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Abstract 

Software hot swapping refers to the replacement of a part of a program with a new 

version at runtime. Increasing demands for on-line software upgrading in safety- and 

mission-critical systems drive the research. This thesis proposes a new hot swapping 

infrastructure for hot swapping software applications. 

 

A set of the issues facing hot swapping systems design is derived from state-of-the-art 

research. A hot swapping prototype for swappable JavaBeans is proposed. The prototype 

is implemented as SwapBox, which is a running environment and hot swapping 

management tool for swappable JavaBeans. The SwapBox allows implementation 

change, incremental and decremental interface change, as well as data structure change 

between versions. It is designed as an extensible framework so that future research could 

add new hot swapping strategies into it.  

 

Two sample applications are developed to completely test the SwapBox. They 

demonstrate that the SwapBox is able to handle complex and diversified hot swapping 

work. The development of swappable JavaBeans is also simplified because of the 

existence of the SwapBox. 

 

This thesis provides a new method for on-line software upgrading. 
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Chapter 1     Introduction 
 

 

1.1 Motivations  

 
1.1.1 The Significance of Hot Swapping 
 

Software systems are becoming larger and more complex. However, these systems are 

neither error-free nor can they satisfy every anticipated need. Software systems have to 

change over time. Changing business practices, the relentless advance of new technology, 

and the demands of end users drive this evolution. At the other end of the spectrum, 

software systems need patches from time to time to fix bugs. Even though the program is 

perfectly adequate, the environment within which the program is running might change 

over time. A changing environment may require that the running programs be updated. 

These changes, without a particular support mechanism, will need shutting down the 

system, modifying the code, recompiling, re-linking, reloading, and restarting the 

program. In other words, they may cause downtime. 

 

For a class of safety- and mission-critical software systems, shutting down and restarting 

the system for upgrades incurs risks, unacceptable delays, and increased cost. Upgrading 

the software that controls an orbiting spacecraft, for example, cannot be done at all if it 

means disabling the life-support system. In addition, although not safety-threatening, 

disabling a bank transaction processing system may have significant economic 
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consequences, particularly if the companies involved have a reputation for providing a 

highly available service. In the telecommunications domain, switching systems have a 

maximum downtime requirement of less than two hours within 40 years! 

 

Obviously, there is a need for maintenance approaches that do not interrupt system 

operation for long periods. In the literature, there are many approaches [10, 21, 17, 7, 9, 

13, and 19] proposed to attack software on-line change problems. They are named as 

software runtime evolution [17], on-the-fly software replacement [10], dynamic program 

updating [21], etc. Beyond research projects, a growing class of commercial software 

applications exhibits similar properties in an effort to provide end-user customizability 

and extensibility, even though the software application is not safety-intensive or mission-

critical. Runtime extension facilities have become readily available in popular operating 

systems (e.g., dynamic link libraries in UNIX and Microsoft Windows) and component 

object models (e.g., dynamic object binding services in CORBA [15] and COM [2]). 

These facilities enable system evolution without recompilation by allowing new 

components to be located, loaded, and executed during runtime. 

 

Software hot swapping is one such maintenance approach. It refers to the process by 

which a part (the old module) of a running software application is replaced by a new 

version of the program (the new module). The replacement takes place at runtime. 

Implementations of the new and old versions are different, while interfaces and data 

structures may or may not be the same.  
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Hot swapping is a subset of runtime software evolution, which includes runtime 

reconfiguration, dynamically adding/deleting/replacing a component. It has the same 

meaning with on-the-fly software replacement, and almost the same meaning with 

dynamic program updating. In the context of this thesis, hot swapping, on-the-fly 

software replacement, and dynamic program updating are used interchangeably.  

 

1.1.2 S-Module: A Proxy Pattern-Based Solution 
 
 
Ning Feng [4] and Gang Ao [1] have proposed a software-based hot swapping approach 

for software applications written in Java. In their approach, a program is composed of 

swappable and non-swappable modules.  The proxy pattern [38] was selected to design 

swappable modules. A swappable module consists of an S-Proxy and an S-Module. The 

outside world only has reference to the S-Proxy, which has reference to its S-Module. 

Any method invocation to the S-Module must go through the corresponding S-Proxy. 

The reference indirection to the S-Module ensures its ability to be replaced at runtime. A 

swap manager was proposed to take care of the hot swapping transaction. It is 

incorporated into the swappable application. The hot swapping can only occur when the 

old S-Module is in idle state. The new S-Module could have a different interface to the 

old S-Module. Java reflection is used to invoke the methods provided at the new S-

Module but not at the old S-Module. In order to hot swap more than one S-Module in one 

transaction, a two phase commit transaction model was proposed. It ensures that either all 

of the participating S-Modules or none of them are swapped out.  
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The S-Module approach achieves the basic goal of hot swapping. However, there are a 

few problems that are not yet addressed or not addressed well. For example, the 

application programmer has to code the S-Proxy. The use of Java reflection to invoke the 

new methods at the new S-Module suffers a performance penalty. No concrete solution is 

provided to transfer the state from the old S-Module to the new S-Module at the time of 

hot swapping.   

 

1.1.3  JavaBean: A Model that could Facilitate Hot Swapping 

 

JavaBean is a software component model of the Java programming language. A Java 

class could easily be rewritten to be a JavaBean, thus benefiting from the JavaBean 

component model. These advantages, including easy composition, a well-defined public 

interface, event communication model, on-the-fly property modification, etc, may 

facilitate hot swapping not only at the time of on-line change but also in the application 

development stage.  

 

Software component technology has emerged as an important element in the 

development of complex software systems. It allows complex applications to be built by 

composing them from existing applications. There are quite a lot of definitions for the 

software component. This thesis makes use of the one presented by Szyperski in [28], 

which is: “A software component is a unit of composition with contractually specified 

interfaces and explicit context dependencies only. A software component can be 

deployed independently and is subject to composition by third parties”. Ideally, a 

complex system would be able to be built by selecting a set of predefined components 
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and assembling them together to have the functionality of a new application. Those 

predefined components are not specific to any particular application. They are 

functionality-oriented rather than application-oriented. However they provide a means to 

allow an application assembler adjusting them to fit them into a particular application. 

Re-use is the most significant yet not the only benefit associated with software 

component technology. Easy maintenance and evolution is another benefit. By creating a 

system that is highly componentized, system updates could be localized to a particular 

component without affecting the rest of the application. Moreover, some component 

models, such as CORBA [15] and COM [2], provide facilities to allow the dynamic 

addition new component at runtime. This facilitates the software evolution process. 

 

A formal definition for JavaBean is that: “ A Java Bean is a reusable software component 

that can be manipulated visually in a builder tool”[29]. Builder tools may include web 

page builders, visual application builders, GUI layout builders, or even server application 

builders. A JavaBean is not required to inherit from any particular base class or interface. 

The three most important features of a bean1 are the set of properties it exposes, the set of 

methods it allows other components to call, and the set of events it fires. The JavaBean 

model specifies standard naming and type signature conventions for methods that a bean 

uses to expose its properties, events, and methods. Visual builder tools use these naming 

conventions to analyze a bean and discover what the bean has. This ability enables 

JavaBeans to be wired up into large and complex applications. More important for hot 

                                                        
1 In the context of this thesis, the term JavaBean and bean are used interchangeably 
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swapping, it potentially allows on-the-fly replacement of JavaBeans, with little or no 

modifications to the existing model. 

 

There are many JavaBeans available for composing complex applications. IBM’s 

alphaworks web site [30], for example, has many beans that could be downloaded and 

wired into non-trivial applications. JAIN (Java APIs for Integrated Network) is suggested 

for use with the JavaBean model to provide across-vendor telecommunication services 

for subscribers [35]. Considering the wide acceptance of the JavaBean component model 

and its built-in characters with regard to re-use and easy maintenance, it is worthwhile 

investigating a hot swapping approach for the JavaBean model, to see how JavaBean can 

facilitate hot swapping. This new idea stems from S-Module approach (e.g., the 

SwapManager is kept for co-ordinating hot swapping; the change is based on the module 

level, etc). Moreover, JavaBean’s features can be exploited to simplify the development 

of swappable JavaBean applications and facilitate hot swapping work at the time of 

upgrade. 

 

1.2 Objectives 

 

The main objectives of this thesis are as follows: 

1. Investigate existing runtime software evolution techniques. A set of common design 

issues that are faced with all hot swapping approaches is abstracted.  
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2. Propose a new software design/implementation framework for software hot swapping 

applications, based on the JavaBean component model. The framework must be 

extensible for future research. 

3. Design and develop a hot swapping environment that could be used as a container and 

hot swapping management of swappable applications.  

4. Apply the new technique to develop applications. Completely test and evaluate the 

new technique. 

 

1.3 Organization 
 
 
The rest of this thesis is organized as follows: 

 

Chapter 2 illustrates related work in hot swapping. It begins with a hardware-based 

approach, and elaborates on software-based solutions. At the end of the Chapter, a set of 

common design issues faced by all hot swapping techniques is abstracted out.   

 

Chapter 3 enumerates related technologies used in the thesis, and outlines the BeanBox, 

which is a test container for JavaBeans.  

 

Chapter 4 proposes a hot swapping prototype for swappable JavaBeans, and elaborates 

the design and implementation of SwapBox, which combines the prototype and the 

BeanBox together to provide a running environment and swap management for 

swappable JavaBean applications. 
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Chapter 5 presents two sample applications. One is Conway’s game of life, the other is a 

sorting application, which will completely test the SwapBox.  

 

Chapter 6 concludes the thesis. Contributions, drawbacks and limitations, and future 

work are also laid out here. 
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Chapter 2     Related Work 

 

 

2.1 Hardware-based Solution  

 
The term hot swapping has its origin from the hardware domain, where important 

hardware units are often constructed in redundancy. If a working unit encounters a fatal 

fault, the backup unit gets into running state to take over the role of the broken one. The 

faulty unit can then be replaced without the whole system being shut down. 

 

A slight, yet more commonly used, variation of the original hot swapping technique is 

hardware-based dynamic updates on software programs. In a system that uses hardware-

based dynamic updating, an entire running program is dynamically updated on a second 

computer system on which the new version of the program is loaded, while the first 

computer continues to execute the older version. Programs can be updated without or 

with minimal downtime. 

 

Many systems in the telecommunications domain have the capacity to support hardware-

based hot swapping. Nokia’s DX 200 mobile switching centre (MSC) is an example. An 

MSC must always be available to service both basic and advanced mobile call requests. 

To achieve the desired performance, fault tolerance, and availability goals, an MSC is 

constructed with redundant computer and communication hardware for most of its units. 

In a dynamic update, the user first updates the backup unit while the working units keep 
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servicing requests. After the old programs are replaced at the backup unit, the user 

activates it to working state to take care of servicing requests. The programs at the 

working unit that handled the requests during the initial update are then replaced.  

 

The most significant advantage of this technique is high reliability. Compared to Internet 

service, the telephone network enjoys a very high reputation for its reliable services. The 

principal disadvantage of this approach is its substantial cost. The redundancy inevitably 

increases the cost. It is typically used in mission-critical systems. In addition to cost, 

building a redundant computer system and properly connecting it to the main computer 

system is both difficult and expensive. Not only must the hardware be interacted, but the 

software shared between the systems (such as databases) must also be kept consistent. 

Moreover, such an approach, which requires close synchronisation between systems, 

does not scale to distributed systems. 

 

2.2 Software-Based Solution 

 

A software-based solution for runtime replacement is the next research step, because it is 

not as expensive as the hardware-based solution. Normally software-based solutions do 

not require redundant hardware units (although some may need specific hardware 

support). This reduces the cost of building highly reliable systems. Software-based 

solutions tend to be more diversified because the application domain, the desired 

performance, and correctness guarantees (i.e., how correctly the program is running at the 

time of hot swapping) influence the techniques a system uses for hot swapping. For 
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example, a system for hot swapping an information server used in a time-sharing 

environment would generally not be appropriate for hot swapping a real-time process-

control program. Another example is transferring states between versions. Some systems 

do not allow state loss and force the hot swapping to occur only after the old version of 

the program has reached the idle state; others may tolerate state loss. Such systems 

typically detect state loss and switch to a degraded mode of operation while recovering.  

 

2.2.1 General Characteristics 
 

Even though there are various hot swapping techniques, there are several characteristics 

all hot swapping systems should possess, regardless of their intended use. Segal and 

Frieder gave a list of such characteristics in [21]. They are: 

• Preserve program correctness. Program correctness must be preserved during the 

update as well as at times when no updates are in progress. 

• Minimizing human intervention. Part of preserving program correctness during an 

update means ensuring that the updating components are applied in the correct 

order and at the right time. Even a meticulous person can perform an update 

improperly. 

• Support low-level program changes. To dynamically update a range of programs, 

an updating system must support a variety of low-level program changes. The 

simplest kind of change is to replace a module with a new one that is 

implemented differently. More complicated changes include changing the 

module’s interface, having the module retain state between invocations, changing 
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the state’s implementation, and changing the implementations of both the 

interface and state variables. 

• Support code restructuring. Significant code restructuring can occur during 

maintenance – a change beyond simple module replacement. 

• Update distributed programs. Many programs that benefit from dynamic updating 

are distributed by nature. 

• Do not require special-purpose hardware. 

• Do not constrain the language and environment. They must be free to choose a 

language and system environment. An updating system must not force 

programmers to write code or call operating system primitives in a radically 

different manner. 

 

It is worthy to note that the relative importance of these characteristics varies with the 

application domain. For example, almost all the runtime updating and hot swapping 

systems described in the following sections place emphasis on preserving program 

correctness. Some of them (e.g., [1, 4, and 26]) take a conservative approach, i.e., avoid 

beginning replacement when the old version is still busy. Since the program is idle at the 

time of change, it is easier to preserve program correctness than when the program is 

busy. Only a few systems made explicit attempts to minimize human intervention, though 

this does not necessarily imply high level human intervention during hot swapping. All 

systems support implementation replacement. Some of them support interface or data 

implementation change [1, 4, 10, and 14]. Even though supporting distributed program 

updating is a wide research area, it is not a must for all hot swapping systems. Most 



 13

research papers did not mention hardware, therefore they do not need special-purpose 

hardware support (one exception is DAS [8]). Language and environment support are 

occasionally needed, e.g., operating system call Thread::abort in Chorus is used to signal 

the beginning of a runtime software replacement in Hauptman and Wasel’s approach 

[10]. 

 

All the techniques used in hot swapping systems aim to make the system as transparent as 

possible to both its users and programmers and its execution environment. The more 

transparent a hot swapping system, the more likely it would be used. Unfortunately, due 

to the inherent difficulty of runtime software replacement and the variety of application 

program structures as well as diversified domain requirements, no sole hot swapping 

system is able to incorporate all the possible changes into any program structures. Segal 

and Frider [21] regarded this as “why those researching dynamic updating have 

concentrated on creating dynamic updating techniques for specific well-accepted and 

well-understood program structures”. 

 

2.2.2 Dynamic Linking 
 

Dynamic linking [5 and 11] allows names to be bound when the program begins 

execution. It lets a program link the reference to an external procedure (usually part of the 

operating system or a library) to the actual procedure when the program is run or when 

the external procedure is first referenced during the run. This ensures that the most up-to-

date external procedure is bound and executed. Once done, this binding cannot be 

changed without restarting the program. The common point among all traditional states 
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of binding is that any type or method name can only be bound once across all phases. 

Even if dynamic linking were possible on a per-invocation basis (i.e., each time the 

reference is encountered within the program, it is resolved to bind to the external 

procedure), it does not contain a mechanism to preserve program correctness. Dynamic 

linking is widely used in commercial software products such as UNIX and Microsoft’s 

Windows operating system. 

 

2.2.3 Dynamic Class 
 

2.2.3.1 Language Support Dynamic Class 
 

CLOS (Common Lisp Object System) [24] and Smalltalk [6] support dynamic typing, in 

which the type descriptor of an object is able to change freely at runtime. Method code 

may be modified. Data fields and methods may be added or removed, etc. For example, 

the Information Bus distributed systems architecture [16] uses a CLOS-derived language 

to implement dynamic classes. Fabry [3] implemented a dynamic type system using 

capabilities. Widening [22] provides a mechanism for constrained dynamic type changes, 

in which objects may be temporarily “widened” to a subtype of their defining class. 

