
A CORBA-based Interface-centric Approach
to Signaling for IP-based Telephony Services

submitted by

Tian Lu, M.Eng.

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Engineering,

Telecommunication Technology Management

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, K1S 5B6, Canada

February 28, 2001

© 2001, Tian Lu

ii

The undersigned hereby recommend to

The Faculty of Graduate Studies and Research

acceptance of the thesis,

A CORBA-based Interface-centric Approach
to Signaling for IP-based Telephony Services

submitted by

Tian Lu, M.Eng.

In partial fulfillment of the requirements

For the degree of Master of Engineering, Telecommunication Technology Management

Dr. Bernard Pagurek, Thesis Supervisor

Chairman, Department of Systems and Computer Engineering

Carleton University

February 28, 2001

iii

Abstract

 Convergence between the existing telephone networks and the emerging IP Telephony

over the Internet not only demands software applications that span both networks, but also

offers opportunities for innovative development approaches that satisfy the new requirements

like fast product delivery, diversified customer services and decentralized network

intelligence. In the distributed computing world, the maturing of Common Object Request

Broker Architecture (CORBA) has offered built-in solutions for integrating legacy systems,

as well as becoming an increasingly common element in telecommunication systems due to

its ability to leverage emerging technologies. Recent research shows that CORBA is used to

provide internetworking between various message-based protocols and management

architectures [Berg1998, Fischbeck1999]. Moving forward from that, our research challenges

the current heterogeneous message-centric approach for signaling, which generates

tremendous tasks for software developers in terms of system interoperability, with a fresh

approach for future IP-based telephony services.

 In this thesis, we explore a new interface-centric approach using CORBA/Internet Inter-

ORB Protocol (IIOP) as the signaling mechanism for IP Telephony as an alternative to the

message-centric ITU-T H.323/H.245 Multimedia Control Protocol. We have converted

Abstract Syntax Notation One (ASN.1) constructed H.245 messages into CORBA Interface

Definition Language (IDL) data types, defined the IDL interfaces, implemented three sets of

protocol procedures to achieve the basic functionality of H.245 messaging, followed with the

integration of H.225 call set up and media transmission procedures. Finally, we address

performance aspects of this approach to show the suitability of using CORBA-based

signaling for enterprise applications.

iv

Acknowledgements

 I would like to express my thanks to my supervisor, Professor Bernard Pagurek, for his

guidance and encouragement in this research. I would like to give special thanks to Dr. Nilo

Mitra, who is the principal system engineer from Ericssion Research Canada, for his

profound supporting knowledge and rich industrial experience.

 I am thankful to my parents and family members for their love, support and

understanding during the course of my studies. Thanks to Jiang Tao for the understanding

and love she gives me.

 My colleagues at the Network Management Lab have been very helpful and supportive

for which I am thankful. At the same time, I would also like to express my gratitude to all

those who have helped me in this research. Thanks to Audrey Bufton for proofreading.

Without her editing, the thesis would be unreadable.

 This research work was supported by grants from Communication Information

Technology Ontario (CITO) and Ericsson Research Canada.

v

Table of Contents

ABSTRACT...III

ACKNOWLEDGEMENTS... IV

TABLE OF CONTENTS ... V

LIST OF FIGURES.. VIII

LIST OF TABLES... IX

LIST OF LISTINGS.. IX

LIST OF ACRONYMS .. X

CHAPTER 1 INTRODUCTION... 1

1.1 THESIS MOTIVATION.. 2

1.1.1 Problem Statement... 2

1.1.2 Industrial Concerns and Trends ... 3

1.2 THESIS OBJECTIVE ... 5

1.3 THESIS CONTRIBUTION .. 5

1.4 THESIS ORGANIZATION .. 7

CHAPTER 2 BACKGROUND (ASN.1-BASED PROTOCOLS AND CORBA)... 8

2.1 ASN.1-BASED PROTOCOLS... 8

2.1.1 ASN.1 .. 9

2.1.2 Encoding Rules.. 12

2.1.3 Widely-used Communication Protocols .. 16

2.1.4 Protocol Development Process... 17

2.2 COMMON OBJECT REQUEST BROKER ARCHITECTURE ... 20

2.2.1 Object Management Architecture (OMA) ... 20

2.2.2 The CORBA Architecture Reference Model .. 22

2.2.3 General Inter-ORB Protocol (GIOP)/IIOP ... 24

2.2.4 Common Data Representation.. 28

2.2.5 Passing Object by Value (OBV) ... 29

2.2.6 CORBA Services.. 31

2.2.7 Extensions in CORBA 3 ... 32

2.3 CORBA IN THE TELECOMMUNICATIONS DOMAIN ... 33

vi

2.3.1 Internetworking Gateway with IN... 34

2.3.2 Internetworking Gateway with TMN... 36

CHAPTER 3 CONTROL PROTOCOLS FOR MULTIMEDIA COMMUNICATIONS 39

3.1 ITU-T RECOMMENDATION H.323/H.245 .. 39

3.2 OMG CONTROL AND MANAGEMENT OF AUDIO/VIDEO STREAMS .. 43

3.3 DSM-CC AND DAVIC 1.4 SPECIFICATIONS ... 45

3.4 THE COMPARISON SUMMARY... 47

CHAPTER 4 THE INTERFACE CENTRIC APPROACH... 49

4.1 A COMPARISON OF INTEROPERABILITY REFERENCE POINTS .. 49

4.2 REQUIREMENT ANALYSIS... 50

4.2.1 Transparency Requirements... 50

4.2.2 Component Requirements .. 52

4.3 SELECTION OF TECHNIQUES ... 53

4.3.1 The Selection of CORBA verses DCOM and RMI ... 53

4.3.2 The Selection of Java in Telecommunications... 54

4.4 OTHER ACTIVITIES TOWARDS OPEN INTERFACES .. 55

4.4.1 PARLAY .. 56

4.4.2 Java APIs for Integrated Networks (JAIN).. 58

4.4.3 Open Programming Interfaces for Networks (PIN) ... 59

4.4.4 Summary on Future Control Infrastructures... 61

CHAPTER 5 DESIGN AND IMPLEMENTATION .. 63

5.1 ASN.1 TO CORBA IDL TRANSLATION .. 63

5.2 MAPPING COMPLEX DATA TYPES ... 66

5.3 OBJECT MODELING AND PROGRAM DEVELOPMENT... 68

5.4 CORBA REQUEST INVOCATIONS ... 72

5.4.1 Current Support for Requests... 72

5.4.2 Asynchronous Messaging... 72

5.5 USEFUL CORBA SERVICES.. 73

5.5.1 CORBA Naming Service .. 73

5.5.2 CORBA Trading Service .. 74

5.5.3 CORBA Event Service.. 76

5.6 VISIBROKER DEVELOPMENT ENVIRONMENT ... 77

5.6.1 Object Activation Service (Visibroker).. 78

5.6.2 Uniform Resource Locator (URL) Naming ... 79

5.6.3 Multithreading and Connection Management... 81

vii

5.7 INTEGRATION WITH OTHER H.323 CONTROL PROTOCOLS ... 83

CHAPTER 6 CORBA PERFORMANCE EVALUATION.. 87

6.1 PERFORMANCE OVERVIEW ... 88

6.1.1 IIOP Performance Limitations ... 88

6.1.2 GIOP Performance Implications.. 89

6.1.3 Setting Interceptors in Message Sequence .. 91

6.1.4 ORB Benchmarks... 93

6.2 EXPERIMENTAL STRATEGY AND TEST ENVIRONMENT ... 94

6.3 PERFORMANCE RESULTS .. 96

6.3.1 Benchmark Test Results ... 96

6.3.2 H.245 Signaling Test Results.. 105

6.4 PERFORMANCE CONCLUSIONS .. 107

CHAPTER 7 CONCLUSIONS AND FUTURE WORK .. 108

7.1 CONCLUSIONS ... 108

7.2 FUTURE WORK .. 109

REFERENCES.. 111

APPENDIX A: CONVERSION OF H.245 MESSAGE SYNTAX (ASN.1 TO IDL) 114

APPENDIX B: CORBA-BASED INTERFACE-CENTRIC APPROACH IMPLEMENTATION FOR

H.323 SIGNALING (SCREEN SHOT)... 122

viii

List of Figures

Figure 2.1 An example of Syntax Relationship (Abstract, Concrete and Transfer)................................... 11

Figure 2.2 BER and PER in ISO Object Registration Tree.. 13

Figure 2.3 BER Transfer Syntax... 14

Figure 2.4 Example BER Format of the Tag Octets ... 14

Figure 2.5 PER Encoded H.245 Terminal Capability Set Request with Headers 16

Figure 2.6 Example of Protocol Development Process with ASN.1/C Compiler.. 19

Figure 2.7 Object Management Architecture Reference Model... 21

Figure 2.8 CORBA 2.x Architecture Reference Model... 22

Figure 2.9 Interworking between CORBA-based IN Application and Traditional IN Application

(IN/CORBA Gateway) ... 35

Figure 2.10 Internetworking between CORBA-based IN Applications using SIOP (SS7 as Kernel

Transport Network) ... 36

Figure 2.11 CORBA TMN Integrated Architecture... 37

Figure 3.1 Messages in the Capability Exchange Signaling Entity... 42

Figure 3.2 Messages in the Master/Slave Determination Signaling Entity... 42

Figure 3.3 Messages in the Logical Channel Signaling Entity.. 43

Figure 3.4 A Basic Stream Architecture from OMG.. 45

Figure 3.5 DSM-CC Functional Reference Model.. 46

Figure 3.6 Application Portability and Service Interoperability Interface .. 47

Figure 4.1 Comparsion of the Interoperability Reference Points... 50

Figure 4.2 Tradeoffs between the Different Distributed Computing Technologies.................................... 54

Figure 4.3 The Architecture of Parlay 1.2 API ... 57

Figure 4.4 The JAIN Layered Approaches ... 58

Figure 4.5 The P1520 Reference Model: Open Programming Interfaces for Networks 60

Figure 5.1 Generation for H.245 Signaling Interfaces (ASN.1 to IDL) .. 64

Figure 5.2 Example Diagram for Development of CORBA Applications .. 71

Figure 5.3 Naming Services for Object Access (Call Registration Example) ... 74

Figure 5.4 Trading Services for Object Access ... 75

Figure 5.5 Factory Methods and Interfaces in the Event Service API ... 77

Figure 5.6 oadj Communication Sequence Model .. 79

Figure 5.7 Visibroker Thread-per-session Model and Thread Pool Model.. 81

Figure 5.8 Visibroker Connection Management... 83

Figure 5.9 Example of Signaling Diagram for H.323 Control Protocols .. 85

Figure 5.10 System Architecture of CORBA-based Interface Approach for H.323 Signaling 86

Figure 6.1 Points of Interceptors in Two-way CORBA Message Sequence ... 922

ix

Figure 6.2 Performance Comparison for Byte Array Transfer Bandwidth... 99

Figure 6.3 Performance Comparison for Int Array Transfer Bandwidth ... 100

Figure 6.4 Performance Comparison for Double Array Transfer Bandwidth... 101

Figure 6.5 Dependency between Data Throughput and Message Size ... 104

Figure 6.6 Average Distribution of Time in a Sample CORBA Invocation.. 105

List of Tables

Table 2.1 Some Universal-Class Tags and Corresponding Types .. 12

Table 2.2 GIOP Message Types, Originators and Values (GIOP1.2)... 27

Table 6.1 Remote Method Call Time for 3 Arguments... 97

Table 6.2 Byte Array Transfer Bandwidth ... 98

Table 6.3 Int Array Transfer Bandwidth.. 99

Table 6.4 Double Array Transfer Bandwidth... 100

Table 6.5 Marshaling Test for Round Trip Times... 103

Table 6.6 PER and CDR Marshaling Tests for H.245 TCS Message Sample ... 107

List of Listings

Listing 2.1 The Basic Structure of A GIOP Message.. 28

Listing 5.1 ASN.1 Message Syntax Example for H.245 CESE TerminalCapabilitySet.............................. 67

Listing 5.2 IDL Data Type Example for H.245 CESE TerminalCapabilitySetType.................................. 68

Listing 5.3 IDL Example for H.245 CESE Signaling.. 69

Listing 5.4 IDL Example for CESE Interface with One-way Invocations.. 72

Listing 5.5 The State Object Class in Visibroker oadj.. 78

Listing 5.6 Get the Initial Reference to the URLNaming Service (Server Object)..................................... 80

Listing 6.1 Sample Output for Tracking Two-way CORBA Message Sequence though Visibroker

Interceptor.. 92

Listing 6.2 Remote Method Call Test IDL.. 97

Listing 6.3 Numercial Data Transfer Test IDL... 98

Listing 6.4 Marshaling Test IDL Example.. 103

x

List of Acronyms

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

ATM Asynchronous Transfer Mode

BER Basic Encoding Rules

CCITT Consultative Committee on International Telephony and Telegraph

CDMA Code Division Multiple Access

CDR Common Data Representation

CESE Capability Exchange Signaling Entity

CMIP Common Management Information Protocol

CMIS Common Management Information Services

CMOT CMIP over TCP/IP

CORBA Common Object Request Broker Architecture

DAVIC Digital Audio-Video Council

DCE Distributed Computing Environment

DER Distinguished Encoding Rules

DII Dynamic Invocation Interface

DPA Document Printing Application

DPE Distributed Processing Environment

DSI Dynamic Skeleton Interface

DSM-CC Digital Storage Media – Command and Control

DTF Domain Task Force

EDIFACT Electronic Data Interchange for Fiance, Administration, Commerce, and

Transport

ESIOP Environment Specific Inter-ORB Protocol

GDMO Guidelines for the Definition of Managed Objects

GIOP General Inter-ORB Protocol

GSM Global System for Mobile Communications

HTTP-NG Hyper Text Transfer Protocol Next Generation

IDL Interface Definition Language

xi

IETF Internet Engineering Task Force

IIOP Internet Inter-ORB Protocol

IN Intelligent Networks

INAP Intelligent Network Application Part

IOR Interoperable Object Reference

IP Internet Protocol

IR Implementation Repository

ISDN Integrated Service Digital Networks

ISO International Standards Organization

ISP Internet Service Provider

ISUP ISDN User Part

ITU-T International Telecommunication Union - Telecommunication

Standardization Sector

JAIN Java APIs for Integrated Networks

JCAT JAIN Coordination and Transaction

JCC JAIN Call Control

JIDM Joint Inter-Domain Management

JMF Java Media Framework

JTAPI Java Telephony API

LAN Local Area Network

LCSE Logical Channel Signaling Entity

MAP Mobile Application for GSM & IS41

MC Multipoint Controller

MCU Multipoint Control Unit

MHS Message Handling Systems

MP Multipoint Processor

MSDSE Master/Slave Determination Signaling Entity

NMF Network Management Forum

OBV Object by Value

OMA Object Management Architecture

OMAP Operations, Maintenance and Administration Part

xii

OMG Object Management Group

ORB Object Request Broker

OSF Open Software Foundation

OSI Open System Interconnection

OSS Operation Support System

PC Personal Computer

PDU Protocol Data Unit

PER Packed Encoding Rules

PIN Programming Interfaces for Networks

PSTN Public Switched Telephone Network

QoS Quality of Service

RAS Registration Admission and Status

RFI Request for Information

RFP Request for Proposals

RMI Remote Method Invocation

RM-ODP Reference Model of Open Distributed Processing

ROS Remote Operations Service

RPC Remote Procedure Call

RTP Real-Time Transport Protocol

SCCP Signaling Connection Control Part

SCP Service Control Point

SDL Specification and Definition Language

SE Signaling Entity

SET Secure Electronic Transaction

SII Static Invocation Interface

SIOP SCCP Inter-ORB Protocol

SIP Session Initiation Protocol

SNA Systems Network Architecture

SNMP Simple Network Management Protocol

SRM Session and Resource Manager

SS7 Signaling System No.7

xiii

SSP Service Switching Point

TC Transaction Capability

TCAP Transaction Capability Application Part

TCP Tramsmission Control Protocol

TKPT Transport PDU in Discrete Units

TINA Telecommunications Information Networking Architecture

TLV Type (Tag) Length Value

TMN Telecommunications Management Network

UDP User Datagram Protocol

UML Unified Modeling Language

UNO Universal Networked Objects

URL Uniform Resource Locator

U-N User-to-Network

U-U User-to-User

WAP Wireless Application Protocol

XDR eXternal Data Representation

XML eXtensible Markup Language

 Chapter 1. Introduction

1

Chapter 1

Introduction

 Enabled by technological advances in packet switching, signal processing and explosive

growth of the Internet economy, Internet Protocol (IP) Telephony is becoming a very

successful alternative to the traditional circuit-switched technology. On the other hand, the

Public Switched Telephony Network (PSTN) deployed with Signaling System No.7 (SS7)

networks has made impressive achievements in terms of coverage, reliability and being

feature-rich. Matching the SS7 features with a fully IP-based network is a major engineering

challenge that might take a long period of time [Mitra1999a]. SS7 was originally designed

for a closed community of telephone companies, although deregulation has changed the

operational environment and created opportunities for insider attacks against the system. In

addition, the Internet will provide more open interfaces to encompass a far greater range of

rapid time-to-market services than the traditional voice network could offer. Various

standards bodies and consortia are developing signaling solutions in IP networks to support

telephony services, the two principal contenders being International Telecommunication

Union – Telecommunication Standardization Sector (ITU-T) H.323-series of

Recommendations [ITU1996a] and the Internet Engineering Task Force (IETF) Session

Initiation Protocol (SIP) [Schulzrinne1998]. However, at this stage of the game, neither of

them has gained overwhelming acceptance in terms of deployment. This situation leaves us

the opportunity to explore new approaches.

