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Abstract 

 Convergence between the existing telephone networks and the emerging IP Telephony 

over the Internet not only demands software applications that span both networks, but also 

offers opportunities for innovative development approaches that satisfy the new requirements 

like fast product delivery, diversified customer services and decentralized network 

intelligence. In the distributed computing world, the maturing of Common Object Request 

Broker Architecture (CORBA) has offered built-in solutions for integrating legacy systems, 

as well as becoming an increasingly common element in telecommunication systems due to 

its ability to leverage emerging technologies. Recent research shows that CORBA is used to 

provide internetworking between various message-based protocols and management 

architectures [Berg1998, Fischbeck1999]. Moving forward from that, our research challenges 

the current heterogeneous message-centric approach for signaling, which generates 

tremendous tasks for software developers in terms of system interoperability, with a fresh 

approach for future IP-based telephony services. 

 In this thesis, we explore a new interface-centric approach using CORBA/Internet Inter-

ORB Protocol (IIOP) as the signaling mechanism for IP Telephony as an alternative to the 

message-centric ITU-T H.323/H.245 Multimedia Control Protocol. We have converted 

Abstract Syntax Notation One (ASN.1) constructed H.245 messages into CORBA Interface 

Definition Language (IDL) data types, defined the IDL interfaces, implemented three sets of 

protocol procedures to achieve the basic functionality of H.245 messaging, followed with the 

integration of H.225 call set up and media transmission procedures. Finally, we address 

performance aspects of this approach to show the suitability of using CORBA-based 

signaling for enterprise applications. 
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Chapter 1  

Introduction 

 Enabled by technological advances in packet switching, signal processing and explosive 

growth of the Internet economy, Internet Protocol (IP) Telephony is becoming a very 

successful alternative to the traditional circuit-switched technology. On the other hand, the 

Public Switched Telephony Network (PSTN) deployed with Signaling System No.7 (SS7) 

networks has made impressive achievements in terms of coverage, reliability and being 

feature-rich. Matching the SS7 features with a fully IP-based network is a major engineering 

challenge that might take a long period of time [Mitra1999a]. SS7 was originally designed 

for a closed community of telephone companies, although deregulation has changed the 

operational environment and created opportunities for insider attacks against the system. In 

addition, the Internet will provide more open interfaces to encompass a far greater range of 

rapid time-to-market services than the traditional voice network could offer. Various 

standards bodies and consortia are developing signaling solutions in IP networks to support 

telephony services, the two principal contenders being International Telecommunication 

Union – Telecommunication Standardization Sector (ITU-T) H.323-series of 

Recommendations [ITU1996a] and the Internet Engineering Task Force (IETF) Session 

Initiation Protocol (SIP) [Schulzrinne1998]. However, at this stage of the game, neither of 

them has gained overwhelming acceptance in terms of deployment. This situation leaves us 

the opportunity to explore new approaches.  



  Chapter 1. Introduction 

 

 

2

1.1 Thesis Motivation 

1.1.1 Problem Statement  

 The problem that our research addresses can be illustrated from following three 

viewpoints, i.e., the service provider, the network vendor and operator, and the software 

program developer. 

 In order to build and retain a strong growing customer base, Internet Service Providers 

(ISP) have to meet, if not exceed, the customer expectations set by today’s traditional voice 

services. Acceptance of IP telephony will depend on the quality and efficiency with which 

service providers offer, deliver, and manage IP services. Most likely, future services over the 

Internet will encompass a range far greater than voice-based telephony services. 

 In today’s telecommunication systems, most current approaches for signaling are based 

on the exchange of messages between particular hardware equipment, most likely from 

different vendors. To overcome interoperability requirements and get the systems to work 

together often cost a fortune for network vendors. Due to its dramatically enhanced usage, 

the current trend in the Internet economy is to move towards service outsourcing to third 

parties for fast product delivery, leaving a significantly diminished role for central network 

operators. Furthermore, because the richness of functional capabilities has moved to end user 

terminals like the Personal Computers (PCs), the service intelligence is not likely to be 

concentrated within the network. Rather, open interfaces to various network capabilities are 

essential if intelligence is to stay in the network. 

 The ITU, IETF and regional standards on signaling and transmission have made such 

interworking possible. However, these standards show that a tremendous amount of effort 
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has been placed in describing messages, including syntax and semantic definitions, 

encoding/decoding rules, procedures for message generation and reception, and how to react 

to abnormal situations. The software development process based on such standards separates 

the phases of analysis and design in traditional telecommunication products. It defines the 

message-based external interfaces to other systems in the analysis and specification phase, 

while the software design phase comes later and has to focus on the proper generation and 

reaction to those predefined messages. The software developed from this methodology comes 

from vendor-proprietary requirements and software design documents. Such an approach 

naturally leads to monolithic software or vertically integrated software by pieces from the 

same vendor. There are no open or standardized programming interfaces, because the base 

standards do not identify or require any, and it is not in the interest of the vendors to expose 

their internal interfaces to third party software development. Therefore, it is not reusable by 

software developers, who usually develop the distributed systems shielded from knowing 

details of the infrastructure, i.e., the exchanged messages, communication protocol, operating 

system, or hardware [Mitra1999a]. 

1.1.2 Industrial Concerns and Trends 

 While the above mentioned message-centric approach may have worked in the past, the 

following concerns and trends from the industry make it unsuitable as the way to develop 

services over the Internet: 

? ? Leveraging intelligence between endpoints and network services: A traditional phone can 

only generate a small set of signaling events and tones. It cannot receive or process 

signaling of any sophistication. Signaling is received in the same voice channel as the 
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phone call, and processed by the human using the phone. These phones are considered 

“dumb” devices, and service intelligence is kept within the network. In contrast, IP 

phones can receive and process signaling message directly. Signals are sent as a separate 

set of IP packets. An endpoint’s ability to receive and act on signaling is the fundamental 

property that makes it intelligent. This enables the service functionality’s complete 

separation from voice bit transport. However, if the intelligence totally moves to the 

endpoint, the application may become costly and complex. The leverage of intelligence 

between the endpoints and network services may depend on well-accepted distributed 

infrastructure. 

? ? Separating services from networks: The message-based approach ties the services too 

closely to the underlying network, because the messages have been defined for a 

particular network by a particular standards body with a specific charter. For example, 

the H.323-based services are currently available only on the Local Area Network (LAN), 

while the Intelligent Network (IN) services are available only from the operators that 

have a SS7 network. However, such standards do not define a generally distributed 

mechanism for the service software independent of the network. 

? ? Offering feature transparency across networks: Consumers may become frustrated when 

services to which they have grown accustomed are not available due to technological 

constraints. For example, when you browse the web site for particular goods, you may 

expect to talk with the sales person before you make the order. So, instead of picking up 

your phone set, you may wish to click the button to place the call. For wireless 

subscribers, they may wish to have the same features that they have on their wired 

phones, as well as the features offered through their PC, like email or web browsing. 
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1.2 Thesis Objective 

 The use of software technologies, in particular distributed object technologies like 

CORBA, is one way to address the above concerns. It shows that the design provides the 

infrastructure and may become independent of both network and access. The objective of this 

thesis is to provide credible evidence to show a vision of signaling for future IP networks that 

emphasizes an interface-centric approach based on CORBA rather than the current 

heterogeneous message-centric approaches [Mitra1999b].  

 This research seeks to “reverse engineer” the functions embedded in the H.323 series of 

protocols into Object Management Group (OMG) IDL interfaces. Such an effort would 

enable a distributed implementation of the logical H.323 architecture, which is based on 

terminals, gatekeepers and gateways, using CORBA as the signaling mechanism. This would 

have the advantage not only of all the distribution transparencies and the programming 

language/platform independence inherent in such an approach, but also the simplicity that 

comes from using a single messaging protocol, IIOP.  

 The performance of such an implementation demonstrates valuable insights on the 

suitability of using CORBA-based signaling for enterprise applications. In particular, it will 

determine the impact from message size and type complexity of CORBA requests as 

compared to text-based messages or other binary formats such as Packed Encoding Rules 

(PER) encoded H.323 messages. The result has to show whether or not it has a significant 

impact on IP telephony call set-up delays. 

1.3 Thesis Contribution 

 This thesis identifies the problems of signaling for current heterogeneous networks and 
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explores an interface-centric approach for targeting these problems. The thesis investigates 

the use of CORBA in the area of signaling for IP telephony, where the industry has not yet 

settled definitely on one approach. The primary focus of this software-centric approach is on 

defining a control infrastructure based on a distributed computing architecture where 

common capabilities, e.g., access control, usage recording, service logic and data, network 

events, etc., are accessible through language/platform-neutral interfaces while 

communicating through a common message set. The thesis makes a number of contributions 

as follows: 

? ? Reviewed the current application protocol development process and concepts, like 

ASN.1, encoding rules; reviewed the distributed architecture and key concepts of 

CORBA, as well as various CORBA-based internetworking activities with service and 

management networks in the telecommunication domain. 

? ? Compared ITU-T H.245 protocol specification with the OMG standard on “Control of 

Audio-Visual Streams”, and the standard of Digital Storage Media – Command and 

Control (DSM-CC) from Digital Audio Visual Council (DAVIC). 

? ? Explored the CORBA-based interface centric approach.  

? ? Fully converted ASN.1 defined H.245 messages to CORBA IDL using ASN-to-IDL 

compiler based on the translation specification from Joint Inter-Domain Management 

(JIDM), defined the IDL interfaces for signaling entities.  

? ? Partially implemented the selected procedures in H.245 to achieve its basic functionality, 

followed with the integration of H.225 Registration Admission and Status (RAS)/Q.931 

signaling and Real-time Transport Protocol (RTP) media transmission procedures. The 
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H.323/H.225 part is undertaken in parallel by Christian Gosselin from UQAM. The 

project is well integrated through our common efforts. 

? ? Determined the factors based on the latency test for CORBA-based H.245 messaging 

performance.  

1.4 Thesis Organization 

 The structure of the thesis is as follows. In chapter 2, background information is given 

for the ASN.1-based protocols, CORBA, and the recent efforts for CORBA internetworking 

in the telecommunication domain. A knowledgeable reader, who has experience in ASN.1, 

encoding rules or CORBA could skip part of this chapter. In chapter 3, the H.323/H245 

standards are briefly introduced. This is followed by a comparison of other two specifications 

for multimedia streaming control. In chapter 4, the interface-centric approach is illustrated 

with the emphasis on the design requirements and technique selections as well as industrial 

activities towards open interfaces. In chapter 5, the implementation is presented with the 

overall design and techniques used in our implementation. Chapter 6 gives an overview on 

CORBA performance issues, such as GIOP/IIOP implication and limitation on performance, 

CORBA performance monitoring technique and benchmarks. Experimental environment and 

performance results are illustrated, along with the discussion of performance concerns for 

selecting CORBA in the design. Chapter 7 provides a summary of the thesis’s key messages 

and a number of conclusions addressing our project’s objectives, as well as future work of 

the research. 
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Chapter 2 

Background (ASN.1-based Protocols and CORBA) 

 Background information is provided at this chapter in three parts, and knowledgeable 

readers might skip the sections with which they are familiar. First of all, we introduce the 

concepts and development process for ASN.1-based application protocols. Second, we focus 

on one of the most dominated distribute computing technology, i.e., CORBA, explaining the 

key concepts, followed by several related OMG specifications. In the third part, we 

investigate several on-going efforts for integrating CORBA to the telecommunication service 

and management architectures, such as Intelligent Networks, Telecommunications 

Management Network (TMN), Telecommunications Information Networking Architecture 

(TINA). 

2.1 ASN.1-based Protocols  

 In today’s global communications infrastructure, computer systems have collaborated to 

perform a wider range of activity than ever before. Applications require increasingly 

complex exchanges of information between computer systems and between appliances with 

embedded computer chips. There is a requirement for the detailed specification of the 

exchanges the computers are to perform, and for the implementation of software to support 

those exchanges. For communication to be possible between applications and devices 

produced by different vendors, standards are needed for these application protocols. In a 

number of industrial sectors, but particularly in the telecommunications sector, in multimedia 

exchanges and in security-related exchanges, ASN.1 is the dominant means of specifying 
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application protocols.  

2.1.1 ASN.1 

 Abstract Syntax Notation One is an international standard, which aims at specifying the 

data used in application protocols. It provides a high level description of messages that frees 

protocol designers from having to focus on the bits and bytes layout of messages. As a 

computing language that is both powerful and complex, ASN.1 was designed for modeling 

efficiently the communication between heterogeneous systems. For the time being, ASN.1 

has been adopted for use by a wide range of applications, such as network management, 

secure email, cellular telephony, air traffic control, and voice and video over the Internet.  

 In 1982, four years after the appearance of Open System Interconnection (OSI), many 

people who worked on the development of standards on Application Layer had encountered 

the same problem: the data structures had become too complex to allow procedures for 

encoding and decoding in bits or bytes. In 1984, ASN.1 was originally proposed as a notation 

and an algorithm that could define the format of encoding bits for the email Message 

Handling Systems (MHS) protocols by the Consultative Committee on International 

Telephony and Telegraph (CCITT, X.208) and joint work with the International Standards 

Organization (ISO, ISO 8824). This recently evolved to X.680. Though the standards are 

very thorough and precise in their definitions, they are not very easy to read and practice for 

application protocol designers  [Dubuisson2000].  

 In a given programming language like C, the data structure to be transferred is 

represented in “Concrete Syntax”, which respects the lexical and grammatical rules of a 

language. In contrast, the concept of “Abstract Syntax” describes the generic structure of data 
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independent of any encoding technique used to represent the data. The syntax allows data 

types to be defined and values of those types to be specified. ASN.1 is one kind of the 

abstract syntax, and is being used to define the following types of data: 

1. the abstract syntaxes of application data 

2. the structure of application and presentation protocol data unit (PDU) 

3. the management information base for both Simple Network Management Protocol 

(SNMP, RFC1157) and OSI systems management, like the Common Information 

Services and Protocols for the Internet, Common Management Information Protocol 

(CMIP, RFC1189) and CMIP over TCP/IP (CMOT) 

 There are other abstract notations that can be compared with ASN.1 and even compete 

with it in some respects. Some examples are OMG IDL for CORBA, Sun Microsystems’ 

eXternal Data Representation (XDR, RFC1832), Electronic Data Interchange for Finance, 

Administration, Commerce, and Transport (EDIFACT, ISO9735). 

 The third concept of “Transfer Syntax” defines the representation of data to be 

exchanged between data transfer components. The translation from abstract syntax to the 

transfer syntax is accomplished by means of encoding rules that specify the representation of 

each data value of each data type. 

 This approach to exchange application data solves two problems that relate to data 

representation in a distributed, heterogeneous environment. 

1. a common representation for the exchange of data between different systems 

2. internal to a system, an application uses some particular representation of data. The 

abstract/transfer syntax scheme resolves differences in representation between co-
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operating application entities.  

 Figure 2.1 gives an example to show the relationship among the three kinds of syntax. 

 

 

 

 

 

 

 

 

 Figure 2.1 An example of Syntax Relationship (Abstract, Concrete and Transfer) 

 

 From a single ASN.1 data description, we can derive as many concrete syntaxes in as 

many programming languages, and as many procedures implementing the transfer syntax in 

the encoders/decoders.  

 In ASN.1, a type is a set of values. For some types, there are a finite number of values, 

and for other types there are an infinite number. ASN.1 has four kinds of type: simple type, 

structured type, tagged type and other type. Every ASN.1 type other than “Choice” and 

“Any” has a tag, which consists of a class and a non-negative tag number. ASN.1 types are 

abstractly the same if their tag numbers are the same. There are four classes of tag: 

1. Universal: for types whose meaning is the same in all applications as defined in 

Transfer Syntax 
(bytes or bits) 

TerminalCapabilitySet  ::=SEQUENCE 
{ 
   sequenceNumber  INTEGER, 
   protocolIdentifier  OCTET STRING (Size(1..7)) 
} 

Abstract Syntax in ASN.1 

Typedef struct TerminalCapabilitySet { 
   int   sequenceNumber; 
   char protocolIdentifier [8]; 
   } TerminalCapabilitySet; 

Machine A 
Concrete Syntax in C 

class TerminalCapabilitySet { 
   int  sequenceNumber; 
   String protocolIdentifier; 
} 

Machine B 
Concrete Syntax in Java 
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X.208. Table 2.1 lists some ASN.1 types and their universal-class tags. 

Table 2.1 Some Universal-Class Tags and Corresponding Types 

Tag Number (decimal) Type 

UNIVERSAL 1 BOOLEAN 

UNIVERSAL 2 INTEGER 

UNIVERSAL 3 BIT STRING 

UNIVERSAL 4 OCTET STRING 

UNIVERSAL 5 NULL 

UNIVERSAL 6 OBJECT IDENTIFIER 

UNIVERSAL 16 SEQUENCE and SEQUENCE OF 

UNIVERSAL 17 SET and SET OF 

UNIVERSAL 19 PrintableString 

UNIVERSAL 22 IA5String 

UNIVERSAL 27 GeneralString 

UNIVERSAL 31 …  Reserved for future use 

 

2. Application: for types whose meaning is specific to an application, such as X.500 

directory services. Types in two different applications may have the same 

application-specific tag and different meaning. 