Dynamic typing, in its unconstrained form, supports the greatest flexibility. It supports 

hot swapping with respect to modifying interface, implementation, and data structure. 

However, static type checking of any kind becomes unfeasible. The runtime system must 

therefore support complete runtime type checking, with all the associated overhead. 
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2.2.3.2 DVM: Virtual Machine Support Dynamic Class 
 

Malabara et al. [14] presents a modified Java Virtual Machine – DVM (Dynamic Class-

based Virtual Machine) for dynamically updating running Java classes. DVM has a class 

named DynamicClassLoader derived from ClassLoader. DynamicClassLoader has two 

methods (i.e., reloadClass and replaceClass) that can reload an active class and replace it 

with a new version. The new class does not have to be the subclass of the old class. 

However, the dynamic change has to be type safe. A valid (type-safe) dynamic change to 

the old class C has to fulfil two conditions. Firstly, no class defined within the application 

depends on the fields or methods being removed from C. Secondly, an element of C’s 

type set (which is the set of all classes and interfaces to which an instance of C can be 

cast) cannot be removed if other class depends on it. The update is based on class, i.e., all 

instances of the old class have to be updated to instances of the new class. In order to 

achieve a type-safe and class-based dynamic update, DVM addresses two issues. One is 

to update instances; the other is to update dependent classes.  

 

Many JVM implementations, including JDK 1.2, divide the Java heap into a handle pool 

and an object pool. Java objects are always addressed indirectly through their handles. 

The DVM uses this address indirection to handle instances updates. It allocates new 

space for an object when updating it, without changing the handle used to reference the 

object. When the old object is moved, only the pointer in its corresponding handler needs 

to be updated; the handle never moves. The DVM uses an incremental mark-and-sweep 

approach to update instances. During the mark phase, objects are identified. They are 

actually updated in the sweep phase. The mark phase is atomic, and the sweep phase 
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proceeds incrementally. For updating dependent classes, the DVM first identifies such 

classes by scanning the constant pool of all loaded classes for C. Then it updates each one 

according to its relation to C (e.g., subclass, method usage, etc). The constant pool of a 

loaded class contains symbolic references to other class objects and their methods and 

fields. The JVM resolves such symbolic references when they are invoked the first time. 

It replaces these references with pointers to the referenced object. When class C is 

updated to a new class C’, any pointers to C become invalid, and the DVM replaces all 

resolved references to C with original symbolic references. It then resolves the class and 

replaces the references with pointers to C’. This approach uses a simplified mechanism to 

handle state transferring between versions. The DVM gets the values of the old states that 

exist at the new class, and sets them to the new instance. It initialises all added fields at 

the new objects to be NULL.  

 

DVM allows class updates even though some of its methods are active. The active 

methods, however, cannot be modified because it is difficult to map the stopping point at 

the old version to the restarting point at the new version if the method implementations 

are different. DVM enables changes to the implementation, data structure, and interface 

(provided it is type safe). The principal disadvantage of DVM is the modification to the 

JVM. Moreover, the efforts to achieve type safety and avoid race conditions in multi-

threaded applications tend to complicate the design of DVM. Native method execution is 

another problem. The proper class updates makes use of the assumption that all native 

methods can be trusted to behave properly. 
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2.2.4 DAS: An Example with Hardware Support 
 

DAS (Dynamically Alterable System) [8] provides support for dynamic updating of 

application programs by letting a module be replaced with a new module that has the 

same interface. It performs dynamic updating using “replugging”, a mechanism built on 

DAS’s address-space management system. This is, in turn, built on the addressing 

hardware of DEC’s PDP 11/40E. The information used to keep track of each module is 

stored in a linked list of descriptors called a descriptor chain. Replugging is done by 

changing the links within the descriptor chain. When a procedure in a different module is 

called, DAS performs an address-space transition by placing the descriptor table of the 

new module into the address-mapping hardware, while saving the current entries on a 

stack. Only one code segment is kept in the process’ virtual address space. One 

significant  problem with DAS is its use of virtual memory, which is both overly complex 

and inefficient, to aid updating. Another problem is that DAS fails to provide 

mechanisms for procedures whose interfaces change between versions. DAS is an early 

example of software dynamic updating systems, developed in the late 1970s (the 

software-based  dynamic updating system emerged in the 1970s). It requires hardware 

support. Most of today’s dynamic updating systems have no such requirements. 

 

2.2.5 Solutions with Special Support from the Operating System  
 

All hot swapping systems must have support from the underlying operating system to 

support dynamic loading, dynamic linking, and dynamic deleting of parts of executable 

programs during the process of on-line upgrading [1]. Some solutions go even further. 
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They need special support from the operating system to facilitate runtime replacement for 

particular domains. 

 
2.2.5.1 An Approach Based on Chorus  
 

Hauptman and Wasel [10] proposed an approach to support on-the-fly software 

replacement. The approach is based on Chorus, a modern, distributed, multi-threading, 

real-time operating system. C++ is the programming language. Their approach simplifies 

the task of replacing a group of actors into a sequential replacement of one actor after 

another. An actor is similar to a heavyweight process. Actors have ports attached to them. 

An actor can receive messages only via its ports. In the Chorus system, ports can be 

migrated between actors with virtually no degradation of their functionality. Each 

replaceable actor is given an additional thread (exchange thread), which organizes the 

replacement procedure within the actor, as well as an additional management port, which 

is used for all replacement specific communication. 

 

The replacement cannot occur at arbitrary points of the old actor. Instead there are 

exchange points at which all threads can be blocked (due to mutexes waiting or in an idle 

state, etc). It is demonstrated that such points always exist if the CPU load is less than 

100% and only one processor is used. If the execution time between two exchange points 

is too long, artificial exchange points could be inserted. The new actor could be different 

from the old one in code and object structure, but it has to provide one-to-one restarting 

points corresponding to exchange points on the old actor. The application programmer 

has to declare such restarting points and, in case of data implementation changes, one or 

more state transformation functions. Additional code with goto clause must be inserted 
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into the application code to navigate the program to the restarting point. The code could 

be automatically included with the help of a pre-processing tool. Each object has to 

provide two methods to access its states (i.e., one to get and one to set). They are used to 

transfer the old actor’s state to the new actor.  

 

Upon getting a replacement request and once an exchange point is reached (i.e., all 

threads are in block state), the exchange thread calls a Chorus operating system call 

Thread::abort, which unblocks the blocked thread, and the return value signals the 

beginning of a replacement. Those unblocked threads collect their objects’ states via the 

state access method. The new actor then jumps to the restarting point by executing 

replacement related code, and rebuilds the thread state list. The last step of replacement is 

port migration. Ports are known entry points of external clients. They are guaranteed to 

stay alive during the replacement process and should be migrated from the old 

component to the new one. The port migration is easy to implement because the 

underlying operating system, Chorus, supports it. After migrating ports, the replacement 

finishes and all new communication is redirected to the new actor. 

 

2.2.5.2 Port-based Object Solution on Chimera 
 

Steward et al. [27] presented a software framework using a port-based object (PBO) to 

design dynamically reconfigurable real-time software. The main goal is to reconfigure a 

real-time software program associated with a robotic system when such a system is 

dynamically reconfigured. It is supported by an implementation using domain-specific 

communication mechanisms and templates that have been incorporated into the Chimera 
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Real-time Operating System [26]. The term object does not imply object-oriented design; 

rather it refers to object-based design. A PBO is an independent concurrent process, 

whose functionality is defined by the methods of a standard object (which is predefined, 

therefore not changed at runtime). Communication with other modules is restricted to its 

input ports and output ports. There is no explicit synchronisation with other processes; 

when a PBO needs information, it obtains the most recent data available from its input 

ports, and there is no knowledge as to the origin of the information. When a process 

generates new information that might be needed by other processes, it sends this 

information to its output ports, and there is no knowledge as to which processes might 

look at this information. A variable type mechanism is used so that data transmitted over 

the ports can be any type. The approach implements input and output ports as state 

variables stored in global and local tables. A PBO can only access the local table, where 

only the subset of data from the global table that is needed by that PBO is kept. 

Whenever a PBO produces output states, the global table is updated. 

 

Because PBOs implement the same set of methods predefined by a standard object and 

they communicate each other via global and local state tables without direct or indirect 

references, this approach supports on-line reconfiguration. An engineer can reconfigure a 

running real-time robotic control program, e.g., replace a PBO with a new one, add a new 

PBO, and so on, provided the new configuration is a valid one. In order to achieve stable 

execution during a reconfiguration, the robot is temporarily at rest (i.e., velocity and 

acceleration are both zero before dynamic reconfiguration begins). Therefore no state 

transfer is needed. One problem with this approach is that it relies on operating system 
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services (e.g., a PBO framework process, multiprocessor state variable communication 

mechanism) to achieve dynamic reconfiguration. This restricts the approach from being 

applied to other domains. Moreover, this approach does not allow interface change. 

 

2.2.6 Java-C2: an Architecture-Based Solution 
 

Oreizy et al. [17] proposed an architecture-based approach to runtime software evolution. 

Software architectures [23, 31] are used to provide a foundation to facilitate such 

evolution. Each application is composed of components and connectors. Components are 

responsible for implementing application behaviour. A component must provide a 

minimal amount of functional behaviour to participate in runtime change. To support 

runtime addition and removal, components must be packaged in a form that the 

underlying runtime environment can load dynamically. To support runtime 

reconfiguration, components must be able to alter their connector bindings. These 

additional behaviours are provided in the form of reusable code libraries that act as a 

wrapper to the actual component. The introduction of connectors is a distinctive feature 

of software architectures. They are explicit architectural entities that bind components 

together and act as mediators between them. They encapsulate component interactions 

and localize decisions regarding communication policy and mechanism. 

 

This approach focuses on supporting architectures in a layered, event-based architectural 

style, called C2. In the C2-style, all communication among components occurs via 

connections, thus minimizing component interdependencies and strictly separating 

computation from communication. The C2-style also imposes topological constraints - 
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every component has a “top” and a “bottom” side, with a single communication port on 

each side. This restriction simplifies the task of adding, removing, or reconnecting a 

component. A C2 connector also has a top and bottom, but the number of communication 

ports is determined by the components attached to it. This enables C2 connectors to 

accommodate runtime rebinding. 

 

A tool suite named Archstudio has been developed. Archstudio provides graphical and 

command-line tools used to modify a Java-C2 program specification at runtime. An 

attempt to change the specification invokes an Architecture Evolution Manager, which 

checks the request for validity, and modifies the program implementation accordingly. 

The runtime architecture infrastructure supports the addition and removal of components 

and connectors, and the reconfiguration and querying of the architectural model. There is 

no support for component replacement. This approach is an example of runtime software 

evolution. It concentrates more on high-level software change management than the fine-

grained details. The main limitation of this prototype is that all components and 

connectors have to be written using the Java-C2 class framework.  

 

2.2.7 S-Module in Detail 
 

In our lab, Ning Feng [4] and Gang Ao [1] developed the S-Module approach for the hot 

swapping problem. Since this thesis attempts to improve the S-Module approach, it is 

worthwhile to describe the S-Module in detail. 
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2.2.7.1 Basic Idea 
 

Ning Feng and Gang Ao made use of proxy pattern [38] to design hot-swappable 

applications, which consist of swappable and non-swappable modules. Each swappable 

module is further composed of an S-Proxy and an S-Module. The S-Module is swappable 

and the S-Proxy cannot be swapped out. Figure 2-1 shows how the S-Proxy hides the S-

Module from its clients. 

 

 

 

 

FIGURE 2-1  PROXY APPROACH FOR REFERENCE INDIRECTION 

The S-Proxy hides the real handle of the S-Module from clients while these clients only 

get the handle of the S-Proxy. When an S-Module is swapped, only the S-Proxy switches 

the handle to the new S-Module while the clients retain their relationship with the S-

Proxy. The new S-Module should inherit from the old S-Module. In other words, it 

provides all methods implemented by the old S-Module. 

 

Besides swappable and non-swappable modules, an S-Application also contains one swap 

manager. The swap manager has access to all S-Modules. It co-ordinates the hot 

swapping transaction. Upon getting a hot swapping request, the swap manager may 

determine whether or not it is possible to begin hot swapping. It makes the decision based 

on what state the S-Module is in. The swap manager is also responsible for mapping 

attributes from the old S-Module to the new S-Module and blocking the new method 

invocations to the S-Module that is going to be swapped out. 

Client A 

Client B 

S-Proxy 

Old S-Module 

New S-Module 
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2.2.7.2 S-Module States 

 

The S-Module has five states, i.e., initialising state, swappable state, busy state, blocked 

state and swapping. The initialising state is the one during which S-Module is loaded into 

the program. In the busy state, one or more methods of an S-Module are called by other 

modules in the program. In the blocked state, the S-Module itself is calling other methods 

of the program, or using the system resources, and waiting for the completion of the 

operations. The hot swapping transaction will take place if and only if an S-Module is in 

its swappable state. When an S-Module is in either the busy or the blocked state, and 

receives a request to be swapped, the S-Module is forced to enter the swapping state. In 

the swapping state the S-Module should either continue its normal operations or be asked 

to terminate its services in a safe way and release the system resources it holds. After 

that, the S-Module enters the swappable state. 

 

2.2.7.3 Handle Interface Change 

 

The service interface of an S-Proxy is the same as the old S-Module that is originally 

represented. If the new S-Module changes its interface, the S-Proxy cannot change 

accordingly because the S-Proxy is not swappable. If the new S-Module has a 

newMethod interface that does not exist in the old S-Module as well as in its S-Proxy, 

this newMethod cannot be invoked via S-Proxy’s service interface. To address this 

problem, Java reflection is used. An S-Proxy provides a newService interface to adapt to 

the case when a new S-Module has a new method. 
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In Figure 2-2, a new client knows the newMethod of the new S-Module can call the 

newService interface of the S-Proxy with the parameter of the new method’s name and 

parameters. The S-Proxy can then invoke the newMethod of the new S-Module by Java 

reflection. The dash line represents method invocation for the new S-Module. 

 

                                                                                                  Old S-Module          

                                                               S-Proxy 

                                                                                                   

                                                                                                  New S-Module 

 

 

FIGURE 2-2  NEW SERVICE INTERFACE FOR S-PROXY 

 

2.2.7.4 Two-Phase Commit Transaction 

 

In order to support atomic hot swapping for multiple S-Modules in one transaction, a 

two-phase commit transaction model is proposed. Each participant (S-Module) in such a 

transaction has three kinds of tasks to do, i.e., prepare-task, commit-task, and abort-task. 

The prepare-task moves the old S-Module from the busy state to the idle state with the 

help of a swap manager. The S-Module then transfers its state to its corresponding new S-

Module. The successful completion of this task leads the task to be marked as 

PREPARED. In the commit-task every participating old S-Module is removed from the 

application and every new S-Module is ready to provide the application services. If the 

task fails, it will be marked as ABORTED. In abort-task, every participating old S-

Client 
Old Interface 
 
newService 

Old Interface 

Old Interface 

newMethod 
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Module is ready to continue its application services, and all the new S-Modules are 

removed.  

 

In a sequential transaction model, every participant in the swap transaction will line up to 

process its swap transaction. One participant will do its prepare-task first. If the result is 

PREPARED, then the next participant will do the same job. If every participant is 

PREPARED, then every participant will do its commit-task on by one. If any one is 

ABORTED, then every participant has to do its abort-task. 

 

2.2.7.5 Problems 
 

One problem with this approach is that it can only support incremental functional 

modification and extension. The technique used to handle interface change cannot 

support decremental functional modification. This means that a new S-Module has to 

keep all the interfaces its corresponding old S-Module has provided. Otherwise it will 

violate Java’s type system. Another problem is the use of Java reflection in invoking the 

new method. It has to pay a performance penalty. In the worst case, if the evolution of the 

S-module leads to all methods being changed at the end, the whole application 

performance will suffer a great deal, because all method invocations have to go through 

reflection. Moreover, the approach does not explicitly provide a mechanism to transfer 

states between versions. 
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2.2.8 Others 
 
All the above approaches treat hot swapping, runtime evolution and reconfiguration at 

component level (i.e., S-Module, Component and PBO). Gupta et al [9]. describes an 

approach to modelling changes at the statement- and procedure-level for a simple 

theoretical imperative programming language.  The basic idea of the technique is to 

locate the program control points at which all variables affected by a change are 

guaranteed to be redefined before use. By redefining, a variable gets a new value in the 

new version program.  It was demonstrated that in such points on-line change would be 

safe. At these points, old version program’s running stack is captured and used to 

construct new version program’s running stack. They show that in the general case 

locating all such control points is undecidable, and approximate techniques based on 

source code data-flow analysis and developer knowledge are required. A very short piece 

of program is used to demonstrate the idea. However, scaling up this approach to manage 

change in large systems written in complex programming languages is still an open 

research problem. 