 Chapter 1. Introduction

2

1.1 Thesis Motivation

1.1.1 Problem Statement

 The problem that our research addresses can be illustrated from following three

viewpoints, i.e., the service provider, the network vendor and operator, and the software

program developer.

 In order to build and retain a strong growing customer base, Internet Service Providers

(ISP) have to meet, if not exceed, the customer expectations set by today’s traditional voice

services. Acceptance of IP telephony will depend on the quality and efficiency with which

service providers offer, deliver, and manage IP services. Most likely, future services over the

Internet will encompass a range far greater than voice-based telephony services.

 In today’s telecommunication systems, most current approaches for signaling are based

on the exchange of messages between particular hardware equipment, most likely from

different vendors. To overcome interoperability requirements and get the systems to work

together often cost a fortune for network vendors. Due to its dramatically enhanced usage,

the current trend in the Internet economy is to move towards service outsourcing to third

parties for fast product delivery, leaving a significantly diminished role for central network

operators. Furthermore, because the richness of functional capabilities has moved to end user

terminals like the Personal Computers (PCs), the service intelligence is not likely to be

concentrated within the network. Rather, open interfaces to various network capabilities are

essential if intelligence is to stay in the network.

 The ITU, IETF and regional standards on signaling and transmission have made such

interworking possible. However, these standards show that a tremendous amount of effort

 Chapter 1. Introduction

3

has been placed in describing messages, including syntax and semantic definitions,

encoding/decoding rules, procedures for message generation and reception, and how to react

to abnormal situations. The software development process based on such standards separates

the phases of analysis and design in traditional telecommunication products. It defines the

message-based external interfaces to other systems in the analysis and specification phase,

while the software design phase comes later and has to focus on the proper generation and

reaction to those predefined messages. The software developed from this methodology comes

from vendor-proprietary requirements and software design documents. Such an approach

naturally leads to monolithic software or vertically integrated software by pieces from the

same vendor. There are no open or standardized programming interfaces, because the base

standards do not identify or require any, and it is not in the interest of the vendors to expose

their internal interfaces to third party software development. Therefore, it is not reusable by

software developers, who usually develop the distributed systems shielded from knowing

details of the infrastructure, i.e., the exchanged messages, communication protocol, operating

system, or hardware [Mitra1999a].

1.1.2 Industrial Concerns and Trends

 While the above mentioned message-centric approach may have worked in the past, the

following concerns and trends from the industry make it unsuitable as the way to develop

services over the Internet:

? ? Leveraging intelligence between endpoints and network services: A traditional phone can

only generate a small set of signaling events and tones. It cannot receive or process

signaling of any sophistication. Signaling is received in the same voice channel as the

 Chapter 1. Introduction

4

phone call, and processed by the human using the phone. These phones are considered

“dumb” devices, and service intelligence is kept within the network. In contrast, IP

phones can receive and process signaling message directly. Signals are sent as a separate

set of IP packets. An endpoint’s ability to receive and act on signaling is the fundamental

property that makes it intelligent. This enables the service functionality’s complete

separation from voice bit transport. However, if the intelligence totally moves to the

endpoint, the application may become costly and complex. The leverage of intelligence

between the endpoints and network services may depend on well-accepted distributed

infrastructure.

? ? Separating services from networks: The message-based approach ties the services too

closely to the underlying network, because the messages have been defined for a

particular network by a particular standards body with a specific charter. For example,

the H.323-based services are currently available only on the Local Area Network (LAN),

while the Intelligent Network (IN) services are available only from the operators that

have a SS7 network. However, such standards do not define a generally distributed

mechanism for the service software independent of the network.

? ? Offering feature transparency across networks: Consumers may become frustrated when

services to which they have grown accustomed are not available due to technological

constraints. For example, when you browse the web site for particular goods, you may

expect to talk with the sales person before you make the order. So, instead of picking up

your phone set, you may wish to click the button to place the call. For wireless

subscribers, they may wish to have the same features that they have on their wired

phones, as well as the features offered through their PC, like email or web browsing.

 Chapter 1. Introduction

5

1.2 Thesis Objective

 The use of software technologies, in particular distributed object technologies like

CORBA, is one way to address the above concerns. It shows that the design provides the

infrastructure and may become independent of both network and access. The objective of this

thesis is to provide credible evidence to show a vision of signaling for future IP networks that

emphasizes an interface-centric approach based on CORBA rather than the current

heterogeneous message-centric approaches [Mitra1999b].

 This research seeks to “reverse engineer” the functions embedded in the H.323 series of

protocols into Object Management Group (OMG) IDL interfaces. Such an effort would

enable a distributed implementation of the logical H.323 architecture, which is based on

terminals, gatekeepers and gateways, using CORBA as the signaling mechanism. This would

have the advantage not only of all the distribution transparencies and the programming

language/platform independence inherent in such an approach, but also the simplicity that

comes from using a single messaging protocol, IIOP.

 The performance of such an implementation demonstrates valuable insights on the

suitability of using CORBA-based signaling for enterprise applications. In particular, it will

determine the impact from message size and type complexity of CORBA requests as

compared to text-based messages or other binary formats such as Packed Encoding Rules

(PER) encoded H.323 messages. The result has to show whether or not it has a significant

impact on IP telephony call set-up delays.

1.3 Thesis Contribution

 This thesis identifies the problems of signaling for current heterogeneous networks and

 Chapter 1. Introduction

6

explores an interface-centric approach for targeting these problems. The thesis investigates

the use of CORBA in the area of signaling for IP telephony, where the industry has not yet

settled definitely on one approach. The primary focus of this software-centric approach is on

defining a control infrastructure based on a distributed computing architecture where

common capabilities, e.g., access control, usage recording, service logic and data, network

events, etc., are accessible through language/platform-neutral interfaces while

communicating through a common message set. The thesis makes a number of contributions

as follows:

? ? Reviewed the current application protocol development process and concepts, like

ASN.1, encoding rules; reviewed the distributed architecture and key concepts of

CORBA, as well as various CORBA-based internetworking activities with service and

management networks in the telecommunication domain.

? ? Compared ITU-T H.245 protocol specification with the OMG standard on “Control of

Audio-Visual Streams”, and the standard of Digital Storage Media – Command and

Control (DSM-CC) from Digital Audio Visual Council (DAVIC).

? ? Explored the CORBA-based interface centric approach.

? ? Fully converted ASN.1 defined H.245 messages to CORBA IDL using ASN-to-IDL

compiler based on the translation specification from Joint Inter-Domain Management

(JIDM), defined the IDL interfaces for signaling entities.

? ? Partially implemented the selected procedures in H.245 to achieve its basic functionality,

followed with the integration of H.225 Registration Admission and Status (RAS)/Q.931

signaling and Real-time Transport Protocol (RTP) media transmission procedures. The

 Chapter 1. Introduction

7

H.323/H.225 part is undertaken in parallel by Christian Gosselin from UQAM. The

project is well integrated through our common efforts.

? ? Determined the factors based on the latency test for CORBA-based H.245 messaging

performance.

1.4 Thesis Organization

 The structure of the thesis is as follows. In chapter 2, background information is given

for the ASN.1-based protocols, CORBA, and the recent efforts for CORBA internetworking

in the telecommunication domain. A knowledgeable reader, who has experience in ASN.1,

encoding rules or CORBA could skip part of this chapter. In chapter 3, the H.323/H245

standards are briefly introduced. This is followed by a comparison of other two specifications

for multimedia streaming control. In chapter 4, the interface-centric approach is illustrated

with the emphasis on the design requirements and technique selections as well as industrial

activities towards open interfaces. In chapter 5, the implementation is presented with the

overall design and techniques used in our implementation. Chapter 6 gives an overview on

CORBA performance issues, such as GIOP/IIOP implication and limitation on performance,

CORBA performance monitoring technique and benchmarks. Experimental environment and

performance results are illustrated, along with the discussion of performance concerns for

selecting CORBA in the design. Chapter 7 provides a summary of the thesis’s key messages

and a number of conclusions addressing our project’s objectives, as well as future work of

the research.

Chapter 2. Background (ASN.1-based Protocols and CORBA)

8

Chapter 2

Background (ASN.1-based Protocols and CORBA)

 Background information is provided at this chapter in three parts, and knowledgeable

readers might skip the sections with which they are familiar. First of all, we introduce the

concepts and development process for ASN.1-based application protocols. Second, we focus

on one of the most dominated distribute computing technology, i.e., CORBA, explaining the

key concepts, followed by several related OMG specifications. In the third part, we

investigate several on-going efforts for integrating CORBA to the telecommunication service

and management architectures, such as Intelligent Networks, Telecommunications

Management Network (TMN), Telecommunications Information Networking Architecture

(TINA).

2.1 ASN.1-based Protocols

 In today’s global communications infrastructure, computer systems have collaborated to

perform a wider range of activity than ever before. Applications require increasingly

complex exchanges of information between computer systems and between appliances with

embedded computer chips. There is a requirement for the detailed specification of the

exchanges the computers are to perform, and for the implementation of software to support

those exchanges. For communication to be possible between applications and devices

produced by different vendors, standards are needed for these application protocols. In a

number of industrial sectors, but particularly in the telecommunications sector, in multimedia

exchanges and in security-related exchanges, ASN.1 is the dominant means of specifying

Chapter 2. Background (ASN.1-based Protocols and CORBA)

9

application protocols.

2.1.1 ASN.1

 Abstract Syntax Notation One is an international standard, which aims at specifying the

data used in application protocols. It provides a high level description of messages that frees

protocol designers from having to focus on the bits and bytes layout of messages. As a

computing language that is both powerful and complex, ASN.1 was designed for modeling

efficiently the communication between heterogeneous systems. For the time being, ASN.1

has been adopted for use by a wide range of applications, such as network management,

secure email, cellular telephony, air traffic control, and voice and video over the Internet.

 In 1982, four years after the appearance of Open System Interconnection (OSI), many

people who worked on the development of standards on Application Layer had encountered

the same problem: the data structures had become too complex to allow procedures for

encoding and decoding in bits or bytes. In 1984, ASN.1 was originally proposed as a notation

and an algorithm that could define the format of encoding bits for the email Message

Handling Systems (MHS) protocols by the Consultative Committee on International

Telephony and Telegraph (CCITT, X.208) and joint work with the International Standards

Organization (ISO, ISO 8824). This recently evolved to X.680. Though the standards are

very thorough and precise in their definitions, they are not very easy to read and practice for

application protocol designers [Dubuisson2000].

 In a given programming language like C, the data structure to be transferred is

represented in “Concrete Syntax”, which respects the lexical and grammatical rules of a

language. In contrast, the concept of “Abstract Syntax” describes the generic structure of data

Chapter 2. Background (ASN.1-based Protocols and CORBA)

10

independent of any encoding technique used to represent the data. The syntax allows data

types to be defined and values of those types to be specified. ASN.1 is one kind of the

abstract syntax, and is being used to define the following types of data:

1. the abstract syntaxes of application data

2. the structure of application and presentation protocol data unit (PDU)

3. the management information base for both Simple Network Management Protocol

(SNMP, RFC1157) and OSI systems management, like the Common Information

Services and Protocols for the Internet, Common Management Information Protocol

(CMIP, RFC1189) and CMIP over TCP/IP (CMOT)

 There are other abstract notations that can be compared with ASN.1 and even compete

with it in some respects. Some examples are OMG IDL for CORBA, Sun Microsystems’

eXternal Data Representation (XDR, RFC1832), Electronic Data Interchange for Finance,

Administration, Commerce, and Transport (EDIFACT, ISO9735).

 The third concept of “Transfer Syntax” defines the representation of data to be

exchanged between data transfer components. The translation from abstract syntax to the

transfer syntax is accomplished by means of encoding rules that specify the representation of

each data value of each data type.

 This approach to exchange application data solves two problems that relate to data

representation in a distributed, heterogeneous environment.

1. a common representation for the exchange of data between different systems

2. internal to a system, an application uses some particular representation of data. The

abstract/transfer syntax scheme resolves differences in representation between co-

Chapter 2. Background (ASN.1-based Protocols and CORBA)

11

operating application entities.

 Figure 2.1 gives an example to show the relationship among the three kinds of syntax.

 Figure 2.1 An example of Syntax Relationship (Abstract, Concrete and Transfer)

 From a single ASN.1 data description, we can derive as many concrete syntaxes in as

many programming languages, and as many procedures implementing the transfer syntax in

the encoders/decoders.

 In ASN.1, a type is a set of values. For some types, there are a finite number of values,

and for other types there are an infinite number. ASN.1 has four kinds of type: simple type,

structured type, tagged type and other type. Every ASN.1 type other than “Choice” and

“Any” has a tag, which consists of a class and a non-negative tag number. ASN.1 types are

abstractly the same if their tag numbers are the same. There are four classes of tag:

1. Universal: for types whose meaning is the same in all applications as defined in

Transfer Syntax
(bytes or bits)

TerminalCapabilitySet ::=SEQUENCE
{
 sequenceNumber INTEGER,
 protocolIdentifier OCTET STRING (Size(1..7))
}

Abstract Syntax in ASN.1

Typedef struct TerminalCapabilitySet {
 int sequenceNumber;
 char protocolIdentifier [8];
 } TerminalCapabilitySet;

Machine A
Concrete Syntax in C

class TerminalCapabilitySet {
 int sequenceNumber;
 String protocolIdentifier;
}

Machine B
Concrete Syntax in Java

Chapter 2. Background (ASN.1-based Protocols and CORBA)

12

X.208. Table 2.1 lists some ASN.1 types and their universal-class tags.

