
Dynamic Service Composition and Its Applicability to
E-Business Software Systems – The ICARIS Experience

Vladimir Tosic1, David Mennie2, Bernard Pagurek1

1 Department of Systems and Computer Engineering, Carleton University
1125 Colonel By Drive, K1S 5B6, Ottawa, Ontario, Canada

{vladimir,bernie}@sce.carleton.ca
2 The Bulldog Group Inc.

184 Front St. E., Suite 300, M5A 4N3, Toronto, Ontario, Canada
dmennie@bulldog.com

Abstract. This paper discusses dynamic service composition and its applicabil-
ity to e-business software systems. Dynamic service composition is the process
of creating new services at run-time from a set of service components. It sup-
ports business agility, flexibility, and availability – the features of critical im-
portance in the modern business world and in e- and m-commerce software sys-
tems. However, dynamic service composition is challenging and requires ad-
dressing a number of issues. The paper summarizes experiences and uncovered
issues from the development of the ICARIS architecture for dynamic service
composition. ICARIS is a general-purpose dynamic service composition archi-
tecture based on Jini, JavaBeans, and XML. The paper also presents application
of ICARIS to dynamic, on-demand establishment of security and trust relation-
ships. Addition of security extensions to a B2C e-commerce system originally
designed without appropriate security mechanisms illustrates dynamic service
composition in ICARIS and its applicability to e-business software systems.

1. Introduction

Dynamic service composition is the process of creating new services at runtime from
a set of service components. This process includes activities that must take place
before the actual composition such as locating and selecting service components that
will take part in the composition, and activities that must take place after the composi-
tion such as registering the new service with a service registry. A very important
characteristic of dynamic service composition is that the new composite service need
not be envisioned at design time. This feature, known as unanticipated dynamic com-
position [7], provides considerable flexibility for modifying and extending the opera-
tion of software systems during runtime. However, it also introduces a number of
complications and problems for designing and operating software systems that sup-
port dynamic service composition. In this paper, we will describe our experiences
with dynamic service composition and discuss how it can be used to improve the
agility, flexibility, and availability of business software systems, particularly for e-
and m-commerce systems. Before we proceed, let us first define the concepts of a
service component and a service.

A service component is a self-contained unit of service provisioning and manage-
ment that encapsulates some service functionality and appropriate data, and can be
composed with other service components to form different services. A service com-
ponent is relatively independent from other service components in a particular com-
position – it can be relatively easily detached and replaced with another appropriate
service component. Also, it can be reused in many different service compositions. A
service component has a well-defined interface, properties describing the component,
and behavior. The properties specified for a service component may include: opera-
tional constraints, dependencies on other components or infrastructure, a list of opera-
tions (called composable methods) that can be reused or composed with other compo-
nents, a description of the functionality of the component, a list of known relation-
ships that can be formed with other components, and any other relevant information.
The service specification may also contain a description of the behavior of the service
component by annotating the contained operations or methods using a formal lan-
guage or structured syntax. The interface used to access the component may be de-
scribed directly in the specification or discovered indirectly through reflection and
introspection facilities, assuming the programming language used to implement the
underlying component has support for these features. It is important to note that a
service component can provide not only software functionality and data, but also
access to some hardware resources like memory, printing, network bandwidth, etc. It
can eventually be implemented with one or more interacting software components,
with one or many cooperating distributed objects, with some combination of software
components and distributed objects, or with some other technologies, for example,
mobile code. The given definition of a service component is intentionally quite broad
and allows a wide range of components to fall within its scope. However, in this paper
we are predominantly interested in software (a.k.a., algorithmic) service components.

The important characteristic that distinguishes a service from a service component
is visibility to an external user (either human or an external software system). An
external user can reference a service, not a service component. Only system infra-
structure is permitted to interact directly with service components and to compose
them into composite services. Note however that some units of service functionality
can have both properties – visibility to an external user and being a part of composite
services. We refer to such a unit of service functionality as a “service” in situations
when it is used by an external user, and as a “service component” in situations when it
is used as a part of a composite service.

2. Dynamic Service Composition

Component-based software engineering is widely recognized as a very important
improvement in engineering of complex software systems. Among its advertised
benefits are [12]: rapid software development, enhanced adaptability, scalability, and
maintainability of resulting software systems. However, composition of software
components during system design time and/or deployment time (a.k.a., static software
composition) is not flexible and agile enough in cases when there are frequent runtime
changes of requirements and/or operational circumstances that cannot be anticipated.