 

2.3 Summary 

 

2.3.1 Common Design Issues in Designing Hot Swapping Systems 
 
The approaches listed above exhibit diversified techniques used to address runtime 

software replacement problem. There is, however, a set of common design issues faced 

by the developer when designing hot swapping systems. The strategies adopted to 
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address these issues determine the nature of the hot swapping system. These common 

issues are: 

• Granularity, which is the basic unit for hot swapping. The granularity for the 

DVM, for example, is based on the Java class. 

• Reference indirection. A hot swappable module must not be directly referenced 

by the other parts of the program. S-Module [4, 1] uses proxy patterns to separate 

a hot swappable object from the outside world. Steward’s approach [27] exploits 

ports, implemented as global and local variable tables, to hide the swappable 

objects.   

• Constructing new states. Constructing states in the new version program is a 

challenging task. The simplest solution is that the new version program has 

default values that do not need state values at the old version program. In cases 

where new states are constructed based in the state values at the old version 

program, there is a need to transfer old states to new states. DVM [14] is an 

approach that combines both solutions. At the time of change, it copies the values 

of old states that existed at the new class to instances of the new class, and set 

newly added fields to NULL. 

• Levels of change. There are three levels of changes allowed for the new version 

program, i.e., implementation change, interface change, and data structure change. 

DAS [8] only supports implementation change. The S-module [4, 1] supports both 

implementation and some interface changes (i.e., incremental interface change). 

While not explicitly mentioned, it also supports data structure change.  
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• Timing for upgrading. Hot swapping cannot take place at arbitrary time. The hot 

swapping system must determine in what circumstances the upgrading can occur. 

In DVM [14], it could occur at any time provided the implementation of the 

currently active method is not changed. In S-Module [4, 1], hot swapping can 

only take place when the old module is in idle state and agrees to be swapped out. 

In Hauptman’s approach [10], the stopping points at the old actor are hard coded 

into application code. Only when the stopping points are reached and a 

replacement job is pending could the runtime replacement take place. 

 

2.3.2 Generic Procedure for Hot Swapping 
 

At the time of on-line upgrading, there are several steps that all hot swapping systems 

will go through to replace the old version of the program with the new one. Highlighting 

these steps facilitates the understanding of the basic functionality of hot swapping 

systems. These steps are: 

• S1: Determine safe points in the old version of the program to begin a runtime 

update 

• S2: Reconstruct runtime states in the new version program 

• S3: Determine appropriate points in the new version of the program to restart the 

updated program 

• S4: If the hot swapping system allows interface change and there is an interface 

change, handle the interface mismatch between versions 
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• S5: Bring the new version of the program to the application so that all 

forthcoming service requests destined for the old version of the program will be 

redirected to the new version of the program 

 

This chapter reviewed the related work in the hot swapping research. It could be seen that 

because of the inherent difficulty of the problem, all of approaches have concentrated on 

creating techniques for specific program structures. 

 

The software component is highly decoupled with each other because it is designed with 

contractually specified interfaces and explicit context dependencies. We believe this 

character, plus its abilities to be deployed independently and be subject to composition by 

third parties, can facilitate and simplify hot swapping at the component level. For 

example, the JavaBean’s ability of dynamically adding/removing interactions with other 

beans can be used to handle both incremental and decremental interface changes of the 

new bean.  

 

As described in section 1.2, the fundamental objective of this thesis is to design a new hot 

swapping infrastructure with particular focus on exploiting JavaBean’s features to 

simplify development of hot swappable beans and facilitate hot swapping transactions as 

well. Instead of being incorporated into hot swappable applications, the new 

infrastructure should be a running environment and a swapping management tool for hot 

swappable beans. In other words, a test container for hot swappable JavaBeans is needed. 
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BeanBox [36] was developed by Sun Microsystems as a test container for JavaBeans. It 

can be extended to implement the new proposed hot swapping infrastructure. 

 

The next chapter briefly describes related technologies such as JavaBean component 

model, Java object serialization, XML, and the BeanBox.  All of them will be used to 

develop the SwapBox, which extends from the BeanBox and works as a test container for 

hot swappable JavaBeans. 

 

 

 



 32

Chapter 3     Related Technologies and 

     the BeanBox 

 

 

3.1 Related Technologies 

 

3.1.1 JavaBeans Component Model 

 

3.1.1.1 The Goal and Features 
 
The JavaBeans specification [30] describes a component architecture for Java. It 

addresses the needs of two sets of programmers: 

• Component developers who write code at the source level, and 

• Component assemblers who create large applications by combining beans, either 

visually or by writing some glue code (or both) 

The goal of JavaBeans APIs is to define a software component model for Java, so that 

third-party developers can create and ship Java components that can be composed 

together into applications by end users. The JavaBeans component model is based on a 

Java class. Almost any class written in Java can be made into a bean. The model simply 

adds a few rules that a programmer must follow to make classes toolable and reusable. 

This section is not trying to cover all these rules in detail. Instead, it focuses on some 

rules that are heavily used in the SwapBox to facilitate hot swapping. 
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Individual JavaBeans vary in the functionality they support. Some beans may be simple 

GUI elements such as buttons and sliders; others may be sophisticated visual software 

components such as database viewers. Some JavaBeans may have no GUI appearance of 

their own, but may still be put together visually using an application builder. Though the 

variety of functional behaviours, JavaBeans distinguish themselves from normal Java 

classes because they support the following features: 

• Support for “introspection” so that a builder tool can analyze how a bean works 

• Support for “customization” so that when using an application builder a user can 

customize the appearance and behaviour of a bean 

• Support for “events” as a simple communication metaphor that can be used to 

connect beans 

• Support for “properties”, both for customization and for programmatic use 

• Support for persistence, so that a bean can be customized in an application builder 

and then have its customized state saved and rebuilt later 

 
3.1.1.2 Event Communication: an In-Depth Look 
 

Among these features, the event communication model plays an important role in the 

SwapBox. Events provide a mechanism for allowing components to be plugged together 

in an application builder, by allowing some components to act as sources for event 

notifications that can then be caught and processed either by scripting environments or by 

other components. In the Java event model, an event notification is propagated from the 

source object to the target listener object by a direct Java method invocation on the target 

object. A source object may fire out several events to target objects. The state associated 

with an event notification is normally encapsulated in an event object that inherits from 
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java.util.EventObject and which is passed as the sole argument to the event method at the 

target listener object. Each distinct kind of event is targeted at a distinct event method. 

Therefore a particular event notification is defined by its event method, which is 

supposed to take the event and handle it. These methods are then grouped in interfaces 

that inherit from java.util.EventListener. Event listener classes identify themselves as 

being interested in a particular set of events by implementing some set of EventListener 

interfaces. 

 

Event sources identify themselves as a source of particular events by defining registration 

methods that conform to a specific design pattern (not the design pattern in OO 

methodology, but rather a naming convention) and accept references to instances of 

particular EventListener interface. The standard design pattern for EventListener 

registration is: 

public void add<ListenerType> (<ListenerType> listener); 

public void remove<ListenerType> (<ListenerType> listener); 

The presence of this pattern identifies the implementation as a standard event source for 

the listener interface specified by ListenerType. 

 

In circumstances where listeners cannot directly implement a particular interface, or 

where some additional behaviour is required, an instance of an event adapter class could 

be interposed between a source and one or more target listeners in order to establish the 

relationship or to augment behaviour. The primary role of event adapters is to conform to 
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particular EventListener interfaces expected by the event source, and/or to decouple the 

incoming event notifications on the interface from the actual listeners. 

 

3.1.1.3 JavaBean Introspection 

 
Visual builder tools use introspection to discover a bean’s behaviour, i.e., methods 

provided, events fired out, and properties exposed. JavaBean introspection uses the Class 

class and its helper classes to the java.lang.reflect package to discover and use bean 

information. In other words, the bean introspection is above Java reflection. The Class 

class is the mother of all reflection classes. Every instance of a Java class has a Class 

object associated with it. This object contains all the information about the Java class, 

e.g., its name, superclass, loader, the interface it supports, etc. The bean introspection 

abstracts it into bean properties, methods, and events. 

 

3.1.2 Java Serialization 

 

JavaBeans take advantage of the Java object serialization service to automatically save 

and restore their states. The serialization service also supports a simple form of 

versioning, which is an important requirement in component environments. It enforces 

simple rules that let newer beans load state written by their older versions. It also lets 

newer beans store states in a format that is consistent with older versions. However, Java 

serialization has stringent rules on what changes it supports between versions.  
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Java object serialization is the process of saving an object's state to a sequence of bytes, 

as well as the process of rebuilding those bytes into a live object at some future time. The 

Java Serialization API provides a standard mechanism for Java developers to handle 

object serialization. The essential foundation of Java Serialization is that with methods 

ObjectOutputStream.writeObject() and ObjectInputStream.readObject(), a serializable 

object could be stored into a file or be sent across the network.  

 

An object must implement java.io.Serializable or java.io.Externalizable interface in order 

to be serialized. Serializable interface is no more than a marker indicating whether or not 

an object could be serialized and de-serialized. There is no method defined within 

java.io.Serializable interface. When serialization occurs, only the object’s state is saved. 

The object’s class file and methods are not saved. Thus the class file must be accessible 

from the system in which the restoration occurs. Most Java classes and their subclasses 

can implement java.io.Serializable interface. There are, however, certain system-level 

classes such as Thread, OutputStream and its subclasses, and Socket that are not 

serializable. If a serializable class contains an instance of these classes, they must be 

marked as transient so that they will not be serialized. Indeed, transient is used to mark 

any field that either cannot be serialized or is not intended to be serialized. 

 

When Java objects use serialization to save states in files, or as blocs in databases, there 

is a possibility that the version of a class reading the data may be different from the 

version that wrote the data. Versioning raises some fundamental questions about the 

identity of a class, including what constitutes a compatible change. A compatible change 



 37

is a change that does not affect the contract between the class and its callers. Java 

Language Specification defines compatible changes as follows: 

• Adding fields - When the class being reconstituted has a field that does not occur 

in the stream, that field in the object will be initialized to the default value for its 

type.  

• Adding classes - The stream will contain the type hierarchy of each object in the 

stream. Comparing this hierarchy in the stream with the current class can detect 

additional classes.  

• Removing classes - Comparing the class hierarchy in the stream with that of the 

current class can detect that a class has been deleted.  

• Adding writeObject/readObject methods  

• Removing writeObject/readObject methods  

• Adding java.io.Serializable  

• Removing java.io.Serializable so that it is no longer Serializable  

• Changing the access to a field - The access modifiers public, package, protected, 

and private have no effect on the ability of serialization to assign values to the 

fields.  

• Changing a field from static to non-static or transient to non-transient  

 

When writing a serialized object, the Serialization API simultaneously writes a 64-bit 

safe hash code (called SerialVersionUID) of the following information about the class:  

• The class name  

• The class modifiers  
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• A sorted list of interface names implemented by the class  

• The name, modifiers, and descriptor of each field, sorted by field name (except 

for private static and private transient fields)  

• The name, modifiers, and signature of each method, sorted by method name 

(except for private methods and constructors) 

 

When restoration occurs, the class loader of the system loads the class file of the class (if 

necessary), and then calculates the class’s SerialVersionUID. If the calculated value (for 

the local class) doesn’t exactly match the value stored previously by the output stream, 

the Java serialization process throws java.io.InvalidClassException, thereby refusing to 

load the stream. However, before calculating the SerialVersionUID, the Java serialization 

process checks the class it is serializing for a variable: 

static final long serialVersionUID 

If it finds the variable, that number, instead of the calculated value, is used to make the 

comparison. Therefore, if in the new version the variable is set to the SerialVersionUID 

of a previous class, the Java serialization process will get the number it expects. In this 

way, no java.io.InvalidClassException would be thrown out. However, some changes 

made to a Java class may cause other exceptions that make restoration fail, even though 

InvalidClassException is not thrown out. These changes are called incompatible changes.  

 

3.1.3 XML  

 

At the time of upgrading, it is necessary to have a configuration file that is used to 

regulate how to do a particular hot swapping. Such a configuration file must be well 
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structured and easy to extend. We decided the configuration file should follow the XML 

format because it has a good structure and is easy to extend. XML stands for Extensible 

Markup Language. It is a text-based markup language for data interchanging. Similar to 

HTML, XML identifies data using tags. But unlike HTML, XML tags signify what the 

data means, rather than how to display it. HTML is a markup language; XML is more 

than that. It is a metalanguage – a language used to define new markup languages. An 

XML document must be well formed so that the XML parser can correctly read all tags. 

A well formed XML document is simply one that follows all of the notational and 

structural rules of XML, e.g., no unclosed tags (every start tag must have a corresponding 

end tag) and no overlapping tags (a tag that opens inside another tag must close before 

the containing tag closes).  

 

DTD (Data Type Definition) is used to verify the validity of an XML document. It is like 

a grammar for a markup language. The DTD specifies what elements may exist, what 

attributes the elements may have, what elements may or must be found inside other 

elements, and in what order. XML parsers can be divided into two types with respect to 

document validity checking. A non-validating parser reads the XML document and, if it 

is well formed, presents the document structure as a tree of objects. A validating parser 

does not simply read an XML document and verify that it is well formed, but goes a step 

further to determine whether the document element tags are legal, whether the attribute 

names make sense, whether every element nested inside another element belongs there, 

and so on.  
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3.2 BeanBox: the Starting Point for SwapBox 

 

3.2.1 BeanBox Overview 
 
The main goal of the BeanBox is to present users with an environment that could test 

whether or not beans can work properly. The BeanBox allows users to: 

• Drop beans into a composition window 

• Resize and move beans around 

• Edit the exported properties of a bean 

• Run a customizer to configure a bean 

• Connect a bean event source to an event handler method 

• Connect together bound properties of different beans 

• Save and restore sets of beans 

• Make applets from beans 

• Get an introspection report on beans 

• Add new beans from JAR files 

 

The BeanBox is a standalone application. Figure 3-1 is a snapshot of the BeanBox. The 

BeanBox is mainly composed of three parts. From left to right in Figure 3-1, the 

ToolBox, BeanBox, and Properties sheet are shown. The ToolBox and Properties sheet 

provide supporting facilities to BeanBox, which plays a significant role in the whole 

framework. ToolBox instantiates available JavaBeans from JAR files located in a 

predefined directory. It lists the names of all beans found in a panel so that they can be 
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dragged and dropped into the BeanBox. The Properties sheet handles the modification of 

properties.  

 

 

FIGURE 3-1  SNAPSHOT OF THE BEANBOX 
 

3.2.2 Connecting Beans: Behind the Scene 
 
After being dragged from the ToolBox and dropped into the BeanBox, a bean can be 

wired up by connecting events and properties to compose applications. Applications 

created in the BeanBox are event driven. Interactions between beans are carried out via 

event delivery. A bean has no direct reference to beans with which it interacts. An 

adapter is interposed into a source bean and the target bean. The source bean only knows 

the reference to the event adapter, while the event adapter knows the reference to the 

target bean. When the source bean attempts to fire out an event to the target bean, it 

actually sends the event to an event adapter, which then invokes a corresponding method 

at the target bean. The BeanBox automatically generates, compiles and loads the adapter 

class on the fly. Because the “glue code” (event adapter) is created dynamically, this 
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approach is rather flexible. This flexibility defers the establishment of interactions 

between beans until the last minute, and offers the potential to replace a bean at runtime.  