Table 2.1 Some Universal-Class Tags and Corresponding Types

Tag Number (decimal) Type

UNIVERSAL 1 BOOLEAN

UNIVERSAL 2 INTEGER

UNIVERSAL 3 BIT STRING

UNIVERSAL 4 OCTET STRING

UNIVERSAL 5 NULL

UNIVERSAL 6 OBJECT IDENTIFIER

UNIVERSAL 16 SEQUENCE and SEQUENCE OF

UNIVERSAL 17 SET and SET OF

UNIVERSAL 19 PrintableString

UNIVERSAL 22 IA5String

UNIVERSAL 27 GeneralString

UNIVERSAL 31 … Reserved for future use

2. Application: for types whose meaning is specific to an application, such as X.500

directory services. Types in two different applications may have the same

application-specific tag and different meaning.

3. Private: for types whose meaning is specific to a given enterprise.

4. Context-specific: for types whose meaning is specific to a given structured type.

 Other features of ASN.1, such as information object classes and information objects,

modules and specifications, can be found in various background material [Kaliski1993].

2.1.2 Encoding Rules

 Closely associated with ASN.1 are sets of standard encoding rules that describe the bits

Chapter 2. Background (ASN.1-based Protocols and CORBA)

13

and bytes layout of messages as they are in transit between communicating application

programs. Like ASN.1, the encoding rules are also not tied to any particular computer

architecture, operating system, language or application program structure, and are used in a

range of programming languages, including C, C++, or Java. Some of these encoding rules

are registered with the ISO object registration tree such as the one shown in Figure 2.2.

 Figure 2.2 BER and PER in ISO Object Registration Tree

 The Basic Encoding Rules (BER) are the original encoding rules of ASN.1 since they

were part of X.409 standard in 1984. The BER transfer syntax always has the format of a

triplet “TLV”, i.e., Type (or Tag), Length, Value as shown in Figure 2.3 (a). All the fields of

T, L, and V are series of octets. The value V can, itself, be a triplet TLV if it is constructed.

The most complex of the ASN.1 values is no more than a stack of less and less complex

values as shown in Figure 2.3 (b). The transfer syntax is octet-based and self-delimited since

the field L provides a means of determining the length of each TLV triplet. The BER follows

big-endian principle, the high-order bit is at the left-hand side as shown in Figure 2.3 (c).

Root

itu-t(0) iso (1) joint-iso-itu-t (2)

specification (0) base-encoding (1) packed-encoding (3)

basic (0) canonica1 (1)

aligned (0) unaligned (1)

Chapter 2. Background (ASN.1-based Protocols and CORBA)

14

 Figure 2.3 BER Transfer Syntax

 To get a detailed understanding of how octets are constructed in BER, Figure 2.4 shows

the constructed format of the tag octets. The tag octets correspond to the encoding of the

value’s type. If the tag number is smaller than or equal to 30, the tag class and number are

encoded on a single octet. If the tag number is greater than 30, the number consists of the

concatenation of the bits from no.6 down to no.0 for all octets but the first one, whose five

lower-order bits equal 11111.

 Figure 2.4 Example BER Format of the Tag Octets

 The format of length also follows the specific rules to construct the octets, which can be

L T V

Length
octet

Tag
octet

Content
octet

(a) TLV Triplet

L T V… L T V L T

(b) Recursive Principle (c) Bit Weights (big-endian)

01101101

76543210

class P/C t t t t t

class P/C 11111

0? tag? 30

 1 t t t t t t t tag? 30 1 t t t t t t t 0 t t t t t t t …

bit 7 bit 6 class
0 0 UNIVERSAL
0 1 APPLICATION
1 0 Context-specific
1 1 PRIVATE

bit 5 form
0 Primitive
1 Constructed

76543210 76543210 76543210

7 6 5 43210

 1 t t t t t t t

76543210

Chapter 2. Background (ASN.1-based Protocols and CORBA)

15

in either definite or indefinite form. The value octets are constructed based on the

information given in tag and length octets.

 A criticism expressed towards the BER is regarding their cost in terms of size, with 50%

extra cost on average compared to the actual data to encode. This drawback led to the

development of the much more efficient PER, but they are not self-defining and less flexible.

PER follow the rule: “obtain the most compact encoding using encoding rules as simple as

possible”, and are particularly appropriate for protocols that need to transfer data at a high

rate in domains like telephony over the Internet, video conferencing and multimedia in

general.

 Instead of using a systematic recursive format in triplets TLV like the BER, the PER

format could be interpreted as '[P][L][V]' (optional preamble, optional length, optional value)

where the fields P, L and V are no longer series of octets but series of bits. PER can provide

a more compact representation of the values that are actually sent in an instance of

communications. This approach is popularly used when both the transmitter and the receiver

expect data to adhere to a known structure.

 The PER break down into two categories: basic and canonical, and either can be of the

aligned or unaligned variant. In aligned variant, padding 0 bits are inserted when needed to

restore the octet alignment. The unaligned variant is far more compact but requires much

more processing time for encoding and decoding. H.245 is implemented using PER. Since

both sides of a message exchange know that the syntax of the messages will conform to the

H.245 specification, it is not necessary to encode the specification into the message. For

decoding simplicity, the aligned variant of PER is used. This forces fields that require eight

or more bits to be aligned on octet boundaries and to consume an integral number of octets.

Chapter 2. Background (ASN.1-based Protocols and CORBA)

16

Tags are not encoded in PER. A length field L is encoded only if the size has not been fixed

by a SIZE subtype constraint in the ASN.1 specification or if the data size is important. The

encoding of values of type SEQUENCE or SET is preceded by a bit-map, which indicates

the presence or absence of optional components. Similarly, an index indicates the alternative

retained in a CHOICE type before encoding the value associated with this alternative.

 Figure 2.5 gives an example for the PER encoded H.245 Terminal Capability Set request

with the IP/TCP/TPKT (Transport PDU in Discrete Units) headers in hexadecimal strings.

IP header and TCP header are formatted as italic and bold respectively. The next 4 octets are

a TPKT header that is underlined, followed with the H.245 messages (74 octets).

 Figure 2.5 PER Encoded H.245 Terminal Capability Set Request with Headers

2.1.3 Widely-used Communication Protocols

 Although ASN.1 seems to be obscure, it is actually being wisely used. Every time we

place a 1-800-number call, ASN.1 defined messages are exchanged between the switching

machine and the network database to route the call to the correct common carrier and local

phone number to which the 1-800-number maps. Whenever routing data is changed within

SS7, the central nervous system of the telephone network, Operations, Maintenance and

Administration Part (OMAP) messages that are described in ASN.1 are utilized in carrying

out the change.

4500 0081 e14d 0000 4006 05b2 c0a8 8915
c0a8 8911 3aa1 3a9c c3ba 2276 028b 29e9
5018 111c 20d7 0000 0300 004e 0270 0106
0008 8175 0002 800d 0000 3c00 0100 0001
0000 0100 0003 8000 0020 c03b 8000 0108
a817 6f40 0002 2200 0740 0003 09f8 0def
404a 3700 5040 0100 0080 0001 0100 0000
0201 0001 0003

Chapter 2. Background (ASN.1-based Protocols and CORBA)

17

 Every call placed on a cellular telephone in North America, Europe, and Japan results in

Transaction Capability Application Part (TCAP) protocol messages. These messages,

described using ASN.1 and encoded using one of its predefined encoding rules, go flying

through the air to establish the call. When we walk along talking on the cellular telephone

and go from one cell to another, ASN.1 helps transfer control of the call between cells.

 Companies such as Federal Express use ASN.1 and its encoding rules heavily to track

their packages. ASN.1 is also used by the electric and gas utilities to control the latest

generation of substations and transformers. ASN.1 is the choice of companies such as

Hewlett Packard, IBM, Sun and Xerox for defining the Document Printing Application

(DPA) standard interface for printer job management. To list a few, ASN.1 specified

communication protocols could be categorized as follows [ASNResource2000]:

? ? High-level layers of the OSI model, the Application and Presentation layer protocols

? ? X.400 electronic mail system

? ? X.500 directory

? ? Multimedia environment, such as Multimedia and Hypermedia information coding

Expert Group (MPEG) and ITU-T H.323, H.225, H.245 recommendations

? ? The Internet, like SNMP, CMIP, etc.

? ? Electronic Data Interchange (EDI) protocols

? ? Business and electronic transactions, like Secure Electronic Transaction (SET), etc.

2.1.4 Protocol Development Process

 It is the ASN.1 compiler that carries out the generation of language specific concrete

Chapter 2. Background (ASN.1-based Protocols and CORBA)

18

syntax. The compiler should be implemented with some encoding rules, which describe the

links between the abstract syntax and transfer syntax. A working example for protocol

development process using ASN.1/C compiler is shown as Figure 2.6. First of all, all files

that constitute the ASN.1 specification are collected, including those referenced in the

IMPORTS clauses. All these files are then given to the ASN.1/C compiler as input files. The

major functions of the compiler cover lexical analysis, parsing, semantic analysis and target

language code generation. The generated codes normally have two parts:

? ? A file with the concrete syntax, which is the translation of the data types defined in the

ASN.1 specification into the target language (for example the .h file in C language);

? ? One or several files including one encoding procedure and decoding procedure, like BER,

PER, for each type of the ASN.1 specification (for example the .c files in C language).

 Both commercial and public ASN.1 compilers are available for C/C++/Java following

various encoding rules, like BER, PER, Distinguished Encoding Rules (DER)

[ASNHome1997]. Without further effort, the designers of a communication application have

data transfer procedures at their disposal. What remains to be done is to program the

complete local behavior of the protocol, which is usually described in Specification and

Definition Language (SDL). However, the task of encoding complex data structures for

network transmission is still more expensive in terms of processor time and memory usage

than most other components of the protocol stack. This is so even after the optimization for

encoding rules, and this may lead to the development of non-standard data representations

tuned for a particular application, which is not portable across different environments

[Sample1993].

 The files generated by the ASN.1 compiler and those specific to the communicating

Chapter 2. Background (ASN.1-based Protocols and CORBA)

19

application are then given to a compiler of the computing language used for programming the

communication application (like a C compiler). This produces an executable for the machine

architecture using libraries provided with the ASN.1 compiler, which contain the encoding

and decoding procedures of all ASN.1 primitive types. The executable can send and receive a

binary stream on a telephone line or a computer network.

Figure 2.6 Example of Protocol Development Process with ASN.1/C Compiler

C Header File
with typedefs

(.h)

C Source File with
Encode/Decode
Functions for

Types Defined in
C Header Files (.c)

Runtime Library
for ASN.1

Primitive Types
(.h/.c)

Abstract Syntax

Concrete Syntax Transfer Syntax

ASN.1/C Compiler
(BER/DER/PER)

C Compiler

Message of Protocol Behavior of Protocol

Communication
Protocol

Application File
(.c/.h)

Executable File
Communication
Protocol Application Values to be Sent

Bytes or Bits Network

Provided with
ASN.1/C Compiler

ASN.1 Source
File (.asn)

Chapter 2. Background (ASN.1-based Protocols and CORBA)

20

 The above protocol development process indicates that one of the major concerns in

service or feature upgrade is that the protocol messages may be expanded over the time. This

may happen either through new messages, or new parameters in existing messages, or new

parameter values for existing parameters, or a combination of all three. While the functions

embodied by these messages are separate, the actual binary format of the messages does not

permit an easy separation of the content. Thus, a change in any of these functions requires the

software upgrade of intermediate switches in communication systems.

2.2 Common Object Request Broker Architecture

 With advances in communication technologies and development of powerful network

stations, computer systems are rapidly changing from a centralized model to a distributed

environment. In order to support distributed application development and to provide

connectivity and interoperability among heterogeneous computing systems, a number of

distributed environments, called “middleware”, have been developed. Examples are the

Distributed Computing Environment (DCE) offered by the Open Software Foundation

(OSF), CORBA by the OMG. The objectives of middleware environments are to provide the

services that distributed applications need and to facilitate the development of distributed

applications, which is independent of underlying platforms. To accomplish this, middleware

provides runtime services supporting various forms of transparency, such as distribution and

location transparency. In the following sections, we will explain the key concepts of

CORBA.

2.2.1 Object Management Architecture (OMA)

 After the OMG was formed in 1989, it had defined Object Management Architecture,

Chapter 2. Background (ASN.1-based Protocols and CORBA)

21

which provides a common language for applications and enables the interoperability at the

application level by defining standard services and interfaces. The core element of OMA is

CORBA Object Request Broker (ORB), which will be addressed in following sections.

Besides that, Figure 2.7 shows the OMA Reference Model (1992) with the following

components.

 Figure 2.7 Object Management Architecture Reference Model

? ? Object Services: These components provides a standardized functionality, which is

defined in the form of object interfaces, e.g. for class and instance management, storage,

integrity, security, query, and versioning.

? ? Common Facilities: These are horizontal facilities that vendors may use to provide a set

of generic applications that can be configured to the specific requirements of a particular

configuration, such as email. In the current version of OMA Reference Model, the

Common Facilities are suppressed.

? ? Domain Interfaces: These are the standard interfaces that are defined by particular

industrial groups towards specific application domains, such as telecommunications and

e-commerce.

Common
Facilities

Domain
Interfaces

Application
Interfaces

Object
Services

Object Request Broker

Chapter 2. Background (ASN.1-based Protocols and CORBA)

22

? ? Application Interfaces: These are not standardized object interfaces, which are

specifically developed for an application.

2.2.2 The CORBA Architecture Reference Model

 CORBA ORBs are infrastructure components that allow clients to invoke operations on

distributed objects without concern for object location, programming language, OS platform,

communication protocols, and hardware. Figure 2.8 illustrates the key components in the

CORBA reference model that collaborate to provide this degree of portability,

interoperability, and transparency [Schmidt2000].

Figure 2.8 CORBA 2.x Architecture Reference Model

 In this model, a client obtains references to objects and invokes operations on them to

perform application tasks. Ideally, a client can access a remote object just like a local object,

INTERFACE

REPOSITORY

OBJECT (SERVANT)

out args + return
operation ()

in args

DII IDL

STUBS

ORB

INTERFACE

IDL

SKELETON
DSI

OBJECT ADAPTER

1.1.1.1.1.1 ORB CORE GIOP/IIOP

Standard Standard Language Mapping Standard Interface

ORB Specific Interface Standard Protocol

IDL COMPILER
IMPLEMENTATION

REPOSITORY

CLIENT

OBJ

REF

Chapter 2. Background (ASN.1-based Protocols and CORBA)

23

i.e., object -> operation (args). An object is an instance of an OMG IDL interface. Each

object is identified by an object reference, which associates one or more paths through which

a client can access an object on a server. When a client invokes an operation on an object, the

ORB Core is responsible for delivering the request to the object and returning a response to

the client. An ORB Core is implemented as a run-time library, which includes ORB

communication protocol, like IIOP, linked into client and server applications. IDL stubs and

skeletons serve as “glue” between the client, servants and ORBs. The stubs implement the

proxy pattern and provide a strongly typed static invocation interface (SII) that marshals

application parameters into a Common Data Representation (CDR) format. Conversely,

skeletons implement the Adapter pattern and demarshal the data from CDR back into typed

parameters.

 Major components in the CORBA reference model are outlined below:

? ? Client: A client is a computational context that makes requests on an object through one

of its references.

? ? Server: A server is a computational context in which the implementation of an object

exists.

? ? Object: A CORBA object in an abstract sense is a programming entity with an identity,

an interface, and an implementation. From a client’s perspective, the object’s identity is

encapsulated in the object’s reference. From a server’s view, it is explicitly managed by

object implementations through the object adapter interfaces.

? ? Servant: A servant is a programming language object or entity that implements requests

on one or more objects. A servant generally exists within the context of the server

Chapter 2. Background (ASN.1-based Protocols and CORBA)

24

process. Request made on an object’s references are mediated by the ORB and

transformed into invocations on a particular servant.

? ? Interoperable Object Reference (IOR): An IOR of an object implementation is the unique

identifier of an object implementation, providing all the information necessary for

another CORBA process to locate and communicate with it.

? ? IDL Compiler: An IDL compiler automatically transforms OMG IDL definitions into an

application programming language.