3. Private: for types whose meaning is specific to a given enterprise. 

4. Context-specific: for types whose meaning is specific to a given structured type. 

 Other features of ASN.1, such as information object classes and information objects, 

modules and specifications, can be found in various background material [Kaliski1993].  

2.1.2 Encoding Rules 

 Closely associated with ASN.1 are sets of standard encoding rules that describe the bits 
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and bytes layout of messages as they are in transit between communicating application 

programs. Like ASN.1, the encoding rules are also not tied to any particular computer 

architecture, operating system, language or application program structure, and are used in a 

range of programming languages, including C, C++, or Java. Some of these encoding rules 

are registered with the ISO object registration tree such as the one shown in Figure 2.2. 

 

 

 

 

 

 

 

 Figure 2.2 BER and PER in ISO Object Registration Tree 

 

 The Basic Encoding Rules (BER) are the original encoding rules of ASN.1 since they 

were part of X.409 standard in 1984. The BER transfer syntax always has the format of a 

triplet “TLV”, i.e., Type (or Tag), Length, Value as shown in Figure 2.3 (a). All the fields of 

T, L, and V are series of octets. The value V can, itself, be a triplet TLV if it is constructed. 

The most complex of the ASN.1 values is no more than a stack of less and less complex 

values as shown in Figure 2.3 (b). The transfer syntax is octet-based and self-delimited since 

the field L provides a means of determining the length of each TLV triplet. The BER follows 

big-endian principle, the high-order bit is at the left-hand side as shown in Figure 2.3 (c). 

Root 

itu-t(0) iso (1) joint-iso-itu-t (2) 

specification (0) base-encoding (1) packed-encoding (3) 

basic (0) canonica1 (1) 

aligned (0) unaligned (1) 
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 Figure 2.3 BER Transfer Syntax 

 

 To get a detailed understanding of how octets are constructed in BER, Figure 2.4 shows 

the constructed format of the tag octets. The tag octets correspond to the encoding of the 

value’s type. If the tag number is smaller than or equal to 30, the tag class and number are 

encoded on a single octet. If the tag number is greater than 30, the number consists of the 

concatenation of the bits from no.6 down to no.0 for all octets but the first one, whose five 

lower-order bits equal 11111.  

 

 

 

 

 

 

 Figure 2.4 Example BER Format of the Tag Octets 

 

 The format of length also follows the specific rules to construct the octets, which can be 

L T V 

Length 
octet 

Tag 
octet 

Content 
octet 

(a) TLV Triplet 

L T V…  L T V L T 

(b) Recursive Principle (c) Bit Weights (big-endian) 

01101101 

76543210 

class P/C  t t t t t 

class P/C  11111

0? tag? 30 

 1 t t t t t t t tag? 30  1 t t t t t t t  0 t t t t t t t …  

bit 7 bit 6 class 
0 0  UNIVERSAL 
0 1 APPLICATION 
1 0 Context-specific 
1 1  PRIVATE 

bit 5 form 
0 Primitive 
1 Constructed 

76543210 76543210 76543210 

7   6    5    43210 

 1 t t t t t t t 

76543210 
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in either definite or indefinite form. The value octets are constructed based on the 

information given in tag and length octets. 

 A criticism expressed towards the BER is regarding their cost in terms of size, with 50% 

extra cost on average compared to the actual data to encode. This drawback led to the 

development of the much more efficient PER, but they are not self-defining and less flexible. 

PER follow the rule: “obtain the most compact encoding using encoding rules as simple as 

possible”, and are particularly appropriate for protocols that need to transfer data at a high 

rate in domains like telephony over the Internet, video conferencing and multimedia in 

general. 

 Instead of using a systematic recursive format in triplets TLV like the BER, the PER 

format could be interpreted as '[P][L][V]' (optional preamble, optional length, optional value) 

where the fields P, L and V are no longer series of octets but series of bits. PER can provide 

a more compact representation of the values that are actually sent in an instance of 

communications. This approach is popularly used when both the transmitter and the receiver 

expect data to adhere to a known structure. 

 The PER break down into two categories: basic and canonical, and either can be of the 

aligned or unaligned variant. In aligned variant, padding 0 bits are inserted when needed to 

restore the octet alignment. The unaligned variant is far more compact but requires much 

more processing time for encoding and decoding. H.245 is implemented using PER. Since 

both sides of a message exchange know that the syntax of the messages will conform to the 

H.245 specification, it is not necessary to encode the specification into the message. For 

decoding simplicity, the aligned variant of PER is used. This forces fields that require eight 

or more bits to be aligned on octet boundaries and to consume an integral number of octets. 
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Tags are not encoded in PER. A length field L is encoded only if the size has not been fixed 

by a SIZE subtype constraint in the ASN.1 specification or if the data size is important. The 

encoding of values of type SEQUENCE or SET is preceded by a bit-map, which indicates 

the presence or absence of optional components. Similarly, an index indicates the alternative 

retained in a CHOICE type before encoding the value associated with this alternative. 

 Figure 2.5 gives an example for the PER encoded H.245 Terminal Capability Set request 

with the IP/TCP/TPKT (Transport PDU in Discrete Units) headers in hexadecimal strings.  

IP header and TCP header are formatted as italic and bold respectively. The next 4 octets are 

a TPKT header that is underlined, followed with the H.245 messages (74 octets). 

 

 

 

 

 Figure 2.5 PER Encoded H.245 Terminal Capability Set Request with Headers 

 

2.1.3 Widely-used Communication Protocols 

 Although ASN.1 seems to be obscure, it is actually being wisely used. Every time we 

place a 1-800-number call, ASN.1 defined messages are exchanged between the switching 

machine and the network database to route the call to the correct common carrier and local 

phone number to which the 1-800-number maps. Whenever routing data is changed within 

SS7, the central nervous system of the telephone network, Operations, Maintenance and 

Administration Part (OMAP) messages that are described in ASN.1 are utilized in carrying 

out the change.  

4500 0081 e14d 0000 4006 05b2 c0a8 8915  
c0a8 8911 3aa1 3a9c c3ba 2276 028b 29e9 
5018 111c 20d7 0000 0300 004e 0270 0106 
0008 8175 0002 800d 0000 3c00 0100 0001  
0000 0100 0003 8000 0020 c03b 8000 0108  
a817 6f40 0002 2200 0740 0003 09f8 0def  
404a 3700 5040 0100 0080 0001 0100 0000  
0201 0001 0003  
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 Every call placed on a cellular telephone in North America, Europe, and Japan results in 

Transaction Capability Application Part (TCAP) protocol messages. These messages, 

described using ASN.1 and encoded using one of its predefined encoding rules, go flying 

through the air to establish the call. When we walk along talking on the cellular telephone 

and go from one cell to another, ASN.1 helps transfer control of the call between cells. 

 Companies such as Federal Express use ASN.1 and its encoding rules heavily to track 

their packages. ASN.1 is also used by the electric and gas utilities to control the latest 

generation of substations and transformers. ASN.1 is the choice of companies such as 

Hewlett Packard, IBM, Sun and Xerox for defining the Document Printing Application 

(DPA) standard interface for printer job management. To list a few, ASN.1 specified 

communication protocols could be categorized as follows [ASNResource2000]: 

? ? High-level layers of the OSI model, the Application and Presentation layer protocols 

? ? X.400 electronic mail system 

? ? X.500 directory 

? ? Multimedia environment, such as Multimedia and Hypermedia information coding 

Expert Group (MPEG) and ITU-T H.323, H.225, H.245 recommendations 

? ? The Internet, like SNMP, CMIP, etc. 

? ? Electronic Data Interchange (EDI) protocols 

? ? Business and electronic transactions, like Secure Electronic Transaction (SET), etc. 

2.1.4 Protocol Development Process 

 It is the ASN.1 compiler that carries out the generation of language specific concrete 
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syntax. The compiler should be implemented with some encoding rules, which describe the 

links between the abstract syntax and transfer syntax. A working example for protocol 

development process using ASN.1/C compiler is shown as Figure 2.6. First of all, all files 

that constitute the ASN.1 specification are collected, including those referenced in the 

IMPORTS clauses. All these files are then given to the ASN.1/C compiler as input files. The 

major functions of the compiler cover lexical analysis, parsing, semantic analysis and target 

language code generation. The generated codes normally have two parts: 

? ? A file with the concrete syntax, which is the translation of the data types defined in the 

ASN.1 specification into the target language (for example the .h file in C language); 

? ? One or several files including one encoding procedure and decoding procedure, like BER, 

PER, for each type of the ASN.1 specification (for example the .c files in C language). 

 Both commercial and public ASN.1 compilers are available for C/C++/Java following 

various encoding rules, like BER, PER, Distinguished Encoding Rules (DER) 

[ASNHome1997]. Without further effort, the designers of a communication application have 

data transfer procedures at their disposal. What remains to be done is to program the 

complete local behavior of the protocol, which is usually described in Specification and 

Definition Language (SDL). However, the task of encoding complex data structures for 

network transmission is still more expensive in terms of processor time and memory usage 

than most other components of the protocol stack. This is so even after the optimization for 

encoding rules, and this may lead to the development of non-standard data representations 

tuned for a particular application, which is not portable across different environments 

[Sample1993]. 

 The files generated by the ASN.1 compiler and those specific to the communicating 
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application are then given to a compiler of the computing language used for programming the 

communication application (like a C compiler). This produces an executable for the machine 

architecture using libraries provided with the ASN.1 compiler, which contain the encoding 

and decoding procedures of all ASN.1 primitive types. The executable can send and receive a 

binary stream on a telephone line or a computer network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Example of Protocol Development Process with ASN.1/C Compiler 
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 The above protocol development process indicates that one of the major concerns in 

service or feature upgrade is that the protocol messages may be expanded over the time. This 

may happen either through new messages, or new parameters in existing messages, or new 

parameter values for existing parameters, or a combination of all three. While the functions 

embodied by these messages are separate, the actual binary format of the messages does not 

permit an easy separation of the content. Thus, a change in any of these functions requires the 

software upgrade of intermediate switches in communication systems. 

2.2 Common Object Request Broker Architecture 

 With advances in communication technologies and development of powerful network 

stations, computer systems are rapidly changing from a centralized model to a distributed 

environment. In order to support distributed application development and to provide 

connectivity and interoperability among heterogeneous computing systems, a number of 

distributed environments, called “middleware”, have been developed. Examples are the 

Distributed Computing Environment (DCE) offered by the Open Software Foundation 

(OSF), CORBA by the OMG. The objectives of middleware environments are to provide the 

services that distributed applications need and to facilitate the development of distributed 

applications, which is independent of underlying platforms. To accomplish this, middleware 

provides runtime services supporting various forms of transparency, such as distribution and 

location transparency. In the following sections, we will explain the key concepts of 

CORBA. 

2.2.1 Object Management Architecture (OMA) 

 After the OMG was formed in 1989, it had defined Object Management Architecture, 
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which provides a common language for applications and enables the interoperability at the 

application level by defining standard services and interfaces. The core element of OMA is 

CORBA Object Request Broker (ORB), which will be addressed in following sections. 

Besides that, Figure 2.7 shows the OMA Reference Model (1992) with the following 

components. 

 

 

 

 

 

 Figure 2.7 Object Management Architecture Reference Model 

 

? ? Object Services: These components provides a standardized functionality, which is 

defined in the form of object interfaces, e.g. for class and instance management, storage, 

integrity, security, query, and versioning. 

? ? Common Facilities: These are horizontal facilities that vendors may use to provide a set 

of generic applications that can be configured to the specific requirements of a particular 

configuration, such as email. In the current version of OMA Reference Model, the 

Common Facilities are suppressed. 

? ? Domain Interfaces: These are the standard interfaces that are defined by particular 

industrial groups towards specific application domains, such as telecommunications and 

e-commerce. 

Common 
Facilities 

Domain 
Interfaces 

Application 
Interfaces 

Object 
Services 

 
Object Request Broker 
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? ? Application Interfaces: These are not standardized object interfaces, which are 

specifically developed for an application. 

2.2.2 The CORBA Architecture Reference Model 

 CORBA ORBs are infrastructure components that allow clients to invoke operations on 

distributed objects without concern for object location, programming language, OS platform, 

communication protocols, and hardware. Figure 2.8 illustrates the key components in the 

CORBA reference model that collaborate to provide this degree of portability, 

interoperability, and transparency [Schmidt2000]. 

 

 

 

 

 

 

 

 

 

Figure 2.8 CORBA 2.x Architecture Reference Model 

 

 In this model, a client obtains references to objects and invokes operations on them to 

perform application tasks. Ideally, a client can access a remote object just like a local object, 
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i.e., object -> operation (args). An object is an instance of an OMG IDL interface. Each 

object is identified by an object reference, which associates one or more paths through which 

a client can access an object on a server. When a client invokes an operation on an object, the 

ORB Core is responsible for delivering the request to the object and returning a response to 

the client. An ORB Core is implemented as a run-time library, which includes ORB 

communication protocol, like IIOP, linked into client and server applications. IDL stubs and 

skeletons serve as “glue” between the client, servants and ORBs. The stubs implement the 

proxy pattern and provide a strongly typed static invocation interface (SII) that marshals 

application parameters into a Common Data Representation (CDR) format. Conversely, 

skeletons implement the Adapter pattern and demarshal the data from CDR back into typed 

parameters. 

 Major components in the CORBA reference model are outlined below: 

? ? Client: A client is a computational context that makes requests on an object through one 

of its references. 

? ? Server: A server is a computational context in which the implementation of an object 

exists.  

? ? Object: A CORBA object in an abstract sense is a programming entity with an identity, 

an interface, and an implementation. From a client’s perspective, the object’s identity is 

encapsulated in the object’s reference. From a server’s view, it is explicitly managed by 

object implementations through the object adapter interfaces. 

? ? Servant: A servant is a programming language object or entity that implements requests 

on one or more objects. A servant generally exists within the context of the server 
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process. Request made on an object’s references are mediated by the ORB and 

transformed into invocations on a particular servant. 

? ? Interoperable Object Reference (IOR): An IOR of an object implementation is the unique 

identifier of an object implementation, providing all the information necessary for 

another CORBA process to locate and communicate with it. 

? ? IDL Compiler: An IDL compiler automatically transforms OMG IDL definitions into an 

application programming language.  

? ? Object Adapter: An object adapter associates a servant with objects, demultiplexes 

incoming requests to the servant and collaborates with the IDL skeleton to dispatch the 

appropriate operation up-call on that servant. It is the essential component for portability 

among different object systems. 

? ? Interface Repository: An interface repository provides run-time information about IDL 

interfaces. Using this information, it is possible for a program to encounter an object 

whose interface was unknown when the program was compiled, and be able to determine 

what operations are valid on the object and make invocations on it. 

? ? Implementation Repository (IR): An implementation repository provides a common 

location to store information associated with servers, such as administrative control, 

resource allocation and activation modes. 

2.2.3 General Inter-ORB Protocol (GIOP)/IIOP 

 As we mentioned earlier, the GIOP and IIOP support protocol-level ORB 

interoperability in a general, low cost and simple manner. With only seven message formats 



Chapter 2. Background (ASN.1-based Protocols and CORBA) 

 

 

25 

in version 1.0, the GIOP messages are exchanged between agents to facilitate object requests, 

locate object implementation, and manage communication channels. GIOP semantics require 

no format or binding negotiations. These factors allow clients to send requests to objects 

immediately upon opening a connection. As a concrete realization of GIOP, IIOP describes 

how agents open TCP/IP connections and use them to transfer GIOP messages [OMG2000]. 

 GIOP makes the following assumptions about the underlying transport that is used to 

carry messages. The list of assumptions matches the guarantees provided by TCP/IP, as well 

as other transport protocols, including Systems Network Architecture (SNA), Asynchronous 

Transfer Mode (ATM), Hyper Text Transfer Protocol Next Generation (HTTP-NG). 

? ? The transport is connection-oriented: A connection-oriented transport allows the 

originator of a message to open a connection by specifying the address of the receiver. 

After a connection is established, the transport returns a handle to the originator that 

identifies the connection. The originator sends a message via the connection without 

specifying the destination address with each message; instead, the destination address is 

implicit in the handle that is used to send each message. 

? ? Connections are full-deplex: The receiving end of a connection is notified when an 

originator requests a connection. The receiver can either accept or reject the connection. 

If the receiver accepts the connection, the transport returns a handle to the receiver. The 

receiver not only uses the handle to receive messages but can reply to the requests sent by 

the originator via the same single connection and does not need to know the address of 

the originator in order to send replies. 

? ? The transport is reliable: The transport guarantees that messages sent via a connection are 

delivered no more than once in the order in which they were sent. If a message is not 
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delivered, the transport returns an error indication to the sender. 

? ? The transport provides a byte-stream abstraction: The transport does not impose limits on 

the size of a message and does not require or preserve message boundaries. In other 

words, the receiver views a connection as a continuous byte stream. Neither receiver nor 

sender need be concerned about issues such as message fragmentation, duplication, 

retransmission, or alignment. 

? ? The transport indicates disorderly loss of a connection: If a network connection breaks 

down, both ends of the connection receive an error indication. 

 Based on the above transport assumptions, GIOP defines the following rules for 

transferring messages. 

