
1

Web Service Offerings Language (WSOL) and Web Service
Composition Management (WSCM)

Vladimir Tosic, Bernard Pagurek, Babak Esfandiari, Kruti Patel, Wei Ma

Network Management and Artificial Intelligence Lab
Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada

{vladimir, bernie, babak, kpatel, weima}@sce.carleton.ca

ABSTRACT
Our research on Web Services is organized into two related
projects. First, we develop Web Service Offerings Lan-
guage (WSOL) for formal specification of various con-
straints and classes of service for Web Services. A service
offering in WSOL is a formal representation of one class of
service of one Web Service. It contains formal representa-
tion of various constraints: functional (pre-, post-, and fu-
ture-conditions), non-functional (a.k.a. Quality of Service -
QoS), and access rights. It also contains statements about
price/penalty and management responsibility. The Web
Service, its consumer, or one or more designated third par-
ties (usually SOAP message intermediaries) can evaluate
WSOL constraints. For easier specification of similar serv-
ice offerings, WSOL enables specification of constraint
groups (CGs) and constraint group templates (CGTs). We
have also developed a format for representation of dynamic
relationships between service offerings. WSOL service
offerings are simple contracts and SLAs (Service Level
Agreements) between Web Services.

Our second project is on Web Service Composition Man-
agement (WSCM). WSCM is management of Web Service
compositions. This is a different task from Web Service
Management (WSM). WSM is management of a particular
Web Service or a group of Web Services within the same
domain of management responsibility. While WSCM is
related to network and system management (NSM) and
business process management (BPM), there are important
differences. We research various aspects of WSCM and
develop a comprehensive WSCM architecture. Monitoring
and manipulation of WSOL service offerings can be impor-
tant part of both WSM and WSCM.

Keywords
Web Service, class of service, service offering, SLA,
WSOL, Web Service management, Web Service composi-
tion management

1 INTRODUCTION
There are many similar, yet different, definitions of the
term ‘Web Service’. In this paper, by a Web Service we
mean a unit of business, application, or system functional-
ity that can be accessed over a network using XML mes-
saging. While Web Services can be used for providing
services to human end users, the true power of the W3C’s

Web Services framework [6] is leveraged through composi-
tions (a.k.a. orchestrations, choreographies, flows, net-
works) of Web Services. Hereafter, by a consumer (a.k.a.
requester) of a Web Service A we assume another Web
Service that is composed with A and collaborates with it,
not an end user (human) using A. On the other hand, we
refer to A as the supplier (a.k.a. provider) Web Service.
The composed Web Services can be distributed over the
network, running on different platforms, implemented in
different programming languages, and provided by differ-
ent vendors.

We work on two projects related to management of Web
Services and Web Service compositions. First, we develop
Web Service Offerings Language (WSOL) for formal
specification of various constraints and classes of service
for Web Services. WSOL service offerings are simple con-
tracts and SLAs (Service Level Agreements) between Web
Services. Second, we work on a comprehensive architec-
ture for Web Service Composition Management (WSCM).
In this paper we present expressive power and language
features of WSOL. We also discuss characteristics of
WSCM and relate it to Web Service management (WSM),
network and system management (NSM), and business
process management (BPM). This paper builds upon our
previous publications. In [7] we have discussed the need for
WSOL, dynamic adaptation using manipulation of classes
of service, and the need for WSCM. In [8] we have pro-
vided an illustrative example of WSOL syntax and dis-
cussed some of WSOL features and applications. Since the
latter publication, WSOL was improved in several ways.
Some of the new language features will be discussed in this
paper. Due to the space limits, we will leave examples of
the new WSOL syntax for future publications. This paper
will also not go into details of our comprehensive WSCM
architecture, which is still under development.

2 WEB SERVICE OFFERINGS LANGUAGE
(WSOL)

We have advocated and illustrated the need for multiple
classes of service for Web Services in [7] and [8]. By a
class of service we mean a discrete variation of the com-
plete service and quality of service (QoS) provided by one
Web Service. We have concluded that it can be useful to
enable a Web Service to offer several different classes of
service to consumers. Classes of service can differ in usage

2

privileges, response times guaranteed to consumers, ver-
bosity of response information, payment models, price, etc.
Providing classes of service is a lightweight approach to
Web Service customization, with limited complexity of
required management.