Static software composition is sufficient for constructing applications with well-
defined specific requirements that are not likely to change frequently. If a software
system has a loosely defined set of operations to carry out or it has to adapt to rela-
tively frequent changes in the environment that might not even be predicted during
design time, static software composition is too limited. Redesigning the system to
accommodate the changes often requires considerable human involvement, which
significantly slows down the overall reaction to change. Further, modifying or updat-
ing statically composed software usually requires disrupting its operation, which is
not suitable for high-availability, mission-critical, and hard real-time systems. As will
be discussed later in this paper, many business systems would benefit from greater
runtime flexibility, agility, and availability of software systems.

Dynamic composition of software service components is an important step forward
in achieving these goals. It enhances flexibility of software systems since it enables
the runtime construction of new services, if they do not already exist, to address a
specific problem. A number of useful services can be composed from a set of avail-
able service components. The set of potential service compositions grows exponen-
tially with the size of the set of available service components. Some of these service
compositions may not have been conceived of ahead of time. The services can be
assembled based on the demands of the system or its users. The involvement of hu-
mans in the composition process is minimized. The users do not need to be inter-
rupted during upgrades or the addition of new functionality into the system. To con-
clude, dynamic service composition supports rapid and autonomous (i.e., with mini-
mal human involvement) adaptation even to some changes not envisioned during
design time, while keeping the running software system constantly available to users.

Of course, dynamic service composition has certain limits. Not every new service
can be realized as a combination of existing service components. Sometimes newly
required functionality is significantly different from available service components.
However, even in such cases dynamic service composition can be a useful element of
the broader solution for dynamic system evolution. Encapsulation of the new func-
tionality inside a new service component not only minimizes disruption of the opera-
tion of the running system and its users; it also enables a potential chain reaction of
composing new services including the newly added service component.

In addition, dynamic service composition is a very challenging undertaking and
there are a number of issues to take into consideration. It has some elements in com-
mon with static service composition but it also has some unique features. One of these
features is the crucial nature of time limits. The dynamic service composition process
often must complete within some specified, relatively short, time limits or it becomes
impractical. Generally, it is an automated process with limited human involvement.
There are many potential problems, exceptions, and errors that may occur during this
process. The challenge lies in dealing with these unexpected issues in the limited time
frame that is permitted for a particular composition. Also, it is not possible to pre-
cisely predict or test at design time what the exact environmental circumstances of
operation will be at composition time and whether the process will be successful.
While steps are taken to decrease the chance of a failed composition, it cannot always
be avoided. Furthermore, even if the dynamic composition process seems successful,
there is the potential for unexpected feature interactions that cannot be easily and
rapidly discovered and recovered from. A feature interaction is the way a service

component (i.e., a feature) modifies or affects at runtime the behavior of other service
components in a particular composition. The problem is similar to a program that
compiles without errors but still fails to execute properly. Compilation is only one
part of the successful execution of a program just as the composition process will not
guarantee the composite service will function correctly. When unexpected feature
interactions arise despite all measures taken to avoid them, it might be almost impos-
sible for the composition infrastructure to correct the situation. Human (i.e., user)
input is needed to determine if the side effects are neutral or service affecting. If the
feature interactions cause the composite service to function incorrectly or behave
erratically, the composite service can be terminated and never reassembled. However,
in many situations it may be appropriate to simply ignore those feature interactions
that do not seriously affect the operation of the composite service.

There is also a lack of support for dynamic composition techniques in program-
ming languages and other development tools. The fundamental challenge in compos-
ing services at runtime is the design and implementation of an infrastructure that will
support the process. Locating components at runtime requires a component library or
code repository that is integrated with the software infrastructure that is actually per-
forming the composition. The infrastructure should also support mechanisms to re-
cover (e.g., rollback) from an unsuccessful composition and to discover and, if possi-
ble, recover from unexpected feature interactions. All these and other issues make the
dynamic composition process inherently complex. Consequently, cost-benefit analysis
must be taken into consideration before applying dynamic service composition tech-
niques to a particular circumstance.

3. On E-Business Applications of Dynamic Service Composition

Unanticipated dynamic service composition has increasing relevance in software
today because of the constant change and evolution of technologies, protocols, and
standards. It can be a very important mechanism for use in mission-critical, high-
availability, and hard real-time e-business systems and in other systems where there is
a need to perform unanticipated changes to software without discontinuing its opera-
tion. Many e- and m-commerce systems fall into this category.

