and the 4%
increase in memory usage are acceptable. When Web Services are distributed over
the Internet, the network delay increases and the relative WSOI overhead on the total
response time decreases.

5 Dynamic Manipulation of WSOL Service Offerings

5.1 Overview of Mechanisms for Dynamic Manipulation of Service Offerings

The five main dynamic manipulation mechanisms we have studied [2] and imple-
mented in WSOI are:
1. switching,
2. deactivation,
3. reactivation,
4. deletion, and
5. creation of service offerings.
These mechanisms can be used between operation invocations inside one session.

Dynamic switching between service offerings means changing which service of-
fering a consumer uses. Either a consumer or a provider can initiate it. In the latter
case, the consumer is asked for confirmation. The consumer can initiate switching to
dynamically adapt the service and/or QoS it receives without searching for another
provider. The provider can initiate switching to gracefully upgrade or degrade its
service and/or QoS in case of changes. Switching between service offerings is the
basic mechanism in our research. Figure 5 shows a UML (Unified Modeling Lan-

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 13

guage) sequence diagram for simple consumer-initiated switching. Table 2 explains
the sequence steps from Figure 5. We have also developed solutions for more com-
plex scenarios and for handling of special cases.

Deactivation of service offerings is used by a provider Web service when
changes in operational circumstances affect what service offerings it can provide. We
have developed support for handling consumers using the deactivated offering [2].

The deactivated service offering may be reactivated at a later time after another
change of circumstances. After the reactivation, the provider suggests the affected
consumers to switch to their original service offerings. This can help in achieving, as
much as possible, the originally intended level of service and QoS.

If the probability of future reactivation is zero or very low, the provider Web Serv-
ice can decide to dynamically delete a deactivated service offering.

Dynamic creation of new service offerings can be used after a change in the im-
plementation of the provider Web Service, in the Web Services that the provider
uses, in management third parties, in the execution environment, or in consumer
needs. Dynamic creation of new service offerings can be non-trivial and incur non-
negligible overhead. It cannot be performed arbitrarily due to various possible con-
flicts. Therefore, we are researching only simple and limited creation of new service

Table 2. Sequence Steps for Consumer-initiated Switching of Service Offerings

No. Sender->Recipient :
Message

Explanation

- - Before this sequence, P provides at least two active
service offerings, SO1 and SO2, that C may use. C
uses SO1, but wants to use SO2. A performs all
monitoring and accounting activities for SO1 and
SO2

1. C->A : switchSO C sends A the name of SO2
2. A->A : block A blocks and queues new requests from C to P (A

uses SO1 to finish processing of requests received
before this message)

3. A->P : switchSO A sends P the name of SO2
4. P->P : checkSwitch P checks whether switching is possible, e.g.,

whether SO2 exists, is active, and C may use it
5. P->A : switchingOK P informs A that switching is possible
6. P->P : initAndFinal P initializes its data structures and activities related

to SO2 and finalizes its data structures and activities
related to SO1

7. A->A : initAndFinal A initializes its data structures and activities related
to SO2 and finalizes its data structures and activities
related to SO1

8. A->C : switchingOK A informs C that switching is completed
9. A->A : unblock A unblocks queued requests from C to P (A proc-

esses these requests using SO2)
- - After this sequence, C uses SO2

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 14

offerings as variations of existing service offerings. While we concentrate on pro-
vider-initiated creation of service offerings, we also leave the possibility of con-
sumer-initiated creation in special cases.

Other mechanisms related to the manipulation of service offerings— such as deac-
tivation, reactivation, deletion, and creation of service offerings dynamic relation-
ships (SODRs)— can also be studied.

5.2 WSOI Implementation of the Manipulation of Service Offerings

WSOI implements the above mechanisms with several different modules (see Fig. 3):
1. several data structures,
2. the SOMgmtDecisions module, and
3. several modules that implement Service Offering Management (SOM) port types.