 

 

  

                                          creates                                                   generates                  

                                                                                 creates 

 

                                                                                                              uses                              

 

FIGURE 3-2  SIMPLIFIED CLASS DIAGRAM FOR GENERATING EVENT ADAPTERS 
 

Figure 3-2 shows a simplified class diagram for generating event adapters in the 

BeanBox. A user has to identify the source bean, the event, the target bean, and the target 

method, in order to bind two beans with one event communication. The BeanBox 

composition window is used to select the source bean and the event. After that a red 

rubber hand appears, enabling the selection of the target bean. The EventTargetDialog 

pops up after the user selects the target bean. It lists all feasible methods at the target bean 

that are able to accept and handle the incoming event. Recall section 3.1.1, where it was 

stated that each distinct kind of event is targeted at a distinct target method. Such a 

relationship is established by the identity between event type and the type of the sole 

argument of the target method. In other words, a feasible method is one with only one 

argument, whose type is the same as the event type. The EventTargetDialog lists not only 

these methods, but also methods with no arguments. Void methods are selected because 

event adapters are interposed between the source and target bean. The target bean does 

Dialog 

EventTargetDialog 

HookupManager 

BeanBox EventAdapter 

Wrapper 
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not have to implement a particular EventListener interface in order to accept an event. 

Figure 3-3 shows a piece of event adapter code. The adapter implements the 

ActionListener interface, and therefore accepts an ActionEvent with an actionPerformed 

method, which in turn invokes a void method at the target bean. The argument passed to 

actionPerformed is simply abandoned, and the target bean does not implement 

ActionListener interface. After the target method was selected, the EventTarget Dialog 

calls a method at HookupManager to generate, compile, and deploy the adapter. Along 

with generating event adapters, the HookupManager updates the source bean’s wrapper 

to record the addition of a new interaction (an instance of the Wrapper class is created for 

each bean when the bean is dropped into the BeanBox. It provides facilities to support 

event binding, property binding, and other common functionality).  

// Automatically generated event hookup file. 
 
package tmp.sunw.beanbox; 
import GameBoardBean; 
import java.awt.event.ActionListener; 
import java.awt.event.ActionEvent; 
 
public class ___Hookup_17312c5c50 implements java.awt.event.ActionListener, 
                                                                                java.io.Serializable { 
    public void setTarget(GameBoardBean t) { 
        target = t; 
    } 
    public void actionPerformed(java.awt.event.ActionEvent arg0) { 
        target.stop(); 
    } 
    private GameBoardBean target; 
} 

FIGURE 3-3  A PIECE OF EVENT ADAPTER CODE 
 
 
3.2.3 From BeanBox to SwapBox 
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The most significant reason that the BeanBox is selected as the starting point to build a 

new hot swapping infrastructure is that BeanBox itself is a test container for JavaBeans. 

By using the BeanBox, the only thing left is to incorporate it with hot swapping 

management such that users could visually manage hot swapping transactions. In 

addition, the BeanBox has been selected for the following reasons: 

• Source code available. The BeanBox source code is available at Sun 

Microsystems’ web site [36], along with the JavaBean model. 

• Full support of JavaBean features. Even though the BeanBox is only a test 

container for JavaBeans, it supports all the features of the JavaBean model.  

• Simplicity. The architecture of the BeanBox is simple but well organized. This 

reduces the work on coding extension so that the research can be concentrated on 

the strategies that should be considered for swappable beans. 

 

In the literature, there are several groups that modified the BeanBox to do their research. 

To name two of them, Effaris [40] project modified the BeanBox as a visual platform for 

multi-agents, and EVOLVE [41] project modified the BeanBox as a runtime tailoring 

platform for group-aware applications.  

 

This chapter reviewed the JavaBean component model, Java object serialization, XML, 

and the BeanBox. These technologies are used to develop the SwapBox. The next chapter 

describes in detail the design and implementation of the SwapBox.  
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Chapter 4     Design and Implementation of  

                      the  SwapBox 

 

 

 

4.1 General Principles 

 

4.1.1 Design Issues 
 

Recall section 2.3.1, which dealt with a set of common issues faced in the design of hot 

swapping systems, i.e., granularity, reference indirection, constructing new states, levels 

of change, and timing for upgrading. The design for the hot swapping system proposed in 

this chapter tries to address all of these issues to some extent. It aims to provide hot 

swapping capability for event-driven, adapter-connected JavaBean applications. 

Following is a complete list on how the new hot swapping system does with respect to 

these issues. 

• Granularity. The basic unit for JavaBean hot swapping is the JavaBean 

component.  

• Reference indirection. When the event communication model is applied to beans, 

adapters can be interposed between beans. They are able to provide a reference 

indirection to swappable JavaBeans. Therefore, the hot swapping system requires 

the beans to be connected with event adapters. Compared with the proxy pattern 
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in Ning Feng’s work [4], each swappable bean has an unspecified number of 

event adapters while S-Module only has one proxy. The event adapters, unlike the 

S-Proxies, are generated automatically. 

• Constructing new states. The hot swapping system captures the old bean’s object 

states and assigns them to the corresponding new bean’s object states. Mapping 

rules are used to establish a one-to-one relationship between the old state and the 

new state. The hot swapping system does not capture the running stack of the old 

bean in order to construct new bean’s running stack. Such an attempt requires 

semantic knowledge of the new bean and the old bean’s implementation to 

analyse the points at which the hot swapping could occur. Gupta et al. 

demonstrated in their work [9] that the data-flow analysis for such points is 

tedious, and how to scale it up to large programs is still an open research area. 

• Levels of change. The hot swapping system supports implementation, interface, 

and data structure change. Reference indirection itself is enough to support 

implementation change. In order to support interface change, the hot swapping 

system has to deal with interface mismatch in which the new bean and the old 

bean have different interfaces. It exploits JavaBean’s ability to dynamically 

add/remove interactions to make the interface change possible. The new bean 

does not have to be the subclass of the old bean, which was required in S-Module 

approach. The data structure change is normally an internal change with ability to 

affect public interface. Since the hot swapping system supports both 

implementation and interface changes, it is able to support data structure change 

as well. 
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• Timing for upgrading. The timing problem is indeed the problem of preserving 

the program correctness at the time of upgrading. Any time that the guarantee 

exists, the hot swapping can take place. Unfortunately, the method of keeping the 

program stable and correct at the time of upgrading is application-specific 

because different applications have different program structures and different 

requirements on what is “correct”. Some applications, for example, may allow the 

upgrading to occur only when the old bean is idle. Others, on the contrary, may 

tolerate state loss and allow the upgrading to occur when the old bean is busy. In 

recognising the problem with differences in timing, the new hot swapping system 

is designed to provide several solutions for timing problem that can be selected at 

runtime. This increases its flexibility.  

 

4.1.2 Terms 
 

In event-driven JavaBean applications, method invocations are realised through event 

delivery. These event deliveries, along with beans, are composed of a graph within which 

beans are nodes and event deliveries are edges. The edge has direction, i.e., starting from 

the source bean and ending at the target bean. A node (JavaBean) may have many edges 

connecting with it. In the context of this thesis, an interaction is defined as an edge 

connecting two nodes. It is identified by the source bean, the target bean, the event, and 

the target method. A bean’s partners are defined as neighbour nodes that are directly 

connected to the bean. Partners are either sending events to the bean or receiving events 

from the bean. 
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The hot swapping, like network management, belongs to the management work. In the 

traditional JavaBean component model, the bean developer develops beans, the 

application assembler assembles beans into applications, and end-users use the 

application. Figure 4-1(a) shows the use case diagram for the three roles in a normal 

component system. There is no role designated to take care of hot swapping work. This 

thesis proposes an extra role named swap administrator to deal with the hot swapping 

work. Figure 4-1(b) shows a use case diagram for the four roles.  In practice, the swap 

administrator could be merged with the application assembler to the same personnel. 

 

component                                                                           component                                                        
 developer                                                                             developer                                                    swap     
                                                                                                                                      admin.    

 

     app.                                                                                       app. 
assembler                                                         user              assembler                   
 

                                                                                                                                                                     user 
 

 
 

 
                                        (a)                                                                                        (b) 
                       

FIGURE 4-1  USE CASE DIAGRAM FOR ROLES IN TWO COMPONENT SYSTEMS 
 
 

4.1.3 SwapBox Overview 
 

The Swapbox incorporates the general principles proposed above into the BeanBox. 

Similar to the BeanBox, the SwapBox is the execution container for swappable 

JavaBeans. Moreover, it provides facilities for hot swapping old beans with new beans. 

Applications created within the SwapBox are event-driven and adapter-connected. The 
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SwapBox does not directly modify the BeanBox’s code. Instead, it inherits the 

BeanBox’s classes and overrides methods that have different behaviours. All the classes 

belonging to the SwapBox are at the carleton.swapbox package, which works with the 

sun.beanbox package to play the role of the SwapBox. It is worth noting that some 

methods’ modifiers have been changed from private to protected. This is because the 

extended code in the SwapBox must make use of these methods. Without alteration, these 

methods are not visible to the classes in the carleton.swapbox package. The concept of 

the SwapManager, proposed by Feng and Ao in [4, 1] is kept. It is the co-ordinator and 

executor of the swap transaction. This will be discussed in section 4.6. A set of GUI is 

provided to configure hot swapping policy, which is then saved as an XML file. The 

significance of the hot swapping policy and how to configure it is discussed in section 

4.3. State transferring and interaction handling are discussed in section 4.4 and 4.5, 

respectively. 

 

4.2 Reference Indirection: Event Adapters 

 

4.2.1 Functionality and Design 

 

Event adapters provide reference indirection to swappable JavaBeans. They are like the 

proxies in Feng and Ao’s work [4,1]. The functionality of event adapters is as follows: 

1. Relay event delivery from the source bean to the target bean. This is the basic 

functionality of event adapters. Without it, the hot swappable application cannot 

work. 
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2. Block and unblock event deliveries as they are requested. Hot swapping involves 

special operations of the application. The execution of these special operations 

should not be overlapped with normal operations. Therefore, after on-line upgrading 

takes place, the old bean will not immediately react to service requests (event 

deliveries). Such requests are blocked. In other words, when the hot swapping 

framework blocks requests to a given bean, event deliveries to the bean are cut off. 

At this time, the event adapter does not forward any incoming events to the bean. As 

soon as hot swapping is finished, event adapters resume their normal state. Service 

requests are unblocked.  

3. Queuing events at blocking time. The hot swapping is expected not to disturb the 

normal operations of the application. When event adapters for a particular bean are 

blocked, event deliveries should be queued instead of discarded in order that they 

will be handled after the hot swapping is finished. Event adapters must provide a 

mechanism to queue events and deliver them to the right bean (i.e., the new bean 

when hot swapping succeeds, or the old bean when hot swapping fails) after hot 

swapping. 

 

Event adapters in BeanBox are relatively simple. A piece of code is listed in Figure 3-3. 

An adapter takes an event fired out from the source bean, and invokes a method at the 

target bean. Each adapter has a method in common called setTarget, which is used to set 

the target bean. Therefore the target bean could be changed after the event adapter is 

created. Because of this method, the BeanBox event adapter model is able to handle 
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simple hot swapping jobs. A new bean hot swaps the old bean by invoking the setTarget 

method so that forthcoming events are forwarded to the new bean.  

 

However, for the reasons listed below, the simple event adapter model and setTarget 

approach does not meet the functionality previously discussed.   

• There is no mechanism to temporarily block and queue incoming events while the 

target bean is in the swapping process 

• Event delivery is synchronous which prohibits any possibility of doing additional 

work during event dispatch 

• With the setTarget method, the new bean has to be a subclass of the old bean. 

Otherwise the method fails because of argument type mismatch. 

 

Due to these limitations, the BeanBox event adapter model cannot handle complicated 

hot swapping jobs. For example, in a case where the old bean services a couple of 

different components, and the arrival time of requests is a function of random time. When 

hot swapping is initiated to this bean, the hot swapping system must somehow block the 

service requests such that the bean can get into idle state in order to be swapped out. The 

BeanBox event adapter cannot do this. A new kind of event adapter is needed to achieve 

this complex functionality. 

 

The first step in designing an event adapter is to identify its states, which fall into two 

categories. One is the servicing state; the other is the non-servicing state. If the event 

adapter is loaded into memory, and is ready to accept events as well as invoke methods, it 
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is in servicing state. If the event adapter is loaded into memory but not ready to handle 

events, it is in non-servicing state, which discards incoming events. The servicing state is 

further divided into blocked and working states. An event adapter queues incoming 

events when it is in blocked state. Queued events are released to invoke a corresponding 

target method when the adapter moves into working state. Figure 4-2 shows finite state 

machine for event adapter states. 

 

           start                                                          servicing      
                                                         setService(false)  

   generated               unblock  

           stop                                                                                                block 
                                    garbage collected  
                                                           setService(true) 
 
 

 
FIGURE 4-2  EVENT ADAPTER FSM 

 

Each event adapter has three methods in common, i.e., setTarget, setService, and 

setBlock. The latter two are used to manipulate event adapter states. Event adapters use 

an asynchronous method to forward event delivery. Incoming events are deposited into a 

vector, while a separate thread takes events out from the vector and invokes a 

corresponding method at the target bean. Adapters implement java.lang.Runnable 

interface. 

 

The code of the new event adapter is a little bit longer than that of the BeanBox adapter. 

This inevitably introduces overhead in terms of memory usage. If an application has 

many event adapters connected to beans that may never need to be swapped out, the 

overhead will be huge and unnecessary. To eliminate this, SwapBox has a sub-menu, 

 blocked 

 working 

non-servicing
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which can  “turn off” the hot swapping capability so that the SwapBox shrinks to a 

BeanBox, and generates simple event adapters. In this way, application assemblers are 

able to decide what kind of adapters should be used in an application. An application 

could have both kinds of event adapters. Any bean connected by the simple event 

adapters is not swappable. 

 

The SwapBox does not use setTarget method to do a hot swapping job, because it not 

only requires the new bean to be subclass of the old bean but also complicates the 

functionality of the event adapter, which is complex enough after adding 

block/unblock/queuing methods. Instead, the SwapBox generates a new set of event 

adapters for the new bean at the beginning of hot swapping. The hot swapping benefits in 

two aspects from this approach: 

1. Simplicity. The two candidates of the program, the new bean with new adapters and 

the old bean with old adapters, co-exist in the application. If hot swapping succeeds, 

the old bean and its adapters are removed from the application. If hot swapping fails, 

the new bean and its adapters are removed.  

2. Normal operation is not affected. Both the new bean and the old bean’s adapters are 

in the blocked state when the hot swapping takes place. Therefore events will be 

queued in both the new and old bean’s adapters. This ensures that the application’s 

execution is not affected by the hot swapping because no matter which bean is used 

after hot swapping, its adapters have a complete list of undelivered events and will 

forward them to the bean.  
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4.2.2 Automatically Generating Event Adapter 

 

Similar to event adapter generation in the BeanBox, the SwapBox automatically 

generates enhanced event adapters on the fly. This simplifies the bean developer’s work 

when developing hot swappable applications. Figure 4-3 shows a class diagram for 

classes generating event adapters. Among the classes presented, the class SwapBox 

extends from the BeanBox class. It has the same sub-menu to bind events that BeanBox 

does. However, instead of creating an EventTargetDialog instance, it creates a 

SwapEventTargetDialog instance, which in turn creates SwapHookupManager to carry 

out event adapter code generation, as well as compile the code and load the adapter into 

memory. SwapHookupManager extends from HookupManager. It has a very big static 

method called generate, which is used to generate the code for an event adapter. This 

method overrides the same signature method in the HookupManager class. Moreover, 

SwapHookupManager puts an instance of SwapEventInfo into AdapterCenter after the 

newly created event adapter is loaded into memory. Section 4.4.3 discusses 

AdapterCenter and SwapEventInfo in detail. 
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FIGURE 4-3  SIMPLIFIED CLASS DIAGRAM FROM GENERATING EVENT ADAPTER 
 

The SwapBox provides two possible approaches to initiating the process of creating event 

adapters, while BeanBox only has one. The application assembler can initiate this process 

by clicking a sub-menu, and identifying the source event and target method. This is what 

BeaBox did. Newly created adapters get into the working state immediately after being 

loaded into memory. At the other end of the spectrum, SwapManager is also able to 

initiate an event adapter generation process. This ability is necessary in hot swapping. In 

order to bring the new bean into the running application, SwapManager has to generate 

event adapters for the new bean. It is like a normal adapter generation with a slight 

difference to the adapter’s initial state. If created upon request from the SwapManager, 

the adapter should stay in the non-servicing state, waiting for the remaining preparation 

work to be finished, then switching into the working state. The SwapHookupManager is 

expected to distinguish two kinds of adapter generation. A formal argument of the 

generate method specifies the kind of event adapter generation which is expected. 
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4.3 Configuring the Hot Swapping Policy 

 

4.3.1 Hot Swapping Policy 

 

A hot swapping policy regulates how to swap out an old bean and install a new bean. Due 

to the diversified functionality of applications, there are many different ways to carry out 

hot swapping. Some applications, for example, may have strict requirements on 

transferring states, others may tolerate transient state loss and degrade into a “lower 

quality” service at the time of upgrading. Some applications tend to swap the old module 

immediately, while others might be patient enough to allow the current work to end at the 

old module and direct forthcoming requests to the new module. As a hot swapping 

management tool, the SwapBox is expected to provide diversified and well-organised 

approaches carrying out a hot swapping job. A swap administrator could use a hot 

swapping policy to select one of several different approaches and trim them to fit the 

requirements of a particular hot swapping task. Therefore each hot swapping transaction 

has its own swapping policy. 