The issues related to the establishment of security and trust relationships in e- and
m-commerce systems are becoming increasingly important. E-commerce requires
security requirements that are above and beyond the requirements for traditional net-
work security. It also requires mutual trust between a vendor, a customer, and all
software and human parties involved. The issues related to the establishment of secu-
rity and trust relationships have been proven to be major limiting factors to the growth
of the Internet economy. As a very large number of different security mechanisms
have been developed and new ones constantly emerge, the majority of businesses now
employ one or more of these mechanisms, e.g., to secure the network link. However,
the biggest challenge is now how to deploy security where it is needed, when it is
needed, in the shortest time possible, and in as efficient and seamless a manner as
possible. Additionally, the challenge is how to introduce appropriate new security
mechanisms into those business systems that were developed with inadequate security

or with old security mechanisms that are now deemed insufficient. Dynamic service
composition can be used to achieve these goals and to alleviate four important issues.
First, security is too often an “after-thought” during system development. Second,
many e-commerce applications require specific security infrastructure components to
be constantly available and running. Third, the security requirements of a system’s
users may change during runtime and can be quite different for different classes of
user. Fourth, the broad range of applicable security protocols and algorithms, as well
as their ever increasing variety, often makes it impractical or even impossible to build
in comprehensive security support at design time. For example, it might not be finan-
cially justifiable for a smaller company to put a commercial Public Key Infrastructure
(PKI) in place to meet the demands of a low volume of users with different security
requirements. In such cases, using third-party pay-per-use security service compo-
nents might be a more flexible and financially justifiable approach. The customer
demanding the added security can be additionally charged to cover the costs.

Dynamic service composition can be also helpful in customizing services to vari-
ous devices. This is a very important issue for emerging m-commerce systems. The
variety of platforms for executing software, especially the lightweight platforms for
mobile users, has increased during the last couple of years. Client-side software, for
example m-commerce software, can now execute on cell phones, personal digital
assistants (PDAs), digital pagers, laptops, personal computers, and many other de-
vices. These devices differ in processing power, memory capacity, screen real-estate,
graphics capabilities, networking capabilities, and many other features. Depending on
which platform an application executes, different components of an m-commerce
application may or may not be required. If the m-commerce application is component-
based with different service components serving as service engines for the applica-
tion, a user could move the application between devices and the application could
scale to the device that it is running on at any given time. The composition of service
engines could be performed dynamically using the appropriate infrastructure for dy-
namic service composition.

Dynamic service composition can also be used for establishing and managing
value nets, the evolution of supply chains. A supply chain is defined as a sequential,
pipeline, flow of value-adding activities from vendors to ultimate consumers neces-
sary to produce a product or service effectively and efficiently. A value net bypasses
this sequential structure by establishing a virtual community of supply chain partners
that jointly mine the knowledge necessary for the development and marketing of their
products. This enables delivering superior service and perfect customized orders that
satisfy customers and differentiate involved companies from the competition. Dy-
namic service composition directly enables creating value nets for information-
oriented products and services. But even more importantly, it provides agility, flexi-
bility, and availability of e-business services useful in many value nets.

4. The ICARIS Architecture

We believe that the design and implementation of an appropriate infrastructure is the
most important current challenge for the work on dynamic service composition. We

Registration Manager Composition Manager

Jini Infrastructure

Service Broker 1 Service Broker n

ICARIS Infrastructure

Service Provider 1 Service Provider n
. . .

. . .

Fig. 1. High-Level Architecture of ICARIS

designed and implemented a general-purpose dynamic service composition architec-
ture called the Infrastructure for Composability At Runtime of Internet Services
(ICARIS) [11]. The architecture provides all of the required functionality to form
composite services from two or more service components that have been designed for
composability. A major contribution of this project was to design an architecture that
makes use of the existing network computing technologies and carries out runtime
assembly of services without the need for new compositional languages or infrastruc-
tures based on non-standard software. Our opinion is that dynamic composition tech-
niques will not be embraced and widely deployed if they are based on software that is
too specialized and without support of important market players. Therefore, for im-
plementing the ICARIS architecture we have used proven and widely used technolo-
gies: the Java programming language, the Jini distributed computing technology, the
JavaBeans component model, and the XML (eXtensible Markup Language) informa-
tion specification standard. While these base technologies were not altered, extensions
to the Jini infrastructure were made to enable the Jini Lookup Service (LS) to support
service items with XML-based service attributes instead of just simple text-based
attributes. Component composition is achieved at runtime by using an application of
JavaBeans and the Extensible Runtime Containment and Services Protocol (ERCSP).
As many features of JavaBeans, Jini, and XML were not used for ICARIS, the archi-
tecture is perhaps more heavyweight than necessary. However, many other technolo-
gies were evaluated before this Java-centric approach was selected for the final im-
plementation. In the process of developing the architecture many problems were
solved that are largely independent of the underlying implementation technologies.