? ? Object Adapter: An object adapter associates a servant with objects, demultiplexes

incoming requests to the servant and collaborates with the IDL skeleton to dispatch the

appropriate operation up-call on that servant. It is the essential component for portability

among different object systems.

? ? Interface Repository: An interface repository provides run-time information about IDL

interfaces. Using this information, it is possible for a program to encounter an object

whose interface was unknown when the program was compiled, and be able to determine

what operations are valid on the object and make invocations on it.

? ? Implementation Repository (IR): An implementation repository provides a common

location to store information associated with servers, such as administrative control,

resource allocation and activation modes.

2.2.3 General Inter-ORB Protocol (GIOP)/IIOP

 As we mentioned earlier, the GIOP and IIOP support protocol-level ORB

interoperability in a general, low cost and simple manner. With only seven message formats

Chapter 2. Background (ASN.1-based Protocols and CORBA)

25

in version 1.0, the GIOP messages are exchanged between agents to facilitate object requests,

locate object implementation, and manage communication channels. GIOP semantics require

no format or binding negotiations. These factors allow clients to send requests to objects

immediately upon opening a connection. As a concrete realization of GIOP, IIOP describes

how agents open TCP/IP connections and use them to transfer GIOP messages [OMG2000].

 GIOP makes the following assumptions about the underlying transport that is used to

carry messages. The list of assumptions matches the guarantees provided by TCP/IP, as well

as other transport protocols, including Systems Network Architecture (SNA), Asynchronous

Transfer Mode (ATM), Hyper Text Transfer Protocol Next Generation (HTTP-NG).

? ? The transport is connection-oriented: A connection-oriented transport allows the

originator of a message to open a connection by specifying the address of the receiver.

After a connection is established, the transport returns a handle to the originator that

identifies the connection. The originator sends a message via the connection without

specifying the destination address with each message; instead, the destination address is

implicit in the handle that is used to send each message.

? ? Connections are full-deplex: The receiving end of a connection is notified when an

originator requests a connection. The receiver can either accept or reject the connection.

If the receiver accepts the connection, the transport returns a handle to the receiver. The

receiver not only uses the handle to receive messages but can reply to the requests sent by

the originator via the same single connection and does not need to know the address of

the originator in order to send replies.

? ? The transport is reliable: The transport guarantees that messages sent via a connection are

delivered no more than once in the order in which they were sent. If a message is not

Chapter 2. Background (ASN.1-based Protocols and CORBA)

26

delivered, the transport returns an error indication to the sender.

? ? The transport provides a byte-stream abstraction: The transport does not impose limits on

the size of a message and does not require or preserve message boundaries. In other

words, the receiver views a connection as a continuous byte stream. Neither receiver nor

sender need be concerned about issues such as message fragmentation, duplication,

retransmission, or alignment.

? ? The transport indicates disorderly loss of a connection: If a network connection breaks

down, both ends of the connection receive an error indication.

 Based on the above transport assumptions, GIOP defines the following rules for

transferring messages.

? ? Asymmetric connection: GIOP defines client and server as two distinct roles with respect

to connections. The client side of a connection originates the connection, and sends

object requests. The server side accepts requests and sends replies. The server side of a

connection may not send object requests. This restriction allows the GIOP specification

to be much simpler and avoids certain race conditions.

? ? Request multiplexing: Multiple clients within an ORB may share a connection to send

requests to a particular ORB or server. Each request uniquely identifies its target object.

Multiple independent requests for different objects, or single objects, may be sent on the

same connection.

? ? Connection management: GIOP defines messages for request cancellation and orderly

connection shutdown. Therefore, the CORBA specification does not require any

particular connection management strategy for ORBs.

Chapter 2. Background (ASN.1-based Protocols and CORBA)

27

 GIOP basic message types are summarized in Table 2.2, which lists the message type

names, whether the message is originated from client, server or both, and the value used to

identify the message type in GIOP message headers. GIOP 1.0 supports seven different types

of messages. GIOP 1.1 and 1.2 also support Fragment message type. Detailed descriptions

for each message are defined in up-to-date CORBA specification [OMG2000]. Listing 2.1

shows the basic structure of a GIOP message in pseudo-IDL.

Table 2.2 GIOP Message Types, Originators and Values (GIOP1.2)

Message Type Originator Value in GIOP Header

Request Client 0

Reply Server 1

CancelRequest Client 2

LocateRequest Client 3

LocateReply Server 4

CloseConnection Server 5

MessageError Both 6

Fragment Both 7

Module GIOP {

 Struct Version {

 Octet major;

 Octet minor;

 };

enum MsgType {

Request, Reply, CancelRequest, LocateRequest, LocateReply, CloseConnection, MessageError

};

 struct MessageHeader {

char magic [4];

 Version GIOP_version;

 octet flags;

 octet message_type;

 unsigned long message_size;

Chapter 2. Background (ASN.1-based Protocols and CORBA)

28

 };

};

Listing 2.1 The Basic Structure of A GIOP Message

2.2.4 Common Data Representation

 GIOP defines a Common Data Representation that determines the binary layout of IDL

types for transmission. CDR is a transfer syntax. It maps data types defined in OMG IDL to a

bicanonical, low level representation for transfer between agents. CDR has the following

main characteristics.

? ? CDR supports both big-endian and little-endian representation: CDR-encoded data is

tagged to indicate the byte ordering of the data. This means that both big-endian and

little-endian machines can send data in their native format. If the sender and receiver use

different byte ordering, the receiver is responsible for byte-swapping. This model, called

receiver makes it right, has the same endianness, they can communicate using the native

data representation of their respective machines. This is preferable to encodings such as

XDR, which require big-endian encoding on the wire and therefore penalize

communication if both sender and receiver use little-endian machines.

? ? CDR aligns primitive types on natural boundaries: CDR aligns primitive data types on

byte boundaries that are natural for most machine architectures. For example, short

values are aligned on a 2-byte boundary, long values are aligned on a 4-byte boundary,

and double values are aligned on an 8-byte boundary. Encoding data according to these

alignments wastes some bandwidth because part of a CDR-encoded byte stream consists

of padding bytes. However, despite the padding, CDR is more efficient than a more

Chapter 2. Background (ASN.1-based Protocols and CORBA)

29

compact encoding because, in many cases, data can be marshaled and demarshaled

simply by pointing at a value that is stored in memory in its natural binary representation.

This approach avoids expensive data copying during marshaling.

? ? CDR-encoded data is not self-identifying: CDR is a binary encoding that is not self-

identifying. This means that CDR encoding requires an agreement between the sender

and receiver about the types of data that are to be exchanged. This agreement is

established by the IDL definitions that are used to define the interface between sender

and receiver. The receiver has no way to prevent misinterpretation of data if the

agreement is violated.

 CDR encoding is a compromise that favors efficiency. Because CDR supports both

little-endian and big-endian representations and aligns data on natural boundaries, marshaling

is both simple and efficient. The downside of CDR is that certain type mismatches cannot be

detected at run time in the case of using Dynamic Invocation Interface (DII) or Dynamic

Skeleton Interface (DSI). Other encodings do not suffer from this problem. For example, as

mentioned earlier, the Basic Encoding Rules (BER) used by ASN.1 use a Tag-Length-Value

(TLV) encoding, which tags each primitive data item with both its type and its length.

2.2.5 Passing Object by Value (OBV)

 In CORBA, the client and server are generally executing in two different machines, and

the invocation of a remote object is accomplished by passing object reference. When the

object is passed by reference, if the receiver intends to access any data or operation within

the object, it can do so using the reference passed to it. But every such access would end up

in the wire traffic because the object is still within the sender’s domain. This can be slow.

Chapter 2. Background (ASN.1-based Protocols and CORBA)

30

Furthermore, simply having a reference in the receiver’s space does not guarantee the object

still exists in the sender’s domain. To address these requirements, the OMG has added an

extension to the CORBA 2.4 specifications to enable the passing of objects by value

[OMG2000].

 This extension introduces a new IDL type “Value”, which is used to pass state data over

the wire. A value is best thought of as “Struct” with inheritance and methods. Value types

differ from normal interfaces in that they contain properties to describe the state of value

type, and contain implementation details beyond that of an interface. Value types are always

local. They cannot be called remotely, which means only the data part of a value object is

transferred, not the implementation. There are two kinds of value types.

? ? Concrete value types: concrete value types contain state data. They extend the expressive

power of IDL structs by allowing: single concrete value type derivation and multiple

abstract value type derivation, arbitrary recursive value type definitions, null value

semantics and sharing semantics, etc.

? ? Abstract value types: abstract value types contain only methods and do not have state.

They may not be instantiated. Abstract value types are a bundle of operation signatures

with a purely local implementation.

 OBV provides a chance to increase location transparency by minimizing remote access.

In cases of OBV, when the receiving party instantiates a copy of an object, it implies that the

receiver knows how to implement the object (instantiate it, initialize it, and provide

implementations of the operations). More importantly, this also implies the receiver knows

something about the semantics of the object and can utilize those semantics locally. The new

instance created by the receiving side has a separate identity from the original object, and

Chapter 2. Background (ASN.1-based Protocols and CORBA)

31

once the parameter passing operation is complete, there is no relationship between the two

instances. Obviously, this approach violates the fundamental CORBA concept of

encapsulation, which normally hides an object’s encapsulation from its clients. Meanwhile,

there are several very complex edge efforts of the OBV specification, such as when interface

references and value types are intermixed. Therefore, this may complicate the development

work of ORB vendors, IDL designers and programmers. The design of our interface

approach does not use OBV, though OBV is going to get more attention in developing

CORBA applications in the future.

2.2.6 CORBA Services

 CORBA services are individual software components designed to promote a greater

amount of software reuse. In defining the services, the OMG took an in-depth look at the

software development process and tried to focus on common steps or pieces of functionality

most programs need to implement. These services are building blocks from which the

CORBA objects can inherit functionality or standalone components with which the objects

interact. Each service has been defined and engineered with two main underlying concepts:

1) the service must be generic, meaning it should be domain-independent; 2) the service

should do one specific task in a thorough manner. CORBA service specifications describe 16

common services [OMG1998]. Once all services are available, the development life cycle of

a CORBA application will be substantially shortened. Here, we list a few that will be

addressed later in chapter 5.

? ? The naming service allows names relative to a name context to be bound to objects, and

names to be resolved into object references, therefore locating objects in a network.

Chapter 2. Background (ASN.1-based Protocols and CORBA)

32

? ? The trading service allows services to be offered, whereby they are registered with a

broker object, and services to be located, whereby the broker object is queried about

services with certain properties.

? ? The event service supports the communication of objects using asynchronous message,

i.e., messages that have not been directly requested.

2.2.7 Extensions in CORBA 3

 OMG technical task force is always making improvements on various CORBA

specifications addressing the requirements from the industry. The coming version 3.0 of

CORBA will have following extensions as announced by OMG [Siegel1999]:

? ? Distributed components support

1. The CORBA component model specifies a framework for the development of plug-

and-play CORBA objects. It encapsulates the creation, lifecycle, and events for a

single object and allows clients to dynamically explore an object’s capabilities,

methods, and events.

2. The CORBA scripting language specification makes composition of CORBA

components easier.

? ? Java and Internet integration and legacy support

1. A Java to IDL mapping allows developers to implement applications completely in

Java and to generate the IDL from Java classes. This enables other applications to

access Java applications using Remote Method Invocation (RMI) over IIOP.

2. DCE/CORBA interworking specifications provide a road map for integrating DCE

Chapter 2. Background (ASN.1-based Protocols and CORBA)

33

applications into CORBA environments.

? ? Quality of service specifications

1. Minimum CORBA addresses the need for CORBA-compliant systems that can be

operate in embedded environments.

2. Real-time CORBA introduces real-time ORBs in the CORBA specification that give

developers a more direct control over resource allocation.

2.3 CORBA in the Telecommunications Domain

 Distributed object technologies such as CORBA are important to the

telecommunications domain, especially when they are applied for the management of

telecommunications networks and for the delivery of telecommunications services.

Traditionally, telecommunications systems consist of dedicated switching systems with

embedded intelligence to provide telecommunications services. Recently, technologies such

as IN, TMN and TINA aim at moving the intelligence out of the switching systems into

generic computer systems. Adopting CORBA for large-scale application development

provides major benefits like increased software reuse, improved system scalability, ease of

distribution, implementation language independence and object orientation. For IN and

TMN, CORBA can only be used as an internetworking gateway to connect legacy systems,

because the main middleware is not based on CORBA but is based on messaging systems

such as SS7 and CMIP. The IN/CORBA gateway can translate between CORBA and SS7

networks. The TMN/CORBA gateway can translate between CORBA on one side and

SNMP or CMIP systems on the other side. For TINA, it explicitly states all intelligence to be

implemented in a Distributed Processing Environment (DPE). This concept of DPE explicitly

Chapter 2. Background (ASN.1-based Protocols and CORBA)

34

allows CORBA to become the main middleware for the delivery of telecommunications

services. In this section, we show various impacts of CORBA in the telecommunications

domain.

2.3.1 Internetworking Gateway with IN

 IN are developed based on the plain old telephony networks, in which computational

infrastructure is used to process calls and provide services without the need of human

intervention. The advent of IN infrastructure has led to the development of a range of

services, which add value to the products of both the network and service provider. The

infrastructure eases the introduction of new services by centralizing the service logic in a few

dedicated service nodes, which allow services to be added without costly upgrading of the

switching hardware and software infrastructure.

 The OMG’s IN/CORBA internetworking specifications [OMGTelecom1998b] enable

CORBA-based systems to internetwork with existing IN infrastructure which uses

Transaction Capabilities (TCs) for communication. With CORBA-based service objects,

which use IIOP for communication, the specification promotes the adoption of CORBA for

the realization of IN functional entities.

 There are two proposed scenarios for the use of CORBA in IN signaling:

1. The interworking of CORBA-based IN Application Entities (e.g., a Service Control

Point (SCP)) with legacy IN Application Entities (e.g. a Service Switching Point

(SSP)) through a gateway mechanism, which provides a CORBA view of a legacy

target and a legacy view of a CORBA target. As illustrated in Figure 2.9, the

CORBA-based SCP has IDL interfaces created through Specification Translation of

Chapter 2. Background (ASN.1-based Protocols and CORBA)

35

the ASN.1 specifications of Intelligent Network Application Part (INAP).

Figure 2.9 Interworking between CORBA-based IN Application and Traditional IN

Application (IN/CORBA Gateway)

A tutorial on the design of a TC/CORBA inter-working gateway is given as a

complement to the formal specifications [Mitra1999c]. The tutorial provides

descriptions for the specification and interaction translation process. Examples are

given for translating a TC/Remote Operations Service (ROS) specification to

corresponding IDL interfaces, and for the dynamic behavior at the gateway when

exchanging messages representing interactions between the CORBA and the TC/SS7

domain. This approach is similar to that used in our design of signaling for IP

telephony services.

2. As shown in Figure 2.10 for the second scenario, the internetworking of CORBA-

based IN Application Entities uses the existing SS7 infrastructure as a transport

network for GIOP messages. The ORB hides the use of SS7 as a transport mechanism

from the interacting CORBA objects. The GIOP mapping onto the connectionless

Signaling Connection Control Part (SCCP) protocol of the SS7 protocol suite, the so

called SCCP Inter-ORB Protocol (SIOP), which allows inter-ORB communication

TC messages
(Containing ROS Invokes)

TC messages
(Containing ROS Invokes)

CORBA-
based SCP

Gateway

 Lagacy
SSP

CORBA Operation
Existing SS7

Network

Chapter 2. Background (ASN.1-based Protocols and CORBA)

36

over SS7, is defined [Fischbeck1999]. This approach brings the advantages of

CORBA to the telecommunication domain without requiring the exchange of large

parts of an operational network.