 

A hot swapping policy not only benefits diversified swapping requirements, it also makes 

swapping safer. Recall section 2.2.1, which stated that a requirement for hot swapping is 

to reduce human involvement when change is in progress. Excessive human involvement 

at such a critical moment introduces a higher risk of mistakes.  
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The SwapBox addresses this issue with the provision of a swapping policy file in XML 

format. The hot swapping policy specific to a transaction is stored in the file, which is 

parsed by the SwapBox at swapping time. A swap administrator is able to configure a hot 

swapping transaction on the fly without interfering with the program’s normal operation. 

The configuration is recorded in the policy file, including how to handle interactions in 

case of interface mismatch, how to transfer states, etc. The swap administrator initiates a 

swapping job by visually identifying the old and new beans, and selecting the policy file. 

SwapBox does the swapping work according to the contents of the file. The result is 

either success or failure. Human interaction in the process of hot swapping is not 

necessary and is prohibited.   

 

XML format is selected because it is universal. Many programming languages are able to 

parse an XML document. Another consideration is extensibility. A swapping 

management tool is supposed to provide diversified services for hot swapping. Some of 

them are identified in this thesis, e.g., interaction handling, set bound time for hot 

swapping, and transferring object states. They are implemented in the SwapBox. Future 

research may explore other services and incorporate them into the SwapBox. As a 

framework, the SwapBox is designed to accommodate swapping policies which are not 

presently implemented but which may come up in the future. XML is valuable for 

extension, therefore it has been selected to express the swapping policies. Figure 4-4 

gives an example of hot swapping policy. 
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 <?xml version='1.0' encoding='us-ascii'?> 

 <swap> 

    <swap_type>Default</swap_type> 

    <pre_process> 

          <time>123456</time> 

       </pre_process> 

        <post_process> 

         <swap_method>newStart</swap_method> 

   </post_process> 

   <state_policy> 

        <Serialization>false</Serialization> 

      <state newName="NewDim" oldName="Dimension">  

        </state> 

        <state newName="NewWidth" oldName="Width">  

      </state> 

       <state newName="NewRate" oldName="Rate">  

        </state> 

        <state newName="Status" oldName="Status">  

        </state> 

        <state newName="Running" oldName="Running">  

        </state> 

        </state_policy> 

        <interaction_policy> 

         <change_TargetMethod> 

             <event_source>Start Button</event_source>  

             <event_name>button push</event_name> 

            <old_method> 

                 <method_name>start</method_name>  

             </old_method> 

             <new_method> 

                     <method_name>newStart</method_name>  

             </new_method> 

         </change_TargetMethod> 

        </interaction_policy> 

</swap> 
 

FIGURE 4-4  AN EXAMPLE OF HOT SWAPPING POLICY IN XML FORMAT 
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The swapping policy can be said to consist of five parts, i.e., swap_type, pre_process, 

post_process, state_policy, and interaction_policy. The explanation for each part is listed 

as follows: 

• swap_type specifies which swap manager will be used in the hot swapping job. The 

swap manager is responsible for co-ordinating and executing the hot swapping work. 

Three different swap managers are implemented within the SwapBox (section 4.6 

gives a detailed description on the design and implementation of the swap manager). 

A swap administrator selects a swap manager that fits into the particular hot swapping 

requirement. This is the manager that will execute current hot swapping work.   

• pre_process gives the swap manager a chance to do some extra work prior to the hot 

swapping beginning. At present only a time constraint is provided. Hot swapping 

work is like real-time work. The correct execution depends not only on the right 

answer but also on whether or not the work is finished in time. The time constraint 

specifies the time limit allowed for a valid hot swapping. The swap manager sets up a 

timer before beginning hot swapping. If the hot swapping execution exceeds the time 

constraint, the swapping is not acceptable and should be rolled back to the state 

immediately before the swapping.  

• post_process enables the swap manager to carry out extra work after a hot swapping 

task  succeeds. This may include re-opening a file or network resource, invoking a 

specific method to execute some code related to hot swapping, and so on. Currently 

only the swap_method is provided. It is used to specify a void method at the new 

bean. The swap manager invokes this method by reflection after hot swapping is 
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finished. Invocation of such a method is needed if the old bean is swapped out while 

it is not in the idle state. More discussions on this are included in section 4.6.3.  

• state_policy is used to specify which old states need to be transferred, and their 

correspondent states in the new bean. Section 4.5 discusses state transferring in detail. 

• interaction_policy is used to specify interaction handling if the new bean and the old 

bean have different interfaces (interface mismatch). Section 4.4 discusses interaction 

handling in detail. 

 

4.3.2 How to set up a Swapping Policy 

 

Rather than writing a policy file directly, a swap administrator composes it with the help 

of a series of GUI in the SwapBox. State pattern [38] is used for this purpose. Figure 4-5 

shows the class diagram for classes used to graphically create a swapping policy file. The 

SwapBox uses four states (panels) to create the file. Each concrete state (except for the 

TerminalState) corresponds to a panel. The SwapConfigEditor inherits from the Frame 

class. It is the container for different panels (states). Figure 4-6 shows a sample snapshot 

of the InteractionState. 
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FIGURE 4-5  SIMPLIFIED CLASS DIAGRAM FOR CREATING CONFIGURATION FILE 

 

The TerminalState is a pseudo-state to mark the end of the creation of a configuration 

file. The other four states, i.e., DisplayState, InteractionState, GeneralParesState, and 

MappingRulesState, are used to make up an XML-based policy file. Within the 

constructor of these states, all possible selections are laid out. A swap administrator only 

needs to click on the selections appropriate to the current hot swapping task. The settings 

are converted to XML text within the getXMLString method, which is invoked at the 

DisplayState. Four methods, i.e., handleBackwardEvent, handleForwardEvent, 

handleAbortEvent, and handleResetEvent, link states (panels) together so that the swap 

administrator can go through them at will to modify his selections.  
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FIGURE 4-6  SNAPSHOT OF AN INTERACTION CHANGE HANDLING 
 

GeneralParesState specifies policies on time constraint, swap manager type, and the 

method to be invoked after hot swapping. InteractionState deals with interface change. 

MappingRulesState specifies state transferring policy. DisplayState presents policies in 

XML format, and enables the swap administrator to save it as a file. Any time the Abort 

button is clicked, or the policy is saved as a file, TerminalState is reached, and the whole 

process stops. The former three states (panels) could be replaced by other states (panels) 

with different layouts for different policies. In this way, SwapBox is easily able to 

accommodate new settings for hot swapping configurations. It is worth noting that 

modifications to the current XML format inevitably cause modifications to the 
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SwapManager because SwapManager’s behaviour relies on the parsing of the 

configuration file. Section 4.6 contains a detailed discussion on SwapManager. 

 

4.4 Interaction Handling 

 

4.4.1 Transparent and Non-Transparent Hot Swapping 

 

As a component, a bean’s functionality can generally be divided into two aspects. One is 

the computational aspect, which carries out a computational tasks. The other is the 

interaction aspect, which interacts with other beans to deliver the output of the 

computational task and to receive inputs. As described in section 3.1, the three most 

important features of a bean are the properties, methods, and events it exposes to the 

outside world. They are a bean’s interface, and responsible for interaction tasks. Note 

that the concept of “interface” should be distinguished from the concept of “active 

interface”. In this thesis, the term active interface is used to define the set of a bean’s 

properties, events, and methods that are actually referenced by the bean’s partners. A 

bean’s active interface is a subset of the bean’s interface. The active interface can only be 

determined on-line, after the beans have been composed as an application and the 

interactions established. 

 

One important aspect of the hot swapping issue is how to handle inter-module 

interactions at the time of upgrading. Based on the interactions, hot swapping can be 

classified into two types, i.e., transparent hot swapping and non-transparent hot 



 64

swapping. If the active interface of the old bean is a subset of the new bean’s interface, 

then the hot swapping falls into the transparent category. If the active interface of the old 

bean is not a subset of the new bean’s interface, then the hot swapping is non-transparent. 

In other words, if the interactions of the old bean can be ported to the new bean without 

any change, then the hot swapping is transparent; otherwise it is non-transparent.  

 

The handling work related to a transparent hot swapping is straightforward. Since the 

new bean’s interface is the superset of the old bean’s active interface, there is no need to 

create new interactions for the new bean at the time of hot swapping. The old bean’s 

interactions are “cloned” to the new bean without any change. A SwapManager can either 

simply switch event adapters associated with the old bean to the new bean, or create a 

new set of event adapters to take care of the new bean’s interactions. 

 

A non-transparent hot swapping is more complex. A non-transparent hot swapping means 

that there are either events fired out by the old bean or methods invoked by the bean’s 

partners which no longer exist at the new bean. In other words, the new bean breaks the 

promise made by its predecessor. There are two ways to handle this. The first is to carry 

out a non-transparent swap only if all partner beans affected by the change give their go-

ahead to the change. For example, old bean A has a method M responsible for taking 

event E fired by bean B and C. The new bean A’ does not have method M. The swapping 

framework should get the go-ahead from both B and C before continuing the swap job. If 

either B or C disagrees with such a change, the swap transaction fails. In contrast, the 

second approach does not consult B and C for the swapability of A. It assumes the swap 
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administrator has full knowledge of interactions within the application. Therefore the lack 

of method M at A’ will not ruin the whole application, and B and C will no longer have 

events delivered to A’ to invoke method M. JavaBean’s event model, combined with 

addListener and removeListener methods at B and C, make this alteration feasible. The 

swap manager dynamically invokes the removeListener method at B and C to remove A 

from the interested listener list so that the next time the E is fired out, it will no longer be 

delivered to A. 

 

4.4.2 Implementation Change and Interface Change 

 

As discussed in section 2.3, changes a new bean makes to the old bean occur at three 

levels, i.e., the implementation level, interface level, and data structure level. If the new 

bean doesn’t change the interface, but only modifies the method implementation, the hot 

swapping is at the implementation level. If the new bean has a different interface (i.e., 

different set of properties, events, and methods) to the old bean, the change is at the 

interface level. If the new bean changes the internal data structure (e.g., adds new 

variable, changes an array to a vector, etc), the change is at the data structure level. Data 

structure change is normally an internal behaviour. There may be cases where data 

structure changes lead to interface changes. However, with respect to inter-module 

interactions, they could be classified as implementation or interface changes rather than 

data structure changes. Therefore, in terms of interaction handling, there are only two 

types of changes, i.e., implementation change and interface change.  
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If the new bean only has implementation changes, the hot swapping is transparent. If the 

new bean has interface changes, the hot swapping might be transparent or non-

transparent. Figure 4-7 illustrates the distinctions.  

 
 
 
 
 
 

 

                                 (a)                                                                                    (b) 

FIGURE 4-7  TWO DIFFERENT INTERFACE CHANGES 

(a) The new interface is the superset of the old bean’s active interface; (b) The new interface is not the 

superset of the old bean’s active interface 

 

It can be seen from Figure 4-7(a) that even though the new bean has an interface change, 

those changes do not affect the old bean’s active interface. Therefore all interactions 

attached to the old bean can be ported seamlessly to the new bean. This is a transparent 

hot swapping. By contrast, Figure 4-7(b) shows that the new interface does not include all 

of the old active interface. In other words, the new bean does not provide certain 

properties, methods, or events that are necessary to rebuild the old bean’s interactions at 

the new bean. This is a non-transparent hot swapping. It is worth noting that both (a) and 

(b) show that the new bean provides some additional interfaces (i.e., the part outside the 

old interface circle). A brief discussion on how to invoke these additional methods is 

contained in Section 4.4.3.4.  
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4.4.3 Interaction Handling in the SwapBox 

 

4.4.3.1 AdapterCenter: the Repository for Interactions 

 

No matter what kind of hot swapping it is (i.e., transparent or non-transparent), the 

SwapBox has to ascertain the active interface offered by the old bean. Since the 

interactions are created on the fly, it is not possible for the SwapBox to analyse a bean’s 

active interface statically. This is where the AdapterCenter comes in. 

 

AdapterCenter is a repository for all interactions which exist in the SwapBox when it is 

running. In addition, it provides further functionality to compare two beans, as well as 

identify whether or not a bean is in the progress of hot swapping. Each time an event 

binding is established, a SwapEventInfo instance is added to the AdapterCenter. This 

SwapEventInfo instance represents the interaction being added. In order to record an 

interaction between a source bean and a target bean, the SwapEventInfo must have 

information like the source and target bean’s reference, reference to the event adapter, 

event name, and target method name. Because the interaction is established at runtime, 

records in the AdapterCenter are changed from time to time, as is the old bean’s active 

interface. When an interaction is created, a record of the SwapEventInfo object is added 

to the AdapterCenter. The record is deleted when the interaction no longer exists.  

Based on SwapEventInfo records, the AdapterCenter is able to provide support for hot 

swapping. The AdapterCenter uses two important methods to do this. One is the 

getBeanReport, the other is the getSwapReport. The former allows the SwapBox to 
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ascertain all the SwapEventInfo instances associated with a given bean. This bean is 

either the source or the target in the SwapEventInfo. The latter compares the two beans, 

the old and new bean, to return an instance of SwapReport, which contains all of the 

changed and unchanged interactions. They are stored as SwapEventInfo instances in two 

vectors, separately. Suppose the old bean A has two interactions with other beans. The 

first is A firing out an event E to bean B. The other is method M at A invoked upon 

receiving an event from another bean. After comparing A and its substitute A’, 

AdapterCenter is able to tell whether or not A’ has the same event as E and the same 

method as M. Using the comparison result, the SwapManager is able to determine the hot 

swapping type (i.e., transparent or non-transparent), and behaves accordingly. The 

AdapterCenter uses JavaBean’s introspection to analyze and compare beans. 

 

4.4.3.2 When only Implementation Change Occurs 

 

If the new bean only has implementation changes, the hot swapping is certainly a 

transparent one. For transparent hot swapping, a swap manager first ascertains all the 

interactions associated with the old bean by calling the getBeanReport method at the 

AdapterCenter. Based on the knowledge of the old bean’s interactions, the swap manager 

could generate adapters for the new bean by calling the generate method at 

SwapHookupManager. Then the swap manager establishes the interactions between the 

new bean and the old bean’s partners by invoking the addListener method to properly 

hook up the new bean.  
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4.4.3.3 When the New Bean has Fewer Methods 

 

Figure 4-7(b) shows an example of where the new bean has fewer methods, meaning that 

the hot swapping is non-transparent. If the swapping is non-transparent, the old bean’s 

interactions fall into two categories, i.e., changed and unchanged. Unchanged interactions 

are those that can be ported to the new bean. Changed interactions are those that cannot 

be ported to the new bean. Unchanged interactions are treated like those in a transparent 

swap. For changed interactions, the SwapBox gives the swap administrator a chance to 

reconfigure them. The swap administrator can decide not to reconfigure the changed 

interactions, thus deleting such interactions in the new bean. The SwapBox provides GUI 

to enable the swap administrator to reconfigure changed interactions (e.g., pick up a 

method at the new bean to take an incoming event). Such change is recorded as a part of 

a hot swapping policy and stored in the XML file.  