? ? Asymmetric connection: GIOP defines client and server as two distinct roles with respect 

to connections. The client side of a connection originates the connection, and sends 

object requests. The server side accepts requests and sends replies. The server side of a 

connection may not send object requests. This restriction allows the GIOP specification 

to be much simpler and avoids certain race conditions. 

? ? Request multiplexing: Multiple clients within an ORB may share a connection to send 

requests to a particular ORB or server. Each request uniquely identifies its target object. 

Multiple independent requests for different objects, or single objects, may be sent on the 

same connection. 

? ? Connection management: GIOP defines messages for request cancellation and orderly 

connection shutdown. Therefore, the CORBA specification does not require any 

particular connection management strategy for ORBs. 
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 GIOP basic message types are summarized in Table 2.2, which lists the message type 

names, whether the message is originated from client, server or both, and the value used to 

identify the message type in GIOP message headers. GIOP 1.0 supports seven different types 

of messages. GIOP 1.1 and 1.2 also support Fragment message type. Detailed descriptions 

for each message are defined in up-to-date CORBA specification [OMG2000]. Listing 2.1 

shows the basic structure of a GIOP message in pseudo-IDL. 

Table 2.2 GIOP Message Types, Originators and Values (GIOP1.2) 

Message Type Originator Value in GIOP Header 

Request Client 0 

Reply Server 1 

CancelRequest Client 2 

LocateRequest Client 3 

LocateReply Server 4 

CloseConnection Server 5 

MessageError Both 6 

Fragment Both 7 

 

Module GIOP { 

 Struct Version { 

  Octet major; 

  Octet minor; 

 }; 

enum MsgType { 

Request, Reply, CancelRequest, LocateRequest, LocateReply, CloseConnection, MessageError 

}; 

 struct MessageHeader { 

char magic [4];  

  Version GIOP_version; 

  octet flags; 

  octet message_type; 

  unsigned long message_size; 
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 }; 

}; 

Listing 2.1 The Basic Structure of A GIOP Message 

 

2.2.4 Common Data Representation 

 GIOP defines a Common Data Representation that determines the binary layout of IDL 

types for transmission. CDR is a transfer syntax. It maps data types defined in OMG IDL to a 

bicanonical, low level representation for transfer between agents. CDR has the following 

main characteristics. 

? ? CDR supports both big-endian and little-endian representation: CDR-encoded data is 

tagged to indicate the byte ordering of the data. This means that both big-endian and 

little-endian machines can send data in their native format. If the sender and receiver use 

different byte ordering, the receiver is responsible for byte-swapping. This model, called 

receiver makes it right, has the same endianness, they can communicate using the native 

data representation of their respective machines. This is preferable to encodings such as 

XDR, which require big-endian encoding on the wire and therefore penalize 

communication if both sender and receiver use little-endian machines. 

? ? CDR aligns primitive types on natural boundaries: CDR aligns primitive data types on 

byte boundaries that are natural for most machine architectures. For example, short 

values are aligned on a 2-byte boundary, long values are aligned on a 4-byte boundary, 

and double values are aligned on an 8-byte boundary. Encoding data according to these 

alignments wastes some bandwidth because part of a CDR-encoded byte stream consists 

of padding bytes. However, despite the padding, CDR is more efficient than a more 
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compact encoding because, in many cases, data can be marshaled and demarshaled 

simply by pointing at a value that is stored in memory in its natural binary representation. 

This approach avoids expensive data copying during marshaling. 

? ? CDR-encoded data is not self-identifying: CDR is a binary encoding that is not self-

identifying. This means that CDR encoding requires an agreement between the sender 

and receiver about the types of data that are to be exchanged. This agreement is 

established by the IDL definitions that are used to define the interface between sender 

and receiver. The receiver has no way to prevent misinterpretation of data if the 

agreement is violated.  

 CDR encoding is a compromise that favors efficiency. Because CDR supports both 

little-endian and big-endian representations and aligns data on natural boundaries, marshaling 

is both simple and efficient. The downside of CDR is that certain type mismatches cannot be 

detected at run time in the case of using Dynamic Invocation Interface (DII) or Dynamic 

Skeleton Interface (DSI). Other encodings do not suffer from this problem. For example, as 

mentioned earlier, the Basic Encoding Rules (BER) used by ASN.1 use a Tag-Length-Value 

(TLV) encoding, which tags each primitive data item with both its type and its length.  

2.2.5 Passing Object by Value (OBV) 

 In CORBA, the client and server are generally executing in two different machines, and 

the invocation of a remote object is accomplished by passing object reference. When the 

object is passed by reference, if the receiver intends to access any data or operation within 

the object, it can do so using the reference passed to it. But every such access would end up 

in the wire traffic because the object is still within the sender’s domain. This can be slow. 
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Furthermore, simply having a reference in the receiver’s space does not guarantee the object 

still exists in the sender’s domain.  To address these requirements, the OMG has added an 

extension to the CORBA 2.4 specifications to enable the passing of objects by value 

[OMG2000].  

 This extension introduces a new IDL type “Value”, which is used to pass state data over 

the wire. A value is best thought of as “Struct” with inheritance and methods. Value types 

differ from normal interfaces in that they contain properties to describe the state of value 

type, and contain implementation details beyond that of an interface. Value types are always 

local. They cannot be called remotely, which means only the data part of a value object is 

transferred, not the implementation. There are two kinds of value types. 

? ? Concrete value types: concrete value types contain state data. They extend the expressive 

power of IDL structs by allowing: single concrete value type derivation and multiple 

abstract value type derivation, arbitrary recursive value type definitions, null value 

semantics and sharing semantics, etc. 

? ? Abstract value types: abstract value types contain only methods and do not have state. 

They may not be instantiated. Abstract value types are a bundle of operation signatures 

with a purely local implementation. 

 OBV provides a chance to increase location transparency by minimizing remote access. 

In cases of OBV, when the receiving party instantiates a copy of an object, it implies that the 

receiver knows how to implement the object (instantiate it, initialize it, and provide 

implementations of the operations). More importantly, this also implies the receiver knows 

something about the semantics of the object and can utilize those semantics locally. The new 

instance created by the receiving side has a separate identity from the original object, and 
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once the parameter passing operation is complete, there is no relationship between the two 

instances. Obviously, this approach violates the fundamental CORBA concept of 

encapsulation, which normally hides an object’s encapsulation from its clients. Meanwhile, 

there are several very complex edge efforts of the OBV specification, such as when interface 

references and value types are intermixed. Therefore, this may complicate the development 

work of ORB vendors, IDL designers and programmers. The design of our interface 

approach does not use OBV, though OBV is going to get more attention in developing 

CORBA applications in the future. 

2.2.6 CORBA Services 

 CORBA services are individual software components designed to promote a greater 

amount of software reuse. In defining the services, the OMG took an in-depth look at the 

software development process and tried to focus on common steps or pieces of functionality 

most programs need to implement. These services are building blocks from which the 

CORBA objects can inherit functionality or standalone components with which the objects 

interact. Each service has been defined and engineered with two main underlying concepts: 

1) the service must be generic, meaning it should be domain-independent; 2) the service 

should do one specific task in a thorough manner. CORBA service specifications describe 16 

common services [OMG1998]. Once all services are available, the development life cycle of 

a CORBA application will be substantially shortened. Here, we list a few that will be 

addressed later in chapter 5. 

? ? The naming service allows names relative to a name context to be bound to objects, and 

names to be resolved into object references, therefore locating objects in a network. 



Chapter 2. Background (ASN.1-based Protocols and CORBA) 

 

 

32 

? ? The trading service allows services to be offered, whereby they are registered with a 

broker object, and services to be located, whereby the broker object is queried about 

services with certain properties. 

? ? The event service supports the communication of objects using asynchronous message, 

i.e., messages that have not been directly requested.  

2.2.7 Extensions in CORBA 3 

 OMG technical task force is always making improvements on various CORBA 

specifications addressing the requirements from the industry. The coming version 3.0 of 

CORBA will have following extensions as announced by OMG [Siegel1999]: 

? ? Distributed components support 

1. The CORBA component model specifies a framework for the development of plug-

and-play CORBA objects. It encapsulates the creation, lifecycle, and events for a 

single object and allows clients to dynamically explore an object’s capabilities, 

methods, and events. 

2. The CORBA scripting language specification makes composition of CORBA 

components easier. 

? ? Java and Internet integration and legacy support 

1. A Java to IDL mapping allows developers to implement applications completely in 

Java and to generate the IDL from Java classes. This enables other applications to 

access Java applications using Remote Method Invocation (RMI) over IIOP. 

2. DCE/CORBA interworking specifications provide a road map for integrating DCE 
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applications into CORBA environments. 

? ? Quality of service specifications 

1. Minimum CORBA addresses the need for CORBA-compliant systems that can be 

operate in embedded environments. 

2. Real-time CORBA introduces real-time ORBs in the CORBA specification that give 

developers a more direct control over resource allocation. 

2.3 CORBA in the Telecommunications Domain 

 Distributed object technologies such as CORBA are important to the 

telecommunications domain, especially when they are applied for the management of 

telecommunications networks and for the delivery of telecommunications services. 

Traditionally, telecommunications systems consist of dedicated switching systems with 

embedded intelligence to provide telecommunications services. Recently, technologies such 

as IN, TMN and TINA aim at moving the intelligence out of the switching systems into 

generic computer systems. Adopting CORBA for large-scale application development 

provides major benefits like increased software reuse, improved system scalability, ease of 

distribution, implementation language independence and object orientation. For IN and 

TMN, CORBA can only be used as an internetworking gateway to connect legacy systems, 

because the main middleware is not based on CORBA but is based on messaging systems 

such as SS7 and CMIP. The IN/CORBA gateway can translate between CORBA and SS7 

networks. The TMN/CORBA gateway can translate between CORBA on one side and 

SNMP or CMIP systems on the other side. For TINA, it explicitly states all intelligence to be 

implemented in a Distributed Processing Environment (DPE). This concept of DPE explicitly 
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allows CORBA to become the main middleware for the delivery of telecommunications 

services. In this section, we show various impacts of CORBA in the telecommunications 

domain. 

2.3.1 Internetworking Gateway with IN  

 IN are developed based on the plain old telephony networks, in which computational 

infrastructure is used to process calls and provide services without the need of human 

intervention. The advent of IN infrastructure has led to the development of a range of 

services, which add value to the products of both the network and service provider. The 

infrastructure eases the introduction of new services by centralizing the service logic in a few 

dedicated service nodes, which allow services to be added without costly upgrading of the 

switching hardware and software infrastructure.  

 The OMG’s IN/CORBA internetworking specifications [OMGTelecom1998b] enable 

CORBA-based systems to internetwork with existing IN infrastructure which uses 

Transaction Capabilities (TCs) for communication. With CORBA-based service objects, 

which use IIOP for communication, the specification promotes the adoption of CORBA for 

the realization of IN functional entities. 

 There are two proposed scenarios for the use of CORBA in IN signaling: 

1. The interworking of CORBA-based IN Application Entities (e.g., a Service Control 

Point (SCP)) with legacy IN Application Entities (e.g. a Service Switching Point 

(SSP)) through a gateway mechanism, which provides a CORBA view of a legacy 

target and a legacy view of a CORBA target. As illustrated in Figure 2.9, the 

CORBA-based SCP has IDL interfaces created through Specification Translation of 
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the ASN.1 specifications of Intelligent Network Application Part (INAP).   

 

 

 

 

 

Figure 2.9 Interworking between CORBA-based IN Application and Traditional IN 

Application (IN/CORBA Gateway) 
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given for translating a TC/Remote Operations Service (ROS) specification to 

corresponding IDL interfaces, and for the dynamic behavior at the gateway when 

exchanging messages representing interactions between the CORBA and the TC/SS7 

domain. This approach is similar to that used in our design of signaling for IP 

telephony services. 

2. As shown in Figure 2.10 for the second scenario, the internetworking of CORBA-

based IN Application Entities uses the existing SS7 infrastructure as a transport 

network for GIOP messages. The ORB hides the use of SS7 as a transport mechanism 

from the interacting CORBA objects. The GIOP mapping onto the connectionless 

Signaling Connection Control Part (SCCP) protocol of the SS7 protocol suite, the so 

called SCCP Inter-ORB Protocol (SIOP), which allows inter-ORB communication 
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over SS7, is defined [Fischbeck1999]. This approach brings the advantages of 

CORBA to the telecommunication domain without requiring the exchange of large 

parts of an operational network.  

 

 

 

 

Figure 2.10 Internetworking between CORBA-based IN Applications using SIOP 

(SS7 as Kernel Transport Network) 
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“adapter” approach, which includes a GDMO (Guidelines for the Definition of Managed 

Objects) to IDL compiler and a CORBA/CMIP gateway kernel. These gateways can be built 

as an adapter service on the top of CORBA through static or dynamic translations, both from 

the JIDM working group. 

 An example of CORBA/TMN integrated architecture is shown in Figure 2.11. The 

translation data, which is produced from the translation of GDMO and ASN.1 definitions, 

provides the mapping between IDL methods and parameter types and the corresponding 

Common Management Information Services (CMIS) requests and ASN.1 types. The 

translation data is stored in the gateway as a set of managed objects. The basic gateway 

kernel is in itself an agent offering both a CORBA and a CMIP based management interface, 

and translation data may, consequently, be updated from either CORBA and/or CMIP based 

management application at runtime [Rasmussen1998]. 

 

 

 

 

 

 

 

 

 

 Figure 2.11 CORBA TMN Integrated Architecture 
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 An advantage with this approach is that there is only one notation (i.e., IDL) to specify 

managed and managing systems. Using a general-purpose CORBA interaction model implies 

an important change with respect to the traditional way of developing network management 

applications, which strongly relies in the use of precise protocol stacks (for instance Q3). 

CORBA applications are independent of specific communication protocols, which helps to 

integrate network management with other telecommunication software (e.g., service control 

and management), and eases the tasks of the programmer, who can work with more familiar 

general-purpose development toolkits. 

 



  Chapter 3. Multimedia Control Protocols 

 

 

39 

Chapter 3 

Control Protocols for Multimedia Communications 

 At the early stage of the research, we did some studies on three multimedia control 

specifications, i.e., ITU-T H.323/H245, OMG Control and Management of Audio/Video 

Stream, and DSM-CC from DAVIC. In this chapter, we review the specification principles 

for each of them and give the comparison summary at the end of the chapter. 

3.1 ITU-T Recommendation H.323/H.245 

 The ITU-T Recommendation H.323, “Visual Telephone Systems and Terminal 

Equipment for Local Area Networks which Provide a Non-Guaranteed Quality of Service”, 

serves as the "umbrella" for a set of standards defining real-time multimedia communications 

for packet-based networks [ITU1996a]. Much of the excitement surrounding the H.323 

standards is due to the ability of H.323 entities to communicate over the Internet or managed 

IP networks. The standards under the H.323 umbrella define how components that are built 

in compliance with H.323 can set up calls, exchange audio and/or video, participate in 

conferences, and inter-operate with non-H.323 endpoints. 

 As one of the H.323 subordinate specifications, H.245, “Control Protocol for Multimedia 

Communication – Line Transmission of Non-Telephone Signals” [ITU1996c], specifies the 

in-band signaling protocol necessary to actually establish the media requested for a call, 

negotiate the media capabilities, and issue the commands necessary to open/close the media 

channels. Here, in-band messages are those that are transported within the channel or logical 
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channel to which they refer. The H.245 signaling entities are required for media control 

functions in multimedia communications. H.245 message syntax is fully defined using the 

ASN.1, while the protocol procedures with state changes are separately described. The 

Recommendation covers a wide range of applications, including storage/retrieval, 

messaging/conversational and distribution services. The protocol itself does not cover quality 

of service (QoS), so it is intended to be used with a reliable transport layer protocol, like 

TCP. 

 H.245 signaling is established between two endpoints, an endpoint and a Multipoint 

Controller (MC), or an endpoint and a Gatekeeper. H.245 specifies a number of independent 

protocol entities, which support endpoint to endpoint signaling. A protocol entity is specified 

by its syntax (messages), semantics, and a set of procedures, which specify the exchange of 

messages and the interaction with the user. H.323 endpoints support the syntax, semantics, 

and procedures of the following protocol entities: 

? ? Master/slave Determination 

? ? Capability Exchange 

? ? Logical Channel Signaling 

? ? Bi-directional Logical Channel Signaling 

? ? Close Logical Channel Signaling 

? ? Mode Request 

? ? Round Trip Delay Determination 

? ? Maintenance Loop Signaling 
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 H.245 messages fall into four categories: Request, Response, Command, and Indication. 

Request and Response messages are used by the protocol entities. Request messages require 

a specific action by the receiver, including an immediate response. Response messages 

respond to a corresponding request. Command messages require a specific action, but do not 

require a response. Indication messages are informative only, and do not require any action 

or response. H.323 terminals shall respond to all H.245 commands and requests, and shall 

transmit indications reflecting the state of the terminals. 

 The H.245 Control Channel is a reliable channel used to carry the H.245 control 

information messages between two H.323 endpoints. The H.245 Logical Channel is the 

channel (either reliable or unreliable) used to carry the information streams between two 

H.323 endpoints. These channels are established following the H.245 OpenLogicalChannel 

procedures. An unreliable channel is used for audio, audio control, video, and video control 

information streams. A reliable channel is used for data and H.245 control information 

streams. There is no relationship between a logical channel and a physical channel. 