Table 3. Explanation of Service Offering Management (SOM) Port Types

Port Type Name Implemented
by

Explanation

SessionMgmt Providers Operations for session management, e.g., opening
or closing sessions between the provider and its
consumers

SOInfo Providers Operations about available service offerings and
their activity, e.g., operations informing a consumer
about service offerings it may use

SOComparisons Providers Operations for determining static relationships
between service offerings (e.g., extension); used
during selection of Web Services and service offer-
ings

SOM-Prov Providers Provider-specific operations for monitoring and
manipulation of service offerings

SOM-AccP Accounting
parties

Operations enabling an accounting party to partici-
pate in monitoring and manipulation of service
offerings

SOM-Cons Consumers Consumer-specific operations for monitoring and
manipulation of service offerings

SOM-MgmtP All manage-
ment parties

Operations that all management parties (providers,
accounting parties, management third parties, and
consumers) implement to participate in monitoring
and management of WSOL service offerings

SONotification All manage-
ment parties

Operations used to exchange WSOL-related man-
agement information, e.g., to pull or push manage-
ment information

SODRMgmt Providers Provider-side operations for use and manipulation
of service offerings dynamic relationships

SOSecurity Providers Operations for security management related to
service offerings, e.g., allowing or disallowing
consumers to use service offerings; not yet imple-
mented in WSOI

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 15

Unlike the modules discussed in Section 4, these modules are not based on Apache
Axis. We emphasize modules in provider-side WSOI because they are essential for
the dynamic manipulation of WSOL service offerings.

Most data structures in WSOI are used for both monitoring and manipulation of
WSOL service offerings. The crucial WSOL language support for manipulation of
service offerings is the specification of various relationships, both service offerings
dynamic relationships (SODRs) and static relationships determined by WSOL reus-
ability constructs. Inside WSOI, descriptions of WSOL service offerings and service
offerings dynamic relationships are stored in instances of the SOData class. An
SOData instance also stores other information about a service offering, such as
whether it is active or deactivated. The soTable hashtable stores one SOData in-
stance for every used service offering.

Further, provider archives run-time monitoring information in instances of the
WSOISessionData class because MessageContext properties only store the monitor-
ing information for the latest invocation. Particularly important are the information
about what service offering is used in a particular session and the history information
about satisfied and unsatisfied constraints. The sessionTable hashtable stores one
WSOISessionData instance for every session.

The SOMgmtDecisions module in provider-side WSOI implements operations
that decide whether, what, how, and when the manipulation of service offerings
should be performed. These operations use the data structures discussed above. For
example, when the AccountingOutput WSOI-specific handler discovers that one or
more constraints were not satisfied, it starts a separate thread that invokes the
checkSwitch() operation of the SOMgmtDecisions module. This operation compares

SOM-Cons

switchInProgress()
switchSuggested()
switchCancelled()
switchingTo()
soDeactivated()
soReactivated()
newSOCreated()
soDeleted()

SessionMgmt

openSession()
closeSession()

SOInfo

listSOsForMe()
descCurrentSO()
listActiveSOs()
listAllSOs()

SOM-Prov

startWithSO()
switchSO()
prInitSwitchSO()
deactivateSO()
reactivateSO()
createSO()
deleteSO()

SOM-AccP

switchSO()
switchInProgress()
switchCancelled()
switchingTo()
forwardRequests()
readBalance()
readHistory()

SOM-MgmtP

assignSO()
initializeWork()
finalizeWork()
initAndFinal()
listSOMOps()
listSOMOpsForMe()

SONotification

inform()
readValue()

SOSecurity

allowSO()
disallowSO()

SODRMgmt

listSODRsForMe()
listAllSODRs()
listActiveSODRs()
deactivateSODR()
reactivateSODR()
createSODR()
deleteSODR()

SOComparisons

isExtension()
listExtensions()
doesInstantiate()
doesInclude()
compare()

Figure 6. Example Operations in Service Offering Management (SOM) Port Types

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 16

the WSOISessionData history of unsatisfied constraints in the given session and the
SOData descriptions of service offerings dynamic relationships for the given service
offering. If this operation finds an appropriate replacement service offering, the pro-
tocol for provider-initiated switching between service offerings is started.