 

When configuring hot swapping policies for interaction changes, all changed interactions 

are presented to the swap administrator. The SwapBox receives information about the 

changed interactions by consulting the AdapterCenter. It calls compare method at the 

AdapterCenter, putting the new and old beans as arguments. Upon getting the result, the 

SwapBox visually lists all of the changed interactions, if there are any. In addition, it 

analyses the new bean with Java reflection and lists all possible alternative methods. A 

method is alternative if it has no argument or the same arguments as the old target 

method, which is specified at the SwapEventInfo instance. Figure 4-6 shows a snapshot 

of a GUI handling interaction change. 
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A swap administrator can either select an alternative method to make the alteration or 

ignore the change. By selecting an alternative method, the administrator establishes a 

brand new interaction at the new bean. If no alternative method is selected, the changed 

interaction no longer exists at the new bean. The SwapManager parses this file at swap 

time, and behaves accordingly. Figure 4-8 shows an example of such an XML document. 

 
   <interaction_policy> 

         <change_TargetMethod> 

             <event_source>Start Button</event_source>  

             <event_name>button push</event_name> 

             <old_method> 

                  <method_name>start</method_name> 

             </old_method> 

<new_method> 

                  <method_name>newStart</method_name> 

             </new_method> 

         </change_TargetMethod> 

        </interaction_policy> 

 

FIGURE 4-8   HOT SWAPPING POLICIES ON INTERACTION HANDLING 
 

Element change_TargetMethod is repeatable. For each change_TargetMethod element, 

event_source, event_name, and old_method identifies an interaction at the old bean. By 

identifying the interaction, its corresponding SwapEventInfo instance is located at the 

AdapterCenter. Element new_method records a method at the new bean. This method is 

expected to take over old_method to handle the event, whose name and source are 

recorded in event_name and event_source, respectively. At swapping time, the 

SwapManager ascertains the changed SwapEventInfo and the new method, then 
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generates a new event adapter for this changed interaction. In this way, SwapBox solves 

the problem of interface mismatch between the old and the new bean. 

 

4.4.3.4 When the New Bean has Additional Methods 

 

If the new bean has additional methods other than that of the old bean, just as Figure 4-7 

(a) and (b) shows (the new interface area outside the old interface circle represents 

additional methods), the swapping framework must provide a mechanism to invoke these 

additional methods if necessary. Fortunately, the BeanBox, which is the ancestor of the 

SwapBox, already allows users to wire up beans dynamically. All of the events are bound 

up on the fly in the BeanBox. The SwapBox just makes use of this facility to provide a 

solution for invoking the new bean’s additional methods. However, the SwapBox must 

take synchronisation into consideration. A swap administrator can wire up new events 

before the swap takes place, setting a new event adapter into non-servicing state. After 

the swap job is finished, the SwapManager brings these events to working state. Another 

possible approach is to wire up a new event after the swap transaction is finished. With 

the latter method, the event binding is the same as the BeanBox. 

 

 

 

4.5 Transferring States 
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4.5.1 The Significance of Transferring States 

 

The very basic idea of hot swapping is to replace an old software program with a new one 

while not disturbing the normal operation of the whole application. In other words, a hot 

swapping technique has to ensure that the application is stable at the time of upgrading. 

State transferring plays a significant role in achieving this goal. It includes capturing the 

old states from the old module, and re-constructing the new states at the new module. A 

process P containing the old version program X runs from the very beginning, possibly 

with input from the user. It starts from the initial state, and the states afterwards are the 

result of the program execution. When the new version program X’ has been swapped in 

P, the hot swapping management tool must specify from which state X’ should begin to 

execute. Intuitively a consistent hot swap is one where, after the swap transaction, the 

process P behaves as if X’ has been running from its initial state. In order to achieve a 

persistent hot swapping, the state s in X where the hot swapping takes place must be 

captured, and translated (mapped) to an intermediate state s’ of X’. The term intermediate 

signifies that state s’ is one that can be produced by running X’ from its initial state. 

 

It is well known that keeping states persistent at the time of changing is one of the most 

important yet challenging tasks. The difficulty stems from two sources. First, it has to 

rely on the underlying operating system or virtual machine to capture the running 

environment (e.g., stack, program counter, register, etc) for the old module. Sometimes 

this support does not exist; e.g., Java Virtual Machine just disallows such an attempt. 

Second, even if the running environment of the old module could be retrieved easily, the 
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fact that the new module and the old module have different implementations hinders the 

construction of new states from the retrieved environment. Also, the term “persistent” has 

different requirements for different applications. Hot swapping is relatively simple when 

the old module is stateless or belongs to systems specifically designed to tolerate state 

loss. In such cases, hot swapping has nothing to do with state transfer, or only transfers 

some states that are not frequently changing. Unfortunately many systems are either 

“stateful” or do not tolerate dramatic state loss at the time of upgrading.  

 

Considering the diversified types of underlying systems and application domain, it is 

usually domain (or even application) specific to develop state policies that ensure 

persistent execution during hot swapping. Several approaches for preserving component 

states and preventing communication loss during runtime change have been proposed at 

[32, 33, 34]. Hofmeister’s approach [34] requires each component to provide two 

interface methods: one for divulging state information, and the other for performing 

initialization when replacing another component. Feng [4] discussed the possibility of 

using mapping rules to transfer the states between the old S-Module and the new S-

Module.  

 

4.5.2 A Possible Solution: Java Serialization  

 

Java object serialization provides a way to store away a Java object state and rebuild it 

later, possibly in another name space. It is easy to use. The application programmer does 

not have to write too much code to serialize and deserialize. However, it has versioning 
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restrictions on classes which serialize and deserialize states. Section 3.1.2 lists compatible 

changes for Java serialization. If changes between versions are not compatible, the 

serialization will fail. Since it cannot predict what changes the new bean may have, 

serialization cannot generally be used for state transferring.  

 

Another problem of Java serialization for transferring states in a generic framework like 

the SwapBox is that the class type has to be known as a priori at the compile time. The 

readObject method at ObjectInputStream returns an instance of Object class. It has to be 

explicitly downcast to the type of the class that is deserializing the object. The application 

programmer must specify the type of class. It cannot be dynamically ascertained using 

Java reflection. Because the SwapBox is a generic environment for hot swapping all 

kinds of JavaBeans, it is impossible to hard code those class types into the SwapBox. 

Therefore the SwapBox cannot make use of Java serialization even if the changes 

between versions are compatible. However, it is worth noting that the Java serialization 

still has merits for transferring states in situations where there is no generic environment 

but a specific hot swappable application is developed. In such situations, the class type is 

known at the compile time, and the application programmer can explicitly downcast the 

type of return instance from readObject method to the one that is actually reading the 

object.  

   

4.5.3 Approach Used in the SwapBox: Mapping Rules + Accessor 

        Methods 
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The SwapBox uses accessor methods plus mapping rules to transfer object states between 

versions. Accessor methods are used to get and set state values. Mapping rules, defined 

by the swap administrator and used by the SwapManager, are used to dynamically link 

old states and new states.  

 

Like Hofmeiter’s approach, each bean which expects to transfer states in time of hot 

swapping has to provide interface methods to divulge state information and/or methods to 

initialise states. An old bean has to at least provide methods to divulge state information, 

whilst a new bean provides methods to initialise states. By providing both kinds of 

methods, a bean is capable of replacing the other bean, as well as being replaced by the 

other bean.  As described in section 3.1.1, JavaBean already has a mechanism called 

“property” to export/import states. These properties can be changed at runtime. Each 

property has a pair of methods to set and get its value. A naming convention is imposed 

for the name of these two methods. The SwapBox makes use of this mechanism to 

divulge state information at the old bean and initialise states at the new bean. For each 

state that is needed at the time of hot swapping, it should be defined as a JavaBean 

property, i.e., a pair of methods which comply with the naming convention have to be 

provided for the state. There are, however, situations in which a state is needed in time of 

hot swapping but need not be displayed in the property sheet of a JavaBean visual 

assembler tool like the SwapBox. For example, some computational states, such as an 

array used for sorting, may never need to be displayed in the property sheet because it 

does not make sense to modify a sorting array when the sorting is in progress. It is also 

impossible to display all records (especially if the volume is extremely big) of an array in 
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a small property sheet. Fortunately, JavaBean provides a process called customization 

that gives programmers control over what states they are willing to display in the 

property sheet. With the help of customization, a property does not have to be displayed 

in the property sheet. In order to exploit the merits of customization, a programmer has to 

carry out extra coding to provide a BeanInfo class to specify what states are displayed. 

The SwapBox, in the meantime, provides a simple yet efficient alternative to 

customization to identify states that do not have to be displayed in the property sheet. It is 

similar to the naming convention used for a JavaBean property. A bean willing to 

export/import states beyond properties has to provide a pair of methods to get and set a 

state’s value. The getter method’s name starts with swapGet, and setter’s starts with 

swapSet. Both method names end with the state name. For a state named example and of 

type Test, the declaration of such a pair of setter and getter methods look as follows: 

Test swapGetExample(); 

Void swapSetExample(Test aTest); 

In this way, the state example will not be visually displayed in the property sheet, while it 

can still be transferred and reconstructed at the time of hot swapping. 

 

Getter and setter methods are not sufficient to handle state transferring problem. They 

only provide ways to get and set states values. There must be rules to map the old states 

to the appropriate corresponding new states. Feng discussed in [4] that these mapping 

rules cannot be hard-coded as interface methods in the old and new module; neither could 

they be hard-coded in a swapping management environment. 
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In the SwapBox, the mapping rules are actually one-to-one relationships that are 

expressed in XML format and can be parsed out at the time of hot swapping. The 

SwapManager invokes the getter and setter method for state transferring according to 

what it parses out from the mapping rules. Mapping rules are established at runtime, after 

the swap administrator identifies an old bean and a new bean. Because the old and new 

beans are identified, the SwapBox is able to extract state information on both beans using 

Java reflection. Firstly, it searches methods at the old bean, fetches all methods used to 

divulge state information, and visually lists the old state names. Secondly, it searches 

methods at the new bean, fetches all the methods used to perform state initialisation, and 

visually lists the new state names. A swap administrator can then select an old state name 

and a new state name to establish a one-to-one mapping relation. Figure 4-9 shows a 

snapshot of GUI for this purpose.  
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FIGURE 4-9  SNAPSHOT OF GUI TO ESTABLISH MAPPING RULES 
 

The SwapBox does not provide a facility to support many-to-one mapping relation. Such 

support can easily be added to the SwapBox. It needs, however, co-operation from the 

new bean, i.e., an initialisation method has to take more than one argument. Normally 

one-to-one mapping is sufficient to handle most state transferring. If the changes between 

versions are only at implementation or interface level, the mapping rules are simple. 

Because no data structure is changed, each state at the old bean must map to the same 

state at the new bean. The states transferring approach proposed here can easily handle 

these two kinds of changes. If the data structure is changed (e.g., the name of the state is 

changed for some reason, or an object state is deleted, or a new state is added, etc), the 

approach can handle some of them without modification. For example, if the name of the 

state is changed, the mapping rules can easily bridge two different-name states with a 
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one-to-one relation. However, it must be said that for complex data structure changes, - 

e.g., adding a new object state whose value is determined by more than one state at the 

old bean, - the approach cannot cope, even though it has potential for extension.  

 

Mapping rules are stored finally in XML format as part of the hot swapping policy file. 

Figure 4-10 shows an example of mapping rules. The element of state is repeatable. A 

state element has no value but two attributes, i.e., newName and oldName. The newName 

attribute gives the state name at the new bean, while the oldName attribute gives the 

corresponding state name at the old bean. At the time of state transfer, the SwapManager 

parses out the mapping rules from the swapping policy file. It looks up the getter method 

at the old bean by first looking at the method with the name getStateName, and if the 

method is not found then it looks at the method with the name swapGetStateName. The 

setter method at the new bean is found in the same way. State transferring takes place by 

first invoking the getter method at the old bean with no argument, and then invoking the 

setter method at the new bean with the argument taken from the return value of the first 

invocation. 

 
<state_policy> 

          <Serialization>false</Serialization>  

            <state newName="NewDim" oldName="Dimension">  

            </state> 

          <state newName="NewWidth" oldName="Width">  

            </state> 

            <state newName="NewRate" oldName="Rate">  

            </state> 

          <state newName="Status" oldName="Status"> 

            </state> 

          <state newName="Running" oldName="Running">  
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                </state> 

            </state_policy> 

   

FIGURE 4-10 EXAMPLE FOR MAPPING RULES 
 

 

4.6 Putting it together: SwapManager 

 

4.6.1 Design of the SwapManager 

 

When a swap request is identified (i.e., the old bean, new bean, and XML policy file are 

selected), the SwapManager comes into play to co-ordinate the swap transaction. Its main 

responsibilities include: 

• Parsing the XML-based hot swapping configuration file to retrieve parameters 

specific to the transaction 

• Setting the timer such that the swap transaction (no matter whether it succeeds 

or not) takes place within a specific time 

• Creating event adapters for the new bean 

• Based on states at the old bean and the mapping rules, creating new states 

• Cleaning up the old bean when transaction is successful 

• Rolling back to the old bean when exceptions arise 

 

The strategy pattern [38] is used to design the SwapManager. The pattern is selected 

because it will be easy to incorporate different swap managers in the future. The 

SwapBox currently has three SwapManagers, i.e., DefaultSwapManager, 
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Option1SwapManager, and Option2SwapManager. By implementing the strategy pattern, 

the SwapBox separates the concrete swap manager, which is easy to change, from the 

other parts. A swap manager with a different implementation could easily be added into 

the SwapBox. In this way, the SwapBox is an extensible framework. The Class diagram 

for the SwapManager is shown in Figure 4-11. 

SwapConfigParser

selectSwapManager()

SwapManager

setNewWrapper()
setOldWrapper()
timeUp()
createListenersForNewBean()
blockOldBeanService()
unblockService()
cleanup()
swap()
abstract handlePreProcess()
abstract handleInteraction()
abstract handleState()
abstract handlePostProcess()

Serializable TimerRequester

SwapBox
SwapManager sm

… … .

DefaultSwapManger Option1SwapManager Option2SwapManager

SwapManager sm =
      SwapConfigParser.selectSwapManager();
sm.swap();

 

FIGURE 4-11 SIMPLIFIED CLASS DIAGRAM FOR SWAP MANAGER 
 

The SwapManager is an abstract class. It contains methods common to all concrete swap 

managers, such as setting the timer and cleaning up the beans after the swap transaction is 

finished. In addition, it declares four abstract methods, i.e., handlePreProcess, 

handleState, handleInteraction, and handlePostProcess, so that they are implemented at 
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the concrete swap manager class, i.e., DefaultSwapManager, Option1SwapManager, and 

Option2SwapManager. The most significant method at the SwapManager is swap, which 

delegates a hot swapping job to the four abstract methods. Figure 4-12 gives code for the 

swap method. Concrete swap managers differ with respect to implementing these four 

methods in different ways. Different implementation of these four methods results in 

different strategies to carry out hot swapping. Concrete swap managers are hidden from 

other parts of the SwapBox. The SwapParserConfig class parses the XML policy file, 

finds the swap_type element, and instantiates a concrete swap manager according to the 

value of the element. It finally returns this concrete swap manager of type SwapManager, 

whose swap method is then invoked to finish the hot swapping work.  