A class of service of a Web Service is determined by a
combination of various constraints. We define a service
offering as a formal representation of one class of service
of one Web Service. Consequently, a service offering is a
combination of formal representations of various con-
straints that determine the corresponding class of service.

Web Service Offerings Language (WSOL) is our language
for formal specification of constraints and classes of service
for Web Services. It is XML-based (Extensible Markup
Language) and compatible with WSDL (Web Services De-
scription Language) version 1.1, which is a de-facto stan-
dard for functional description of Web Services. WSOL
service offerings are specified separately from the WSDL
description of the Web Service. All service offerings of one
Web Service relate to the same characteristics described in
the Web Service’s WSDL file, but differ in constraints that
define classes of service. The syntax of WSOL is defined
using XML Schema.

The following WSOL constructs are used for formal
specification of constraints and service offerings: con-
straint, statement, constraint group (CG), constraint group
template (CGT), and service offering.

In WSOL, every constraint is a Boolean expression that
states some condition that should be checked (i.e., evalu-
ated) before execution of some Web Service operation
starts and/or after this execution ends. WSOL enables for-
mal specification of functional and QoS (a.k.a. non-
functional) constraints and access rights. Functional con-
straints (pre-, post-, and future-conditions) define condi-
tions which a functionally correct operation invocation
must satisfy. They usually check some characteristics of
message parts of the invoked operation. QoS constraints
describe properties like performance, reliability, availabil-
ity, etc. They check whether the monitored QoS metrics are
within specified limits. An access right specifies conditions
under which any consumer using the current service offer-
ing has the right to invoke a particular operation. If access
is not explicitly allowed, it is forbidden. In other words,
access rights are used in WSOL for service differentiation.
On the other hand, specification of conditions under which
a particular consumer (or a class of consumer) may use a
service offering and other security issues are outside the
scope of WSOL. WSOL also contains a general <con-
straint> element for definition of additional constraint types
using XML Schema mechanisms.

Boolean expressions in constraints can contain standard
Boolean operators (AND, OR, NOT, IMPLIES, EQUIVA-
LENT), references to operation’s message parts of type
Boolean, as well as comparisons of arithmetic, string,
date/time, or duration expressions. Arithmetic expressions

can contain standard arithmetic operators (+, -, unary -, *, /,
**), arithmetic constants, and references to operation’s
message parts of numeric data types. WSOL provides only
basic built-in support for string and date/time/duration ex-
pressions. However, there is a possibility to perform exter-
nal operation calls in any expression. Here, ‘external’
means outside the Web Service for which the constraint is
specified. These external operations can be implemented by
other Web Services or they can be implemented by the
management entities evaluating the given constraint. In the
latter case, although these external operations are described
with WSDL, they are invoked using internal mechanisms,
without any SOAP call. Note that WSOL does not support
operation calls upon the same Web Service because there is
no way to guarantee they are side-effect free (i.e., not
changing the state of the Web Service). Evaluation of con-
straints must be side effect free. WSOL also supports
checking operation’s message parts that are arrays (of any
data type) using quantifiers ForAll and Exists.

Let us discuss briefly the concept of a future-condition that
we have introduced into WSOL. A future-condition is a
Boolean expression evaluated some time after the supplier
finishes execution of the requested operation and sends
results to the consumer. This is different from a postcondi-
tion, which is evaluated when the supplier sends results to
the consumer. In WSOL, one can specify that a future-
condition should be evaluated: a) on a particular date/time;
or b) after a specified duration elapses from the completion
of the invoked operation. If a future-condition is not satis-
fied, operation invocation is considered invalid and the
supplier has to pay some penalty. The concept of a future-
condition enables specification of operation effects that
cannot be easily expressed with postconditions. This in-
cludes some effects that a Web Service operation can have
in the physical world. An example is delivery confirmation
for goods bought using Web Services.