 The H.245 procedures that are mimicked in our implementation (chapter 5) are listed as 

follows. The signaling entities and corresponding H.245 messages are described in Figure 

3.1, 3.2 and 3.3. Communication between the signaling entity and its local user, including the 

primitive, parameter and state transition, is not implemented, only the peer-to-peer signaling 

entity communication between incoming and outgoing signaling entity is concerned. 

? ? Capability Exchange: The capability exchange procedures are intended to ensure that 

only the multimedia signals to be transmitted are those that can be received and treated 

appropriately by the receiving terminal, i.e., ensuring compatible real-time bi-directional 

multimedia communication. These procedures require that the capabilities of each 
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terminal to receive and decode be known to the other terminal. The total capability of a 

terminal to receive and decode various signals is made known to the other terminal by 

transmission of its capability set. Terminals may reissue capability sets at any time. 

“CESE” stands for “Capability Exchange Signaling Entity”. 

 

 

 

Figure 3.1 Messages in the Capability Exchange Signaling Entity 

 

? ? Master/Slave Determination: Conflicts may arise when two or more terminals involved in 

a call initiate similar events simultaneously and only one such event is possible or 

desired. To resolve such conflicts, one terminal may act as a master terminal and the 

other terminal(s) may act as slave terminal(s), according to predefined rules. The 

master/slave determination procedures allow terminals in a call to determine which 

terminal is the master and which terminal is the slave. “MSDSE” stands for 

“Master/Slave Determination Signaling Entity”. 

 

 

 

 

Figure 3.2 Messages in the Master/Slave Determination Signaling Entity 
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? ? Logical Channel Signaling: This acknowledgement protocol is defined for the opening 

and closing of logical channels, which carry the audiovisual and data information. The 

aim of these procedures is to ensure that a terminal is capable of receiving and decoding 

the data that will be transmitted on a logical channel at the time the logical channel is 

opened. “LSCE” stands for “Logical Channel Signaling Entity”. 

 

 

 

 

Figure 3.3 Messages in the Logical Channel Signaling Entity 
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 The emphasis of the specification is not on defining new protocols for the actual data 

stream transfer. Rather, the specification focuses on providing an administrative framework 

for dealing with streams. The specification defines interfaces for streams and flows, 

operations to set up, modify, and release streams, and functions for dealing with quality of 

service, flow synchronization and interoperability. The intention is to have a generic 

framework for stream management that can be used with a variety of lower-level network 

protocols.  

 The Streams architecture is based upon terminology defined in the ITU RM-ODP 

[ITU1995]. In this Model, a Stream represents continuous media transfer, usually between 

two or more virtual multimedia devices (devices are described as virtual because they are 

objects, which abstract upon the underlying physical multimedia device). Streams originate 

and terminate at a StreamEndPoint as shown as Figure 3.4. These end-point objects 

communicate over some forms of agreed communication channel and exchange continuous 

media according to a previously agreed negotiation process. Overall coordination of stream 

control is managed through a central StreamCtrl object. Each Stream Endpoint may contain 

multiple flows in either direction. The Stream Endpoint components are created, together 

with a Virtual Device (VDev), on receipt of a connection request by a Multimedia Device 

(MMDevice). Once created, the endpoint components are associated with the StreamCtrl 

object. The specification also defines two basic profiles for streaming services: a 'full' profile, 

in which  endpoints and flow connections have accessible IDL interfaces, which maximizes 

system flexibility; and a 'light' profile, which is a subset of a full profile where flow 

endpoints and flow connections do not expose IDL interfaces. 
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Figure 3.4 A Basic Stream Architecture from OMG 
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CC is in its flexibility; i.e., each protocol area can be used standalone, or in concert with 

other protocol areas, depending on the application(s) being addressed. The Digital Audio-

Video Council has adopted DSM-CC as the protocol for control of multimedia interactive 

sessions, the resources within the sessions, and for service-level interactions [DAVIC1998]. 

 The functional reference model for DSM-CC is shown as Figure 3.5. A User-to-User (U-

U) information flow is used between the network and the client or the server. User-to-

Network (U-N) messages are exchanged over U-N connections and their purpose is to 

control sessions and network resources. The Session and Resource Manager (SRM) entity, 

which could be distributed over a geographical area spanning multiple network providers, 

terminates the U-N connection from a user. The U-N part defines a U-N interface protocol. 

The DSM-CC U-U part provides a generic set of multimedia user-to-user interfaces, which 

enable a wide range of multimedia applications.  

 

 

 

 

 

 

 

  

Figure 3.5 DSM-CC Functional Reference Model 
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 As shown in Figure 3.6, two distinct interfaces are defined in OMG IDL, i.e., the 

Application Portability Interface for programmers writing applications that run on clients, 

and the Service Interoperability Interface to allow clients and servers from different 

manufacturers to inter-operate. The IDL of Service Interoperability Interface leads to a fixed 

bit pattern on the wire once the Remote Procedure Call (RPC) encoding scheme and message 

set have been chosen. DAVIC has chosen Universal Networked Objects (UNO, the CORBA 

RPC) and CDR encoding for its specification of DSM-CC. 

 

 

 

 

 

 

 

 

Figure 3.6 Application Portability and Service Interoperability Interface 
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Some of the procedures in H.245 can be mapped to the CORBA Streams specification. For 

example, as previously shown in Figure 3.4, the capability exchange and the open logical 

channel connection procedures in H245 are similar to the device configuration and 

connection negotiation process in the CORBA Streams specification. However, each 

specification has a different approach in realizing the communication. In the CORBA 

Streams specification, binding between devices can be created through invocation on the 

MMDevice interface’s bind() method. In H.245, a signaling entity defined in each procedure 

issues messages to its remote peer signaling entity based on predefined message primitives. 

In the following chapters, we will demonstrate our CORBA-based interface centric approach 

on implementing H.245, a formal message-based protocol. 
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Chapter 4 

The Interface Centric Approach 

 To respond to the problems, concerns and industrial trends overviewed in Section 1.1, a 

new model of signaling for IP-based telephony services is needed which permits the flexible 

distribution of control capabilities between endpoints, the network and third party service 

providers. The design should be independent of both network and access. Rather than design 

a control infrastructure from the bottom-up using low-level, message-based interfaces, which 

is the current approach as we described in section 2.1, the future model should be designed 

on a distributed computing platform onto which common capabilities are pushed, and are 

accessed by applications using standardized or open interfaces. Distributed software 

technologies, such as OMG’s CORBA, provide the underlying foundation, removing the 

need for each new protocol design to specify data representation and transport reliability 

[Schulzrinne1997]. They make the communications between distributed objects transparent 

to the programmer by defining a standard way, i.e., the interface provided by a server to a 

client. 

4.1 A Comparison of Interoperability Reference Points 

 The interface-based specification style defines what needs to be done by the server at the 

request of the client, while the message-based specification emphasizes at least one aspect of 

how it should be done, i.e., the messages exchanged. In the interface-based approach, a 

server provides a client the interfaces with the operations that may be invoked, and all 

associated data types that make up requests and responses. Communications is simply one 



  Chapter 4. The Interface Centric Approach 

 

 

50 

sub-system among many that are required to provide distribution of software. Like 

everything else in this approach, details of the networking are abstracted through an interface 

definition so that, at least in principle, any networking technology can be used. The message-

based approach is purely an engineering approach, i.e., a solution is provided for a particular 

networking technology, and any generality is only accidental. Figure 4.1 indicates the 

reference points where each approach defines conformance to provide interoperability.  

 

 

 

 

 

 

 

Figure 4.1 Comparsion of the Interoperability Reference Points 
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while the complexities of the distribution are shifted to the infrastructure. This approach has 

the advantage of distribution transparency, which consists of: 

? ? Access transparency: hiding the differences in data representation 

? ? Location transparency: masking the actual physical addresses of servers/objects 

? ? Failure transparency: masking the failure and possible recovery of servers/objects 

? ? Migration transparency: masking the relocation of servers/objects 

? ? Persistence transparency: hiding the deactivation and reactivation of servers/objects 

? ? Replication transparency: maintaining the consistency of a group of replica objects 

? ? Transaction transparency: hiding the co-ordination required to satisfy the transaction 

properties of a set of operations 

 Middle infrastructures such as the CORBA provide all these transparencies, either 

through ORB Core or Services. The CORBA object model identifies various distribution 

transparencies that must be supported within a single ORB environment, such as location 

transparencies, while the CORBA interoperability architecture extends the transparency to 

span multiple ORBs. An object request may have implicit attributes that affect the way in 

which it is communicated. These attributes range from fundamental mechanism such as 

reference resolution and message encoding to advanced features such as support for security, 

transactional capabilities, recovery, and replication. The attributes are provided by ORB 

Services, which in some ORBs are layered as internal services over the core, or in other cases 

are incorporated directly into an ORB’s core. Note that the application developer does not 

have to “know” CORBA to be able to use it. In fact, the infrastructure is developed by third 

parties, either as a commodity or imbedded in some OS, and it is reusable as well. Therefore, 
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application developers do not have to develop their own, and incompatible, mechanisms for 

effecting some or all these transparencies. 

4.2.2 Component Requirements 

 The major components of the interface-based approach can be classified as the 

distributed computing infrastructure, the interfaces, the server, the client (end point) and the 

network. The requirement for each of these components can be listed as follows: 

? ? The distributed computing infrastructure, such as CORBA, can provide the full set of 

distribution transparencies as defined in the previous section, as well as reliability, 

scalability, redundancy included in the design from the start. 

? ? The interfaces can be exposed to end users and third party service providers through 

appropriate access control mechanisms; the interfaces should hide implementation for 

easy functionality and software update. Therefore, if a new routing algorithm is 

developed for connection control, it can be invoked without affecting clients of 

connection control because the interface remains unchanged. 

? ? The server locations can be based on performance considerations to achieve minimized 

network communication latency, while their number can be based on capacity 

requirements. 

? ? The network and the client (endpoint) are not confined to a single distributed computing 

infrastructure, such as DCOM/ActiveX, or Java RMI/Java Beans/Enterprise Java Beans.  
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4.3 Selection of Techniques 

4.3.1 The Selection of CORBA verses DCOM and RMI 

 Besides the OMG CORBA, the IT industry has developed several alternative distribution 

infrastructures to make the communications between distributed objects transparent to the 

programmer, such as Microsoft’s DCOM and Java RMI. All these seek to easily create 

distributed application software taking advantage of object-oriented programming concepts 

and practices by defining in a standard way the interface.  Among those techniques, CORBA 

provides the greatest degree of software interoperability by using the language and platform 

neutral notation, i.e., the OMG IDL and with standardized mappings from IDL to the major 

programming languages. Microsoft has its own IDL, the so-called Microsoft IDL (MIDL), 

while RMI requires Java to program both clients and servers. 

 In all cases, communication takes place through a standard set of messages: IIOP in the 

case of CORBA and RMI, and DCE-RPC in the case of DCOM. The contents of the 

messages depend on the server interface/operation but the basic envelope and encoding 

scheme remains the same. Thus, one never has to learn the different binary formats for 

messages of different applications, as one would for ITU-T or IETF standards where the 

message set in each standard is different. One also does not have to define myriad 

interworking “gateways” which map one message set into another by brute force. Indeed, one 

may program distributed applications without even knowing what the actual messages look 

like, while at the same time being guaranteed “out-of-the-box” interoperability. 

 Interoperability is guaranteed through the use of a single network message 

representation, i.e., GIOP in the case of CORBA, which also takes care of byte ordering and 
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memory alignments, for example. GIOP messages exchanged over the TCP/IP, i.e., IIOP, is 

the OMG standard for interoperability through which ORBs implemented by different 

vendors can internetwork. Mappings of GIOP onto other transport mechanisms are also 

available, like the mapping onto SS7 transport as was mentioned earlier in section 2.3.1. 

 When we decide which technique is appropriate for IP signaling, the simple way is to 

consider the tradeoffs in terms of platform independence, language independence and binary 

compatibility as shown in Figure 4.2. CORBA is regard as an integration technology that 

offers both platform and language independence, which is the most likely requirement in a 

heterogeneous environment, while DCOM is platform-specific and RMI is language specific. 

 

 

 

 

 Figure 4.2 Tradeoffs between the Different Distributed Computing Technologies 
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? ? The close coupling between intelligent network applications and the call state machine in 

the present PSTN result in complicated interactions among call processing features, and 

increase the complexity of new feature development. By providing a generic 

“middleware” layer for call/session control, Java allows decoupling of applications and 

state machines, and reduces feature interdependency. 

? ? Java-based component software can provide the necessary platform-independent protocol 

support for the convergence of circuit (PSTN) and packet networks. 

? ? Java standardized APIs (as will be mentioned later in section 4.4.2) and built-in security 

features allow new service providers to create new and innovative service without 

proprietary restrictions. 

 Java was originally released to develop network centric applications. Java’s native 

support for threads, garbage collection, exceptions and built-in complex data types 

orientation made the definition of CORBA’s Java language mappings a relatively painless 

process. Together CORBA and Java have dramatically raised the functionality and 

adaptability of the developed applications. By incorporating Java into the CORBA 

architecture, the result is a farther-reaching CORBA infrastructure and a more robust Java. 

4.4 Other Activities towards Open Interfaces 

 There is increasing pressure to split apart the vertically integrated software and hardware 

solution for traditional telecommunication equipment. Third parties are trying to make use of 

much of the currently deployed signaling infrastructure to provide value-added services built 

on top of the generic services provided by networks. Examples for such services are 

connection control, consumer authentication and usage recording. This provides for quicker 
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and cheaper service delivery. It also reassures network operators that they can retain the 

control and intelligence in the network. These cross-industry initiatives are described as in 

the following sub-sections. 

4.4.1 PARLAY 

 The Parley Group, an open multi-vendor forum founded in 1998, has been formed to 

create an explosion in the number of communications applications by specifying and 

promoting open network Application Programming Interfaces (APIs) on service functions 

such as call control, messaging and security. These functions intimately link IT applications 

with the secure network resources of the telecommunications world. The Parlay API 

describes two sets of interfaces: 1) Framework Interfaces, which provide for the common 

functions that are required to enable services to work together in a coherent fashion; and 2) 

Service Interfaces, which provide for the common functions that deliver complex services or 

sub-components of services. The Phase 1 of the API was focused on authentication, event 

notification, integrity management, discovery, etc. The Phase 2 extended the scope of the 

APIs to include IP network control, mobility, performance management, etc. [Parlay2000].  

 The Parlay APIs abstract from the network-specific details. Thus, an operation 

invocation from a third party to the network to connect a call to a given address does not 

require the application to know that the underlying signaling is via ISDN User Part (ISUP) 

on a SS7 network or H.323-based on a LAN. The APIs are not language specific and use the 

Unified Modeling Language (UML) to specify the interface classes. In this case, CORBA 

would make the ideal means to inter-work language and platform dependencies between the 

third party and the network. The inter-working is taken at the message passing level via IIOP, 
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DCOM or RMI, and achieved at the software level via the interface definitions, along with 

standard programming language mappings and the rules governing the order of operation 

invocations.  

 The Parlay APIs enable both third parties (external companies, operating outside the 

security domain) and network operators to build new applications that rely on real-time 

control of network resources. Figure 4.3 shows the architecture of Parlay 1.2 API, which 

defines object-oriented interfaces on both the network and client application sides of the API 

in the form of network interfaces (e.g., IparlayCall) and client application callback interfaces 

(e.g., IparlayAppCall). The third-party application vendor implements callback as part of 

their application to handle remote methods that are called from the network to the client 

application during a Parlay session. 

 

 

 

 

 

 

 

 

 

Figure 4.3 The Architecture of Parlay 1.2 API 
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4.4.2 Java APIs for Integrated Networks (JAIN) 

 The JAIN APIs provide service portability, convergence, and secure network access to 

telephony and data networks for rapid development of next generation telecom products and 

services on the Java platform [SunJAIN2000]. Because JAIN technology provides a new 

level of abstraction and associated Java interfaces for service creation across PSTN, packet 

(e.g. IP or ATM) and wireless networks, it enables the integration of Internet and IN 

protocols, such as INAP, Mobile Application for GSM & IS41 (MAP), and it breaks the tight 

coupling of signaling applications to the SS7 protocol stack. As shown in Figure 4.4, the 

JAIN specification effort is divided into two areas (layers) of development: 
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applications and protocol stacks can be dynamically interchanged and, at the same time, 

provide a high degree of portability to the applications in the application layer using 

protocol stacks from different vendors. 

? ? The Application layer API specifications address the APIs required for service creation 

within a Java framework spanning across all protocols covered by the Protocol layer 

APIs. The application layer provides a single call model, which can be viewed as a single 

state machine for multiparty, multimedia, and multi-protocol sessions for service 

components in the application layer. This state machine is accessible by trusted 

applications that execute in the application layer through the JAIN Call Control (JCC)/ 

JAIN Coordination and Transaction (JCAT) API. The current proposal is to use the core 

part of the Java Telephony API (JTAPI) as JCC, further augmented with JCAT for a 

richer signaling model. 