Figure 2.10 Internetworking between CORBA-based IN Applications using SIOP

(SS7 as Kernel Transport Network)

 The CORBA interfaces in the IN/CORBA specification provide standardized interfaces,

which allow more open and distributed implementations of IN services. The common

CORBA approaches to management and service provisioning produce a more integrated

network and less cumbersome service management. These approaches have the added

advantage of providing a homogeneous interface for any SS7 protocol stack implementation,

reducing technology lock-ins, and allowing service creation that is independent of proprietary

SS7 protocol stack implementations.

2.3.2 Internetworking Gateway with TMN

 The work of CORBA/TMN Internetworking has been undertaken both within the

Network Management Forum (NMF) in the JIDM and within OMG in the Telecom Domain

Task Force (DTF). The OMG Telecom DTF issued a Request for Proposals (RFP) for a

CORBA/TMN internetworking specification. In response, NMF JIDM advocated an

CORBA-

based SCP

CORBA-

based SSP

Existing SS.7

Network

GIOP Mapping
onto SS7

GIOP Mapping
onto SS7

Chapter 2. Background (ASN.1-based Protocols and CORBA)

37

“adapter” approach, which includes a GDMO (Guidelines for the Definition of Managed

Objects) to IDL compiler and a CORBA/CMIP gateway kernel. These gateways can be built

as an adapter service on the top of CORBA through static or dynamic translations, both from

the JIDM working group.

 An example of CORBA/TMN integrated architecture is shown in Figure 2.11. The

translation data, which is produced from the translation of GDMO and ASN.1 definitions,

provides the mapping between IDL methods and parameter types and the corresponding

Common Management Information Services (CMIS) requests and ASN.1 types. The

translation data is stored in the gateway as a set of managed objects. The basic gateway

kernel is in itself an agent offering both a CORBA and a CMIP based management interface,

and translation data may, consequently, be updated from either CORBA and/or CMIP based

management application at runtime [Rasmussen1998].

 Figure 2.11 CORBA TMN Integrated Architecture

Q3
CORBA
Interface

IDL
Specifi-
cation

GDMO
to IDL

Compiler

GDMO
Specifi-
cation

Mapping
Infor-
mation

CORBA/CMIP Gateway

ORB

CORBA-based Management
Application

TMN Q3 Agent

CMIP
Request

CMIP
Reply

CMIP API

Event

Adapter Object

Managed
Objects

Proxy

Chapter 2. Background (ASN.1-based Protocols and CORBA)

38

 An advantage with this approach is that there is only one notation (i.e., IDL) to specify

managed and managing systems. Using a general-purpose CORBA interaction model implies

an important change with respect to the traditional way of developing network management

applications, which strongly relies in the use of precise protocol stacks (for instance Q3).

CORBA applications are independent of specific communication protocols, which helps to

integrate network management with other telecommunication software (e.g., service control

and management), and eases the tasks of the programmer, who can work with more familiar

general-purpose development toolkits.

 Chapter 3. Multimedia Control Protocols

39

Chapter 3

Control Protocols for Multimedia Communications

 At the early stage of the research, we did some studies on three multimedia control

specifications, i.e., ITU-T H.323/H245, OMG Control and Management of Audio/Video

Stream, and DSM-CC from DAVIC. In this chapter, we review the specification principles

for each of them and give the comparison summary at the end of the chapter.

3.1 ITU-T Recommendation H.323/H.245

 The ITU-T Recommendation H.323, “Visual Telephone Systems and Terminal

Equipment for Local Area Networks which Provide a Non-Guaranteed Quality of Service”,

serves as the "umbrella" for a set of standards defining real-time multimedia communications

for packet-based networks [ITU1996a]. Much of the excitement surrounding the H.323

standards is due to the ability of H.323 entities to communicate over the Internet or managed

IP networks. The standards under the H.323 umbrella define how components that are built

in compliance with H.323 can set up calls, exchange audio and/or video, participate in

conferences, and inter-operate with non-H.323 endpoints.

 As one of the H.323 subordinate specifications, H.245, “Control Protocol for Multimedia

Communication – Line Transmission of Non-Telephone Signals” [ITU1996c], specifies the

in-band signaling protocol necessary to actually establish the media requested for a call,

negotiate the media capabilities, and issue the commands necessary to open/close the media

channels. Here, in-band messages are those that are transported within the channel or logical

 Chapter 3. Multimedia Control Protocols

40

channel to which they refer. The H.245 signaling entities are required for media control

functions in multimedia communications. H.245 message syntax is fully defined using the

ASN.1, while the protocol procedures with state changes are separately described. The

Recommendation covers a wide range of applications, including storage/retrieval,

messaging/conversational and distribution services. The protocol itself does not cover quality

of service (QoS), so it is intended to be used with a reliable transport layer protocol, like

TCP.

 H.245 signaling is established between two endpoints, an endpoint and a Multipoint

Controller (MC), or an endpoint and a Gatekeeper. H.245 specifies a number of independent

protocol entities, which support endpoint to endpoint signaling. A protocol entity is specified

by its syntax (messages), semantics, and a set of procedures, which specify the exchange of

messages and the interaction with the user. H.323 endpoints support the syntax, semantics,

and procedures of the following protocol entities:

? ? Master/slave Determination

? ? Capability Exchange

? ? Logical Channel Signaling

? ? Bi-directional Logical Channel Signaling

? ? Close Logical Channel Signaling

? ? Mode Request

? ? Round Trip Delay Determination

? ? Maintenance Loop Signaling

 Chapter 3. Multimedia Control Protocols

41

 H.245 messages fall into four categories: Request, Response, Command, and Indication.

Request and Response messages are used by the protocol entities. Request messages require

a specific action by the receiver, including an immediate response. Response messages

respond to a corresponding request. Command messages require a specific action, but do not

require a response. Indication messages are informative only, and do not require any action

or response. H.323 terminals shall respond to all H.245 commands and requests, and shall

transmit indications reflecting the state of the terminals.

 The H.245 Control Channel is a reliable channel used to carry the H.245 control

information messages between two H.323 endpoints. The H.245 Logical Channel is the

channel (either reliable or unreliable) used to carry the information streams between two

H.323 endpoints. These channels are established following the H.245 OpenLogicalChannel

procedures. An unreliable channel is used for audio, audio control, video, and video control

information streams. A reliable channel is used for data and H.245 control information

streams. There is no relationship between a logical channel and a physical channel.

 The H.245 procedures that are mimicked in our implementation (chapter 5) are listed as

follows. The signaling entities and corresponding H.245 messages are described in Figure

3.1, 3.2 and 3.3. Communication between the signaling entity and its local user, including the

primitive, parameter and state transition, is not implemented, only the peer-to-peer signaling

entity communication between incoming and outgoing signaling entity is concerned.

? ? Capability Exchange: The capability exchange procedures are intended to ensure that

only the multimedia signals to be transmitted are those that can be received and treated

appropriately by the receiving terminal, i.e., ensuring compatible real-time bi-directional

multimedia communication. These procedures require that the capabilities of each

 Chapter 3. Multimedia Control Protocols

42

terminal to receive and decode be known to the other terminal. The total capability of a

terminal to receive and decode various signals is made known to the other terminal by

transmission of its capability set. Terminals may reissue capability sets at any time.

“CESE” stands for “Capability Exchange Signaling Entity”.

Figure 3.1 Messages in the Capability Exchange Signaling Entity

? ? Master/Slave Determination: Conflicts may arise when two or more terminals involved in

a call initiate similar events simultaneously and only one such event is possible or

desired. To resolve such conflicts, one terminal may act as a master terminal and the

other terminal(s) may act as slave terminal(s), according to predefined rules. The

master/slave determination procedures allow terminals in a call to determine which

terminal is the master and which terminal is the slave. “MSDSE” stands for

“Master/Slave Determination Signaling Entity”.

Figure 3.2 Messages in the Master/Slave Determination Signaling Entity

TerminalCapabilitySetAck

TerminalCapabilitySetReject

CESE

outgoing

CESE

incoming

TerminalCapabilitySet

TerminalCapabilitySetRelease

MSDSE

outgoing

MSDSE

incoming MasterSlaveDeterminationAck

MasterSlaveDeterminationReject

MasterSlaveDetermination

MasterSlaveDeterminationRelease

 Chapter 3. Multimedia Control Protocols

43

? ? Logical Channel Signaling: This acknowledgement protocol is defined for the opening

and closing of logical channels, which carry the audiovisual and data information. The

aim of these procedures is to ensure that a terminal is capable of receiving and decoding

the data that will be transmitted on a logical channel at the time the logical channel is

opened. “LSCE” stands for “Logical Channel Signaling Entity”.

Figure 3.3 Messages in the Logical Channel Signaling Entity

3.2 OMG Control and Management of Audio/Video Streams

 In June 1998, the OMG put out a formal Telecommunications Domain Specification on

the subject of Control and Management of Audio/Video Streams [OMGTelecom1998a]. The

objective of this Streams specification is to extend the Object Management Architecture

(OMA) to provide a basic support allowing OMA conformant applications to setup and

manage streams between objects; a requirement that is becoming increasingly evident in

telecommunication, multimedia and online markets. The specification shows that the stream

and control management support should provide the necessary abstractions for multimedia

communication streams, enabling the application programmer to develop distributed

multimedia application without concern of the intricacies of the underlying communication

mechanisms.

LCSE

outgoing

LCSE

incoming

OpenLogicalChannel

CloseLogicalChannelAck

OpenLogicalChannelAck

OpenLogicalChannelReject

CloseLogicalChannelAck

 Chapter 3. Multimedia Control Protocols

44

 The emphasis of the specification is not on defining new protocols for the actual data

stream transfer. Rather, the specification focuses on providing an administrative framework

for dealing with streams. The specification defines interfaces for streams and flows,

operations to set up, modify, and release streams, and functions for dealing with quality of

service, flow synchronization and interoperability. The intention is to have a generic

framework for stream management that can be used with a variety of lower-level network

protocols.

 The Streams architecture is based upon terminology defined in the ITU RM-ODP

[ITU1995]. In this Model, a Stream represents continuous media transfer, usually between

two or more virtual multimedia devices (devices are described as virtual because they are

objects, which abstract upon the underlying physical multimedia device). Streams originate

and terminate at a StreamEndPoint as shown as Figure 3.4. These end-point objects

communicate over some forms of agreed communication channel and exchange continuous

media according to a previously agreed negotiation process. Overall coordination of stream

control is managed through a central StreamCtrl object. Each Stream Endpoint may contain

multiple flows in either direction. The Stream Endpoint components are created, together

with a Virtual Device (VDev), on receipt of a connection request by a Multimedia Device

(MMDevice). Once created, the endpoint components are associated with the StreamCtrl

object. The specification also defines two basic profiles for streaming services: a 'full' profile,

in which endpoints and flow connections have accessible IDL interfaces, which maximizes

system flexibility; and a 'light' profile, which is a subset of a full profile where flow

endpoints and flow connections do not expose IDL interfaces.

 Chapter 3. Multimedia Control Protocols

45

Figure 3.4 A Basic Stream Architecture from OMG

 Several research efforts and commercial products are developed around the CORBA

Steams specification. A research group from Washington University – St. Louis has

implemented the OMG A/V streaming model based on their real time ORB TAO

[Mungee1999]. However, the commercial product OrbixStreams from IONA does not appear

to be very successful, owing to a lack of customer interest, and we could not find any

supporting information on its implementation details.

3.3 DSM-CC and DAVIC 1.4 Specifications

 Digital Storage Media – Command and Control is an ISO/IEC standard developed as

open protocols for the delivery of multimedia broadband service [Balabanian1996]. It allows

various devices to access multiple services from multiple service providers. The key to DSM-

Legend:
A B A contains B
A B A associated with B

media stream

Factory for creating
various MM devices

Stream Ctrl MMDevice

VDev

creates

Stream
EndPoint

Stream
EndPoint

VDev

The abstraction
of the actual
MM device
capabilities

The encapsulation
of the transport
connection

Equivalent to H.245 capability
exchange procedures
Configure (various properties)

Connect (various properties)
Equivalent to H.245 open logical
connection procedures

 Chapter 3. Multimedia Control Protocols

46

CC is in its flexibility; i.e., each protocol area can be used standalone, or in concert with

other protocol areas, depending on the application(s) being addressed. The Digital Audio-

Video Council has adopted DSM-CC as the protocol for control of multimedia interactive

sessions, the resources within the sessions, and for service-level interactions [DAVIC1998].

 The functional reference model for DSM-CC is shown as Figure 3.5. A User-to-User (U-

U) information flow is used between the network and the client or the server. User-to-

Network (U-N) messages are exchanged over U-N connections and their purpose is to

control sessions and network resources. The Session and Resource Manager (SRM) entity,

which could be distributed over a geographical area spanning multiple network providers,

terminates the U-N connection from a user. The U-N part defines a U-N interface protocol.

The DSM-CC U-U part provides a generic set of multimedia user-to-user interfaces, which

enable a wide range of multimedia applications.

Figure 3.5 DSM-CC Functional Reference Model

User User Network

Client

U-U

U-N

Server

U-U

U-N

Session and

Resource

Manager

(U-N)

Connection
(User-to-network)

Connection
(User-to-user)

 Chapter 3. Multimedia Control Protocols

47

 As shown in Figure 3.6, two distinct interfaces are defined in OMG IDL, i.e., the

Application Portability Interface for programmers writing applications that run on clients,

and the Service Interoperability Interface to allow clients and servers from different

manufacturers to inter-operate. The IDL of Service Interoperability Interface leads to a fixed

bit pattern on the wire once the Remote Procedure Call (RPC) encoding scheme and message

set have been chosen. DAVIC has chosen Universal Networked Objects (UNO, the CORBA

RPC) and CDR encoding for its specification of DSM-CC.

Figure 3.6 Application Portability and Service Interoperability Interface

3.4 The Comparison Summary

 The detailed comparison results are submitted in our first stage project report [Lu1999].

Briefly, the CORBA Streams specification addresses overall stream establishment and

management. The DAVIC stream can be managed as a flow under the CORBA architecture.

Application

U-U Library

Application
Portability
Interface

Service
Interoperability
Interface

Remote
Procedure
Call

Client

 Chapter 3. Multimedia Control Protocols

48

Some of the procedures in H.245 can be mapped to the CORBA Streams specification. For

example, as previously shown in Figure 3.4, the capability exchange and the open logical

channel connection procedures in H245 are similar to the device configuration and

connection negotiation process in the CORBA Streams specification. However, each

specification has a different approach in realizing the communication. In the CORBA

Streams specification, binding between devices can be created through invocation on the

MMDevice interface’s bind() method. In H.245, a signaling entity defined in each procedure

issues messages to its remote peer signaling entity based on predefined message primitives.

In the following chapters, we will demonstrate our CORBA-based interface centric approach

on implementing H.245, a formal message-based protocol.

 Chapter 4. The Interface Centric Approach

49

Chapter 4

The Interface Centric Approach

 To respond to the problems, concerns and industrial trends overviewed in Section 1.1, a

new model of signaling for IP-based telephony services is needed which permits the flexible

distribution of control capabilities between endpoints, the network and third party service

providers. The design should be independent of both network and access. Rather than design

a control infrastructure from the bottom-up using low-level, message-based interfaces, which

is the current approach as we described in section 2.1, the future model should be designed

on a distributed computing platform onto which common capabilities are pushed, and are

accessed by applications using standardized or open interfaces. Distributed software

technologies, such as OMG’s CORBA, provide the underlying foundation, removing the

need for each new protocol design to specify data representation and transport reliability

[Schulzrinne1997]. They make the communications between distributed objects transparent

to the programmer by defining a standard way, i.e., the interface provided by a server to a

client.