To achieve monitoring of WSOL service offerings and particularly their manipu-
lation, it is necessary to coordinate the involved parties (e.g., see Figure 5). We have
developed appropriate protocols to govern this coordination. The operations that
participate in these protocols, as well as other externally-accessible operations related
to WSOL service offerings are grouped into several Service Offerings Management
(SOM) port types. Table 3 explains these port types, while Figure 3 shows whether

Table 4. Explanation of Representative Operations in SOM Port Types

Port Type Name Operation Name Explanation
SessionMgmt openSession Opens a session between the provider imple-

menting this operation and the consumer invok-
ing it; returns the session ID (identity) number

SOInfo listSOsForMe Returns a WSOL file describing all WSOL
service offerings that the consumer can use

SOComparisons listExtensions Returns names of all available WSOL service
offerings that are extensions of the service
offering whose name is provided as parameter in
the operation invocation

SOM-Prov startWithSO Used by a consumer at a beginning of a session
to select a service offering; assigns a service
offering to the current session

SOM-AccP forwardRequests Used during switching of service offerings when
the old and the new service offering have differ-
ent accounting parties; forwards to the new
accounting party all consumer requests queued
at the old accounting party

SOM-Cons switchSuggested Used during provider-initiated switching of
service offerings; invoked by the provider to
suggest a replacement service offering to the
consumer; the consumer can accept the sug-
gested service offering, suggest another re-
placement service offering, or close the session

SOM-MgmtP listSOMOps Returns a list of all SOM operations that the
management party implements

SONotification inform Used to push WSOL-related management in-
formation to the management party that imple-
ments this operation

SODRMgmt deactivateSODR Deactivates the service offerings dynamic rela-
tionship the name of which is supplied as the
operation parameter

SOSecurity allowSO Gives a consumer the right to use a service
offering; consumer name and service offering
name are provided as parameters; invoked by
Web Service management entities

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 17

a SOM port type is used for monitoring of service offerings, their manipulation, or
both. Further, Figure 6 shows example operations from all SOM port types, while
Table 4 explains some of these operations. Further information can be found in [2].
Note that WSOI for a particular management party need not implement all these
ports or all operations in one port.

Table 5a. Description of an Experiment Comparing Consumer-initiated Switching between Web
Services and Consumer-initiated Switching between WSOL Service Offerings

Description Switching of Web Services Switching of Service Offerings
Number of Web
Services

3 (consumer and 2 providers) 2 (consumer and provider)

Distribution Same computer Same computer
Provider Web
Services

Simple stock notification Web
Service (both providers)

Simple stock notification Web
Service

Infrastructure for
providers

Tomcat, 2 * standard provider-side
Axis modules (2 Axis engines –
one per provider), 2 * WSOISes-
sionHandler

Tomcat, standard provider-side
Axis modules, WSOISessionHan-
dler, WSOI-specific modules

Infrastructure for
consumers

Standard consumer-side Axis
modules, WSOISessionHandler

Standard consumer-side Axis
modules, WSOISessionHandler

How the consumer
finds the replace-
ment WS or SO

Hardcoded into consumer’s im-
plementation

Hardcoded into consumer’s im-
plementation

Number of ex-
changed SOAP
messages

4 (closeSession and its reply,
openSession and its reply)

2 (switchSO and its reply)

Start time for
measuring delay

The consumer sends to the old
provider closeSession message

The consumer sends to the pro-
vider the switchSO message

Stop time for
measuring delay

The consumer receives from the
new provider the reply for the
openSession message

The consumer receives from the
provider the reply for the
switchSO message

Software partici-
pating in JVM
memory usage

Tomcat, 2 * standard provider-side
Axis modules, standard consumer-
side Axis modules, 3 * WSOISes-
sionHandler, implementation of
the consumer and both providers

Tomcat, standard provider-side
Axis modules, standard consumer-
side Axis modules, 2 * WSOISes-
sionHandler, other WSOI-specific
modules, implementation of the
consumer and the provider