 The JAIN Community defined a Java version of the Parlay API to bring the benefits of 

the Java language to Parlay API, and to promote an industry-wide adoption of the Parlay 

API. The JAIN Parlay Edit Group enhanced the JAIN architecture to support the Parlay API 

as its external API. The pure Java client side definition of the Parlay API focused on 

providing Parlay API features while removing the complexity of distributed computing 

technology and enabling application portability. Further information regarding JAIN Parlay 

API can be found in the IEEE Communications Magazine’s special issue in April 2000 

[Beddus2000]. 

4.4.3 Open Programming Interfaces for Networks (PIN) 

 IEEE P1520 – Reference Model for Open Programming Interfaces for Networks is an 
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ongoing standards development project. This project presents the basic principles that will 

enable the deployment of innovative and dynamic services on large open distributed systems 

that comprise both telecommunication resources and distributed software [Biswas1999]. The 

approach in developing programming interfaces for networks focuses on horizontal 

interfaces. These horizontal interfaces are essentially high level in nature, and deal with 

abstractions of network devices and corresponding states. The objective is to open the 

control/signaling interface to network nodes, such as switching or fabric control interfaces, 

by providing a set of standardized APIs, to allow software developers to write different 

control/signaling software running over the network without having to standardize signaling 

or control protocols. Figure 4.5 shows the reference model, which is composed of separated 

levels and the interfaces between these levels. The standards are specified in CORBA IDLs. 

 

 

 

 

 

 

 

Figure 4.5 The P1520 Reference Model: Open Programming Interfaces for Networks 
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4.4.4 Summary on Future Control Infrastructures 

 Current message-based signaling protocols such as ISUP and Q.931 convey information 

for three separate functions: connection control, call control and service control. The original 

motivation for ISUP was to provide a simple and efficient link-by-link connection-control 

mechanism between switches. However, the messages were expanded over time with call and 

service control information. Such information was just not encapsulated very well, and led to 

the problems described in section 2.1.4 for message-based protocols. This situation closely 

connects service or feature upgrade to switch software upgrade. 

 A monolithic protocol such as ISUP or Q.931 to provide connection, call and service 

control is adequate for current needs. This is so because there is an intimate connection 

between all three functions, given the nature of the current telephony service which 

essentially resolves around the theme of a point-to-point circuit-switched connection. 

However, future multi-media, multi-point services over an IP infrastructure require a clearer 

separation if their signaling is to be more easily specified, standardized, implemented and 

deployed. 

 A software-centric control infrastructure would provide the three functions separately 

and differently.  Such an infrastructure would be a collection of servers, for connection 

control services, for call control services and service control. A server is a definition of an 

interface to a set of functions specified in IDL (to ensure programming language and 

platform neutrality), thereby allowing the control to be fully distributed.  

 For example, connection servers would include operations to route a connection request, 

or modify a QOS parameter for an existing connection.  They might be queried to find the 

best route through the network for a connection type of a given QOS prior to setting up the 
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connection. Call server interfaces would provide operations to trigger service invocations, 

determine end-to-end compatibility and availability of terminal equipment, etc. Application 

servers would offer service control interfaces specific to applications. The Parlay APIs are a 

good example of such application server interfaces.  

 There would also be additional servers, for example those that provide switching or 

fabric control interfaces, such as those being standardized by the IEEE PIN, to underlying 

physical devices. Security servers would provide access control interfaces. Location servers 

would provide an interface to mobility management functions. Billing servers would provide 

interfaces to record or retrieve charging related events. 
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Chapter 5 

Design and Implementation 

 The CORBA-based interface-centric approach for services in IP telephony, which is 

simulated in the following sections, starts with describing the process for the conversion of 

H.245 ASN.1 messages. It is followed by the mapping of complex data types in section 5.2 

and the object model in section 5.3. In section 5.4, various CORBA request invocation 

methods are illustrated. The use of CORBA Naming, Trading and Event Services are in 

section 5.5. The Visibroker specific development APIs are shown in section 5.6. The 

integration for the implementation to other H.323 control protocols is demonstrated in 

section 5.7. 

5.1 ASN.1 to CORBA IDL Translation  

 The Open Group and Open-Network Management Forum Joint Inter-domain 

Management group developed a technology that defines how network management 

components based on OSI and SNMP can inter-operate with CORBA-based components. 

The JIDM Technical Standard is a set of two specifications, i.e., Specification Translation 

and Interaction Translation [JIDM1997]. The Specification Translation for ASN.1 to/from 

IDL first provided the definition of model equivalencies between the domains of CORBA 

and OSI, enriched with specification for GDMO or SNMP SMI to/from IDL. The Interaction 

Translation defines how to perform OSI-like (and SNMP-like) services in CORBA, mainly 

through standard CORBA Naming Service, Event Service, etc. Messages in H.323 protocol 

stack are defined by ASN.1. The conversion of H.245 ASN.1 messages to IDL follows the 
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standardized ASN.1 to IDL rules. As mentioned earlier, a similar approach is used in the 

design of the CORBA/TC Internet-working Gateway. Commercial or public free translation 

toolkits are available from research institutes and universities [Nexus1999, BellLabs1998, 

Orbycom2000]. Most of the toolkits are designed for CMIP/GDMO or SNMP/MIB to 

CORBA IDL translation, which covers both specification and interaction translations. To 

speed up the translation process, based on the software program provided by Xenus Labs 

from Korea, we modified the ASN2IDL/Solaris translation compiler to statically translate all 

H.245 message syntax to IDL types. The generation process is illustrated as Figure 5.1. For 

H.245 interaction procedures, we have manually defined them as CORBA invocations in the 

IDL interfaces. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Generation for H.245 Signaling Interfaces (ASN.1 to IDL) 
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 The translation process that is used to map ASN.1 modules includes the following steps: 

1. Use as input the original published document, i.e., the H.245 message syntax. 

2. Map each ASN.1 module to an IDL module in a separate IDL file, such as cE.idl for 

ASN.1 module of Capability Exchange Definitions, cEMC.idl for ASN.1 module of 

Capability Exchange Definition: Multiplex Capabilities. 

3. Prior to mapping each of the clauses contained in an ASN.1 module, transform it into 

a canonical form. 

4. Traverse the contents of the canonical ASN.1 module in order, and map each of the 

clauses.  

?? EXPORT clauses are ignored. 

?? IMPORTS clauses are mapped as a list of #include directives for the file 

corresponding to the imported module inside the ASN.1 module and a list of 

typedefs and constants.  

?? Type assignments are mapped to typedefs in IDL. 

?? Value assignments are mapped into either OMG IDL constants or operations in a 

constant interface at the end of the generated IDL module. 

5. Re-order the generated IDL code to obtain valid OMG IDL code by eliminating 

forward reference. 

 All generated IDL interfaces for H.245 message types are submitted as Appendix 1 to 

the project report [Lu2000]. In this paper, a list to illustrate the message hierarchy mapping 

to IDL modules is attached in Appendix A. We have chosen to implement three H.245 
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protocol procedures described in section 3.1, follow the general steps to develop CORBA 

applications. 

5.2 Mapping Complex Data Types 

 As mentioned earlier in section 2.1.2, the ASN.1 messages of H.245 use PER for binary 

encoding of data structures. Similarly, CORBA uses CDR, which like PER are not self-

describing. The IDL generated stubs and skeletons will promise the correct matching of data 

types, or even interoperability between ORBs. Both rules use padding for data alignments. 

Several aggregated ASN.1 data types are used in H.245 messages, i.e., CHOICE (select 

exactly one), SEQUENCE (a grouping of dissimilar data types) and SEQUENCE OF 

(SEQUENCE significant in order). IDL uses constructed data types like the Enum/Union 

pair, Struct, Sequence to match with them. For example, the simplified H.245 CESE 

TerminalCapabilitySet is shown as Listing 5.1, the matching IDL data type definition is 

shown as Listing 5.2. 

TerminalCapabilitySet  ::=SEQUENCE 

{ 

   sequenceNumber  SequenceNumber, 

   protocolIdentifier  OBJECT IDENTIFIER, 

    -- shall be set to the value 

    -- {itu-t (0) recommendation (0) h (8) 245 version (0) 2} 

   capabilityDescriptor  CapabilityDescriptor, 

   multiplexCapability  MultiplexCapability, 

   capabilityTableEntry  CapabilityTableEntry OPTIONAL 

} 

SequenceNumber   ::=INTEGER (0..255) 

CapabilityDescriptor  ::=SEQUENCE 

{ 

   notStandard   BOOLEAN, 

   capabilityDescriptorNumber INTEGER(0..255) 
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} 

MultiplexCapability  ::=CHOICE 

{ 

   nonStandard   INTEGER(0..65535), 

   h222Capability   OCTET STRING 

} 

CapabilityTableEntry  ::=SEQUENCE 

{ 

   capabilityTableEntryNumber INTEGER(0..255) 

   capability   OCTET STRING 

} 

Listing 5.1 ASN.1 Message Syntax Example for H.245 CESE TerminalCapabilitySet 

 
struct CapabilityDescriptorType { 

    ASN1_Boolean notStandard; 

    ASN1_Unsigned capabilityDescriptorNumber; 

}; 

enum MultiplexCapabilityTypeChoice  { 

    nonStandardChoice , 

    h222CapabilityChoice 

}; 

union MultiplexCapabilityType switch (MultiplexCapabilityTypeChoice)  { 

    case nonStandardChoice  :  ASN1_Unsigned nonStandard; 

    case h222CapabilityChoice  :  ASN_OctetString h222Capability; 

}; 

struct CapabilityTableEntryType  { 

    ASN1_Unsigned   capabilityTableEntryNumber; 

    ASN1_OctetString capability; 

}; 

typedef sequence<CapabilityTableEntryType> CapabilityTableEntryTypeOpt; 

struct TerminalCapabilitySetType { 

    ASN1_Unsigned sequenceNumber; 

    ASN1_OctetString protocolIdentifier; 

    CapabilityDescriptorType capabilityDescriptor; 

    MultiplexCapabilityType  multiplexCapability; 

    CapabilityTableEntryTypeOpt  capabilityTableEntry; 
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}; 

Listing 5.2 IDL Data Type Example for H.245 CESE TerminalCapabilitySetType 

 

 The IDL data description for messages needs to include ASN1Types.idl for mapping of 

ASN.1 primitive types, such as ASN1_Boolean, ASN1_Unsigned, etc. The content for 

ASN1Types.idl is given in Appendix A. 

5.3 Object Modeling and Program Development 

 Before a signaling interface can be specified, the functionality supported over the 

interface must be clearly defined. The starting point for the CORBA-based object model is an 

H.245 approved object model, mostly specified with signaling entities (SEs) communicating 

with messages defined in ASN.1. The scope of CORBA is the transfer of information in a 

distributed object environment, and not what is done with that information. Thus, we do not 

cover most of the local procedures within the SE in our design. In our simplified object 

model, the major component is the SE, which should compose both the Outgoing SE and the 

Incoming SE. In most cases, the Outgoing SE is the entity that generates most requests, like a 

CORBA Client; the Incoming SE implements the IDL with the object classes, like CORBA 

Server Objects.  

 The CORBA IDL specification was developed as the basis for interface's 

implementation. CORBA IDL has been designed to be independent of any programming 

language, and it only describes the operation signature, not its semantics. Shown as Listing 

5.3, there are two kinds of interfaces for SEs, i.e., the SE factory interface and the actual SE 

interfaces.  

#include <ASN1Types.idl> 
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module CESE { 

// converted ASN.1 types are first, followed with interface, exceptions and operations 

…  

struct TerminalCapabilitySetType {… }; 

   struct TerminalCapabilitySetReplyType {… }; //for Ack or Reject 

 struct TerminalCapabilitySetReleaseType {… }; 

   enum CauseType {localTimeout, remoteTimeout}; 

   ... 

   interface H245SEFactory { 

      CESE create_CESEOutgoing(); 

      CESE create_CESEIncoming(in CESE outgoingCESE); 

      ... 

   } 

 // actual SE interfaces 

   interface CESE { 

      exception noResponse {CauseType cause;}; 

      //operations in two-way invocations 

TerminalCapabilitySetReplyType transferIndication ( 

        in TerminalCapabilitySetType tcs) 

        raises (noResponse); 

      void releaseIndication (in TerminalCapabilitySetReleaseType tcs_release); 

      ... 

   } 

} 

Listing 5.3 IDL Example for H.245 CESE Signaling 

 

 The SEs are created from H245SEFactory Interface, which contains operations like 

“CESE create_CESEOutgoing();” and “CESE create_CESEIncoming(in CESE 

outgoingCESE);” to create the Outgoing CESE and Incoming CESE CORBA objects. The 

object reference of the Outgoing CESE is passed as parameter in creating the Incoming 

CESE. Both operations return the object reference to the interface CESE, which represents 

the actual CESE interactions. The interface for Outgoing SE and Incoming SE is identical, 

but the implementations are different based on the operations that each SE uses. The 
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interface may become different for complex cases. Each interface supports several operations 

that allow the SE to interact with the peer SE. These operations are similar in concept to 

H.245 signaling procedures. For example, the CESE interface supports an operation called 

“TerminalCapabilitySetReplyType transferIndication (in TerminalCapabilitySetType tcs) 

raises (noResponse);”, which instructs the Incoming SE to get the message. The message in 

complex data type, i.e. TerminalCapabilitySet, is passed as the parameter when the operation 

is invoked. The operation returns the result in TerminalCapabilitySetReplyType to indicate 

either “Ack” or “Reject”.  

 We followed generic ways to develop CORBA applications. Figure 5.2 shows an 

example diagram for the CESE development process. Compiling the CESE IDL interface 

generates Java source files which are compliant with CORBA’s Java language mapping. 

These files provide the implementation of client stub classes and server skeleton classes. The 

IDL compiler also generates helper and holder classes that allow the manipulation of IDL 

user-defined types. We develop the client code considering that the operations on a server are 

those declared in the IDL specification. In addition, we use the support from CORBA 

tools/services to be able to program how the client can find and bind to the server.  

 Most of Java ORBs support two ways of implementation for the operations declared in 

the IDL interface: inheritance and delegation. The inheritance-based approach requires that 

the class implementing an IDL interface extend a base class generated by the IDL compiler. 

This base class allows the ORB to forward incoming calls to the implementation object and 

provides marshalling and demarshalling functions. In contrast, the delegation-based approach 

eliminates the need for the implementation class to extend an ORB-generated class and 

allows it to implement a Java interface generated by the IDL compiler due to Java’s lack of 
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support for multiple inheritance. This approach is also called the “tie” approach because an 

implementation object is tied to a skeleton object at runtime by passing its reference to the tie 

object’s constructor. Passing an implementation object to its tie object is necessary so the 

ORB can, via the tie object, forward incoming calls to the implementation object.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.2 Example Diagram for Development of CORBA Applications 
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5.4 CORBA Request Invocations 

 In this section, we list various CORBA request invocation methods, including the 

current support and on-going OMG specification efforts. 

5.4.1 Current Support for Requests 

 Standard CORBA remote method invocations are executed synchronously, i.e., the client 

is blocked while waiting for a reply to an invocation as shown previously in Listing 5.3. 

CORBA also supports asynchronous one-way invocations as defined in IDL without 

blocking the calling thread, and deferred synchronous requests used in dynamic invocation 

interface (DII) with later polling for the response. An example of one-way invocations in 

CESE interface is shown in Listing 5.4. Following the direction of message flow, the 

Incoming CESE provides the implementation of transferIndication(), and the Outgoing CESE 

provides the implementation of transferAccept() and transferReject(). 

 interface CESE { 

      …  

//operation in one-way invocation 

oneway void transferIndication (in TerminalCapabilitySetType tcs) raises (noResponse); 

oneway void transferAccept (in TerminalCapabilitySetAckType tcsa); 

oneway void transferReject (in TerminalCapabilitySetRejectType tcsr); 

      oneway void releaseIndication (in TerminalCapabilitySetReleaseType tcs_release); 

 } 

Listing 5.4 IDL Example for CESE Interface with One-way Invocations 

 

5.4.2 Asynchronous Messaging 

 In May 1998, OMG published the Messaging specification [OMGTC1998a], which 

provides two asynchronous invocation models: Callback and Polling. In the Callback model, 
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a Callback object is registered at the time of the invocation. When the reply is available, that 

Callback object is invoked with the data of the reply. In the Polling model, the invocation 

returns an object, which can be queried at any time to obtain the status of the outstanding 

request. Asynchronous messaging permits applications to queue messages without blocking. 

Persistent message storage provides a way for messages to be delivered even if the sender 

and receiver applications are not running at the same time. However, there is no 

commercially available ORB so far supporting the asynchronous messaging. 

5.5 Useful CORBA Services 

 This interface-centric approach benefits heavily from CORBA’s object services. As 

pinpointed in section 2.2.6, this section highlights only those services that provide a key 

functionality to the approach. CORBA Naming and Trading Services are intended being used 

for object discovery and location, the process happens during H.225 signaling period on 

behave of the H.323 Gatekeeper. The Event Service is used as one way to achieve 

asynchronous messaging in H.245 capability exchanges.  

5.5.1 CORBA Naming Service 

 The Naming Service provides the capability for CORBA objects to find other CORBA 

objects using an easily distinguished naming convention. It provides a mechanism for 

associating remote objects in the network with a logical name within a searchable structure. 