4.1 A Comparison of Interoperability Reference Points

 The interface-based specification style defines what needs to be done by the server at the

request of the client, while the message-based specification emphasizes at least one aspect of

how it should be done, i.e., the messages exchanged. In the interface-based approach, a

server provides a client the interfaces with the operations that may be invoked, and all

associated data types that make up requests and responses. Communications is simply one

 Chapter 4. The Interface Centric Approach

50

sub-system among many that are required to provide distribution of software. Like

everything else in this approach, details of the networking are abstracted through an interface

definition so that, at least in principle, any networking technology can be used. The message-

based approach is purely an engineering approach, i.e., a solution is provided for a particular

networking technology, and any generality is only accidental. Figure 4.1 indicates the

reference points where each approach defines conformance to provide interoperability.

Figure 4.1 Comparsion of the Interoperability Reference Points

4.2 Requirement Analysis

 This section illustrates the high level requirements of the interface-based approach.

4.2.1 Transparency Requirements

 The interface-centric approach provides the foundation for application portability. First

of all, interfaces raise the abstraction level so that application developers deal only with the

semantics of the interactions within whatever programming environment they are familiar,

infrastructure

client server
The interface approach

defines the client-

server interactions in a

programmer-friendly

way. The client ‘thinks’

it is making a local

invocation, whereas the

server may be remote.
The message-based approach emphasizes

the syntax and sequencing of message

exchanges between ‘black boxes’.

infrastructure

 Chapter 4. The Interface Centric Approach

51

while the complexities of the distribution are shifted to the infrastructure. This approach has

the advantage of distribution transparency, which consists of:

? ? Access transparency: hiding the differences in data representation

? ? Location transparency: masking the actual physical addresses of servers/objects

? ? Failure transparency: masking the failure and possible recovery of servers/objects

? ? Migration transparency: masking the relocation of servers/objects

? ? Persistence transparency: hiding the deactivation and reactivation of servers/objects

? ? Replication transparency: maintaining the consistency of a group of replica objects

? ? Transaction transparency: hiding the co-ordination required to satisfy the transaction

properties of a set of operations

 Middle infrastructures such as the CORBA provide all these transparencies, either

through ORB Core or Services. The CORBA object model identifies various distribution

transparencies that must be supported within a single ORB environment, such as location

transparencies, while the CORBA interoperability architecture extends the transparency to

span multiple ORBs. An object request may have implicit attributes that affect the way in

which it is communicated. These attributes range from fundamental mechanism such as

reference resolution and message encoding to advanced features such as support for security,

transactional capabilities, recovery, and replication. The attributes are provided by ORB

Services, which in some ORBs are layered as internal services over the core, or in other cases

are incorporated directly into an ORB’s core. Note that the application developer does not

have to “know” CORBA to be able to use it. In fact, the infrastructure is developed by third

parties, either as a commodity or imbedded in some OS, and it is reusable as well. Therefore,

 Chapter 4. The Interface Centric Approach

52

application developers do not have to develop their own, and incompatible, mechanisms for

effecting some or all these transparencies.

4.2.2 Component Requirements

 The major components of the interface-based approach can be classified as the

distributed computing infrastructure, the interfaces, the server, the client (end point) and the

network. The requirement for each of these components can be listed as follows:

? ? The distributed computing infrastructure, such as CORBA, can provide the full set of

distribution transparencies as defined in the previous section, as well as reliability,

scalability, redundancy included in the design from the start.

? ? The interfaces can be exposed to end users and third party service providers through

appropriate access control mechanisms; the interfaces should hide implementation for

easy functionality and software update. Therefore, if a new routing algorithm is

developed for connection control, it can be invoked without affecting clients of

connection control because the interface remains unchanged.

? ? The server locations can be based on performance considerations to achieve minimized

network communication latency, while their number can be based on capacity

requirements.

? ? The network and the client (endpoint) are not confined to a single distributed computing

infrastructure, such as DCOM/ActiveX, or Java RMI/Java Beans/Enterprise Java Beans.

 Chapter 4. The Interface Centric Approach

53

4.3 Selection of Techniques

4.3.1 The Selection of CORBA verses DCOM and RMI

 Besides the OMG CORBA, the IT industry has developed several alternative distribution

infrastructures to make the communications between distributed objects transparent to the

programmer, such as Microsoft’s DCOM and Java RMI. All these seek to easily create

distributed application software taking advantage of object-oriented programming concepts

and practices by defining in a standard way the interface. Among those techniques, CORBA

provides the greatest degree of software interoperability by using the language and platform

neutral notation, i.e., the OMG IDL and with standardized mappings from IDL to the major

programming languages. Microsoft has its own IDL, the so-called Microsoft IDL (MIDL),

while RMI requires Java to program both clients and servers.

 In all cases, communication takes place through a standard set of messages: IIOP in the

case of CORBA and RMI, and DCE-RPC in the case of DCOM. The contents of the

messages depend on the server interface/operation but the basic envelope and encoding

scheme remains the same. Thus, one never has to learn the different binary formats for

messages of different applications, as one would for ITU-T or IETF standards where the

message set in each standard is different. One also does not have to define myriad

interworking “gateways” which map one message set into another by brute force. Indeed, one

may program distributed applications without even knowing what the actual messages look

like, while at the same time being guaranteed “out-of-the-box” interoperability.

 Interoperability is guaranteed through the use of a single network message

representation, i.e., GIOP in the case of CORBA, which also takes care of byte ordering and

 Chapter 4. The Interface Centric Approach

54

memory alignments, for example. GIOP messages exchanged over the TCP/IP, i.e., IIOP, is

the OMG standard for interoperability through which ORBs implemented by different

vendors can internetwork. Mappings of GIOP onto other transport mechanisms are also

available, like the mapping onto SS7 transport as was mentioned earlier in section 2.3.1.

 When we decide which technique is appropriate for IP signaling, the simple way is to

consider the tradeoffs in terms of platform independence, language independence and binary

compatibility as shown in Figure 4.2. CORBA is regard as an integration technology that

offers both platform and language independence, which is the most likely requirement in a

heterogeneous environment, while DCOM is platform-specific and RMI is language specific.

 Figure 4.2 Tradeoffs between the Different Distributed Computing Technologies

4.3.2 The Selection of Java in Telecommunications

 Java’s platform independence and mobility have led to its increasing use in

telecommunications applications. Extending from its initial usage in the development of

graphical user interfaces for network and element management systems, Java is now found in

end-user applications, downloadable protocol support, call control applications, integrated

network management solutions, and open service creation environments [Jepsen2000]. Java

has been particularly used to address the following problems and challenges in telecom:

Platform Independence

Language

Independence

Binary

Compatibility

CORBA RMI

DCOM

 Chapter 4. The Interface Centric Approach

55

? ? The close coupling between intelligent network applications and the call state machine in

the present PSTN result in complicated interactions among call processing features, and

increase the complexity of new feature development. By providing a generic

“middleware” layer for call/session control, Java allows decoupling of applications and

state machines, and reduces feature interdependency.

? ? Java-based component software can provide the necessary platform-independent protocol

support for the convergence of circuit (PSTN) and packet networks.

? ? Java standardized APIs (as will be mentioned later in section 4.4.2) and built-in security

features allow new service providers to create new and innovative service without

proprietary restrictions.

 Java was originally released to develop network centric applications. Java’s native

support for threads, garbage collection, exceptions and built-in complex data types

orientation made the definition of CORBA’s Java language mappings a relatively painless

process. Together CORBA and Java have dramatically raised the functionality and

adaptability of the developed applications. By incorporating Java into the CORBA

architecture, the result is a farther-reaching CORBA infrastructure and a more robust Java.

4.4 Other Activities towards Open Interfaces

 There is increasing pressure to split apart the vertically integrated software and hardware

solution for traditional telecommunication equipment. Third parties are trying to make use of

much of the currently deployed signaling infrastructure to provide value-added services built

on top of the generic services provided by networks. Examples for such services are

connection control, consumer authentication and usage recording. This provides for quicker

 Chapter 4. The Interface Centric Approach

56

and cheaper service delivery. It also reassures network operators that they can retain the

control and intelligence in the network. These cross-industry initiatives are described as in

the following sub-sections.

4.4.1 PARLAY

 The Parley Group, an open multi-vendor forum founded in 1998, has been formed to

create an explosion in the number of communications applications by specifying and

promoting open network Application Programming Interfaces (APIs) on service functions

such as call control, messaging and security. These functions intimately link IT applications

with the secure network resources of the telecommunications world. The Parlay API

describes two sets of interfaces: 1) Framework Interfaces, which provide for the common

functions that are required to enable services to work together in a coherent fashion; and 2)

Service Interfaces, which provide for the common functions that deliver complex services or

sub-components of services. The Phase 1 of the API was focused on authentication, event

notification, integrity management, discovery, etc. The Phase 2 extended the scope of the

APIs to include IP network control, mobility, performance management, etc. [Parlay2000].

 The Parlay APIs abstract from the network-specific details. Thus, an operation

invocation from a third party to the network to connect a call to a given address does not

require the application to know that the underlying signaling is via ISDN User Part (ISUP)

on a SS7 network or H.323-based on a LAN. The APIs are not language specific and use the

Unified Modeling Language (UML) to specify the interface classes. In this case, CORBA

would make the ideal means to inter-work language and platform dependencies between the

third party and the network. The inter-working is taken at the message passing level via IIOP,

 Chapter 4. The Interface Centric Approach

57

DCOM or RMI, and achieved at the software level via the interface definitions, along with

standard programming language mappings and the rules governing the order of operation

invocations.

 The Parlay APIs enable both third parties (external companies, operating outside the

security domain) and network operators to build new applications that rely on real-time

control of network resources. Figure 4.3 shows the architecture of Parlay 1.2 API, which

defines object-oriented interfaces on both the network and client application sides of the API

in the form of network interfaces (e.g., IparlayCall) and client application callback interfaces

(e.g., IparlayAppCall). The third-party application vendor implements callback as part of

their application to handle remote methods that are called from the network to the client

application during a Parlay session.

Figure 4.3 The Architecture of Parlay 1.2 API

Network
Operator
Domain
(Rich in
Capabilities)

Third-party Applications Authentication
callback

Call control
manager callback

Event notification
callback

Messaging
manager callback

Call callback

Server Implementations within Secure Network
Operator Domain

Authentication
Event Notification Discovery

Security

Call Control
Messaging Others

Managed IP networks Other Networks PSTN

Technology-neutral Parley APIs

Enterprise
Domain (Rich in
Applications and
Developers) Network

Security
Boundry

Unsecure IP Signaling

 Chapter 4. The Interface Centric Approach

58

4.4.2 Java APIs for Integrated Networks (JAIN)

 The JAIN APIs provide service portability, convergence, and secure network access to

telephony and data networks for rapid development of next generation telecom products and

services on the Java platform [SunJAIN2000]. Because JAIN technology provides a new

level of abstraction and associated Java interfaces for service creation across PSTN, packet

(e.g. IP or ATM) and wireless networks, it enables the integration of Internet and IN

protocols, such as INAP, Mobile Application for GSM & IS41 (MAP), and it breaks the tight

coupling of signaling applications to the SS7 protocol stack. As shown in Figure 4.4, the

JAIN specification effort is divided into two areas (layers) of development:

 Figure 4.4 The JAIN Layered Approaches

? ? The Protocol layer API specifications specify interfaces to wireline, wireless and IP

signaling protocols. By providing standardized protocol interfaces in a Java object model,

 Network logic

Service logic

JAIN application layer
Coordination Transaction Call
 model model model

JAIN protocol layer
INAP/AIN MAP MGCP H.323/SIP

Wireline

Wireless
Packet

 Chapter 4. The Interface Centric Approach

59

applications and protocol stacks can be dynamically interchanged and, at the same time,

provide a high degree of portability to the applications in the application layer using

protocol stacks from different vendors.

? ? The Application layer API specifications address the APIs required for service creation

within a Java framework spanning across all protocols covered by the Protocol layer

APIs. The application layer provides a single call model, which can be viewed as a single

state machine for multiparty, multimedia, and multi-protocol sessions for service

components in the application layer. This state machine is accessible by trusted

applications that execute in the application layer through the JAIN Call Control (JCC)/

JAIN Coordination and Transaction (JCAT) API. The current proposal is to use the core

part of the Java Telephony API (JTAPI) as JCC, further augmented with JCAT for a

richer signaling model.

 The JAIN Community defined a Java version of the Parlay API to bring the benefits of

the Java language to Parlay API, and to promote an industry-wide adoption of the Parlay

API. The JAIN Parlay Edit Group enhanced the JAIN architecture to support the Parlay API

as its external API. The pure Java client side definition of the Parlay API focused on

providing Parlay API features while removing the complexity of distributed computing

technology and enabling application portability. Further information regarding JAIN Parlay

API can be found in the IEEE Communications Magazine’s special issue in April 2000

[Beddus2000].

4.4.3 Open Programming Interfaces for Networks (PIN)

 IEEE P1520 – Reference Model for Open Programming Interfaces for Networks is an

 Chapter 4. The Interface Centric Approach

60

ongoing standards development project. This project presents the basic principles that will

enable the deployment of innovative and dynamic services on large open distributed systems

that comprise both telecommunication resources and distributed software [Biswas1999]. The

approach in developing programming interfaces for networks focuses on horizontal

interfaces. These horizontal interfaces are essentially high level in nature, and deal with

abstractions of network devices and corresponding states. The objective is to open the

control/signaling interface to network nodes, such as switching or fabric control interfaces,

by providing a set of standardized APIs, to allow software developers to write different

control/signaling software running over the network without having to standardize signaling

or control protocols. Figure 4.5 shows the reference model, which is composed of separated

levels and the interfaces between these levels. The standards are specified in CORBA IDLs.

Figure 4.5 The P1520 Reference Model: Open Programming Interfaces for Networks

End User Applications

Value-Added
Services Level

Network Generic
Services Level

Virtual Network
Services Level

V-Interface
Algorithms for value-added communication services
created by network operators, users, and third parties

U-Interface
Algorithms for routing, connection management,
admission control, etc.

L-Interface
Virtual Netowrk Devices (software representation)

CCM-
Interface

Physical Elements (hardware, namespace)
Physical Element
Level

 Chapter 4. The Interface Centric Approach

61

4.4.4 Summary on Future Control Infrastructures

 Current message-based signaling protocols such as ISUP and Q.931 convey information

for three separate functions: connection control, call control and service control. The original

motivation for ISUP was to provide a simple and efficient link-by-link connection-control

mechanism between switches. However, the messages were expanded over time with call and

service control information. Such information was just not encapsulated very well, and led to

the problems described in section 2.1.4 for message-based protocols. This situation closely

connects service or feature upgrade to switch software upgrade.

 A monolithic protocol such as ISUP or Q.931 to provide connection, call and service

control is adequate for current needs. This is so because there is an intimate connection

between all three functions, given the nature of the current telephony service which

essentially resolves around the theme of a point-to-point circuit-switched connection.

However, future multi-media, multi-point services over an IP infrastructure require a clearer

separation if their signaling is to be more easily specified, standardized, implemented and

deployed.

 A software-centric control infrastructure would provide the three functions separately

and differently. Such an infrastructure would be a collection of servers, for connection

control services, for call control services and service control. A server is a definition of an

interface to a set of functions specified in IDL (to ensure programming language and

platform neutrality), thereby allowing the control to be fully distributed.

 For example, connection servers would include operations to route a connection request,

or modify a QOS parameter for an existing connection. They might be queried to find the

best route through the network for a connection type of a given QOS prior to setting up the

 Chapter 4. The Interface Centric Approach

62

connection. Call server interfaces would provide operations to trigger service invocations,

determine end-to-end compatibility and availability of terminal equipment, etc. Application

servers would offer service control interfaces specific to applications. The Parlay APIs are a

good example of such application server interfaces.

 There would also be additional servers, for example those that provide switching or

fabric control interfaces, such as those being standardized by the IEEE PIN, to underlying

physical devices. Security servers would provide access control interfaces. Location servers

would provide an interface to mobility management functions. Billing servers would provide

interfaces to record or retrieve charging related events.