There are three primary composition techniques that are supported by ICARIS [10,
11]. First, a composite service interface can be created based on several service com-
ponents by extracting the signatures of the composable methods from each component
and combining them together into a single interface. A composite service interface

Xerces XML Parser

Java Code Extractor

Text Merging Module

Composition Module

Composite Service Cache

Service Deployment Module

ICARIS User Interface Applet Service Object (Proxy)

Service Component Retrieval Module

Fig. 2. Architecture of the ICARIS Configuration Manger

can be created quickly, but is not actually a new service. This composition technique
provides a loose aggregation of service components using the Façade pattern. Service
components involved in the composition remain distinct, while communicating with
clients through the common composite service interface. The composite service inter-
face redirects all incoming calls to the appropriate service component for execution.

Second, a new stand-alone composite service can be created by means of using a
pipe-and-filter architecture to interconnect service components. In essence, the pipe-
and-filter architecture chains the output of one service component to the input of the
next. While this is a fairly primitive connection scheme, some complex constructions
are also possible. For example, the outputs of one component can be looped back into
the inputs on the same component. Connection Services, retrieving the output from
one component and sending it to the input of another, are automatically created by
ICARIS. Note that one of the benefits of using a pipe-and-filter architecture is mini-
mization of unexpected feature interactions. This composition technique requires
longer time than a composite service interface, but it creates a single new composite
service without altering the structure or logic of the composed components. The cou-
pling between service components is stronger than with a composite service interface.

Third, the creation of a new stand-alone composite service with a single body of
code is achieved by extracting and assembling the composable methods from soft-
ware-based service components involved in the composition. The corresponding
method signatures are also merged into a new composite service specification. This
code composition technique creates a new fully functional and reusable service with a

strong coupling between the code of the composed service components. However,
compared to the other two techniques, this is a very complex and lengthy technique
that cannot be used for composing the majority of service components. It can be per-
formed only with white-box software service components, not with other types of
service components. Performing this composition technique might have sense when
performance of the composite service is a key consideration. In theory, a composite
service with a single body of code may take longer to create than the other types of
composite services, but it should also execute faster. The gains in performance are
particularly significant when the composed service components are distributed.

Note that other composition techniques, such as a stand-alone composite service
with some service components processing the same input in parallel, are not sup-
ported by ICARIS because they could produce unexpected feature interactions. For
many applications such composition techniques are not necessary. However, it seems
that for general e-business dynamic service compositions parallelism of execution
would be a powerful feature, if appropriate mechanisms for handling unexpected
runtime feature interactions were used. This is one of the weaknesses of ICARIS.

ICARIS consists of the Jini infrastructure, the Registration Manager, and the Com-
position Manager (Figure 1). The Registration Manager is the entity that is responsi-
ble for managing registration and access rights. This includes registration of clients,
servers, and service brokers. The Composition Manager is the entity that is responsi-
ble for the actual dynamic service composition in the system. Its architecture is given
in Figure 2. Two other elements called the Service Broker and the Service Provider
are also required but they are not considered to be part of the ICARIS infrastructure
and they can be provided by third parties.

Service components are provided by a Service Provider and are stored with a Serv-
ice Broker within a structure called a Service Item. Service Items could also be stored
in a Jini LS for use by other clients and servers. A Service Item is made up of two
major parts: a Service Specification and a Service Object (Proxy). The Service Object
is a valid JavaBean. As every service component must be accompanied by semantic
information, the Service Broker requires the Service Specification written in XML
instead of a simple list of text attributes. After the Service Item is successfully located
in the Service Broker’s repository, the Service Object can be downloaded to the entity
requesting it. To support composition of new stand-alone services with a single body
of code, ICARIS also requires access to the raw source code for the Service Object as
well. This cannot be bundled with the Service Component so it is stored in a separate
repository in the Service Broker. The source code is uploaded to the Broker at the
same time as the Service Item.

The Service Broker is used to store and retrieve Service Items. The Service Broker
is an enhanced Jini LS that is able to parse and interpret an XML Service Specifica-
tion with its embedded Xerces Java XML parser [1]. The Service Broker maintains
the functionality of the original Jini LS but, apart from the Jini LS simple exact
matching mechanism, it also supports a more advanced “fuzzy” matching mechanism.
As it can be used independently from ICARIS, the Service Broker is not part of
ICARIS. Namely, the Service Broker is capable of storing any Internet service, which
may or may not be a composable service, provided by a Service Provider. On the
other hand, ICARIS only retrieves a subset of these services that are service compo-
nents designed for composability. The Service Providers are the sources of service

components in the network. The Service Provider uploads Service Items into the
Service Broker. There can be multiple Service Providers registered with a single Serv-
ice Broker. The Service Provider registers and interacts only directly with the Service
Broker and not with the ICARIS infrastructure.