 

public void swap() throws SwapException { 

        NodeList nodeList = document.getElementsByTagName(preProcessTagName); 

         

        if (nodeList.getLength() == 1 && nodeList.item(0).getNodeType() == Node.ELEMENT_NODE) { 

            handlePreProcess(nodeList.item(0)); 

                        } else { 
            throw new SwapException("SwapManager: Parse pre_process node failed"); 

        }      

         

        nodeList = document.getElementsByTagName(interactionPolicyTagName); 

        if (nodeList.getLength() == 1 && nodeList.item(0).getNodeType() == Node.ELEMENT_NODE) { 

            handleInteraction(nodeList.item(0)); 

                        } else { 
            throw new SwapException("SwapManager: Parse interaction node failed"); 

        } 

         

        nodeList = document.getElementsByTagName(statesPolicyTagName); 

        if (nodeList.getLength() == 1 && nodeList.item(0).getNodeType() == Node.ELEMENT_NODE) { 

            handleState(nodeList.item(0)); 

                        } else { 
            throw new SwapException("SwapManager: Parse state_policy node failed"); 

        }  
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        nodeList = document.getElementsByTagName(postProcessTagName); 

        if (nodeList.getLength() == 1 && nodeList.item(0).getNodeType() == Node.ELEMENT_NODE) { 

            handlePostProcess(nodeList.item(0)); 

                        } else { 
            throw new SwapException("SwapManager: Parse post_process node failed"); 

        }  

 } 

FIGURE 4-12 CODE FOR SWAP METHOD AT SWAPMANAGER 
 

The difference between DefaultSwapManager, Option1SwapManager, and 

Option2SwapManager is in how they handle the hot swapping timing problem. The 

DefaultSwapManager swaps the old bean immediately after it gets the hot swapping 

request, no matter whether the old bean is busy or not. Option1SwapManager is more 

patient. It allows the old bean to finish the current job, if there is one, before being 

swapped out. However, it is worth noting that the old bean must implement isIdle 

interface when the Option1SwapManager is used. The definition of isIdle is listed as 

follows: 

public interface IsIdle { 

    public boolean isIdle(); 

    public void addIsIdleListener(IsIdleListener l); 

    public void removeIsIdleListener(IsIdleListener l); 

} 

These three methods enable the Option1SwapManager to detect the old bean’s state as 

well as to be notified when the old bean moves from the busy state to the idle state. It is 

the old bean developer to decide when the old bean moves from the busy state to the idle 

state. During the time spent waiting for the old bean to finish its job, the 

Option1SwapManager blocks events from being sent to either the old or the new bean. It 

queues the events at both beans’ adapters. However, if the time constraint allowed for the 

hot swapping is reached before the old bean gets into idle state, the hot swapping aborts. 
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All queued events will be directed to the old bean. The Option2SwapManager, on the 

other hand, allows the old bean to continue its work but will forward all forthcoming 

events to the new bean. In other words, the new bean and the old bean may be running 

simultaneously in memory. All concrete swap managers have the same mechanisms on 

interaction handling (discussed in section 4.4) and state transferring (discussed in section 

4.5). Figure 4-13 is a flowchart which shows how the swap manager carries out hot 

swapping work. 
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FIGURE 4-13 FLOWCHART ON SWAP MANAGER EXECUTION 
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4.6.2 Scenarios for Hot Swapping 

 

The DefaultSwapManager is the reference implementation for the SwapManager in the 

SwapBox. Figure 4-14 is the interaction diagram which shows the DefaultSwapManager 

doing non-transparent swapping. Scenarios of the DefaultSwapManager carrying out 

transparent swapping and the other two SwapManagers carrying out hot swapping tasks 

can be derived easily.  

Swap Admin Swap manager AdapterCenter SwapHookupManager New Adapters New Bean Old Adapters Old Bean

initiate swap
 job

parse configure 
file

set timer

ask creating changed adapters * create, set to 
non-servicing state

find out old
unchanged adapters

ask creating unchanged adapters * create, set to 
non-servicing state

* block

* block

handlePreProcess

* set new states

invoke post process method

* unblock

* set to non-servicing state

remove all adapters, visually disappear from SwapBox

handleState

handlePostProcess

handleInteraction

* get old states

steps not present in
transparent swapping

 
 

FIGURE 4-14 INTERACTION DIAGRAM FOR NON-TRANSPARENT SWAPPING 
 

In order to “swap in” a new bean, swap manager has to create appropriate adapters for the 

new bean. When the case is simple, i.e., the swapping job is transparent, adapters for the 
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old bean are “cloned” to adapters for the new bean. SwapHookupManager is invoked to 

generate new adapters’ code, compile them, and load them into memory. Newly created 

adapters cannot work immediately after loaded into the memory. They are set to non-

servicing state to discard incoming events, such that the new bean stays in idle state. 

After the interaction handling is finished, it is time to transfer states. From now on, the 

DefaultSwapManager blocks both new and old adapters so that new service requests are 

queued at both adapters. The DefaultSwapManager transfers states with the mapping 

rules discussed in section 4.5. The new adapters are unblocked after the states have been 

transferred and the post-process method is invoked. In the meantime, the old adapters are 

set to non-servicing state. The last step in event adapter manipulation is remove all the 

adapters attached to the old bean so that the JVM is able to garbage collect them. 

 

4.6.3 Restarting the New Bean 

 

When and how to restart the new bean is part of the timing problem. Many research 

projects adopt a rather conservative approach to addrress this problem. Stewart et al. [27], 

for example, sets the robot temporarily to rest (i.e., velocity and acceleration are both 

zero) before dynamic reconfiguration begins. Thus the new module is in idle state after 

replacement, waiting for the next input to behave accordingly. Feng and Ao [4, 1] require 

a hot swapping to begin only when the S-Module is in the idle state. The new S-Module 

starts execution only after receiving a new service request. In contrast, Hauptmann [10] 

inserts goto clauses into the application code to guide the execution to the restarting 
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point. The new actor begins execution at a fixed point, but it will jump to the appropriate 

restarting point with the help of the goto clauses.  

 

The timing and methods of restarting the new module are related to when and how the 

old module is stopped. If the old module is stopped in idle state (i.e., the old bean is not 

handling computational tasks during the period of hot swapping), the new bean, after hot 

swapping, just sits there waiting for new service requests, because there is no remaining 

work left by the old bean. If, in a more complicated situation, the old module is stopped 

during execution of a method, the new module may have to go through the corresponding 

method to get to an appropriate point to restart new module execution.  

 

One of the SwapManager’s tasks is to restart the new bean properly. The hot swapping 

configure process enables the swap administrator select a void method at the new bean. 

This method is recorded in the XML-based hot swapping file as element swap_method. 

The swap manager invokes this method, if there is one, after the hot swapping finishes. 

This is similar to Hauptmann’s approach. There is, however, no goto clause to guide the 

execution to a particular restarting point. The execution must be started from the 

beginning of the method that is selected by the swap administrator. A potential problem 

of this approach is that the same method may get executed twice, first in the old bean and 

then in the new bean. The swap administrator must use semantic knowledge of the old 

bean and the new bean to decide whether selecting such a method or not. If no method 

selected, the swap manager will just ignore this step.  The new bean sits there waiting for 

the incoming events. This is similar to Feng and Ao’s approach.  
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4.6.4 Swappable JavaBeans 

 

A hot swapping system must not only be able to replace the old module with the new 

module efficiently, it is also expected to be as transparent as possible to both its users and 

programmers. The more transparent a hot swapping system is, the more likely 

programmers and managers are to use it. If a normal JavaBean could be converted easily 

to a swappable JavaBean, it will simplify the application developer’s work, and more 

likely be adopted.  

 

In the SwapBox, very little work is needed to make a JavaBean swappable. States 

transferring uses accessor methods, which is part of the JavaBean naming pattern for 

properties (the use of swapGet and swapSet accessor methods is only a supplement for 

the default approaches. They are easy to implement). Interaction handling is realised with 

dynamically-created event adapters. There is no need to write extra code to wrap up 

JavaBean for reference indirection. Different swap managers, however, may have 

particular requirements on what a swappable JavaBean is. The DefaultSwapManager 

requires a void method that could be invoked after the hot swapping transaction, if the old 

module is stopped in busy state. The Option1SwapManager needs JavaBean to 

implement isIdle interface so that it can detect when the old bean is idle. These 

requirements are associated with particular swap managers. The Option2SwapManager 

has no such requirements. Generally speaking, the modifications required to make a 

JavaBean swappable are negligible. 



 89

 

It is worth noting that just because a bean is swappable does not mean the bean can be 

swapped out at arbitrary time. The problem of determining appropriate points at the 

running applications to begin a hot swapping is beyond the scope of this thesis. 

 

This chapter elaborated the design and implementation of the SwapBox. A hand of 

problems, including reference indirection, XML-based hot swapping policy, interaction 

handling, state transferring, and the SwapManager, was addressed. The next chapter 

describes two sample applications and the tests made to evaluate the SwapBox.  
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Chapter 5     Experiments 
 

 

In order to evaluate the SwapBox, two test applications were developed. One is 

Conway’s game of life [37]; the other is a sorting application. The former is used to test 

the basic functionality of the SwapBox, while the latter is used to show different 

behaviours when different swapping strategies (i.e., the DefaultSwapManager, the 

Option1SwapManager, and the Option2SwapManager) are applied to hot swapping. 

 

5.1 Conway's Game of Life 
 

Conway’s game of life is played on a grid of square cells which continue infinitely in 

every direction. A cell can be live or dead. A live cell is shown by a marker on its square. 

A dead cell is shown by leaving the square empty. Each cell in the grid has a 

neighbourhood consisting of eight cells in each direction, including diagonals. Once the 

“pieces” have been placed in the starting position, the rules determine everything that 

happens subsequently.  

 

GameBoard is a JavaBean which implements the game of life. It consists of a visual 

frame bean called the GameBoard and two button beans. The GameBoard is divided into 

cells, and is able to display the changing graphics periodically according to the state of 

each cell. The GameBoard bean determines the state (i.e., white or black) of each cell 

based on the current state of its neighbouring cells. A set of rules is applied to make the 

determination. The GameBoard bean implements Runnable interface. A separate thread is 



 91

responsible for calculating the state and updating the board. Two void methods, start and 

stop, are provided to activate and deactivate the thread. The updating rate, number of 

cells, running state, and the board width are exposed as JavaBean properties. The array 

holding state for cells is exported with the swapGetStatus and swapSetStatus methods. 

No events are fired out from the GameBoard bean. The start button fires out an 

ActionEvent (which is a core Java class) to the start method at the GameBoard bean. The 

stop button fires out another ActionEvent to the stop method at the GameBoard bean. 

Pressing the start button causes the GameBoard bean to begin changing periodically; 

pressing the stop button causes the alternation to stop.  

 

For the experiment, two new beans are developed. One is NewGameBoard1; the other is 

NewGameBoard2. The NewGameBoard1 bean has no changes with regard to the 

interface; only a method implementation is changed.  It displays the cell in colour rather 

than in black and white. The colour is randomly selected. The hot swapping of the 

GameBoard with the NewGameBoard1 is transparent. The NewGameBoard2 bean 

changes its interface. It replaces the method start with newStart. Both methods are 

implemented the same way. Since the method start belongs to the active interface of the 

GameBoard bean, replacing the GameBoard with the NewGameBoard2 is a non-

transparent hot swapping. Figure 5-1 is a snapshot of the SwapBox when the old 

GameBoard bean (at the left side of the box) and the new NewGameBoard1 bean is 

selected. There is a rubber hand extended from the old bean to the new bean so that the 

swap administrator can identify them. 
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FIGURE 5-1 SNAPSHOT OF THE SWAPBOX WHEN A HOT SWAPPING TAKES PLACE 
 

Three hot swapping tests are carried out on the GameBoard bean.  In all of the tests, the 

GameBoard bean is playing when the hot swapping takes place. Updating rate, number of 

cells, running state, board width, and status array are states transferred between versions. 

The tests are: 

1. Test with the DefaultSwapManager where NewGameBoard1 is the new bean. This is 

to test the basic functionality of the SwapBox, to see if it is able to hot swap a bean. 

2. Test with the DefaultSwapManager where NewGameBoard2 is the new bean. The 

altered interaction is ignored, i.e., the hot swapping policy file does not specify to 

which method the start button is sending its event. This is to test the SwapBox’s 

ability to handle decremental interface change. 

3. The third test is the same as test 2 with one small change.  In the hot swapping policy 

file, the altered interaction is re-configured so that the start button sends the event to 
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the newStart method. This is to test the SwapBox’s capability to reconfigure 

applications at the time of upgrading. 

 

The first step in hot swapping is to configure the hot swapping policy file. With the help 

of a set of GUIs, the swap administrator is guided through the process. For test 1, the 

DefaultSwapManager is selected. There is no need to have a method running after the hot 

swapping has taken place. Therefore the post_process method is selected as NULL. The 

time constraint is defined to be large enough to carry out a swapping. The state transfer is 

selected by connecting the states with the same name. There is no altered interaction. The 

policy is saved into a file after the configuration is complete. During hot swapping, the 

GameBoard and the NewGameBoard1 are selected as the old and new beans. The hot 

swapping policy file which has just been saved is also selected. Hot swapping begins 

now.  

 

The test shows that the DefaultSwapManager successfully replaces the GameBoard with 

the NewGameBoard1. The GameBoard is playing before it is removed from the 

Swapbox. As soon as the GameBoard disappears, the NewGameBoard1 begins 

displaying. When the start/stop button is pressed, it starts/stops the NewGameBoard1. It 

is worth noting that the swappability in the busy state is application-specific. Not all 

JavaBean applications are able to support this capability. In the GameBoard bean 

example, it is the interval between the updating of the GameBoard display that enables 

the GameBoard bean to be swapped out even though it is playing (the GameBoard bean 

is actually idle in the interval). 
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Test 2 has the same configuration process as test 1. The changed interaction (i.e., 

ActionEvent to start method) is simply ignored. After hot swapping, the GameBoard 

disappears from the SwapBox, and the NewGameBoard2 begins displaying. When the 

stop button is pressed, the NewGameBoard2 stops playing. However, when the start 

button is pressed, the NewGameBoard2 does not start playing. This is because no re-

configuration was made for the changed interaction in the hot swapping policy file. The 

interaction is just lost. This test demonstrates that the SwapBox can handle decremental 

interface changes.  

 

For test 3, the changed interaction is re-configured to send to the newStart method at the 

NewGameBoard2. The test result is like that of test 1. When the start/stop button is 

pressed, the NewGameBoard2 starts/stops displaying the board. This demonstrates that 

the SwapBox can, based on information stored in the AdapterCenter and the hot 

swapping policy file, re-configure appropriate interactions between the new bean and old 

bean’s partners, even though the interface is changed. However, such capability depends 

on the semantic knowledge of both versions. The swap administrator must know which 

method at the new bean is able to substitute the missing method of the old bean. 

 

5.2 A Sorting Application 
 

The GameBoard application only tests the basic functionality of the SwapBox. Due to the 

nature of the GameBoard program (i.e., it sleeps every hundred microseconds before 

updating the display), it cannot be used to test how different concrete swap managers deal 
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with the timing problem. Recall section 4.6, which stated that the DefaultSwapManager 

begins hot swapping immediately upon getting the request, no matter whether the old 

bean is busy or not. The Option1SwapManager waits until the old bean has finished its 

current job before beginning. The Option2SwapManager blocks incoming events to the 

old bean and forwards them to the new bean. In the GameBoard example, hot swapping 

with different swap manager exhibits the same behaviour, i.e., GameBoard is replaced 

immediately with either the NewGameBoard1 or NewGameBoard2 bean.  

 

Another example application was developed to test this and to further demonstrate the 

busy state problem. This is a sorting application composed of a sorting bean and a GUI 

bean. The GUI bean generates random data set (the record size is input by the users) for 

sorting, and sends the request to a sorting bean. The sorting bean sorts the data and sends 

back the sorted data to the GUI bean for display. The old version of the sorting bean 

implements bubble sort algorithm, whilst the new one implements quick sort algorithm. 

Both sorting beans implement the BeginSortingListener, which declares only one 

method: 

public void sort(SortingEvent e);  

The GUI bean fires out a SortingEvent containing unsorted data. The sorting beans fire 

out a SortingDone event containing sorted data. The GUI bean implements 

SortingDoneListener interface, which declares only one method: 

public void update(SortingDone sd);  

In order to compose a sorting application, the GUI bean’s SortingEvent is connected to 

the sorting bean’s sort method, and the sorting bean’s SortingDone event is connected to 
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the GUI bean’s update method. Both the bubble sort and quick sort beans have an array 

to receiving incoming unsorted data. The sorting is done on this array. After sorting is 

finished, the array is used to compose the SortingDone event to update GUI bean. The 

quick sort bean makes no change to the bubble sort bean’s active interface. Hence, the 

hot swapping is transparent. 

 

There are five tests made to hot swapping bubble sort bean with quick sort bean. In all 

tests, the bubble sort bean is busy with sorting when the hot swapping occurs. The tests 

are: 

1. Test with the DefaultSwapManager. This is a basic test. 

2. Test with the Option1SwapManager where no new event arrives when the old bean is 

working on its current task. This is to the test basic functionality of the 

Option1SwapManager. 

3. Test with the Option1SwapManager with one new event arriving when the old bean is 

working on its current task. This is to test the queuing capability of adapters. 

4. The same as test 2 except the time constraint is very short, so that before the old bean 

can finish its current task, the time is up. This is to test that the time constraint works 

and that the SwapBox can roll back when an exception occurs. 