For specification of QoS constraints, WSOL needs external
ontologies of QoS metrics and measurement units. We have
summarized requirements for such ontologies in [9]. In our
current implementation of WSOL, we have simply assumed
that ontologies of QoS metrics are collections of names
with information about appropriate data types and meas-
urement units. Similarly, ontologies of measurement units
are simple collections of names without any additional in-
formation. A more appropriate definition of ontologies of
QoS metrics and measurement units is planned for a future
version of WSOL.

A WSOL statement is any construct that states some im-
portant information about the represented class of service,
but it is not a constraint. WSOL enables formal specifica-
tion of price/penalty statements and management responsi-
bility statements. Price statements specify price that a con-
sumer using the particular service offering has to pay for
successful use of the Web Service. Penalty statements spec-
ify monetary amount that the Web Service has to pay to a
consumer if the consumer invokes some operation, but the

3

Web Service does not fulfil all constraints in the service
offering. WSOL price/penalty statement support subscrip-
tion and pay-per-use payment models, as well as their com-
bination. Management responsibility statements specify
what entity has management responsibility for checking a
particular constraint, a price/penalty statement, a constraint
group, or the complete service offering. A management
entity can be the supplier Web Service, the consumer, or an
independent third party trusted by both the supplier and the
consumer. When the consumer submits a request for exe-
cuting a supplier’s operation, the management third parties
are organized as SOAP intermediaries for the request, as
well as the eventual response message. Some QoS metrics
(e.g., availability) can be measured using probing instead of
message interception. WSOL supports this by modeling
probing entities as separate Web Services that provide re-
sults of their measurements through operations of some
agreed-upon interfaces. These operations can be invoked in
appropriate QoS constraints in WSOL service offerings,
using the WSOL external operation call mechanism.

A constraint group (CG) is a named set of constraints
and/or statements. A CG can also contain other CGs (in-
cluding instantiations of CGTs). Nesting of contained CGs
may be recursive. Definition of CGs has several benefits.
First, it can be used for solving the problem of separation
and integration of concerns related to constraints for Web
Services, discussed in [8]. Second, a CG can be re-used
across service offerings as a unit. Third, it is possible to
specify that all constraints from a CG are evaluated by the
same management entity. Fourth, constraints in different
CGs can have the same constraint name, so using CGs en-
ables name re-use. Fifth, one can use CGs to define aspects
of service offerings. For example, one can group all func-
tional constraints for one port type into one CG, QoS con-
straints for the same port type into another CG, and access
rights for this port type into a third CG.

When a new CG is defined, if some of the contained con-
straints and CGs were already defined elsewhere, there is
no need to define them again. They can be simply included
into the new containing CG. On the other hand, new con-
straints and CGs can also be defined inside a containing
CG. A new CG can be defined as an extension of an exist-
ing CG, inheriting all constraints and defining some addi-
tional ones. Extension is, in fact, single inheritance of CGs.
We have also studied multiple inheritance, but it is not part
or the current version of WSOL. Benefits similar to multi-
ple inheritance can be achieved in WSOL by including sev-
eral existing CGs inside the new CG. If inside one CG two
or more constraints of the same type (e.g., two precondi-
tions) are defined for the same operation, they all have to
be satisfied. This means that the Boolean AND operation is
performed between such constraints.

A constraint group template (CGT) is a parameterized
CG. At the beginning of a CGT, one defines one or more
abstract CGT parameters, each of which has a name and a
type. CGT parameters often have type ‘numberWithUnit’,

which requires additional information about the used meas-
urement unit. Definition of parameters is followed by defi-
nition of constraints and nested CGs, in the same way as for
CGs. Constraints inside a CGT can contain expressions
with CGT parameters.

A CGT is instantiated when appropriate constants are sup-
plied as values for all CGT parameters. The result of such
instantiation is a new CG. A CGT can be instantiated inside
a CG, definition of another CGT, or a service offering. One
CGT can be instantiated many times with different parame-
ter values. For example, one can define a CGT with one
parameter ‘maxRT’ and one constraint that the measured
response time must be less than ‘maxRT’. Then, this CGT
can be instantiated with ‘maxRT’ parameter values 20 mil-
liseconds, 50 milliseconds, 2 seconds, etc.