Apart from the mentioned limitations of the supported composition techniques, the
main limitations of ICARIS are consequences of the limitations of the used Java tech-
nologies. However, note that no other collection of technologies existing at the time
of the ICARIS project was able to achieve the set goals. One limitation is the scalabil-
ity of Jini. Jini was originally designed for resource sharing within a typical enterprise
work group of about 10 to 100 people because people tend to collaborate with those
they work closely. However, Jini does not scale to the level of the Internet. It would
require very different performance and interaction characteristics to effectively handle
a large number of users. The idea of a federation, or the ability for Jini communities
to be linked together in larger groups, has been addressed in the Jini specifications but
its practical scalability does not extend beyond about 1000 users or 10000 service
components. JavaBeans is also not the ideal component model for dynamic service
composition in an Internet environment. JavaBeans are primarily intended for use
within a single address space. The mechanisms used for communication between
Beans are based on direct method invocation and not on remote protocols. This
limitation was removed by integrating JavaBeans into Jini services which are able to
communicate across address spaces using an enhanced version of Java RMI (Remote
Method Invocation). When a new JavaBean is added to a system, it is not suddenly
recognized by other JavaBeans and used by them automatically. Making use of Jini,
once again, removes this limitation by allowing service components to advertise the
services they provide to a community of interested parties. Also, traditional Java-
Beans must be explicitly linked to other JavaBeans in order to be used. Using the
ERCSP protocol, JavaBeans can be introduced dynamically into the same BeanCon-
text so they can be interconnected. However, if we wanted to create a composite serv-
ice consisting of service components that remained distributed throughout the net-
work, we could not use JavaBeans techonlogy directly. Another problem with the
JavaBeans component model is that a JavaBean is only required to maintain a list of
the registered Listener objects but no list of objects to which it listens itself. This
means it knows about what components it is dependent on but not the components
that are dependent on it for their functionality. This could be a problem if a service
component in one composite service is needed by a component in another composite
service at the same time. A “dependencies” section in the ICARIS XML service
specification was designed to inform the system if a component had other components
that it required in order to function properly. However, a component could still be
used in two composite services at the same time, which could cause the problem de-
scribed above. A major limitation of the ICARIS architecture is the need for the
JavaBean source code to be available in the Service Broker for every service compo-
nent to be able to create a stand-alone composite service with a single body of code.
This limitation might be removed if modifications are made to the Java compiler.

Another issue is the proprietary nature of the used XML specification of service
components. The language used for specification of service components is an impor-
tant issue and we are researching it further in other projects. We are currently devel-
oping an extension of the WSDL (Web Services Description Language) standard.

5. The Composable Security Application

The Composable Security Application (CSA) is a Jini, JavaBeans, and XML-based
implementation of the ICARIS architecture enabling dynamic, on-demand, construc-
tion and deployment of point-to-point security associations in order to introduce secu-
rity services into applications that were not originally designed with security mecha-
nisms. Apart from being based on the ICARIS architecture, CSA also uses functional-
ity provided by IAIK-JCE [6] API (Application Programming Interface), which pro-
vides a re-implementation of the entire Java Cryptography Extension (JCE). IAIK-
JCE comes with its own security provider, offering a great variety of cryptographic
services and algorithms that are not supported in the default provider with JDK (Java
Development Kit) 1.2. The IAIK-JCE Toolkit also provides a Certifying Authority
(CA), so digital certificates can be used.

In the CSA, each major security algorithm supported by IAIK-JCE is contained
within an individual service component. These service components can be composed
at runtime to build composite security services based on the demands of the client and
server for a particular security association. The client and corresponding server ends
of the security association are then deployed using the support services provided by
the composition infrastructure. Dynamic composition of security services using the
ICARIS architecture is an accessible, robust, and flexible approach to provide many
different types of security associations for many different applications. It is fast
enough to assemble, deploy, and eventually adapt these associations at run time. CSA
demonstrated how dynamic service composition could be used to increase the level of
trust that users have towards their on-line business relationships. As already noted, an
infrastructure that can simplify the selection and effective application of on-demand
security is desperately needed. Security can only build trust if it is an interactive proc-
ess and if all involved parties, including human users, are aware of the security meas-
ures being taken. This is where dynamic service composition can help.