Table 5b. Results of an Experiment Comparing Consumer-initiated Switching between Web
Services and Consumer-initiated Switching between WSOL Service Offerings

Measured
Value [Units]

Switching between
Web Services (= A)

Switching between
Service Offerings
(= B)

Difference
(= B-A)

Relative Dif-
ference (= (B-
A)/A) [%]

Delay [ms] 28 13 - 15 - 53.57 %
JVM memory
usage [bytes]

9 269 418 7225873 - 1 497 647 - 16.16 %

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 18

5.3 Service Offering Dynamic Manipulation Experiments Using WSOI

We have performed a number of analytical studies and practical experiments com-
paring the manipulation of service offerings with alternative approaches to dynamic
adaptation of Web Service compositions. The main alternative is ‘re-composition of
Web Services’, which breaks a current Web Service composition in which a Web
Service is no longer appropriate and creates a new composition with some other Web
Service, which may have to be found. A special simple case is ‘switching between
(provider) Web Services’ when the consumer simply searches for and chooses an-
other provider Web Service. Another alternative is ‘re-negotiation of SLAs’ when
the provider and the consumer negotiate a new custom-made SLA. A special simple
case of this approach is the dynamic creation of new service offerings.

Our analytical studies are based on comparisons of the number of exchanged
SOAP messages. On the other hand, in the practical experiments we measure aver-
age delay and average Java Virtual Machine (JVM) memory usage. For these ex-
periments, we have set up a test-bed environment with several Web Service composi-
tions in a local network. Some of these Web Services use WSOI, while some use only
Axis. Consequently, our prototype implementation of WSOI was crucial for these
experiments.

Tables 5a and 5b summarize one experiment comparing consumer-initiated
switching between Web Services and switching between WSOL service offerings.
Averages for delay and JVM memory usage were calculated as explained in Table
1a, but using 100 test runs. Consumer-initiated switching between service offerings
was about 54% faster and consumed about 16% less memory. Tables 6a and 6b
summarize a similar experiment for provider-initiated switching. In this experiment,
provider-initiated switching between service offerings was about 15% faster and
consumed about 17% less memory. Note that in both experiments switching between
Web Services is relatively simple and straightforward. In more complex experiments,
when consumer and provider execute on separate computers and/or switching be-
tween Web Services requires searching a UDDI directory, the advantages of the
manipulation of service offerings are greater.

These practical experiments and analytical studies support our initial observation
that manipulation of service offerings is generally simpler, faster, and incurs less
run-time overhead than the re-composition of Web Services and the re-negotiation
of SLAs. However, compared to the re-composition of Web Services, manipulation of
service offerings has limitations because service offerings differ only in constraints
and management statements and because appropriate service offerings cannot always
be found or created. Therefore, we advocate the manipulation of service offerings as
a complement to, but not a complete replacement for, the re-composition of Web
Services and other alternatives. Further details about our analytical studies, experi-
ments, and conclusions can be found in [2].

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 19

Table 6a. Description of an Experiment Comparing Provider-initiated Switching between Web
Services and Provider-initiated Switching between WSOL Service Offerings

Description Switching of Web Services Switching of Service Offerings
Number of Web
Services

3 (consumer and 2 providers) 2 (consumer and provider)

Distribution Same computer Same computer
Provider Web
Services

Simple stock notification Web
Service (both providers)

Simple stock notification Web
Service

Infrastructure for
providers

Tomcat, 2 * standard provider-side
Axis modules (2 Axis engines –
one per provider), 2 * WSOISes-
sionHandler

Tomcat, standard provider-side
Axis modules, WSOISessionHan-
dler, WSOI-specific modules

Infrastructure for
consumers

Standard consumer-side Axis
modules, WSOISessionHandler

Standard consumer-side Axis
modules, WSOISessionHandler

Number of ex-
changed SOAP
messages

4 (closeSessionSuggestedRe-
placementWS and reply, openSes-
sion and reply)

2 (switchSuggested and reply)