The concept of a CGT in WSOL is a very powerful specifi-
cation mechanism. Many classes of service (and SLAs)
contain constraints with the same structure, but with differ-
ent constant values. In our opinion, it is even more impor-
tant specification concept than single inheritance (i.e., ex-
tension) of CGs, CGTs, and service offerings. However, the
WSOL concept of a CTG also has some limitations. First,
CGTs must not be nested. In other words, one must not
define a CGT inside another CGT. Next, since constraints
inside a CGT may contain expressions with CGT parame-
ters, these constraints must not be included inside other
CGTs, CGs, or CLSOs. Further, WSOL supports single
inheritance (i.e., extension) of CGTs, similarly to extension
of CGs. However, a CGT extending some other CGT must
not define additional CGT parameters. Only addition of
new contained constraints, statements, and CGs is allowed.

A service offering is a set of constraints, statements, and
CGs (including instantiations of CGTs) that all refer to the
same Web Service. We also use the term component-level
service offering (CLSO) with the same meaning. (Note
that in WSOL there is no need for a special concept of a
port-level service offering— PLSO— because this can be
represented as a CG.) The concept of a service offering is
the central concept in our work on WSOL. One service
offering is a formal specification of one class of service for
a Web Service. It can also be viewed as one contract or one
SLA between the supplier Web Service, the consumer, and
eventual management third parties. A Web Service can
offer multiple service offerings to a consumer, but a con-
sumer can use only one of them at a time.

Syntactically, a WSOL service offering is just a big CG.
The rules discussed for CGs also apply for service offer-
ings. An important exception is that service offerings must
not be nested. Similarly to CGs, WSOL supports single
inheritance (extension) of service offerings. We make
CLSO a separate concept in WSOL to emphasize its special
run-time characteristics. Most importantly, consumers can
choose and use service offerings, not CGs. This is because
CGs are usually not complete and consistent from the us-
ability view. For the same reason, dynamic relationships

4

can be specified only for service offerings, not for CGs.

Relationships useful in the process of selection of service
offerings and in dynamic adaptation of consumer-supplier
liaisons are dynamic. In other words, they can change dur-
ing run time, e.g., after dynamic creation of a new service
offering. Such relationships can be represented as triples
<SO1, S, SO2> where SO1 is a service offering; S is a set
of constraints, statements, and CGs from SO1 that are not
satisfied; and SO2 is the appropriate replacement service
offering. These triplets are specified outside WSOL files
(in a special XML format) to make their evolution inde-
pendent from the evolution of other characteristics of a
service offering.

As argued in more detail in [7] and [8], WSOL can be used
in several ways. It supports selection of appropriate Web
Services and service offerings. It also helps reduce unex-
pected interactions between the composed Web Services.
We are particularly interested in management applications
of WSOL. WSOL service offerings can be used for Web
Service monitoring, metering, control, and billing. They are
precise and complete enough to serve as contracts or SLAs
between Web Services. In addition, dynamic (i.e., run-time)
manipulation of service offerings is a useful tool for WSM
and WSCM.

Our work on WSOL draws from the considerable previous
work on differentiated classes of service and formal repre-
sentation of various constraints in other areas. At the be-
ginning of our research, there was no relevant work of this
kind in the area of Web Services. In the meantime, several
related works emerged. First, the notion of WSEL (Web
Services Endpoint Language) was mentioned in the litera-
ture [4], but with no detailed publication to date. One of the
goals of WSEL is specification of some constraints, includ-
ing QoS, for Web Services. Further, the DAML-S (DAML-
Services) language initiative [3] works on semantic
description of Web Services, including specification of
functional and some QoS constraints. Next, the work on
WSLA (Web Service Level Agreements) [2] is an XML
specification of SLAs (primarily QoS constraints) for Web
Services. The work on the OGSA (Open Grid Services Ar-
chitecture) [4] also encounters the need for contracts and
SLAs. A couple of other works with similar goals are in
early stages. A detailed comparison of these various ap-
proaches requires a separate publication. In short, WSOL
has a distinct set of advantages (but also disadvantages)
compared with any of these related works. Some general
strengths of WSOL are formal specification of various con-
straints and multiple service offerings per Web Service,
orientation towards management applications, expressive
power with relatively little overhead, full compatibility
with WSDL, etc.
3 WEB SERVICE COMPOSITION MANAGE-