5. Test with the Option2SwapManager with one new event arriving when the old bean is 

working on a task. This is to test the forwarding capability of the 

Option2SwapManager.  
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For test 1, the hot swapping configuration process is the same as that in the GameBoard 

example. However, this time a method is needed to restart the sorting after hot swapping. 

Therefore, a void method named swapMethod is selected as the post_process method. 

This method simply initiates sorting at the quick sort bean. During upgrading, the 

DefaultSwapManager copies the array, which is partly sorted, to the quick sort bean and 

restarts the sorting job at the quick sort bean. It is the quick sort bean rather than the 

bubble sort bean which delivers the SortingDone event to the GUI bean. Figure 5-2 

shows a comparison of how much time is used to sort an integer data set with 30,000 

records. JDK 1.3 is used. The hardware is an Intel workstation with 650 MHZ CPU and 

128M RAM. It shows that a hybrid sort (i.e., a sort within which the hot swapping takes 

place) spends some time between the time used for the bubble sort and the quick sort. 

This is because this type of sort is partly done by the bubble sort bean and partly by the 

quick sort bean. After the bubble sort bean has finished part of the sorting job, the partly 

sorted array is transferred to the quick sort bean, which is very efficient compared to the 

bubble sort bean, to finish the remaining work. The reading of this item will be changed 

in a large range. It is partly determined by how fast a swap administrator does the hot 

swapping after the sorting begins.  The faster it is, the lower the value.  

  Record Size Time (mscs) 
Bubble Sort 30000 18,345 

Quick Sort 30000 20 

Hybrid Sort 30000 12,629  

 

FIGURE 5-2  COMPARISON OF TIME SPENT IN SORTING 
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Test 2 has the same configuration as test 1. However, this time the Option1SwapManager 

is selected and no post_process is needed because the old bean is allowed to finish its 

current task and the new bean just waits for the next sorting event. Unlike test 1, test 2 

shows there is no hybrid sort. The sorting task in which hot swapping occurs is 

completely sorted by the bubble sort bean, while the next sorting task is done by the 

quick sort bean. This can be recognised by reading the time taken to sort (the time the 

bubble sort bean takes to sort the same amount of records is much larger than the quick 

sort bean).  

 

In test 3, the Option1SwapManager is selected and a new event arrives when the old bean 

is working on its current task. The new event is expected to be queued in both beans’ 

adapters so that it will be directed to the new bean (if hot swapping succeeds) or the old 

bean (if hot swapping fails). In the test, the end user generates another sorting request 

after hot swapping begins and the bubble sort bean is working on the task. There is no 

instant reaction to this request. After the sorted data from the bubble sort bean is 

displayed, another piece of sorted data from the quick sort bean is displayed.  

 

Test 4 is a non-functional test. The test is used to demonstrate that the SwapBox is 

capable of rolling back the old bean if hot swapping fails. The test shows that when the 

time constraint is up and the hot swapping is not yet finished, an error notice dialog box 

pops up, saying that the hot swapping fails because of the time limit. The GUI bean is 

still connected to the bubble sort bean. All the hot swapping work carried out previously 
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(such as the generation and registration of event adapters at the new bean) is abandoned. 

The normal operation of the old application is not affected.  

 

Test 5 is to test the Option2SwapManager. The configuration process is the same as that 

in the Option1SwapManager. After hot swapping the bubble sort bean, a notice dialog 

box pops up, saying that the hot swapping has succeeded. From now on, when the end-

user generates a sorting request, it is delivered to the quick sort bean instead of the bubble 

sort bean. The bubble sort bean is working on its current task when the quick sort bean 

accepts new request. In the test, the bubble sort bean is working on a 60,000-record 

sorting task when hot swapping occurs. Another 30,000-record sorting request is sent out 

after hot swapping, which is delivered to the quick sort bean. Since the quick sort is very 

efficient, the GUI bean first displays the sorted data for the 30,000-record request, then 

displays the sorted 60,000-record array when the bubble sort bean finishes it. Test 5 also 

tries to connect a SortingEvent fired out from another GUI bean to the bubble sort bean 

after hot swapping occurs. Because the bubble sort bean cannot accept incoming events 

after being swapped out, such an attempt is expected to fail. In the test, an error dialog 

box appears, saying that the bubble sort bean is swapped out and the new bean is the 

quick sort bean.  

 

In the sorting example, the choice of swap manager affects how the sorting application 

runs during upgrading. The swap administrator must select a swap manager which best 

serves the application’s need at the time of hot swapping. This is why the SwapBox 



 100

provides different swapping strategies and allows for future research to add other 

strategies. 

 

In the tests above, the SwapBox times the hot swapping. A hot swapping time is the time 

used to execute the swap method at the SwapManager. It includes the time used to set the 

timer, generate event adapters for the new bean, carrying out the state transfer, and 

invoke the post-process method. The readings for hot swapping times in above tests 

ranged from 1 second to about 30 seconds. Figure 5-3 gives how much time used for each 

test case described in the previous section. In the figure, Test 1.1 refers to the first test 

case for game of life application, while test 2.1 refers to the first test case for sorting 

application, and so on. The third column is the type of SwapManager, i.e., 

DefaultSwapManager, Option1SwapManager, and Option2SwapManager. The fourth 

column is the number of adapters generated at the time of hot swapping. In all of these 

test cases, only one bean is swapped out. 
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 Time (mscs) SwapManager Type Num. Of Adapters 

Test 1.1 2534 DefaultSwapManager 2 

Test 1.2 1252 DefaultSwapManager 1 

Test 1.3 2423 DefaultSwapManager 2 

Test 2.1 2524 DefaultSwapManager 2 

Test 2.2 17815 Option1SwapManager 2 

Test 2.3 28831 Option1SwapManager 2 

Test 2.4 N/A * Option1SwapManager 2 

Test 2.5 2483 Option2SwapManager 2 

* In test 2.4, the hot swapping fails due to short time constraint, there is no time reading. 

FIGURE 5-3   HOT SWAPPING TIME IN EACH TEST CASE 
 

It could be seen that the hot swapping time varies a lot. The reasons for such a big range 

are as follows: 

1. For DefaultSwapManager and Option2SwapManager, when conditions are the same, 

the time used to generate event adapters is determined by the number of adapters to 

be generated, and the speed at which the disk is accessed (a network disk is slower 

than a local disk). The more adapters which must be generated, the more time is 

needed.  

2. For the Option1SwapManager, if the old bean is not idle, the executing thread for the 

swap method will wait until either the old bean gets into the idle state or the time 

constraint is reached. The waiting time contributes a great deal to the hot swapping 

time. Indeed, high hot swapping time readings (i.e., readings of Test 2.2 and Test 2.3) 

are all due to the use of the Option1SwapManager. 
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It is worth noting that the old bean is blocked for a very tiny part of the hot swapping 

time. Recall Figure 4-14, which showed that the old bean is blocked only after adapters 

for the new bean have been generated. When the old bean is blocked, the swap manager 

is carrying out state transfer and the post-process method invocation. Although these 

actions use Java reflection, it is still a faster process than generating the event adapters, 

which requires accessing the disk. In fact, the number of event adapters to be generated 

determines the hot swapping time for the DefaultSwapManager and the 

Option2SwapManager. For the Option1SwapManager, because of the reason 2 listed 

above, the hot swapping time is unbounded as long as it does not exceed the maximum 

time constraint given in the swapping policy file. In order to clarify how much time the 

old bean is unavailable, an additional test is made. This test extends the first test case 

made to the game of life application. The DefaultSwapManager is used, and 

NewGameBoardBean1 is the new bean while the GameBoardBean is the old bean. For 

test 1, no event adapter is connected to the GameBoardBean; for test 2, one event adapter 

is connected to the GameBoardBean, and so on. Figure 5-4 gives the result. 

 

Num. Of Adapters 0 1 2 3 4 

Time (mscs) 50 1251 2473 3605 4807 

 

FIGURE 5-4   TIME FOR ONE TEST CASE WHEN NUMBER OF ADAPTERS ARE DIFFERENT 
 

It is obvious that when no adapter is connected to the old bean, there is only a very short 

time needed to do the hot swapping (i.e., 50 mscs). This is the time in which the old bean 

is unavailable. Along with the increment of the adapters, the hot swapping time is 
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increased as well, in a linear way. The time used to generate the event adapters does not 

affect the old bean’s availability. 
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Chapter 6     Conclusions 

 

6.1 Conclusions 
 
Software hot swapping reduces the cost and risk of updating software programs on the 

fly. This thesis proposed a new hot swapping infrastructure for event-driven, adapter-

connected JavaBean applications. The new infrastructure allows implementation, 

interface, and data structure change between versions. It highlights the role of event 

adapters, which provide an address reference indirection between JavaBeans.  This 

reference indirection enables hot swapping. The granularity of the replacement is based 

on JavaBean components. Chapter 2 presents state-of-the-art work in hot swapping 

research. A set of common issues faced when designing hot swapping systems and the 

general procedures for hot swapping are laid out in the same chapter. Sun Microsystems’ 

BeanBox is introduced in Chapter 3, with a particular focus on its event communication 

feature. Chapter 4 describes the design and implementation of the SwapBox, which is an 

extension to the BeanBox. Two applications are developed in Chapter 5 to test the 

functionality of the SwapBox.  

 

The SwapBox incorporates the BeanBox with the new hot swapping infrastructure. It is a 

running environment and swapping management tool for swappable JavaBeans. The 

swappability of a JavaBean is determined by the type of hot swapping strategy that is 

applied to hot swapping transactions. A JavaBean could easily be converted to a 



 105

swappable JavaBean with little or no extra work. This simplifies development for 

swappable JavaBean applications. An XML-based hot swapping policy file is proposed. 

The policy file contains information configuring a particular hot swapping job. The 

benefits of introducing a hot swapping policy include flexibility, more structured 

management, and reduction of human intervention, which may cause mistakes during on-

line upgrading. The thesis also proposed a state transferring mechanism using accessor 

methods plus mapping rules. The design of the SwapBox follows Object-Oriented 

approach. Two design patterns (i.e., strategy pattern and state pattern) are used. This 

enables an easy extension of the SwapBox to incorporate new hot swapping strategies in 

the future research. Figure 6-1 gives a comparison on S-Module approach and the 

approach proposed in this thesis. 

 S-Module SwapBox 

Granularity Java Class JavaBean 

Reference 
Indirection 

S-Proxy: provided by 
developer 

Event Adapters, generated 
automatically 

Transferring States Setter approach proposed but 
not implemented 

Accessors + Mapping Rules 

Levels of Changes New S-module must be a 
subclass of the old one 

New Bean can be of any type 

Timing Problem When the old S-Module is 
idle 

Provides three strategies  

Performance Every method invocation to 
the new method after hot 
swapping has to go through 
Java reflection. 

Java reflection only used at 
the time of hot swapping. 
New method invocation does 
not need Java reflection 

Extra Memory 
Usage 

Need extra memory for one S-
Proxy 

Need extra memory for 
multiple event adapters 

  

FIGURE 6-1   COMPARISON ON S-MODULE AND THE SWAPBOX 
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From the figure above, it could be seen that the SwapBox improves over the S-Module in 

the following areas. 

• Has an implemented solution to transfer states between versions. 

• New bean does not inherit from the old bean, while the new S-Module has to 

inherit from the old S-Module.  

• Better performance when invoking new methods provided at the new bean but not 

provided at the old bean. Java reflection is not needed to invoke such methods, 

while in S-Module approach such invocation has to go through Java reflection. 

However, the S-Module is better than the SwapBox in that there is only one S-Proxy 

attached with the S-Module. Therefore it does not consume too much extra memory 

usage. In addition, the S-Module approach can be easily applied to distributed 

environment, while the SwapBox has to make some modifications in order to apply to the 

such environment. Both the S-Module and the SwapBox do not solve the “busy state” 

problem (i.e., how to elegantly handle hot swapping when the old module or old bean is 

busy) very well.  

 

6.2 Contributions 
 
The contributions of this thesis are as follows: 

1. A hot swapping infrastructure for event-driven, adapter-connected JavaBean 

applications has been proposed. 

2. SwapBox [39], a running environment and swapping management tool for hot 

swappable JavaBeans, has been developed. 
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3. A state transfer mechanism has been proposed and implemented within the SwapBox. 

The use of this mechanism is not restricted to the SwapBox. It could be used in 

programming languages with reflective capability. 

4. An XML-based hot swapping policy file has been proposed. It provides more 

structured hot swapping management, and reduces human involvement during system 

updates. 

5. The SwapBox is designed as a framework, which provides diversified hot swapping 

strategies to swappable applications and could be extended in future research to 

accommodate new hot swapping strategies. 

 

6.3 Drawbacks and Limitations 
 

Due to the inherent difficulty of the hot swapping problem, the SwapBox cannot expect 

to solve the problem once and forever. It has some drawbacks and limitations. Following 

are two of them 

 

6.2.1 Extra Memory Usage   
 

Unlike proxies in Feng and Ao’s work, a swappable bean may have many event adapters. 

These event adapters need extra memory usage. If there is a large number of adapters, the 

extra memory usage will be substantial.  This drawback comes from the selection of 

event adapters for reference indirection. In normal JavaBean applications, extra memory 

used by event adapters is not expected to pose a serious problem to the virtual machine 

because their code is very short and the number of adapters is not large. 
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6.2.2 Scale to Distributed Environment 

 

The SwapBox architecture forces beans to communicate each other via a set of event 

adapters. These event adapters, or interactions, have to be established before the 

application is run. At runtime the interactions are fixed. This structure precludes a bean 

from selecting where to send an event at runtime. Therefore the SwapBox cannot scale to 

distributed client/server model without modifications. The AdapterCenter is another 

aspect which prevents such scaling. Recall section 4.4.3.1, which stated that the 

AdapterCenter has entries for all interactions, consisting of references to source bean, 

target bean, and event adapter. All the references are valid only in the same JVM holding 

the new and the old bean. Any attempt to separate the source and target bean into 

different hosts inevitably brings invalid references into the AdapterCenter. 

 

A possible remedy to this limitation is to re-organise the SwapBox architecture. If a 

server application is developed using JavaBeans, it can be divided into swappable and 

non-swappable beans. Swappable beans do not directly expose to clients. They are 

performing computational or database access tasks behind the scenes. Swappable beans 

communicate with each other through event delivery. Non-swappable beans are directly 

exposed to clients. They provide an accessing interface to clients through sockets or Java 

RMI. Meanwhile, they interact with swappable beans at the server side through event 

delivery. In this way, the server application has the capability to hot swap swappable 

beans, while keeping non-swappable beans intact. Since the main functionality of non-
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swappable beans is to communicate with clients, it is possible to keep their 

implementation simple so that there is little chance to update them at runtime. 

 

6.4 Suggestions for Future Work 
 
Considering the inherent challenges of hot swapping research, this thesis is far from 

complete. There are many areas that deserve further investigation. Here is a short list 

specifying these areas: 

1. XML for persistence. The state transferring process should ideally be automated, so 

that the old bean saves its states and the new bean is able to pick up what it is 

interested in. This requires that the old bean and the new bean save states in a format 

that is mutually understandable. In other words, a data format independent of the 

program is needed. XML is potential choice. In such a circumstance, a bean has an 

XML format to describe its data structure. When requested to save its state, a bean 

could generate an XML-based states file. Meanwhile, beans could load states from an 

XML-based states file. For each pair of new and old beans, an XSLT (Extensible 

Style Sheet Language: Transformations) [42] file is needed to bridge them, i.e., 

translate data structure format between them. How to define the structure of the XML 

file, how to save bean states into XML file, and how to create the XSLT file for 

translation is open to research. 

2. Real applications. This thesis presents two relatively simple applications. They are 

enough to test ideas and the prototype but not sufficient for the real world. It is 

suggested that JAIN [35] may be a rich pool of real, complex hot swappable 

applications. JAIN uses the JavaBean model to provide across-vendor services to 
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telecommunication subscribers. A call control component is probably a target for hot 

swapping because it is mission critical and dynamic. Hands-on experience of these 

real applications would solidify hot swapping research and shed light on problems 

that have not been found yet.  

3. General appeal of the SwapBox. Although the techniques used to address the hot 

swapping problem are closely associated with domain requirements and program 

structures, it is still desirable to take the new infrastructure proposed in this thesis 

beyond JavaBean. There are many component models out there, such as COM, 

DCOM, CORBA, .NET, and so on. It would be interesting to investigate how 

solutions proposed here could be applied to other component models. 
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