 Chapter 5. Design and Implementation

63

Chapter 5

Design and Implementation

 The CORBA-based interface-centric approach for services in IP telephony, which is

simulated in the following sections, starts with describing the process for the conversion of

H.245 ASN.1 messages. It is followed by the mapping of complex data types in section 5.2

and the object model in section 5.3. In section 5.4, various CORBA request invocation

methods are illustrated. The use of CORBA Naming, Trading and Event Services are in

section 5.5. The Visibroker specific development APIs are shown in section 5.6. The

integration for the implementation to other H.323 control protocols is demonstrated in

section 5.7.

5.1 ASN.1 to CORBA IDL Translation

 The Open Group and Open-Network Management Forum Joint Inter-domain

Management group developed a technology that defines how network management

components based on OSI and SNMP can inter-operate with CORBA-based components.

The JIDM Technical Standard is a set of two specifications, i.e., Specification Translation

and Interaction Translation [JIDM1997]. The Specification Translation for ASN.1 to/from

IDL first provided the definition of model equivalencies between the domains of CORBA

and OSI, enriched with specification for GDMO or SNMP SMI to/from IDL. The Interaction

Translation defines how to perform OSI-like (and SNMP-like) services in CORBA, mainly

through standard CORBA Naming Service, Event Service, etc. Messages in H.323 protocol

stack are defined by ASN.1. The conversion of H.245 ASN.1 messages to IDL follows the

 Chapter 5. Design and Implementation

64

standardized ASN.1 to IDL rules. As mentioned earlier, a similar approach is used in the

design of the CORBA/TC Internet-working Gateway. Commercial or public free translation

toolkits are available from research institutes and universities [Nexus1999, BellLabs1998,

Orbycom2000]. Most of the toolkits are designed for CMIP/GDMO or SNMP/MIB to

CORBA IDL translation, which covers both specification and interaction translations. To

speed up the translation process, based on the software program provided by Xenus Labs

from Korea, we modified the ASN2IDL/Solaris translation compiler to statically translate all

H.245 message syntax to IDL types. The generation process is illustrated as Figure 5.1. For

H.245 interaction procedures, we have manually defined them as CORBA invocations in the

IDL interfaces.

Figure 5.1 Generation for H.245 Signaling Interfaces (ASN.1 to IDL)

ASN.1 Specification

files

ASN.1 Specification

files

ASN.1 Specification
Files (H.245
Message Syntax)

ASN.1 to IDL
Translator

ASN.1 Specification

files

ASN.1 Specification

files

IDL Definition Files
(H.245 Message
Types)

nicknames.db

Semantics for
H.245 Signaling
Entity

IDL Defined
H.245 Signaling
Interfaces

 Chapter 5. Design and Implementation

65

 The translation process that is used to map ASN.1 modules includes the following steps:

1. Use as input the original published document, i.e., the H.245 message syntax.

2. Map each ASN.1 module to an IDL module in a separate IDL file, such as cE.idl for

ASN.1 module of Capability Exchange Definitions, cEMC.idl for ASN.1 module of

Capability Exchange Definition: Multiplex Capabilities.

3. Prior to mapping each of the clauses contained in an ASN.1 module, transform it into

a canonical form.

4. Traverse the contents of the canonical ASN.1 module in order, and map each of the

clauses.

?? EXPORT clauses are ignored.

?? IMPORTS clauses are mapped as a list of #include directives for the file

corresponding to the imported module inside the ASN.1 module and a list of

typedefs and constants.

?? Type assignments are mapped to typedefs in IDL.

?? Value assignments are mapped into either OMG IDL constants or operations in a

constant interface at the end of the generated IDL module.

5. Re-order the generated IDL code to obtain valid OMG IDL code by eliminating

forward reference.

 All generated IDL interfaces for H.245 message types are submitted as Appendix 1 to

the project report [Lu2000]. In this paper, a list to illustrate the message hierarchy mapping

to IDL modules is attached in Appendix A. We have chosen to implement three H.245

 Chapter 5. Design and Implementation

66

protocol procedures described in section 3.1, follow the general steps to develop CORBA

applications.

5.2 Mapping Complex Data Types

 As mentioned earlier in section 2.1.2, the ASN.1 messages of H.245 use PER for binary

encoding of data structures. Similarly, CORBA uses CDR, which like PER are not self-

describing. The IDL generated stubs and skeletons will promise the correct matching of data

types, or even interoperability between ORBs. Both rules use padding for data alignments.

Several aggregated ASN.1 data types are used in H.245 messages, i.e., CHOICE (select

exactly one), SEQUENCE (a grouping of dissimilar data types) and SEQUENCE OF

(SEQUENCE significant in order). IDL uses constructed data types like the Enum/Union

pair, Struct, Sequence to match with them. For example, the simplified H.245 CESE

TerminalCapabilitySet is shown as Listing 5.1, the matching IDL data type definition is

shown as Listing 5.2.

TerminalCapabilitySet ::=SEQUENCE

{

 sequenceNumber SequenceNumber,

 protocolIdentifier OBJECT IDENTIFIER,

 -- shall be set to the value

 -- {itu-t (0) recommendation (0) h (8) 245 version (0) 2}

 capabilityDescriptor CapabilityDescriptor,

 multiplexCapability MultiplexCapability,

 capabilityTableEntry CapabilityTableEntry OPTIONAL

}

SequenceNumber ::=INTEGER (0..255)

CapabilityDescriptor ::=SEQUENCE

{

 notStandard BOOLEAN,

 capabilityDescriptorNumber INTEGER(0..255)

 Chapter 5. Design and Implementation

67

}

MultiplexCapability ::=CHOICE

{

 nonStandard INTEGER(0..65535),

 h222Capability OCTET STRING

}

CapabilityTableEntry ::=SEQUENCE

{

 capabilityTableEntryNumber INTEGER(0..255)

 capability OCTET STRING

}

Listing 5.1 ASN.1 Message Syntax Example for H.245 CESE TerminalCapabilitySet

struct CapabilityDescriptorType {

 ASN1_Boolean notStandard;

 ASN1_Unsigned capabilityDescriptorNumber;

};

enum MultiplexCapabilityTypeChoice {

 nonStandardChoice ,

 h222CapabilityChoice

};

union MultiplexCapabilityType switch (MultiplexCapabilityTypeChoice) {

 case nonStandardChoice : ASN1_Unsigned nonStandard;

 case h222CapabilityChoice : ASN_OctetString h222Capability;

};

struct CapabilityTableEntryType {

 ASN1_Unsigned capabilityTableEntryNumber;

 ASN1_OctetString capability;

};

typedef sequence<CapabilityTableEntryType> CapabilityTableEntryTypeOpt;

struct TerminalCapabilitySetType {

 ASN1_Unsigned sequenceNumber;

 ASN1_OctetString protocolIdentifier;

 CapabilityDescriptorType capabilityDescriptor;

 MultiplexCapabilityType multiplexCapability;

 CapabilityTableEntryTypeOpt capabilityTableEntry;

 Chapter 5. Design and Implementation

68

};

Listing 5.2 IDL Data Type Example for H.245 CESE TerminalCapabilitySetType

 The IDL data description for messages needs to include ASN1Types.idl for mapping of

ASN.1 primitive types, such as ASN1_Boolean, ASN1_Unsigned, etc. The content for

ASN1Types.idl is given in Appendix A.

5.3 Object Modeling and Program Development

 Before a signaling interface can be specified, the functionality supported over the

interface must be clearly defined. The starting point for the CORBA-based object model is an

H.245 approved object model, mostly specified with signaling entities (SEs) communicating

with messages defined in ASN.1. The scope of CORBA is the transfer of information in a

distributed object environment, and not what is done with that information. Thus, we do not

cover most of the local procedures within the SE in our design. In our simplified object

model, the major component is the SE, which should compose both the Outgoing SE and the

Incoming SE. In most cases, the Outgoing SE is the entity that generates most requests, like a

CORBA Client; the Incoming SE implements the IDL with the object classes, like CORBA

Server Objects.

 The CORBA IDL specification was developed as the basis for interface's

implementation. CORBA IDL has been designed to be independent of any programming

language, and it only describes the operation signature, not its semantics. Shown as Listing

5.3, there are two kinds of interfaces for SEs, i.e., the SE factory interface and the actual SE

interfaces.

#include <ASN1Types.idl>

 Chapter 5. Design and Implementation

69

module CESE {

// converted ASN.1 types are first, followed with interface, exceptions and operations

…

struct TerminalCapabilitySetType {… };

 struct TerminalCapabilitySetReplyType {… }; //for Ack or Reject

 struct TerminalCapabilitySetReleaseType {… };

 enum CauseType {localTimeout, remoteTimeout};

 ...

 interface H245SEFactory {

 CESE create_CESEOutgoing();

 CESE create_CESEIncoming(in CESE outgoingCESE);

 ...

 }

 // actual SE interfaces

 interface CESE {

 exception noResponse {CauseType cause;};

 //operations in two-way invocations

TerminalCapabilitySetReplyType transferIndication (

 in TerminalCapabilitySetType tcs)

 raises (noResponse);

 void releaseIndication (in TerminalCapabilitySetReleaseType tcs_release);

 ...

 }

}

Listing 5.3 IDL Example for H.245 CESE Signaling

 The SEs are created from H245SEFactory Interface, which contains operations like

“CESE create_CESEOutgoing();” and “CESE create_CESEIncoming(in CESE

outgoingCESE);” to create the Outgoing CESE and Incoming CESE CORBA objects. The

object reference of the Outgoing CESE is passed as parameter in creating the Incoming

CESE. Both operations return the object reference to the interface CESE, which represents

the actual CESE interactions. The interface for Outgoing SE and Incoming SE is identical,

but the implementations are different based on the operations that each SE uses. The

 Chapter 5. Design and Implementation

70

interface may become different for complex cases. Each interface supports several operations

that allow the SE to interact with the peer SE. These operations are similar in concept to

H.245 signaling procedures. For example, the CESE interface supports an operation called

“TerminalCapabilitySetReplyType transferIndication (in TerminalCapabilitySetType tcs)

raises (noResponse);”, which instructs the Incoming SE to get the message. The message in

complex data type, i.e. TerminalCapabilitySet, is passed as the parameter when the operation

is invoked. The operation returns the result in TerminalCapabilitySetReplyType to indicate

either “Ack” or “Reject”.

 We followed generic ways to develop CORBA applications. Figure 5.2 shows an

example diagram for the CESE development process. Compiling the CESE IDL interface

generates Java source files which are compliant with CORBA’s Java language mapping.

These files provide the implementation of client stub classes and server skeleton classes. The

IDL compiler also generates helper and holder classes that allow the manipulation of IDL

user-defined types. We develop the client code considering that the operations on a server are

those declared in the IDL specification. In addition, we use the support from CORBA

tools/services to be able to program how the client can find and bind to the server.

 Most of Java ORBs support two ways of implementation for the operations declared in

the IDL interface: inheritance and delegation. The inheritance-based approach requires that

the class implementing an IDL interface extend a base class generated by the IDL compiler.

This base class allows the ORB to forward incoming calls to the implementation object and

provides marshalling and demarshalling functions. In contrast, the delegation-based approach

eliminates the need for the implementation class to extend an ORB-generated class and

allows it to implement a Java interface generated by the IDL compiler due to Java’s lack of

 Chapter 5. Design and Implementation

71

support for multiple inheritance. This approach is also called the “tie” approach because an

implementation object is tied to a skeleton object at runtime by passing its reference to the tie

object’s constructor. Passing an implementation object to its tie object is necessary so the

ORB can, via the tie object, forward incoming calls to the implementation object.

 Figure 5.2 Example Diagram for Development of CORBA Applications

SEInterface (eg.
CESE)

Org.omg.CORBA.Portable.ObjectImpl Org.omg.CORBA.Portable.Skeleton

implements implements

extends extends

_st_CESE

Class

Interface

SEInterface ::
MessageTypes

org.omg.CORBA.Object

extends
uses

extends

implements

delegates
extends

CESE
Operations

Delegation Approach Inheritance
 Approach

_CESEImpl

_tie_CESE

_ CESEImplBase
Helper Class

Holder Class
Java Interfaces

CESEOutgoing.
java

_CESEImpl

Client
Application
(Outgoing SE)

Object
Implementation
(Incoming SE)

stub skeleton

IIOP/ORB

CESEIncoming
.java javac

Compiler

 Chapter 5. Design and Implementation

72

5.4 CORBA Request Invocations

 In this section, we list various CORBA request invocation methods, including the

current support and on-going OMG specification efforts.

5.4.1 Current Support for Requests

 Standard CORBA remote method invocations are executed synchronously, i.e., the client

is blocked while waiting for a reply to an invocation as shown previously in Listing 5.3.

CORBA also supports asynchronous one-way invocations as defined in IDL without

blocking the calling thread, and deferred synchronous requests used in dynamic invocation

interface (DII) with later polling for the response. An example of one-way invocations in

CESE interface is shown in Listing 5.4. Following the direction of message flow, the

Incoming CESE provides the implementation of transferIndication(), and the Outgoing CESE

provides the implementation of transferAccept() and transferReject().

 interface CESE {

 …

//operation in one-way invocation

oneway void transferIndication (in TerminalCapabilitySetType tcs) raises (noResponse);

oneway void transferAccept (in TerminalCapabilitySetAckType tcsa);

oneway void transferReject (in TerminalCapabilitySetRejectType tcsr);

 oneway void releaseIndication (in TerminalCapabilitySetReleaseType tcs_release);

 }

Listing 5.4 IDL Example for CESE Interface with One-way Invocations

5.4.2 Asynchronous Messaging

 In May 1998, OMG published the Messaging specification [OMGTC1998a], which

provides two asynchronous invocation models: Callback and Polling. In the Callback model,

 Chapter 5. Design and Implementation

73

a Callback object is registered at the time of the invocation. When the reply is available, that

Callback object is invoked with the data of the reply. In the Polling model, the invocation

returns an object, which can be queried at any time to obtain the status of the outstanding

request. Asynchronous messaging permits applications to queue messages without blocking.

Persistent message storage provides a way for messages to be delivered even if the sender

and receiver applications are not running at the same time. However, there is no

commercially available ORB so far supporting the asynchronous messaging.

5.5 Useful CORBA Services

 This interface-centric approach benefits heavily from CORBA’s object services. As

pinpointed in section 2.2.6, this section highlights only those services that provide a key

functionality to the approach. CORBA Naming and Trading Services are intended being used

for object discovery and location, the process happens during H.225 signaling period on

behave of the H.323 Gatekeeper. The Event Service is used as one way to achieve

asynchronous messaging in H.245 capability exchanges.

5.5.1 CORBA Naming Service

 The Naming Service provides the capability for CORBA objects to find other CORBA

objects using an easily distinguished naming convention. It provides a mechanism for

associating remote objects in the network with a logical name within a searchable structure.

It defines interfaces to describe names and interfaces to represent the contexts associated

with each node. The same as other COS services, the Naming Service is just another object

defined by its IDL. The operations of the Naming Service fall into the following three steps:

 Chapter 5. Design and Implementation

74

? ? Obtaining an initial Naming Service Context

? ? Binding and Resolving: operations that change the Naming Service

? ? Navigating the Naming Service

 Figure 5.3 gives an example of the call registration process. A Gatekeeper provides the

object implementation for SCE call registration. The Naming Service is used to bind object

references for implementations with hierarchical names. A resolve() query on the Naming

Service returns the object references associated with a name to the Endpoint client

application. Then the Endpoint communicates with the Gatekeeper for SCE call registration.