MENT (WSCM)
In [7] we have argued extensively that to further increase
flexibility and adaptability of Web Service compositions,
they have to be managed. In one project in our research

group, we attempt to develop a comprehensive architecture
for WSCM. It should build upon and encompass our past
and ongoing work on dynamic service composition, hot-
swapping of software components, peer-to-peer (P2P) serv-
ice advertisement, trust acquisition and propagation based
on reputation, as well as WSOL and manipulation of serv-
ice offerings. It will be based on proven network and sys-
tem management (NSM) concepts, but it will also relate to
business issues. We find development of such comprehen-
sive WSCM architecture a major challenge. The architec-
ture is still under development and will be presented in a
forthcoming publication.

In this paper, we want to point out several premises in our
work on this architecture. First, there is difference between
Web Service Composition Management (WSCM) and Web
Service management (WSM). WSM is management of a
particular Web Service or a group of Web Services within
the same domain of management responsibility. For exam-
ple, Web Services provided with one application server
might be managed as a group. Similarly, Web Services
provided by the same business entity might be managed in
a unified manner as a group, either completely or only in
some respects. A large number of companies already claim
that their products perform some kind of WSM, predomi-
nantly in performance management. Many WSM products
are platform-specific application management products,
often based on JMX (Java Management Extensions). An-
other often WSM approach is to use Web Service gate-
ways, hubs, or proxies that serve as a single point of con-
trol, metering, and management. Contrary to WSM,
WSCM is management of Web Service compositions. In a
general case, the composed Web Services are distributed
over the Internet and provided by different business enti-
ties. Some of these business entities might not want to re-
linquish or outsource control over their Web Services. They
often have mutually incompatible and even conflicting
management goals. In addition, management of the Internet
infrastructure is a very challenging task. Consequently,
WSCM will usually not be able to involve full WSM man-
agement of the composed Web Services and management
of the Internet communication infrastructure. Therefore, the
emphasis in WSCM must be on decisions related to which
Web Services are composed and how they interact. Con-
trary to WSM, there are relatively few results on WSCM.

Second, WSCM is positioned between traditional network
and system management (NSM), including service man-
agement, and business process management (BPM) tools.
Significant analogies can be made between WSCM and
both NMS and BPM tools. WSCM can learn from signifi-
cant body of knowledge. However, there are also important
differences. One of the differences between WSCM and
traditional NSM is that the composed Web Services are
under full control of their vendors, with different manage-
ment goals. An important difference between WSCM and
BPM is that a Web Service composition is not only a repre-
sentation of a business process, but also a business service

5

and a distributed system component. Neither NSM nor
BPM solutions completely address the complexity of multi-
party, multi-goal, multi-level, multi-aspect management.

The third point that Web Service compositions can have
very different characteristics. In some cases, there will be
an explicit description of the composition. Several lan-
guages— including the new Business Process Execution
Language for Web Services (BPEL4WS)— have appeared
in this area. However, in some cases there will be no such
description. A Web Service composition can emerge spon-
taneously, from a series of (primarily) bilateral contracts.
There is no ‘master plan’ and no common goal; all partici-
pants have their own interests, mutually conflicting. In such
cases, WSCM becomes even harder, but it is possible.

Fourth, we strongly believe that appropriate specification of
management information is the key for successful man-
agement activities. WSOL describes for Web Services what
QoS metrics to monitor, what constraints to evaluate, as
well as when (and to some extent: how) to perform particu-
lar management activities. Consequently, WSOL has im-
portant place in our work on WSCM.

4 CONCLUSIONS AND FUTURE WORK
Providing multiple classes of service and formal specifica-
tion of various constraints for Web Services have numerous
practical benefits. WSOL service offerings are simple con-
tracts and SLAs between Web Services, so WSOL and its
manipulation are useful in both Web Service Management
(WSM) and Web Service Composition Management
(WSCM). WSOL enables formal specification of various
constraints and management-related statements and their
grouping into constraint groups (CGs), constraint group
templates (CGTs), and service offerings. It supports single
inheritance (i.e., extension) of CGs, CGTs, and service of-
ferings. CGs and CGTs are a powerful mechanism for
specification of similar service offerings. Dynamic rela-
tionships between service offerings are specified outside
WSOL files, in a simple XML format.