To illustrate how the CSA works, we will examine how it could be used in a B2C
(Business-to-Customer) e-commerce system that has been extended with the CSA so
it can compose of security associations at runtime. The role of the CSA in this system
is to enable a level of security that satisfies both the customer (human) and the service
provider (the e-commerce software) in as transparent manner as possible, thus in-
creasing the mutual feeling of trust. We will assume that all parties interacting with
the CSA have previously registered with the CSA and trust all transactions they make
with it. Further, we will assume that the Service Providers, which provide the security
service components to the CSA, have uploaded all Service Items containing security
services to a Service Broker registered with the CSA.

In order to use the CSA, the customer needs to first locate it through the Jini LS.
When the Jini LS finds the CSA, it returns the appropriate Service Object to the cus-
tomer. This Service Object contains a user interface so the customer can interact with
the CSA, e.g., to request that a security association be established between his node
and the e-commerce system. When the CSA receives the request, it asks the e-
commerce system if it has permission to establish a secure association with it. If the
CSA is not granted permission, the customer is informed and the CSA will terminate
the setup. But, if the e-commerce system accepts the request, which we will hereafter
assume, the CSA sets up secure channels between itself and the customer and be-

Certifying
Authority
(CA)

IDEA
Session
Key
Generat
or

Encrypt
Credit Card
Info with
IDEA Ses-
sion Key

Obtain
Server’s
RSA Pub-
lic Key

Send
En-
crypted
Message
and
En-
crypted
Key to

Encrypt
IDEA Ses-
sion Key
Using
Server’s RSA
Public Key

b)

RSA
Key
Pair
Gen-
eration

Receive
Mes-
sage
from
Client

Decrypt Ses-
sion Key with
Server’s RSA
Private Key

Decrypt
Credit Info
with IDEA
Session Key

a)

IDEA – International Data Encryption Algorithm
RSA – Rivest-Shamir-Adelman

Fig. 3. An Example of a CSA Composite Service: a) Server Side; b) Client Side

tween itself and the e-commerce system. These channels ensure that a party not in-
volved in the association cannot determine the security preferences of the association.

Once the secure channels are established, the CSA asks the customer to specify the
particular type of transaction she/he wishes to perform. After receiving the transaction
information from the customer, the CSA asks the e-commerce system for an XML
description of its requirements for this particular type of transaction. These require-
ments, which have been previously defined by an administrator of the e-commerce
system, become the minimum security requirements for the security association. The
customer cannot lower them, but she/he can raise the level of security used. Based on
the type of transaction and the security requirements specified, the CSA sends a list of
potential security mechanisms that could be used to implement a secure association
for the transaction. If the customer does not care what particular algorithm is used to
provide the specified level of security, the CSA will use a default algorithm. We will
assume that the customer wants a security association with a digital envelope based

on IDEA (International Data Encryption Algorithm) and RSA (Rivest-Shamir-
Adelman) encryption and that these requirements are acceptable for the e-commerce
system. The customer’s selection is sent over the secure channel to the CSA. The
CSA then translates the requirements for this security association into an XML-based
service template. This service template is sent to the Service Broker to retrieve the
required security service components. If the Service Broker locates one or more serv-
ice components that satisfy the service template, the appropriate Service Object(s) are
returned. When the minimum set of service components is obtained, the CSA will
form a client and server pair of composite services from these service components. In
most cases, a stand-alone composite service will be constructed because the security
service components used by the CSA are all very suitable for pipe-and-filter assem-
bly. The order of the service components along the pipe is determined based on a pre-
defined algorithm stored with the Composition Manager and also by examining the
Service Component Specification stored with each service component. Due to the
nature of the supported security algorithms, the client and server usually have the
reverse order of assembled service components.

Figure 3.a) shows a logical view of how the stand-alone server composite security
service is constructed, while Figure 3.b) shows the client-side complement for the
same security association. Note that the automatically generated Connection Services
are not shown on these diagrams in order to simplify them. Also note that the RSA
Key Pair Generator in the server security service must generate a public and private
key before the client can use the server’s public key to encrypt the session key.

The composite services are deployed via the secure channels from the CSA to the
customer and the e-commerce system nodes. The services are installed and the setup
phase begins. At this stage, the customer establishes, using the agreed upon protocol,
a secure channel directly with the e-commerce system. When the customer is in-
formed that the security association is established, the secure information exchange
can proceed. All data emerging from the customer node now passes through the com-
posite client security service. It is sent along the secure channel to the server security
service where it is decrypted and passed to the e-commerce system.