How the consumer
finds the replace-
ment WS or SO

The old provider recommends
replacement

The provider recommends re-
placement

How the provider
finds the replace-
ment WS or SO

Searches simple internal data
structures

Searches WSOI data structures

Start time for
measuring delay

The old provider determines dur-
ing accounting that some con-
straint was not satisfied

The provider determines during
accounting that some constraint
was not satisfied

Stop time for
measuring delay

The consumer receives from the
new provider the reply for the
openSession message

The provider finishes switching
the consumer to the new service
offering

Software partici-
pating in JVM
memory usage

Tomcat, 2 * standard provider-side
Axis modules, standard consumer-
side Axis modules, 3 * WSOISes-
sionHandler, implementation of
the consumer and both providers

Tomcat, standard provider-side
Axis modules, standard consumer-
side Axis modules, 2 * WSOISes-
sionHandler, 1 * other WSOI-
specific modules, implementation
of the consumer and the provider

Table 6b. Results of an Experiment Comparing Provider-initiated Switching between Web
Services and Provider-initiated Switching between WSOL Service Offerings

Measured
Value [Units]

Switching between
Web Services (= A)

Switching between
Service Offerings
(= B)

Difference
(= B-A)

Relative Dif-
ference (= (B-
A)/A) [%]

Delay [ms] 319 271 - 48 - 15.05 %
JVM memory
usage [bytes]

9 415 472 7 771 771 - 1 643 701 - 17.46 %

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 20

6 Conclusions and Future Work

The work on the Web Service Offerings Infrastructure (WSOI) is closely related to
our work on the Web Service Offerings Language (WSOL) [3, 4, 5] and the mecha-
nisms for dynamic manipulation of WSOL service offerings [2]. WSOL and WSOI
enable specification, monitoring, and manipulation of classes of service (i.e., service
offerings) for Web Services to the extent that is not provided by related works.

WSOL enables specification of important management information and WSOL
service offerings can be viewed as simple SLAs or contracts between Web Services.
Compared to recent related languages, such as WSLA, WSML, and WS-Policy, our
WSOL has several advantages [4], including support for classes of service.

WSOI is the management infrastructure that enables practical use of WSOL. It
enables measurement and calculation of QoS metrics, evaluation of WSOL con-
straints, accounting of executed operations and evaluated constraints, and dynamic
manipulation of WSOL service offerings. WSOI demonstrates that WSOL can be
used for provisioning and management of Web Services and their compositions. Due
to relative simplicity and lightweightness of WSOL, WSOI is simpler and with less
run-time overhead than management infrastructures for WSLA and WSML.

We have integrated into WSOI, on top of Apache Axis, original solutions for
monitoring of WSOL service offerings. For monitoring and accounting activities, we
have developed WSOI-specific handlers, the Timer module, modules implementing
operations from Service Offering Management (SOM) port types, as well as appro-
priate data structures. Our work on the mechanisms for dynamic manipulation of
WSOL service offerings is completely original. We have analyzed these mechanisms,
developed appropriate algorithms and protocols, integrated into WSOI appropriate
modules and data structures, and performed a number of experiments with these
mechanisms and their alternatives. The issue of dynamic manipulation of classes of
service for Web Services is not researched in related works, and our use of WSOI
prototype as experimental tool and environment lead us to demonstrations of useful-
ness, benefits (speed, simplicity, low run-time overhead), and limits of dynamic
manipulation of WSOL service offerings.

While we have designed and partially implemented the main parts of WSOI, some
parts are not yet fully implemented. For example, we are still working on support for
manipulation of service offerings dynamic relationships. Likewise, we currently have
only rudimentary support for creation of service offerings. While our current WSOI
prototype demonstrates the main concepts, the improved prototype will demonstrate
the complete system. We are currently conducting additional analytical studies and
experiments with the manipulation of service offerings, and WSOI in general. For
example, we plan experiments comparing WSOL and languages using custom-made
SLAs. We want to more precisely determine benefits, usability, and limits of dy-
namic manipulation of WSOL service offerings.

While the WSOL language is relatively complete and stable, we also have some
items for future work in this area [3]. The major WSOL issue related to WSOI is the
full implementation of a WSOL compiler to enable automatic generation of WSOI-

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 21

specific handlers from WSOL files. Likewise, a Java API for the generation of
WSOL files would be beneficial.