It defines interfaces to describe names and interfaces to represent the contexts associated 

with each node. The same as other COS services, the Naming Service is just another object 

defined by its IDL. The operations of the Naming Service fall into the following three steps: 
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? ? Obtaining an initial Naming Service Context 

? ? Binding and Resolving: operations that change the Naming Service 

? ? Navigating the Naming Service 

 Figure 5.3 gives an example of the call registration process. A Gatekeeper provides the 

object implementation for SCE call registration. The Naming Service is used to bind object 

references for implementations with hierarchical names. A resolve() query on the Naming 

Service returns the object references associated with a name to the Endpoint client 

application. Then the Endpoint communicates with the Gatekeeper for SCE call registration. 

 

 

 

 

 

 

 

Figure 5.3 Naming Services for Object Access (Call Registration Example) 
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distributed environment. It can be viewed as an object through which other objects can 

advertise their capabilities and match their needs against advertised capabilities. Advertising 

a capability or discovering services is called “export.” Matching against needs or discovering 

services is called “import.”  

 To export, an object gives the trader a description of a service and the location of an 

interface where that service is available. To import, an object asks the trader for a service 

having certain characteristics. The trader checks against the service descriptions it holds and 

responds to the importer with the location of the selected service’s interface. The importer is 

then able to interact with the service. These interactions are shown in Figure 5.4 as an 

example for Gatekeeper behaviors. A Gatekeeper registers (exports) its service with the 

properties it can offer to the trader. An Endpoint client application searches the trader for all 

Gatekeepers that can serve it based on various criteria, such as the alias address. The trader 

returns the object reference to object implementation in the Gatekeeper that matches input 

criteria. The client communicates with the Gatekeeper directly. 

 

 

 

 

 

 

 

Figure 5.4 Trading Services for Object Access 
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 Visibroker does not provide free CORBA Trading Service. Some other ORBs like 

JacORB from MICO support free Trading Service [JacORB2000]. 

5.5.3 CORBA Event Service  

 Large distributed environments may have issues like tracking callback objects in 

persistent storage, handling possible failures of connections, and tight coupling on callback 

interface. These issues require a different system to handle event delivery. CORBA Event 

Service provides solutions for these concerns. It supports asynchronous, disconnected 

communications between CORBA clients and servers. There are three primary participants in 

the Event Service: the Consumer that generates and transmits event messages, the Supplier 

that receives and further processes the messages, and the Channel that is used for 

communicating. Two general approaches are defined for initiating event communication: The 

Push and the Pull Model.  

 The COS Event API is split between two IDL modules. The first is the CosEventComm 

module, which contains the interfaces for the application developer to implement, i.e. the 

PushSupplier and PushConsumer interfaces. The second is the CosEventChannelAdmin 

module, which is implemented by the ORB vendor. The second module allows the 

application to join an event network and use an event channel. The relationship between 

objects in the CosEventChannelAdmin module is shown as Figure 5.5. At the top level is the 

EventChannel. From the EventChannel, two factory objects can be accessed: the 

SupplierAdmin and the ConsumerAdmin. From these two factories, we obtain one of four 

interfaces. The interfaces are for the proxies for consumers, suppliers, push and pull. The 

four Proxy interfaces are then used for runtime registration and notification. 
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Figure 5.5 Factory Methods and Interfaces in the Event Service API 
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Ericsson’s Operation Support System (OSS) for managing both the Global System for 

Mobile Communications (GSM) and the broadband Code Division Multiple Access (CDMA) 

networks, where the integration reference points specified for various systems are defined in 

IDL [InprisePress2000]. In this section, we demonstrate several Visibroker specific APIs. 

5.6.1 Object Activation Service (Visibroker) 

 As one of the value-added features, Visibroker provides Object Activation Daemon 

(OAD) for Java (oadj), which offers automatic activation for Server Objects. Oadj is ideally 

used for large systems with thousands of object implementation. The OAD works in 

conjunction with the CORBA Implementation Repository to start up object implementation 

on demand. After a Server Object has been registered with the oadj, its status of activation 

can be queried through get_Status() method, and the State object. As shown in Listing 5.5, 

the State object indicates whether the Server Object is active, inactive, or waiting for 

activation, which can be matched to the outgoing/incoming, idle, awaiting states defined for 

H.245 signaling entities.  

Public final synchronized class com.vidigenic.Activation.State extends java.lang.Object { 

 public static final int_ACTIVE; 

 public static final int_INACTIVE; 

 public static final int_WAITING_FOR_ACTIVATION; 

 public static final com.visigenic.vbroker.Activation.State ACTIVE; 

 public static final com.visigenic.vbroker.Activation.State INACTIVE; 

 public static final com.visigenic.vbroker.Activation.State WAITING_FOR_ ACTIVATION; 

 public int value(); 

 public static com.visigenic.vbroker.Activation.State from_int(int); 

 public java.lang.String toString(); 

 static static {}; 

} 

Listing 5.5 The State Object Class in Visibroker oadj 
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 The sequence to initiate a Server Object through oadj, and the communication model is 

shown in Figure 5.6. Once an osagent starts, the oadj, which represents the list of server 

objects registers with the osagent. When the Client starts, it binds with the osagent first. The 

Client then attempts to locate the Server Object via the osagent. Because the Server Object 

itself is not running, there is no registration for it in the osagent’s memory table. There is, 

however, an entry for the oadj. Thus, when the request comes to the osagent, the osagent 

returns the reference of the oadj to the Client. The Client makes an invocation to the Server 

Object. The call actually goes to the oadj, which then starts the Server Object based of one of 

the four activation policies (Shared Server by default), and forwards the call to the spawned 

Server Object. The Client communicates directly to the Server object.  

 

 

 

 

 

 

Figure 5.6 oadj Communication Sequence Model 
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standard mechanism for a Client to obtain the stringified IOR via a standard URL address. It 

provides client applications with an alternative to locate objects without using an osagent or 

Naming Service, which enables client applications to locate objects from any vendors.  

 Both the Client and Server Object use the Resolver interface to register and obtain an 

IOR. After a reference to the Resolver has been obtained by the Server Object, we locate the 

Web Server through the methods within the Resolver interface, and copy the IOR of the 

Server Object to a specific directory on the Web Server. The sequence is shown in Listing 

5.6. On the other side, the Client application specifies the URL when it calls the bind() 

method, which accepts the URL as the object name. 

// Segment of CESEIncoming.java to create the Server Object implementation (URLNaming option) 

CESEIncoming ceseIn = new CESEIncoming (?CESEURLName?); 
// Export the created object 

boa.obj_is_ready (ceseIn); 

// Obtain the initial reference to the Resolver through resolve_initial_reference() 

org.omg.CORBA.Object rawResolver = orb.resolve_initial_references (?URLNamingResolver?); 
// Convert the Object to a Resover through the use of the Helper call narrow() 

com.visigenic.vbroker.URLNaming.Resolver resolver = 

 com.visigenic.vbroker.URLNaming.ResolverHelper.narrow (rawResolver); 

// Assemble the URL from IP address of the local machine, default port 15000, and CESE interface 

java.net.InetAddress localAddress = java.net.InetAddress.getLocalHost(); 

String thisIP = localAddress.getHostAddress(); 

String url = ?http:// ? + thisIP + ? :15000/CESE.ior ?; 
// Use force_register to overwrite the ior_file 

resolver.force_register_url(url, ceseIn); 

// Wait for incoming requests 

boa.impl_is_ready();  

…  

Listing 5.6 Get the Initial Reference to the URLNaming Service (Server Object) 

 

 In the coming CORBA 3, the interoperable Naming Service defines one URL-format 
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object reference, iioploc, which can be typed into a program to reach defined services at a 

remote location, including the Naming Service. A second URL format, iiopname, actually 

invokes the remote Naming Service using the name the user appends to the URL, and 

retrieves the IOR of the named object [Siegel1999]. The integration of CORBA with the 

Internet applications is an inevitable trend. 

5.6.3 Multithreading and Connection Management 

 Java applications, by their very nature, support multiple threads and the Visibroker core 

automatically uses threads for internal processing, resulting in a more efficient request 

environment. Using multiple threads provides concurrency within an application and 

improves performance. Applications can be structured efficiently with threads servicing 

several independent computations simultaneously. Visibroker for Java offers two different 

thread models, the Thread-per-Session and the Thread Polling model as shown in Figure 5.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.7 Visibroker Thread-per-session Model and Thread Pool Model 
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 By default the Thread Polling model is the most efficient way to use resources. The 

Thread-per-Session model works well for applications in which clients invoke numerous 

requests on the same server over a lengthy period. However, if the server has many clients, it 

could result in many threads being created to handle them. When an object adapter is 

initiated, i.e., BOA_init(), the object server can choose the thread policy by selecting a 

particular type of object adapter such as “TPool” or “TSession”, and specifying properity 

parameters such as “OAthreadMax”, “OAthreadMin”, “OAthreadIdleTime”, 

“OAconnectionMax”. 

 Connection management is a built-in feature to give the ORB control over how many 

active connections any given Server Object can have active at any given time. A common 

problem with CORBA applications is that connections to a Server Object are constantly 

created and destroyed, but the resources are never cleaned up. This results in an otherwise 

available Server Object unable to accept any new connections because it does not have any 

available socket connections. The built-in connection management within Visibroker is 

designed to provide an automated mechanism for managing server-side socket connections to 

provide maximum scalability. 

 Overall, Visibroker selects the most efficient way to manage connections based on the 

above mentioned thread policies. The connection management minimizes the number of 

client connections to the server. All client requests are multiplexed over the same connection, 

even if they are originated from the different threads or bound to different Server Objects as 

shown in Figure 5.8. Additionally, released client connections are recycled for subsequent 

reconnects to the same server, eliminating the overhead for new connections. 
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Figure 5.8 Visibroker Connection Management 
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conference, which later develop into a multipoint conference. The MCU consists of two 

parts: a mandatory Multipoint Controller and an optional Multipoint Processors (MPs). 

? ? The H.323 terminal components include a system control unit (H.225, H.245), video 

codec (H.261, H.263), audio codec (G.711), etc. The system control part of a terminal is 

composed of following three protocols: 

1. The RAS signaling function is used for the dialog between a terminal and a 

gatekeeper. The associated channel, called the RAS channel, uses the UDP/IP 

protocol stack. A main function of the RAS channel is to allow the terminal to be 

attached to a gatekeeper by registering itself. Registration basically results in the 

update of the gatekeeper’s address translation table. This allows other terminals to 

locate the registered terminal and to determine its transport address in order to initiate 

a call signaling channel. 

2. The call signaling between two H.323 terminals is based on Q.931 messages. The call 

signaling channel uses a TCP/IP protocol stack. The call setup phase consists of 

sending a Setup message to the destination. The setup phase is considered successful 

upon reception of the Connect message from the called terminal. The next phase is 

the establishment of an H.245 channel, and the previously resolved location addresses 

in RAS are forward to H.245 signaling entities to carry on H.245 control functions. 

3. As mentioned earlier, the H.245 protocol defines end-to-end control messages used 

for capability negotiation (e.g. supported codecs), master/slave status determination, 

opening and closing of logical channels, flow control messages, and so on.  

 H.323 defines “Endpoint” as an H.323 terminal, gateway, or MCU. An endpoint can call 
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and be called, and it generates and/or terminates information streams. Figure 5.9 shows an 

example of a control protocol diagram between two H.323 endpoints. Both endpoints are 

registered to the same gatekeeper, and are followed with direct call signaling and media 

transmission between endpoints. Later phases after two parties are in conversion through 

Real-time Transport Protocol (RTP) are not indicated. They would be such as procedures for 

closing down the logical channels through H.245, tearing down the call through Q.931 and 

releasing the resources used for the call through RAS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Example of Signaling Diagram for H.323 Control Protocols 
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 Christian Gosselin implements the H.225 signaling in a parallel project. For the part of 

integration with RTP, we choose Sun’s Java Media Framework (JMF) 2.0 as the API to 

incorporate the audio and video together, and convert (encode/decode) the source to 

packetized RTP data [SunJMF1999]. The RTP implementation will transmit the media using 

RTP protocol to the destination computer or network in case of unicast or multicast. To 

complete the demo, CORBA driven H.225/245 procedures were well integrated with the 

audio/video packet transmission through RTP. The advantage for this kind of combination is 

mentioned in a later section. 

 The overall system architecture for our interface approach for H.323 Signaling based on 

CORBA is illustrated as Figure 5.10. 

 

 

 

 

 

 

 

 

 

Figure 5.10 System Architecture of CORBA-based Interface Approach for H.323 
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Chapter 6  

CORBA Performance Evaluation 

 When CORBA is used, the implemented distributed system may have performance and 

scalability problems, although they are functionally completed. CORBA performance 

problems normally fall into one of the following categories: Delay problem at the light load 

or delay problem at the heavy load. Typically, the goals of performance, scalability and 

maintainability are in conflict. For example, increased scalability often implies a reduction in 

performance. There are several techniques for gaining high performance in CORBA 

applications and ensuring that the performance remains acceptable when the number of 

clients or server objects increases dramatically. They are listed below, and some of them 

have been addressed in our design: refining the object model, threading models, distributed 

callbacks, client-side caching, performance monitoring, etc. 

 This chapter presents the performance results from our experiments with the focus on 

latency. Section 6.1 gives an overview of CORBA performance related issues, which serves 

as the underlying guideline for our experiments. Section 6.2 presents our test environment 

and experimental methods. Section 6.3 gives the results for our tests on ORB’s benchmark 

(Visibroker for Java) and H.245 mimicked signaling procedures. Practical H.323 applications 

are most likely developed under integrated protocol stacks, using C or Java sockets passing 

PER messages. However, we did not have a usable H.323/H.245 test environment to 

compare with, although originally we were supposed to get one from Ericsson. In our 

benchmark tests, we compared Visibroker to sockets for raw data transferring to get valuable 
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performance indications between message size and transfer bandwidth. Section 6.4 gives the 

conclusions on performance experiments. 

6.1 Performance Overview 

6.1.1 IIOP Performance Limitations 

 The basic IIOP performance limitation is determined by two fundamental parameters of 

ORB sending remote messages: basic call latency, which is the minimum cost of sending any 

message at all, and marshaling/demarshaling rate, which determines the cost of sending and 

receiving parameter and return values depending on their size.  

 For CORBA call latency, the cheapest message is a one-way static invocation that has no 

parameters and does not return a result, like “oneway void nullCall();”. It sets the design 

limitation for the number of invocations that the ORB can deliver per time interval. However, 

the cost of call dispatch varies considerably among environments and depends on a large 

number of variables, such as the underlying network technology, the CPU speed, the 

operating system, the programming language, and the efficiency of the ORB run time itself. 

Developing distributed applications relies more on the performance of the network. Ethernet 

is the most common local area network. The capacity of Ethernet ranges from 10 Mbps to 

100Mbps. Compared to typical CPU speeds, Ethernet is 3-4 orders of magnitude slower; 

compared to typical disk speeds, it is 2 orders of magnitude slower. Previous research 

showed that for a test environment such as 10Mbps Ethernet, between two UNIX 

workstations (SPARC 20, 50MHz) and commercial ORBs, general-purpose ORBs had basic 

call dispatch times of between 1 msec and 5 msec [Hennings1998]. The call latency time 

could be reduced through performance optimized ORBs and improved test environment 
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[Gokhale1998, Ahmad1999]. 

 The marshaling/demarshaling rate depends on the type of data transmitted. Simple types, 

such as arrays of octet, typically marshaled fastest. Highly structured data, such as nested 

user-defined types or object references, is usually marshaled more slow because the ORB has 

to do more work at run time to collect the data from different memory locations and copy it 

into a transmit buffer. The marshaling rate also depends on the environment variables. For a 

rough guide from past experiments, marshaling rates were between 200kB/sec and 800kB/sec 

between two UNIX workstations (SPARC 20, 50MHz) over 10Mbps Ethernet, depending on 

the type of data and ORBs [Hennings1998]. 

6.1.2 GIOP Implications 

 When comparing CORBA performance to TCP sockets, we noticed that most TCP 

implementations included flow control and congestion avoidance mechanisms, which 

reduced obtainable bandwidth well below what the underlying network will support. This 

was particularly true for short connections, which suffered penalties for connection setup, 

slow-start, and tear-down. Performance-intensive applications on the Internet, such as online 

games, frequently turned to UDP. One of the H.323 rivals, SIP, could be carried on either 

TCP or UDP. UDP was capable of achieving latency and throughput values near to those of 

the underlying network. Unfortunately, the GIOP specification prohibited the use of UDP as 

an underlying invocation protocol, since UDP is unreliable and connectionless. There had 

been some discussion about a GIOP mapping to UDP on the OMG’s CORBA newsgroup, 

and some ORBs offered proprietary protocols based on UDP [Mico1999], however no 

standard implementation or connectionless version of GIOP existed. 



  Chapter 6. Performance Evaluation 

 

 

90 

 CDR and (more significantly) GIOP introduce increased message overhead. If platforms 

share the same byte-ordering, then byte swapping is not an issue. But CDR may also 

introduce padding into data structures to maintain alignment. Padding can improve 

performance for platforms whose memory is aligned on natural boundaries, since messages 

can be copied directly to memory. But padding can waste bandwidth if it must be included in 

each member of a long sequence. The GIOP header also add the size of message. The header 

begins with a 12-byte field providing version and message type information. The rest of the 

header is variable length and possibly quite long, depending on the type of message. Request 

headers, for example, include the full name of the operation being invoked. The comparison 

project found that the length of an operation’s name could significantly affect performance 

[DSRG2000]. 