6. Related Work

Two projects, dynamic software upgrading with minimal disruption to consumers [5]
and dynamic adaptation of service components with multiple classes of service [13]
that we are currently working on are closely related to our work on dynamic service
composition. These two projects work on different aspects of dynamic adaptation of
service components. They further support the goals of business system agility, flexi-
bility, and availability. Dynamic software upgrading with minimal disruption to con-
sumers is very important feature for high-availability, mission-critical, and hard real-
time systems. It is very beneficial, or even essential, for many business systems, like
on-line stock trading software. The concepts that we are working on in the project on
dynamic adaptation of service components with multiple classes of service support
the flexibility and adaptability of business systems in several ways. Multiple classes
of service support working with consumers that have different characteristics. They

also enable a service component to provide to every consumer an appropriate level of
service and QoS (Quality of Service) and to better balance limited underlying re-
sources. As advocated in telecommunications service management, one advantage of
having a relatively limited number of classes of service over other types of service
customization is manageability. Note that for complex business systems manageabil-
ity is a very important issue. The dynamic adaptation mechanisms that we are devel-
oping in this project have limited power compared to finding alternative service com-
ponents, but they enable faster and simpler adaptation and enhance robustness of the
relationship between a service component and its consumer. They enable a service
component provider to retain existing consumers and also do not require establish-
ment of new trust relationships between service components. In this project we are
also working on a new language, an extension of WSDL, for comprehensively de-
scribing service components and provided classes of service.

Several recent industrial initiatives— for example, from Microsoft (.NET), IBM
(Dynamic e-business), HP (Web Services Platform), and Sun (ONE – Open Net Envi-
ronment)— are based on the concept of a Web service. A Web service is a service or a
service component (in our definition) that communicates by means of XML-based
standards. Our work is not bound to Web services because we want to research issues
that independent of the communication mechanisms used. We concentrate our efforts
on researching issues that are currently not addressed by the industrial initiatives.
However, the experiences from our research could be very useful for the emerging
industrial approaches to dynamic composition of Web services, like IBM’s WDFL
(Web Services Flow Language) [8], and also for HP’s eFlow [3].

Several different approaches – for example, [7], [14], and [2] – to dynamic soft-
ware composition and closely related issues were presented in the literature. The
majority of such research has focused on techniques for creating new applications at
runtime on a single node or in a distributed system. Our research is concerned solely
with the creation of new network services from a set of service components that have
been designed for composability. Another key difference is that the composite serv-
ices that we create do not have to execute on the computer where they are originally
constructed – they can be deployed to where they are needed using mobile code. Also,
while the past research on dynamic software composition mainly explores composi-
tion of service components that remain distinct, our work additionally allows con-
struction and deployment of new stand-alone services with a single body of code.
Note again that a lot of related work suggests proprietary solutions (e.g., modifying
the Java Virtual Machine – JVM), while we on the contrary wanted to maximize the
reuse of existing technologies.

The Darwin architectural description language (ADL) [9] is also related to our
work. Darwin is a declarative ADL designed to provide a general-purpose notation for
specifying both static and dynamic structures of systems composed from components.

Dynamic service composition is closely related to service discovery. An overview
of some service discovery technologies was given in [4]. This reference also advo-
cates usage of artificial intelligence for service discovery, as well as comprehensive
service description accompanied with mechanisms for advanced “fuzzy” matching.
Their solution for comprehensive service description and advanced “fuzzy” matching
is called XReggie. XReggie has similar goals to our XML specification of service
components and advanced “fuzzy” matching used in ICARIS. Another similarity is

that both approaches are based on Jini and XML. However, their specification does
not contain all the information necessary for dynamic service composition.

7. Conclusions

Dynamic service composition supports business agility, flexibility, and availability.
Consequently, it is useful for engineering e- and m-commerce software systems
where these features are of critical importance. However, dynamic service composi-
tion cannot be used in all circumstances requiring dynamic system evolution. In many
circumstances— like composition of security, finance, or telecommunication serv-
ices— dynamic service composition adequately addresses the need for dynamic sys-
tem evolution. In other cases, it can be a valuable element of a wider solution for
dynamic system evolution. Another problem is that dynamic service composition is a
challenging, inherently complex process that requires addressing a number of issues.

During the development and experimental usage of the ICARIS architecture we
have obtained valuable experience and a number of insights related to dynamic serv-
ice composition. ICARIS addresses an important problem with dynamic service com-
position – the lack of appropriate infrastructure support that is based on existing,
proven, and widely used technologies. The main conclusion of our project is that it is
possible to design and implement such an infrastructure using Java, Jini, JavaBeans,
and XML. The experiences with ICARIS could be very useful for the ongoing and
future research on dynamic service composition, like the emerging solutions for dy-
namic composition of e-business Web services.