While we have achieved significant results on the specification, monitoring, and
dynamic manipulation of classes of service for Web Services, there are many other
issues for future work in the area of management of Web Services and Web Service
compositions. Our results from the work on WSOL, WSOI, and the mechanisms for
manipulation of WSOL service offerings can be integrated into future Web Service
management standards and platforms.

References

1. World Wide Web Consortium (W3C): Web Services Description Requirements. W3C
Working Draft 28 October 2002. On-line at: http://www.w3.org/TR/2002/WD-ws-desc-
reqs-20021028/ (2002)

2. Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: On the Dynamic Manipulation of Classes
of Service for XML Web Services. Research Report SCE-03-15, Department of Systems
and Computer Engineering, Carleton University, Ottawa, Canada, June 2003. On-line at:
http://www.sce.carleton.ca/netmanage/papers/TosicEtAlResRepJune2003.pdf (2003)

3. Tosic, V., Pagurek, B., Patel, B. Esfandiari, B., Ma, W.: Management Applications of the
Web Service Offerings Language (WSOL). Proc. of CAiSE’03 (Velden, Austria, June
2003). Lecture Notes in Computer Science (LNCS), No. 2681. Springer-Verlag (2003)
468-484

4. Tosic, V., Patel, K., Pagurek, B.: WSOL – A Language for the Formal Specification of
Classes of Service for Web Services. Proc. of ICWS’03 (Las Vegas, USA, June 2003),
CSREA Press (2003) 375-381

5. Patel, K.: XML Grammar and Parser for the Web Service Offerings Language. M.A.Sc.
thesis, Carleton University, Ottawa, Canada. Jan. 30, 2003. On-line at:
http://www.sce.carleton.ca/netmanage/papers/KrutiPatelThesisFinal.pdf (2003)

6. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agreement
(WSLA) Language Specification, Version 1.0, Revision wsla-2003/01/28. International
Business Machines Corporation (IBM). On-line at:
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf (2003)

7. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management, Vol. 11,
No 1 (Mar. 2003) Plenum Publishing (2003)

8. Sahai, A., Durante, A., Machiraju, V.: Towards Automated SLA Management for Web
Services. Research Report HPL-2001-310 (R.1), Hewlett-Packard (HP) Laboratories Palo
Alto. July 26, 2002. On-line at: http://www.hpl.hp.com/techreports/2001/HPL-2001-
310R1.pdf (2002)

9. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated SLA Moni-
toring for Web Services. Proc. of DSOM 2002 (Montreal, Canada, Oct. 2002). Lecture
Notes in Computer Science (LNCS), No. 2506. Springer-Verlag (2002) 28-41

10. Hondo, M., Kaler, C. (eds.): Web Services Policy Framework (WS-Policy), Version 1.0.
Dec. 18, 2002. BEA/IBM/Microsoft/SAP. On-line at:
ftp://www6.software.ibm.com/software/developer/library/ws-policy.pdf (2002)

Tosic et al. Web Service Offerings Infrastructure (WSOI) - … 22

11. The DAML Services Coalition: DAML-S: Semantic Markup for Web Services. WWW
page for DAML-S version 0.7. Oct. 2, 2002. On-line at:
http://www.daml.org/services/daml-s/0.7/daml-s.html (2002)

12. Chen, Z., Lianf-Tien, C., Silverajan, B., Bu-Sung, L.: UX – An Architecture Providing
QoS-Aware and Federated Support for UDDI. Proc. of ICWS’03 (Las Vegas, USA, June
2003), CSREA Press (2003) 171-176

13. Brose, G.: Securing Web Services with SOAP Security Proxies. Proc. of ICWS’03 (Las
Vegas, USA, June 2003), CSREA Press (2003) 231-234

14. The Axis Development Team: Axis Architecture Guide, Version 1.0. Apache Axis
WWW page. On-line at: http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-
axis/java/docs/architecture-guide.html (2003)