It is important to note that the current version of WSOL is
based on WSDL 1.1. When WSDL 1.2 becomes stable, we
will make WSOL compatible with it. The emphasis of our
current efforts on WSOL is improvement of WSOL syntax
and development of a proof-of-concept WSOL parser with
syntax checks and some semantic checks. We are also
studying automatic generation of constraint-checking code
from WSDL and WSOL files. In this respect, we would
like to re-use results from the composition filters [1] and
similar aspect-oriented approaches. This is because a con-
straint-checking SOAP intermediary in our approach can be
related to a composition filter. We also plan a Java API for
easier generation of WSOL files, but its development is still
in an early stage. Other issues for our future work on
WSOL include more appropriate definition of ontologies of
QoS metrics and measurement units, formal specification
of some other constraints (e.g., roles played in design pat-
terns and coordination protocols), etc.

We are also working on a comprehensive architecture for
WSCM, building on our expertise in network and system
management. Some of the premises in this research project
are distinction between WSM and WSCM; re-use of exper-
tise in both network and system management and business
process management tools; management with or without an
explicit description of a Web Service composition; and
importance of specification of management information.

REFERENCES

1. Bergmans, L., Aksit, M. Composing Crosscutting
Concerns Using Composition Filters. Comm. of the
ACM, Vol. 44, No. 10. (Oct. 2001), pp. 51-57, ACM.

2. Dan, A., Franck, R., Keller, A., King, R., Ludwig, H.
Web Service Level Agreement (WSLA) Language
Specification. In Documentation for Web Services
Toolkit, version 3.2.1 (August 9, 2002), International
Business Machines Corporation (IBM).

3. The DAML Services Coalition. DAML-S: Semantic
Markup for Web Services. WWW page. (December 12,
2001) On-line at: http://www.daml.org/services/daml-
s/2001/10/daml-s.html

4. Ferguson, D. F. Web Services Architecture: Direction
and Position Paper. In Proc. of the W3C Workshop on
Web Services – WSWS’01 (San Jose, USA, Apr. 2001),
W3C. On-line at:
http://www.w3c.org/2001/03/WSWS-popa/paper44

5. Foster, I., Keselman, C., Nick, J. M., Tuecke, S. Grid
Services for Distributed Systems Integration. Com-
puter, Vol. 35, No. 6 (June 2002), pp. 37-46, IEEE -CS

6. International Business Machines Corporation (IBM),
Microsoft Corporation. Web Services Framework. In
Proc. of the W3C Workshop on Web Services –
WSWS’01 (San Jose, USA, Apr. 2001), W3C. On-line
at: http://www.w3.org/2001/03/WSWS-popa/paper51

7. Tosic, V., Pagurek, B., Esfandiari, B., Patel, K. On the
Management of Compositions of Web Services. In
Proc. of the OOWS’01 (Object-Oriented Web Services
2001) workshop at OOPSLA 2001 (Tampa, Florida,
USA, Oct. 2001), ACM. On-line at:
http://www.research.ibm.com/people/b/bth/OOWS200
1/tosic.pdf

8. Tosic, V., Patel, K., Pagurek, B. WSOL - Web Service
Offerings Language. In Proc. of the Workshop on Web
Services, e-Business, and the Semantic Web (WES) at
CaiSE’02 (Toronto, Canada, May 2002). To be publ.,
Springer-Verlag, Lecture Notes in Computer Science.

9. Tosic, V., Esfandiari, B., Pagurek, B., Patel, K. On
Requirements for Ontologies in Management of Web
Services. In Proc. of the Workshop on Web Services, e-
Business, and the Semantic Web (WES) at CaiSE’02
(Toronto, Canada, May 2002). To be publ., Springer-
Verlag, Lecture Notes in Computer Science (LNCS).