 CORBA one-way operations could have only input arguments, must be returned void, 

and could not raise any user-defined exceptions. The CORBA standard even stated that one-

way operations are only best-effort, not reliable. Intuitively, one-way operations indicated 

that the client wished to send a message to the server and then forgot about it. UDP would 

seem to have been a logical way to implement one-way operations, but because GIOP 

required a reliable protocol, one-way operations were typically implemented using TCP (just 

like all other operations). Not only did using TCP slow down the delivery of the message, but 

it also required the sender to be blocked for the whole TCP process of connection startup, 

message delivery, and shutdown. Declaring an operation as one-way was, therefore, not 

likely to improve much of the performance. 

 Currently, a potential workaround to enable CORBA applications to use UDP would be 

to develop a UDP sender/receiver combination. CORBA could be used for all operations 
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needing reliability (including sender and receiver set up), while the UDP sender/receiver 

combination could be used for rapid, best-effort communication. While this solution would 

require porting the UDP connector to each target platform, it would allow even performance-

intensive applications to take advantage of the facilities provided by CORBA. This was 

exactly the scenario we experimented within section 5.7 for protocol integration. 

6.1.3 Setting Interceptors in Message Sequence 

The CORBA interceptor is interposed in the invocation (and response) paths between a 

client and a target object. Visibroker interceptors work directly at the protocol layer and 

provide a convenient way to track CORBA message sequences. Interceptors could be defined 

at two levels: the request level and the message level. Request-level interceptors are given 

access to a request object corresponding to the current request and are able to access and 

modify this request before and after it is invoked. Message-level interceptors have access to 

the actual message buffers before and after the messages are sent across the network. The 

Visibroker time interceptor is a service application based on three interceptor interfaces, i.e. 

BindInterceptor, ClientInterceptor, and ServerInterceptor. There are 10 points at which time 

interceptors could be invoked during the processing of CORBA message, as shown in Figure 

6.1. The time periods of Point 1-2 and 5-6 indicate the time for data marshaling. The time 

period of Point 7-8 on the client side indicates the time for data demarshaling. The time 

period of Point 3-4 on the server side indicates the time for data marshaling and request 

demultiplexing. The request is dispatched based on the object reference and the operation 

name from object adaptors to servants. Phase 9 and 10 are time periods for ORB binding and 

locating.  
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Figure 6.1 Points of Interceptors in Two-way CORBA Message Sequence 

 

 Sample outputs from our test cases are shown as Listing 6.1 for two-way invocation. The 

other communication delay covers the time costs on delay between point 2 and 3 or between 

point 6 and 7 without ORB binding/locating; the end processing covers the time costs on 

client request, server implementation processing. (ms = millisecond) 

(Calling Endpoint) 

bind: 340 ms 

transferIndication: (prepare time) - 40 ms 

transferIndication: (send time) - 0 ms 

transferIndication: (receive time) - 100 ms 

transferIndication: (total call) - 140 ms CESE Outgoing: 480ms 

 

(Called Endpoint) 

locate: 10 ms 

transferIndication: (process time) - 50 ms 

transferIndication: (prepare response) - 10 ms 

transferIndication: (send time) - 0 ms 

transferIndication: (total call) - 60 ms  CESE Incoming : 70ms 

Total Process (Including other communication delay, end processing): 760ms 

Listing 6.1 Sample Output for Tracking Two-way CORBA Message Sequence though 

Visibroker Interceptor 
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research indicated that the existence of interceptors could slow down the overall performance 

of the ORB, and suggested that ORBs be equipped with a set of lightweight measurement 

upcalls that would signal when a particular request passed a prime point [DSRG2000]. Our 

further test results also showed those measurements based on interceptors were very 

inaccurate. Therefore, our tests were conducted through system calls without the involvement 

of interceptors.  

6.1.4 ORB Benchmarks 

 Over the years, both the CORBA standard and the implementations of CORBA evolved 

considerably. Various vendors offered a large range of C++ and Java ORBs differed in many 

aspects. OMG Benchmarking Platform Special Interest Group (PSIG)’s Request for 

Information (RFI) [OMGBench1998] and its replies such as the one from CORBA 

comparison project [DSRG2000] provided guidance for appropriate measurements of 

CORBA distributed systems. The objectives of CORBA benchmarking were to help ORB 

users to evaluate an ORB implementation, and to evaluate a set of ORBs using the criteria as 

follows: 

? ? Standard Functionality, such as adherence to the IDL specification, basic remote 

invocation functionality, interoperability, etc. 

? ? Nonstandard Extensions, such as: 

- Communication Extensions, like locating objects, binding to objects, instantiating 

implementations 

- Multi-threading Extensions, like multi-threaded servers (single thread, thread per 

request, pool of threads, thread per client, thread per object), multi-threaded clients 
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(non-blocking call, call-back receive), multi-thread ORB and concurrency 

? ? Scalability in three aspects: 

- speed with respect to number of objects 

- resource consumption with respect to number of objects 

- resource consumption with respect to the number of incoming (asynchronous) request 

? ? Robustness: 

- the support for building reliable servers 

- the limitation on the data packet size in a single request 

- the maximum number of objects with which the server and the client are able to cope  

 The comparison project developed various test scenarios for the above ORB 

benchmarking criteria and the evaluation for object services. So far, the on-going project 

covers following ORBs: omniORB 2.5.0/2.7.1/3.0.0 B2, Orbix 2.2&2.3/3.0, Visibroker 3.0, 

ORBacus 3.1.2/4.0.1, TAO 1.1.3. Since our CORBA-based interface approach did not bind 

to specific vendor’s ORB, information published on the comparison reports and some 

vendors’ performance tests [OMEX2000, JacORB2000] will have reference value for future 

product development. 

6.2 Experimental Strategy and Test Environment 

 Our experiments focused on two parts: Visibroker for Java benchmark and H.245 

signaling performance. The benchmark tests were expected to indicate the some key message 

effects to the time. The H.245 signaling tests were more specific to H.245 messages. In the 
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benchmark part, we used the strategies mentioned in the comparison project for the standard 

functionality and the communication extensions. In cases for large amount data transfer, Java 

socket and C socket were tested along with Visibroker to show the network or CPU bound. 

The marshaling tests focused on Visibroker only. The marshaling tests were run 5000 loops 

without the bootstrapping influences. Since the tests fetched system current time in 

millisecond, this looping approach provided a simple way to get more accurate and reliable 

results, to factor out the disruptions from the measurements, hardware interrupts and 

scheduling interrupts in the Windows environment.  

 The H.245 latency test strategy was used to analyze the bottleneck causes of the delay, 

check the impact of message type and size, as well as the number of requests. The layer 

complexity and the size of an H.245 message varied because of the optional fields. For 

example, except for the IP/TCP/TPKT header, the layer of TerminalCapabilitySet message 

varied from 1 to 5 levels of Sequence/Choice, and the sizes ranged from 14 octets to around 

100 octets depending on the optional fields. The result was also compared with the signaling 

latency of PER encoded H.245 sample messages. All tests were run 50 times to get the 

average time result. 

 The test environment for both parts is listed as follows: 

? ? CPU: Two Pentium II 350MHz, 512KB cache PC with 128MB RAM each, for client and 

server program respectively 

? ? Operating System: Windows NT Workstation 4.0 with SP5 

? ? Network: 100Mbps Ethernet using 3Com Fast Etherlink Adapter 

? ? Compiler: Sun JDK 1.2.2 
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? ? Java VM: Just-in-Time (JIT) from Microsoft/Sun 

? ? Middleware: Visibroker for Java 3.3 (bundled with JBuilder 3 from Inprise) 

6.3 Performance Results 

6.3.1 Benchmark Test Results   

 The following object operations were evaluated by Visibroker for Java. The results 

highlighted the performance aspects when applications were developed based on Visibroker. 

? ? Remote Object Connection  

 A client connected to a remote object that was registered on a server program. The 

average time was 1.8 ms (milliseconds) for the first trip. (The result will be compared later 

with marshaling costs.) 

? ? Remote Object Creation 

 After a client connected to an existing remote object, the existing remote objects 

generated a new object, then returned it as a remote object reference to the client. The 

average time was 6.3 ms. During this process, an osagent searched the remote machine where 

the remote object existed by using a registry list on the network. This list kept the IOR 

information about server objects for client lookup. 

? ? Remote Method Call  

 A remote method received integers as arguments, and returned an integer. 

interface ArgTransfer { 

  long methodA1(in long a1); 

  long methodA2(in long a1, in long a2); 
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  long methodA3(in long a1, in long a2, in long a3); 

  long methodA4(in long a1, in long a2, in long a3, in long a4); 

…  

}; 

Listing 6.2 Remote Method Call Test IDL 

 

 Here, we added tests for Java socket, which used the Java socket library and 

DataOutputStream class, and for C socket, which used the Windows C socket library. The 

buffer size was 32KB. As shown in Table 6.1 for 3 argument tests, the C socket was the 

fastest, followed with the Java socket, and the Visibroker was the slowest. 

Table 6.1 Remote Method Call Time for 3 Arguments 

Visibroker  Java Socket C Socket 

0.73 ms 0.32 ms 0.28 ms 

 

 Our tests also showed that increasing the number of arguments does not affect the delay 

in Visibroker. The number of arguments can be increased up to 100, without a delay 

difference. 

? ? Numerical Data Transfer 

 The following tests compared the performance of Visibroker to that of sockets for 

numerical data transfer. Different array size of byte, int and double were transferred to test 

the relation between transfer bandwidth and message size. The results are given in Table 6.2, 

6.3, 6.4 with matching Figure 6.2, 6.3, 6.4 to roughly illustrate the corresponding network or 

CPU bound. 

interface NumercialTransfer { 

    typedef sequence<octet> ByteArray; 
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    typedef sequence<long> IntArray; 

    typedef sequence<double> DoubleArray; 

    void methodByte (in ByteArray ba); 

    void methodInt (in IntArray ia); 

    void methodDouble (in DoubleArray da); 

}; 

Listing 6.3 Numercial Data Transfer Test IDL 

 

- byte array transfer, array size from 0.3125KB to 256KB 

Table 6.2 Byte Array Transfer Bandwidth 

 Compare Items 

Msg. Size (KB) Transfer Bandwidth ( MB/s) 

Visibroker  Java Socket C Socket 

0.03125 0.04 0.13 0.18 

0.0625 0.08 0.26 0.33 

0.125 0.14 0.45 0.54 

0.25 0.22 0.63 0.82 

0.5 0.51 1.42 1.42 

1 1.22 1.62 2.52 

2 1.65 3.01 3.53 

4 1.75 4.86 5.43 

8 2.48 6.08 6.65 

16 3.52 7.12 7.57 

32 3.85 8.22 8.22 

64 3.82 9.22 8.86 

128 3.61 9.40 9.01 

256 4.31 9.38 9.03 

 reaching network bound of 

12.5MB/s ideally provided by 

100BaseT Ethernet 
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Figure 6.2 Performance Comparison for Byte Array Transfer Bandwidth 

 

- int array transfer, array size from 0.125KB to 1024KB 

Table 6.3 Int Array Transfer Bandwidth 

 Compare Items 

Msg. Size  (KB) Transfer Bandwidth  (MB/s) 

Visibroker  Java Socket C Socket 

0.125 0.16 0.41 1.02 

0.25 0.32 0.65 1.42 

0.5 0.54 0.83 1.84 

1 0.98 1.01 2.20 

2 1.25 1.45 2.86 

4 1.42 1.56 4.36 

8 1.49 1.74 5.32 

16 1.69 1.79 6.06 

32 1.73 1.86 6.76 

64 1.79 2.45 7.22 
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256 1.86 
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Figure 6.3 Performance Comparison for Int Array Transfer Bandwidth 

 

 

- double array transfer, array size from 0.25KB to 2048KB 

Table 6.4 Double Array Transfer Bandwidth 

 Compare Items 

Msg. Size (KB) Transfer Bandwidth (MB/s) 

Visibroker  Java Socket C Socket 

0.25 0.31 0.56 0.85 

0.5 0.72 0.75 1.36 

1 1.01 1.05 2.03 

2 1.34 1.22 2.88 

4 1.52 1.18 4.40 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200 220 240

A rray Size in KB

Visibroker

Java Socket

C Socket 0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Visibroker

Java Socket

C Socket



  Chapter 6. Performance Evaluation 

 

 

101

8 2.06 1.27 5.40 

16 2.23 1.29 6.32 

32 2.28 1.33 7.00 
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Figure 6.4 Performance Comparison for Double Array Transfer Bandwidth 

 

 The result showed that byte array transfer had a similar transfer rate for both C and Java 

socket. When the data amount were added, both can reached the maximum data transfer rate 

near the 100Mbit/s of the network bound. For int and double array transfer, the Java socket 

was far worse than that of C socket. The reason was the high cost of byte reordering and data 

copy in cases for Java, which led to the CPU being bound for medium array size (4KB to 

1MB). Visibroker for Java’s byte array transfer had a better performance result compared to 

its int/double array transfer, which also had the CPU being bound for medium array transfer. 
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For small amount data transfer that is size less than 1KB, in all cases, the bandwidth followed 

the increase of data size. The point to be mentioned here is that H.245 messages were 

normally less than 1KB. So, in terms of message size, the increase of message size followed 

the increase of the transfer bandwidth. This will lighten the effect of message size on delays. 

? ? Visibroker Marshaling Test for Primitive and Complex Data Types 

 The following tests were conducted on Visibroker only, with the IDL as Listing 6.4. 

interface Marshal {  

    enum DateEnum { 

 Mon, Tue,  …  

    }; 

    union DateUnion switch (DateEnum){ 

 case Mon: boolean ub;   

 case Tue: char uc; 

…  

    }; 

    typedef sequence<boolean>   SeqBoolean;  

    typedef sequence<char>      SeqChar;  

    typedef sequence<double>    SeqDouble;  

    typedef sequence<float>     SeqFloat;  

    typedef sequence<long>      SeqLong;  

    typedef sequence<octet>     SeqOctet;  

    typedef sequence<short>     SeqShort;  

    typedef sequence<string>    SeqString;  

    struct Octboo_T1 { 

       octet octetVal; 

      boolean booleanVal; 

    }; 

    typedef string<5> BString_T1; 

    typedef sequence<float,5> BSeqFloat_T2; 

    typedef sequence<Octboo_T1,5> BSeqOctboo_T2; 

    typedef sequence<BString_T,5> BSeqBString_T2; 

    typedef sequence<BSeqFloat_T2,5> BSeqBSeqFloat_T3; 

    typedef sequence<BSeqOctboo_T2,5> BSeqBSeqOctboo_T3; 
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    typedef sequence<BSeqBString_T2,5> BSeqBSeqBString_T3; 

    // test 1  

    void nullCall();  

    // test 2  

    void sendPrimitives(in boolean b, in char c, in double d, in float f, in long l, in octet o, in short s);  

    // test 3  

    void sendString(in string str);  

    // test 4  

    void sendUnion(in DateUnion u); 

    // test 5  

    void sendSeqPrimitives(in SeqBoolean sb, in SeqChar sc, in SeqDouble sd,  

        in SeqFloat sf, in SeqLong sl, in SeqOctet so, in SeqShort ss);  

    // test 6  

    void sendSeqStrings(in SeqString sstr);  

    // test 7  

    void sendSeqSeqs ( 

      in BSeqBSeqBString_T3 ssstr, in BSeqBSeqOctboo_T3 ssoctboo, in BSeqBSeqFloat_T3 ssf); 

…  

}; 

Listing 6.4 Marshaling Test IDL Example 

 

 Test case test1 represented a "null call". Test cases test2, test3, and test4 marshaled 

primitives (arguments being passed together or separately), string (length=80), and union 

types. Test cases test5 and test6 marshaled sequences of primitives (length=10), strings 

(length=20). Test case test7 marshaled nested sequences. We also varied the number of 

sequence size during the test. Table 6.5 indicated the average execution time of the 

invocation in 5000 loops without the bootstrapping.  

Table 6.5 Marshaling Test  for Round Trip Times 

 Test1 Test2 Test3 Test4 Test5 Test6 Test7 

Average time in 5000 loops (ms) 0.725 0.738 0.744 0.745 0.822 1.030 2.730 
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 Compared with the previous results for bootstrapping cost, such as opening a 

connection, locating and creating an object, it was shown that there was a significant 

difference between the time it took to invoke an operation for the first time and for all 

subsequent times. The marshaling costs for passing primitive data types were slightly 

different, and the variation was about 10%. Time to pass a sequence or an array of a basic 

IDL data type depended mostly on the length of data in octets. Unless a very large number of 

complex arguments were passed, the constant overhead of an invocation overshadowed the 

impact of argument sizes and types. Hence, it paid off to call less often with more arguments 

than vice versa. 

 As roughly illustrated in Figure 6.5, a high throughput rate can could usually be 

achieved by using few requests, each transferring a large amount of data, instead of many 

requests, each transferring a small amount of data. However, when transferring an extremely 

large amount of data in a single message, the throughput rate decreased.  