Every step was taken in the design of ICARIS to avoid composing services to-
gether that could not be composed and to minimize unexpected runtime feature inter-
actions. One of the measures taken to avoid complications is to bundle an XML serv-
ice specification with each service component that describes the dependencies, con-
straints, or potential incompatibilities for the component. The XML service specifica-
tion of each service component was parsed before attempting the composition to
ensure that the composition was possible and to minimize unexpected feature interac-
tions. We have not encountered cases where our approach was not able to provide
service composition, although there were some cases when the composed services did
not function as expected. In such rare cases, ICARIS requires human input to decide
whether the side effects are neutral or service affecting and what do with the service
composition. Additionally, to prevent unexpected runtime feature interactions, we
have used a pipe-and-filter architecture for creating stand-alone composite services.

We believe that the main value of ICARIS is for composing moderately complex
service components, using a pipe-and-filter architecture where the interaction between
components is limited. Our application of ICARIS to dynamic composition of secu-
rity associations showed the viability and feasibility of our concepts and demonstrated
applicability of dynamic service composition for addressing the issues of security and
building trust in on-line business systems, especially e- and m-commerce systems.
While we have successfully completed the ICARIS project, we continue working on
dynamic software upgrading with minimal disruption to consumers and on dynamic
adaptation of service components with multiple classes of service.

Acknowledgements

The authors would like to thank Dr. Mark Vigder from National Research Council
Canada and reviewers and participants of WOOBS’01 (Workshop on Object-Oriented
Business Solutions 2001) for very useful comments on earlier versions of this paper.

References

1. Apache Software Foundation: Xerces Java Parser Readme. WWW page (2001). On-line
at: http://xml.apache.org/xerces-j/index.html

2. Bosch, J.: Superimposition: A Component Adaptation Technique. Information and Soft-
ware Technology, Vol. 41, Issue 5 (1999) 257-273

3. Casati, F., Ilnicki, S., Jin, L.-J., Krishnamoorthy, V., Shan, M.-C.: Adaptive and Dynamic
Service Composition in eFlow. Tech. Rep. HPL-2000-39. Hewlett-Packard Company
(March 2000). On-line at: http://www.hpl.hp.com/techreports/2000/HPL-2000-39.pdf

4. Chakraborty, D., Chen, H.: Service Discovery in the Future for Mobile Commerce. ACM
Crossroads, Vol. 7, Issue 2 (Winter 2000) 18-24. On-line at:
http://www.acm.org/crossroads/xrds7-2/service.html

5. Feng, N., Ao, G., White, T., Pagurek, B.: Dynamic Evolution of Network Management
Software by Software Hot-Swapping. In Proc. of IM 2001, IEEE Publications (Seattle,
USA, May 2001) 63-76

6. IAIK-Java Group: IAIK-JCE Toolkit. Institute for Applied Information Processing and
Communications (IAIK), Graz University of Technology, Graz, Austria (2000). On-line
at: http://jcewww.iaik.tu-graz.ac.at/

7. Kniesel, G.: Type-Safe Delegation for Run-Time Component Adaptation. In Proc. of
ECOOP '99 (LNCS 1628), Springer-Verlag (Lisbon, Portugal, June 1999) 351-366

8. Leymann, F.: Web Services Flow Language (WDFL 1.0). White paper. International
Business Machines Corporation (May 2001). On-line at: http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

9. Magee, J., Tseng, A., Kramer, J.: Composing Distributed Objects in CORBA. In Proc. of
ISADS’97, IEEE Computer Society Press (Berlin, Germany, April 1997) 257-263

10. Mennie, D., Pagurek, B.: An Architecture to Support Dynamic Composition of Service
Components. Presented at WCOP 2000 (Sophia Antipolis, France, June 2000). On-line at:
http://www.ipd.hk-r.se/bosch/WCOP2000/submissions/mennie.pdf

11. Mennie, D. W.: An Architecture to Support Dynamic Composition of Service Components
and Its Applicability to Internet Security. M.Eng. thesis, Carleton University, Ottawa,
Canada (2000). On-line at:
http://www.sce.carleton.ca/netmanage/papers/MennieThesis.pdf

12. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-
Wesley (1998)

13. Tosic, V., Mennie, D., Pagurek, B.: Software Configuration Management Related to Man-
agement of Distributed Systems and Services and Advanced Service Creation. In Proc. of
the SCM-10 workshop at ICSE 2001 (Toronto, Canada, May 2001). On-line at:
http://www.ics.uci.edu/~andre/scm10/papers/tosic.pdf

14. Truyen, E., Jorgensen, B. N., Joosen, W., Verbaeten, P.: On Interaction Refinement in
Middleware. Presented at WCOP 2000 (Sophia Antipolis, France, June 2000). On-line at:
http://www.ipd.hk-r.se/bosch/WCOP2000/submissions/truyen.ps