 

 

 

 

 

 

Figure 6.5 Dependency between Data Throughput and Message Size  
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6.3.2 H.245 Signaling Test Results 

 The H.245 signaling tests were kept in the same test environment and followed the 

similar test strategies as the ones used in previous benchmark tests. The sample result of our 

H.245 call latency test is shown as Figure 6.6, which presents the average distribution of the 

time in a CORBA invocation under the cases of H.245 signaling procedures, such as 

capability exchange, master slave determination, logical channel signaling.  

 

 

 

 

 

Figure 6.6 Average Distribution of Time in a Sample CORBA Invocation 

 

? ? Bootstrapping Costs 

 A large portion of time was spent on ORB binding, object locating, communication 

delay and object implementation processing, totally a count of more than 75%. There were 

several reasons for this large overhead. First of all, the osagent had to search the registry list 

to find the right object to invoke. The intra-ORB communications between osagent might 

also introduce extra time overhead. Reducing the number of osagents in the network could 

speed up the communication. The binding operation is not part of CORBA standard. It is a 

Visibroker’s proprietary extension allowing dynamic communication to the Visibroker for 

Java directory service. Different ORB implementations might give significant different 
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results. Second, starting the server object (like initial object_to_string()) took the extra first 

time cost. Other than those reasons, Object activation daemon, which functioned as an 

implementation repository, was relatively time-consuming for the first time object activation, 

but reached a much better performance in later activation.  

? ? Marshaling/Demarshaling Costs 

 The marshaling/demarshaling engines in the ORB performed data conversion between 

the native format used in the client/server implementation and the CORBA CDR format. For 

data structures, the sending ORB must collect the data from different locations in memory 

and copy it into a transmit buffer. Then, later on, the receiving ORB must call the traversal 

routine to parse the structure based on whatever definition for the structure it has. The 

marshaling/demarshaling costs, which count for about 15% - 25% of the total time costs, 

weighed as another important factor in call latency. The differences of H.245 message size 

due to various optional fields were not the critical factors affecting the performance.  

? ? CDR verses PER 

 An early report in 1993 showed that PER could provide a relatively small size of 

encoded message and up to the speed of 12Mbps for data encoding and decoding, as 

compared to that of hand coded C en/decoder. In their tests, the C en/decoder had a relatively 

large size of encoded message (more than two times) and an even faster speed of 240 Mbps 

for en/decoding (Tests run on a MIPS R3260, 48MB RAM, Unix OS 4.51) [Sample1993]. In 

order to get comparable result for the signaling of H245 messages, we set up a separate 

experiment based on a commercial ASN.1 compiler and PER encoder/decoder (Java) from 

OSS Nokalva [Nokalva2000]. The company also provided an ASN.1 PER encode/decode 

tool for C/C++, and the related open source information was available from the OpenH323 
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project [OpenH3232000]. The result in Table 6.6 shows the times for transferring message of 

Terminal Capability Set as Listing 5.1 described. Obviously, PER provided a much faster 

encoding/decoding speed than CDR, but this just shown what a typical implementation could 

be achieved when using commercial off the shelf tools. Developers can always do better by 

doing custom optimizations or by taking advantage of newer state of the art technologies 

when they become available, such as much faster processors. 

Table 6.6 PER and CDR Marshaling Tests for H.245 TCS Message Sample 

5000 loop average Mashaling(Encoding) Demashaling(Decoding) 

PER (ms) 0.445 0.654 

CDR (ms) 1.256 1.345 

 

6.4 Performance Conclusions 

 Sum up the test results, the latency of H.323/H.245 signaling is determined by a number 

of factors, such as ORB binding and message marshaling/demarshaling costs. The ORB 

binding time is an important, but proprietary factor, which might be changed for other vendor 

products. The sizes or the types of the complex messages affect the marshaling/demarshaling 

costs, but they are not in the range that may cause network or CPU resource problems. 

Reducing the number of remote calls with composed messages to carry on enhanced 

functionality may give a better system performance. The first time bootstrapping has a longer 

overhead than the rest of the times for invocations. The performance is also influenced by the 

implementation language, target machine (underlying instruction set architecture) and 

optimization of approaches. 
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Chapter 7  

Conclusions and Future Work 

 

7.1 Conclusions 

 We viewed this project as an exploring and learning process. This CORBA-based 

interface-centric signaling approach was positioned to provide a vision for future telephony 

services. We proved that CORBA clients with limited resources can provide all the H.323-

like end system capabilities. We found this approach: 

? ? Made it easier for program developers to express the service capability on a distributed 

computing environment as it defines the message and operation in common accessible 

IDL interfaces. It had the advantage not only of all the inherent distribution 

transparencies, but also the simplicity that came from using a single messaging protocol, 

IIOP. 

? ? Using CORBA as a network wrapper eliminated a lot of low-level (and traditionally 

error-prone) coding tasks such as parsing typed data and performing byte-order 

conversions, and facilitated interoperability between different platforms and 

programming languages. CORBA also made it easy to move the locations of application 

components around within the network, without altering any code. 

? ? Using various CORBA services helped programmers to achieve advanced functionality in 

the implementation. 
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? ? The H.245 message with complex data structure in CORBA requests did have an impact 

on call set-up delays, although the amount was less important compared to costs in ORB 

binding, and end processing. For distributed applications where bandwidth and latency 

requirements were well below what was available at the transport layer, CORBA was 

seen as an obvious choice as the development architecture. 

7.2 Future Work 

 The work of this thesis offered a number of research opportunities: 

? ? While comprehensive in scope, H.323 has been faulted for being too bulky, both in terms 

of documentation as well as in the complex interplay of several protocols. This could lead 

to more than 15 signaling messages for single point-to-point call set-up. Its competitor, 

SIP, while equally comprehensive, offered a simpler alternative by being “Internet ready” 

when introducing telephony value-added services. Future research may be directed to 

implementing our CORBA-based interface-centric approach in SIP. 

? ? CORBA provided a set of high-level, reusable services, which potentially save a great 

deal of development time. Besides the ones mentioned in our approach, other services 

such as notification service, persistency object service, object transaction service, 

concurrency services are worth exploring in the telecommunication environment. 

? ? As with IP telephony, wireless Internet is another fast growing industrial sector with 

similar concerns and challenges. Further research could test our interface-centric 

approach on hand-held devices through a set of Wireless Application Protocols (WAP), 

which uses ASN.1-based binary XML (eXtensible Markup Language) for narrow-band 

communications  [WAPForum2000]. 
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? ? One of the advantages offered by CORBA was the application’s scalability, which was 

recognized as a primary factor to be considered in the design of distributed system. 

Further research on CORBA’s usage in IP telephony services could be conducted on 

factors affecting scalability, such as multithreading offered by ORB core, demultiplexing 

offered by object adapter and implementation repository. 
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Appendix A: Conversion of H.245 Message Syntax (ASN.1 to 

IDL) 

This document attached with h245.idl file for a better demonstration of the conversion. 

 

1. Partial hierarchy illustration for Capability Exchange Module in h245.idl: 

Level 1: h245CLIENT.idl 

Level 2: tLM.idl 

Level 3: cE.idl  

Level 4: cETLC.idl, cEMC.idl 

Level 5: cEVC.idl, cEAC.idl, cEDC.idl, cEC.idl 

Level 6: nSM.idl, sNM.idl 

Level 7: ASN1Types.idl 

 

2. Full Module definitions: 

module tLM: Top level message 

module sNM: Sequence number message definition  

module nSM: Non standard message definition 

module mSD: Master-slave determination definition 

module cE: Capability exchange definition 

module cETLC: Capability exchange definitions : top level capability description 

module cEMC: Capability exchange definition: Multiplex capabilities 

module cEVC: capability exchange definition: Video capabilities 

module cEAC: Capability exchange definition: Audio capabilities 

module cEDC: Capability exchange definitions: Data capabilities 

module cEC: Capability exchange definition: Conference 

module lCS: Logical channel signaling definitions 

module h223MT: H.223 multiplex table definitions 

module rM: Request mode definitions 

module rMM: Request mode definitions: Mode description 
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module rMV: Request mode definitions: Video modes 

module rMA: Request mode definitions: Audio modes 

module rMD: Request mode definitions: Data modes 

module rME: Request mode definitions: Encryption modes 

module rTD: Round trip delay definitions 

module mL: maintenance loop definitions 

module cOMM: Communication mode definitions 

module cREQ: Conference request definitions 

module cRSP: Conference response definitions 

module h223ARR: H223AnnexA reconfiguration request definitions 

module h223AARR: H223 Annex A reconfiguration response definitions 

module cMSTCS: Command message: Send terminal capability set 

module cME: Command message: Encryption 

module cMFC: Command message: Flow control 

module cMCES: Command message: Change or end session 

module cMCC: Command message: Conference commands 

module cMMH230C: Command message: Miscellaneous H.230-like commands 

module iM: Indication message definitions 

module iMFNU: Indication message module: Function not understood 

module iMFNS: Indication message: Function not supported 

module iMC: Indication message: Conference 

module iMMH230I: Indication message: Miscellaneous H.230-like indication 

module iMJI: Indication message: Jitter indication 

module iMH223LCS: Indication message: H.223 logical channel skew 

module iMH225MLCS: Indication message: H.225.0 maximum logical channel skew 

module iMMCLI: Indication message: MC location indication 

module iMVI: Indication message: Vendor identification 

module iMNATMVCI: Indication message: New ATM virtual channel indication 

module iMUI: Indication message: User input 

 

 



  Appendix A 

 

 

116

3. Diagram for H245 Message Modules  

Notes: 

1. “         ” : include relationship; 

2. All modules include ASN1Types Module; 

3. H245SignalingEntity Module working on top of TLMModule with user specific 

interfaces based on procedure definitions 
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4. Content of ASN1Types.idl  

// ASN1Types.idl 

#ifndef _ASN1TYPES_IDL_ 

#define _ASN1TYPES_IDL_ 

#pragma javaPackage GlobalASN1Types 

#pragma prefix "GlobalASN1Types" 

// ASN.1 base types 

typedef octet              ASN1_Null; 

typedef boolean            ASN1_Boolean; 

typedef short          ASN1_Integer16; 

typedef unsigned long      ASN1_Integer; 

typedef long               ASN1_Integer64[2]; 

// unsigned integers 

typedef unsigned short     ASN1_Unsigned16; 

typedef unsigned long      ASN1_Unsigned; 

typedef unsigned long      ASN1_Unsigned64[2]; 

 

typedef double             ASN1_Real; 

typedef sequence<octet>    ASN1_BitString; // PIDL defined 

typedef sequence<octet>    ASN1_OctetString; 

typedef string             ASN1_ObjectIdentifier; 

typedef any                ASN1_Any; 

typedef any                ASN1_DefinedAny; 

struct                     ASN1_External { 

      ASN1_ObjectIdentifier  syntax; 

      ASN1_DefinedAny        data_value;  // by syntax 

NSM 

IMVI 

IMNATMV

NSM 

IMUI 
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}; 

// ASN.1 strings which may not contain binary zeros 

typedef string             ASN1_IA5String; 

typedef string             ASN1_NumericString; 

typedef string             ASN1_PrintableString; 

typedef string             ASN1_TeletexString; 

typedef string             ASN1_T61String; 

typedef string             ASN1_VideotexString; 

typedef string             ASN1_VisibleString; 

typedef ASN1_VisibleString ASN1_GeneralizedTime; // PIDL defined 

typedef ASN1_VisibleString ASN1_UTCTime; 

 

// ASN.1 strings which may contain binary zeros 

typedef sequence<octet>    ASN1_BMPString; 

typedef sequence<octet>    ASN1_GeneralString; 

typedef sequence<octet>    ASN1_GraphicString; 

typedef sequence<octet>    ASN1_ISO646String; 

typedef sequence<octet>    ASN1_UniversalString; 

 

typedef ASN1_GraphicString ASN1_ObjectDescriptor; 

#pragma javaPackage 

#endif  

/* _ASN1TYPES_IDL_ */ 
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Appendix B: CORBA-based Interface-centric Approach 

Implementation for H.323 Signaling (Screen Shot) 

 
H.323 Gatekeeper: 

Step 1. Start Visibroker Smart Agent (osagent): 

 
When programmers develop CORBA application, all attributes and operations of the remote 

implementation are defined in CORBA Interface Definition Language (IDL). However, IDL 

does not cover any concept about where the remote object is located or how to connect to it. 

The CORBA specification defines how an object implementation makes itself available to 

start receiving invocations and how it creates a unique reference for itself, the Interoperable 

Object Reference (IOR). Visibroker smart agent (osagent) is a dynamic, distributed directory 

service that provides facilities for both client applications and object implementations. Object 

implementations register their objects with the osagent so that client applications can locate 

and use those objects. When an object or implementation is destroyed, the osagent removes 

them from the list of available objects. 
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Step 2. Start CORBA Naming Service (H.225): 

 
The naming service allows us to associate one or more logical names with an object 

implementation and stores those names in a namespace. There are important differences 

between the Visibroker naming service and osagent. The naming service allows object 

implementation to bind logical names to its object at runtime. The Visibroker 3.3 naming 

service must be start with vbj, which is the JDK provide by Inprise, since some irregularities 

have been noticed with JDK1.2.2 from SUN. 
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Step 4. Start Gatekeeper (Domain Controller) (H.225): 
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H323 Caller Side 

Step 1. Start URL Naming Service (H.245 optional): 

 
 

This is an alternative to the CORBA Naming Service and osagent to locate objects as used in 

H.225 part. The URL Naming Service uses any commercial Web Server as a Directory 

Service for retrieving stringified object IORs. The only requirement is that the Web 

Server/firewall enables HTTP PUT commands. Here, we use Visibroker Gatekeeper (IIOP 

Proxy Server) to simulate the function of Web Server.  
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Step 2. Start Event Service for Capability Changes (H.245): 

 
 

CORBA Event Service supports asynchronous, disconnected communications between 

CORBA clients. There are three primary participants in the Event Service: Consumer, 

Supplier, and Channel. There are two general approaches for initiating event communication 

between suppliers and consumers: The Push Model and the Pull Model. The contents of 

events are of type Any, which provides a loosely typed interface between consumers and 

suppliers. Here, we implemented the Push Model to allow H.245 Capability Exchange 

Signaling Entity (CESE) to notify its capability changes to the other end. This is done after 

regular H.245 signaling. 
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Step 3. Start H323 Terminal: 

 
This is the GUI of H.323 Caller for demonstrating H.225/H.245 signaling procedures. This 

part starts after Step. 2 in the Callee side.  

Step 3.1 

 
 

An H.323 Caller enters the alias of its own address, as ted@sce.carleton.ca, followed with the 

destination address, as christian@info.uqam.ca. The user clicks the “Create Terminal” button 

to create the H.225 RAS terminal.  
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Step 3.2 

 
An H.323 Caller registers in Domain Controller. Please check Step 3.3 on the Callee side for 

Domain Controller’s reaction. 

 

Step 3.3 

 
 

An H.323 Caller creates an outgoing call with Q.931 messages.  
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Step 3.4 

 
 

An H.323 Caller places a direct call to the Callee. Please check Step 3.4 on the Callee side 

for the Callee’s reaction. 

 

Step 3.5 

 
 

An H.323 Caller gets the reaction from the Callee. 
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Step 3.6 

 
 

An H.323 Caller starts H.245 signaling. There are three procedures altogether, i.e. Capability 

Exchange, Master/Slave Determination and Logical Channel Signaling. Messages are 

translated from their original definition in ASN.1 to CORBA IDL user defined data types. 

The time box indicates the time for all three procedures. We have done some analysis and 

made improvements on the performance by using Visibroker message interceptor.  
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Step 4. Start RTP video transmission: 

 
 

This is implemented with Java Media Framework (JMF) 2.0. Using the RTP port number 

agreed to in previous H.245 Logical Channel Signaling procedures, a caller starts to transfer 

the video across the wire. Instead of transmitting the local file as 

“file:/C:/Jbuilder/myprojects/test/h323080300/Jmfworld.avi”, the program also can capture 

datasource as “vfw://0” on Windows or “sunvideo://0/1/JPEG” on Solaris through a video 

camera and corresponding video board. Some formats of video may not be transferred 

because of the limitation in support for codec. 
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H323Callee: 

 

Step 1. Start URL Naming Service (H.245 optional): 
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Step 2. Start Object Activation Daemon (H.245 optional) 

 

 

 

The Object Activation Daemon (OAD) handles large systems of object implementation. 

OAD works in conjunction with the CORBA Implementation Repository database to start up 

object implementation on demand. It uses state objects to indicate whether the Server Object 

is active, inactive or waiting for activation as for H.245 signaling entities. 
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Step 3. Start H323 Terminal 

 

Step 3.1 

 

An H.323 Callee enters the alias of its own address, as christian@info.uqam.ca, followed 

with the destination address, as ted@sce.carleton.ca. Click the “Create Terminal” button to 

create the H.225 RAS terminal.  
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Step 3.2 

Terminal created and registered at Domain Controller. 

 

 

Step 3.3 

 

Domain Controller matches alias to IOR. 
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Step 3.4 

 

Receive Incoming call. 

 

Step 3.5 

 

Send back “Alert”. 
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Step 3.6 

 

Send back “Connect”. 
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Step 4. Be ready to receive RTP Video: 
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Step 4.1 

 

Receiving video transmitted from Caller. See, the globe is rolling. ? 

 

 

 

 

 