Figure 5.3 Naming Services for Object Access (Call Registration Example)

5.5.2 CORBA Trading Service

 The OMG Trading Service facilities the offering and the discovery of instances of

services of particular types. A trader is an object that supports the trading object service in a

Namespace
<SCECallRegistrtion, objref_1>
<name_2, objref_2>
…
<name_x, objref_x>

Client
Application

Object
Implementation

1. bind (‘SCECallRegistration’,

objref_1)

2. resolve (‘SCE
CallRegistration’)

3. resolve() returns
an object reference,
i.e., objref_1

4. Invoke methods on
objects, i.e. register_me(..)
on objref_1

objref_1

 Chapter 5. Design and Implementation

75

distributed environment. It can be viewed as an object through which other objects can

advertise their capabilities and match their needs against advertised capabilities. Advertising

a capability or discovering services is called “export.” Matching against needs or discovering

services is called “import.”

 To export, an object gives the trader a description of a service and the location of an

interface where that service is available. To import, an object asks the trader for a service

having certain characteristics. The trader checks against the service descriptions it holds and

responds to the importer with the location of the selected service’s interface. The importer is

then able to interact with the service. These interactions are shown in Figure 5.4 as an

example for Gatekeeper behaviors. A Gatekeeper registers (exports) its service with the

properties it can offer to the trader. An Endpoint client application searches the trader for all

Gatekeepers that can serve it based on various criteria, such as the alias address. The trader

returns the object reference to object implementation in the Gatekeeper that matches input

criteria. The client communicates with the Gatekeeper directly.

Figure 5.4 Trading Services for Object Access

Client
Application

Object
Implementation

1. export (‘Gatekeeper service
for aliases in the sce.carleton.ca
domain’, objref_1)

2. query ‘who can be
my Gatekeeper?’ alias
= tlu@sce.carleton.ca)

3. (‘I can be your
Gatekeeper’, objref_1)

4. Invoke methods on
objects, i.e. register_me(..)
on objref_1

objref_1

Trading Service
<Gatekeeper, properties, objref_1>
<name_2, properties, objref_2>
…
<name_x, properties, objref_x>

 Chapter 5. Design and Implementation

76

 Visibroker does not provide free CORBA Trading Service. Some other ORBs like

JacORB from MICO support free Trading Service [JacORB2000].

5.5.3 CORBA Event Service

 Large distributed environments may have issues like tracking callback objects in

persistent storage, handling possible failures of connections, and tight coupling on callback

interface. These issues require a different system to handle event delivery. CORBA Event

Service provides solutions for these concerns. It supports asynchronous, disconnected

communications between CORBA clients and servers. There are three primary participants in

the Event Service: the Consumer that generates and transmits event messages, the Supplier

that receives and further processes the messages, and the Channel that is used for

communicating. Two general approaches are defined for initiating event communication: The

Push and the Pull Model.

 The COS Event API is split between two IDL modules. The first is the CosEventComm

module, which contains the interfaces for the application developer to implement, i.e. the

PushSupplier and PushConsumer interfaces. The second is the CosEventChannelAdmin

module, which is implemented by the ORB vendor. The second module allows the

application to join an event network and use an event channel. The relationship between

objects in the CosEventChannelAdmin module is shown as Figure 5.5. At the top level is the

EventChannel. From the EventChannel, two factory objects can be accessed: the

SupplierAdmin and the ConsumerAdmin. From these two factories, we obtain one of four

interfaces. The interfaces are for the proxies for consumers, suppliers, push and pull. The

four Proxy interfaces are then used for runtime registration and notification.

 Chapter 5. Design and Implementation

77

Figure 5.5 Factory Methods and Interfaces in the Event Service API

 We implemented the Push Model to mimic the procedure that H.245 CESE uses to

notify its peer CESE of capability changes. Although the basic functionality has been easily

achieved, we found the Event Service was relatively costly due to its way of creating event

channels, delivering events and filtering data. The contents of events are of type Any, which

provides a loosely typed interface between consumers and suppliers, and allows the

consumer to extract the event data for intended information. However, it is a waste of

resources for the event channel to send all events to all consumers; some of them have to

discard the event data after the type-safe extraction. The Event Service still has a limitation

on delivering events with a guarantee, or within a specific time period. Fortunately, OMG

has addressed these concerns by adopting the Notification [OMGTC1998b] and Messaging

Services.

5.6 Visibroker Development Environment

 Our CORBA development environment is based on Visibroker for Java [Inprise1999]

from Inprise/Borland, which is a leading provider of Internet access infrastructure and

application development environment. Visibroker has been selected as a key part of

for_suppliers() for_consumers()
Event Channel

ConsumerAdmin SupplierAdmin

Supplier Consumer Supplier Consumer

obtain_pull_suppliers() obtain_push_consumers() obtain_pull_consumers() obtain_push_suppliers()

 Chapter 5. Design and Implementation

78

Ericsson’s Operation Support System (OSS) for managing both the Global System for

Mobile Communications (GSM) and the broadband Code Division Multiple Access (CDMA)

networks, where the integration reference points specified for various systems are defined in

IDL [InprisePress2000]. In this section, we demonstrate several Visibroker specific APIs.

5.6.1 Object Activation Service (Visibroker)

 As one of the value-added features, Visibroker provides Object Activation Daemon

(OAD) for Java (oadj), which offers automatic activation for Server Objects. Oadj is ideally

used for large systems with thousands of object implementation. The OAD works in

conjunction with the CORBA Implementation Repository to start up object implementation

on demand. After a Server Object has been registered with the oadj, its status of activation

can be queried through get_Status() method, and the State object. As shown in Listing 5.5,

the State object indicates whether the Server Object is active, inactive, or waiting for

activation, which can be matched to the outgoing/incoming, idle, awaiting states defined for

H.245 signaling entities.

Public final synchronized class com.vidigenic.Activation.State extends java.lang.Object {

 public static final int_ACTIVE;

 public static final int_INACTIVE;

 public static final int_WAITING_FOR_ACTIVATION;

 public static final com.visigenic.vbroker.Activation.State ACTIVE;

 public static final com.visigenic.vbroker.Activation.State INACTIVE;

 public static final com.visigenic.vbroker.Activation.State WAITING_FOR_ ACTIVATION;

 public int value();

 public static com.visigenic.vbroker.Activation.State from_int(int);

 public java.lang.String toString();

 static static {};

}

Listing 5.5 The State Object Class in Visibroker oadj

 Chapter 5. Design and Implementation

79

 The sequence to initiate a Server Object through oadj, and the communication model is

shown in Figure 5.6. Once an osagent starts, the oadj, which represents the list of server

objects registers with the osagent. When the Client starts, it binds with the osagent first. The

Client then attempts to locate the Server Object via the osagent. Because the Server Object

itself is not running, there is no registration for it in the osagent’s memory table. There is,

however, an entry for the oadj. Thus, when the request comes to the osagent, the osagent

returns the reference of the oadj to the Client. The Client makes an invocation to the Server

Object. The call actually goes to the oadj, which then starts the Server Object based of one of

the four activation policies (Shared Server by default), and forwards the call to the spawned

Server Object. The Client communicates directly to the Server object.

Figure 5.6 oadj Communication Sequence Model

5.6.2 Uniform Resource Locator (URL) Naming

 The Visibroker URLNaming Service allows us to use any commercial Web Server as a

Directory Service for retrieving IORs. This provides a convenient way for Server Objects to

write their stringified IORs to a central location, i.e., any commercial Web location, and a

osagent

2) bind(…)

Client
(Outgoing
SE)

oadj

Server
Object
(Incoming
SE)

5) Client
communicates
directly to the
Server Object.

1) oadj registers
with osagent

IR

4) oadj starts the Server
Object based on its
registration in the
Implementation Repository

3) Call is
forwarded to the
oadj to start the
Server Objects

Implementation
Repository
contains Server
registrations,
either registered
via command
line utility or
via API to oadj

 Chapter 5. Design and Implementation

80

standard mechanism for a Client to obtain the stringified IOR via a standard URL address. It

provides client applications with an alternative to locate objects without using an osagent or

Naming Service, which enables client applications to locate objects from any vendors.

 Both the Client and Server Object use the Resolver interface to register and obtain an

IOR. After a reference to the Resolver has been obtained by the Server Object, we locate the

Web Server through the methods within the Resolver interface, and copy the IOR of the

Server Object to a specific directory on the Web Server. The sequence is shown in Listing

5.6. On the other side, the Client application specifies the URL when it calls the bind()

method, which accepts the URL as the object name.

// Segment of CESEIncoming.java to create the Server Object implementation (URLNaming option)

CESEIncoming ceseIn = new CESEIncoming (?CESEURLName?);
// Export the created object

boa.obj_is_ready (ceseIn);

// Obtain the initial reference to the Resolver through resolve_initial_reference()

org.omg.CORBA.Object rawResolver = orb.resolve_initial_references (?URLNamingResolver?);
// Convert the Object to a Resover through the use of the Helper call narrow()

com.visigenic.vbroker.URLNaming.Resolver resolver =

 com.visigenic.vbroker.URLNaming.ResolverHelper.narrow (rawResolver);

// Assemble the URL from IP address of the local machine, default port 15000, and CESE interface

java.net.InetAddress localAddress = java.net.InetAddress.getLocalHost();

String thisIP = localAddress.getHostAddress();

String url = ?http:// ? + thisIP + ? :15000/CESE.ior ?;
// Use force_register to overwrite the ior_file

resolver.force_register_url(url, ceseIn);

// Wait for incoming requests

boa.impl_is_ready();

…

Listing 5.6 Get the Initial Reference to the URLNaming Service (Server Object)

 In the coming CORBA 3, the interoperable Naming Service defines one URL-format

 Chapter 5. Design and Implementation

81

object reference, iioploc, which can be typed into a program to reach defined services at a

remote location, including the Naming Service. A second URL format, iiopname, actually

invokes the remote Naming Service using the name the user appends to the URL, and

retrieves the IOR of the named object [Siegel1999]. The integration of CORBA with the

Internet applications is an inevitable trend.

5.6.3 Multithreading and Connection Management

 Java applications, by their very nature, support multiple threads and the Visibroker core

automatically uses threads for internal processing, resulting in a more efficient request

environment. Using multiple threads provides concurrency within an application and

improves performance. Applications can be structured efficiently with threads servicing

several independent computations simultaneously. Visibroker for Java offers two different

thread models, the Thread-per-Session and the Thread Polling model as shown in Figure 5.7.

 Figure 5.7 Visibroker Thread-per-session Model and Thread Pool Model

Client

Client

Client Worker
Thread

Worker
Thread

Worker
Thread

Listener
Thread

Client

Client

Client

Worker
Thread

Worker
Thread

Worker
Thread

Listener
Thread

Thread Pool

In the thread-per-session model, the
listener thread, which is created within the
BOA_init() call, will create a new thread
to handle the work for each individual
connection to the Client.

In the thread pool model, for each method
request that comes in, the listener thread
will put a thread out of the thread pool to
service the request. After the request is
finished, the tread is returned to the pool
for future use.

r1
r2

r

request

r1

r2

 Chapter 5. Design and Implementation

82

 By default the Thread Polling model is the most efficient way to use resources. The

Thread-per-Session model works well for applications in which clients invoke numerous

requests on the same server over a lengthy period. However, if the server has many clients, it

could result in many threads being created to handle them. When an object adapter is

initiated, i.e., BOA_init(), the object server can choose the thread policy by selecting a

particular type of object adapter such as “TPool” or “TSession”, and specifying properity

parameters such as “OAthreadMax”, “OAthreadMin”, “OAthreadIdleTime”,

“OAconnectionMax”.

 Connection management is a built-in feature to give the ORB control over how many

active connections any given Server Object can have active at any given time. A common

problem with CORBA applications is that connections to a Server Object are constantly

created and destroyed, but the resources are never cleaned up. This results in an otherwise

available Server Object unable to accept any new connections because it does not have any

available socket connections. The built-in connection management within Visibroker is

designed to provide an automated mechanism for managing server-side socket connections to

provide maximum scalability.

 Overall, Visibroker selects the most efficient way to manage connections based on the

above mentioned thread policies. The connection management minimizes the number of

client connections to the server. All client requests are multiplexed over the same connection,

even if they are originated from the different threads or bound to different Server Objects as

shown in Figure 5.8. Additionally, released client connections are recycled for subsequent

reconnects to the same server, eliminating the overhead for new connections.

 Chapter 5. Design and Implementation

83

Figure 5.8 Visibroker Connection Management

5.7 Integration with Other H.323 Control Protocols

 This section describes the overall scenario of H.323 signaling. The H.323

recommendation defines the following types of components: Gatekeepers, Gateways,

Multipoint Control Unit (MCU) and Terminals.

? ? The gatekeeper provides call control services to the terminals. Examples of such services

are address translation, admission control, call authorization and directory services, etc.

The RAS (Registration, Admission and Status) protocol defined in H.225 is used to

communicate between a terminal and a gatekeeper. Christian Gosselin from UQAM has

completed the implementation of this part through CORBA Naming Service.

? ? The gateway provides real-time, two-way communications between H.323 Terminals on

the packet-based network and other ITU Terminals on a switched circuit network or to

another H.323 Gateway. It is responsible for providing all translations necessary for

transmission formats and control procedures between the IP supported portion and the

PSTN/ISDN part of hybrid calls. They are not discussed in this paper.

? ? The MCU provides the capability for three or more terminals and gateways to participate

in a multipoint conference. It may also connect two terminals in a point-to-point

Different
Client
Threads

bind() to Object A

bind() to Object A

bind() to Object B

Object A

Object B

Client Application Server Process
A Single
Connection

Different
Server
Objects

 Chapter 5. Design and Implementation

84

conference, which later develop into a multipoint conference. The MCU consists of two

parts: a mandatory Multipoint Controller and an optional Multipoint Processors (MPs).

? ? The H.323 terminal components include a system control unit (H.225, H.245), video

codec (H.261, H.263), audio codec (G.711), etc. The system control part of a terminal is

composed of following three protocols:

1. The RAS signaling function is used for the dialog between a terminal and a

gatekeeper. The associated channel, called the RAS channel, uses the UDP/IP

protocol stack. A main function of the RAS channel is to allow the terminal to be

attached to a gatekeeper by registering itself. Registration basically results in the

update of the gatekeeper’s address translation table. This allows other terminals to

locate the registered terminal and to determine its transport address in order to initiate

a call signaling channel.

2. The call signaling between two H.323 terminals is based on Q.931 messages. The call

signaling channel uses a TCP/IP protocol stack. The call setup phase consists of

sending a Setup message to the destination. The setup phase is considered successful

upon reception of the Connect message from the called terminal. The next phase is

the establishment of an H.245 channel, and the previously resolved location addresses

in RAS are forward to H.245 signaling entities to carry on H.245 control functions.

3. As mentioned earlier, the H.245 protocol defines end-to-end control messages used

for capability negotiation (e.g. supported codecs), master/slave status determination,

opening and closing of logical channels, flow control messages, and so on.

 H.323 defines “Endpoint” as an H.323 terminal, gateway, or MCU. An endpoint can call

 Chapter 5. Design and Implementation

85

and be called, and it generates and/or terminates information streams. Figure 5.9 shows an

example of a control protocol diagram between two H.323 endpoints. Both endpoints are

registered to the same gatekeeper, and are followed with direct call signaling and media

transmission between endpoints. Later phases after two parties are in conversion through

Real-time Transport Protocol (RTP) are not indicated. They would be such as procedures for

closing down the logical channels through H.245, tearing down the call through Q.931 and

releasing the resources used for the call through RAS.

Figure 5.9 Example of Signaling Diagram for H.323 Control Protocols

Alerting

Setup

Call Proceeding

Registration Confirm
Registration Confirm

Registration Request
Registration Request

Endpoint 1 Endpoint 2Gatekeeper

Connect

Terminal Capability Set

Terminal Capability Ack

Master/Slave

Master/Slave Determination

Master/Slave Determination

Open Logical Channel

Open Logical Channel Ack

RTP Audio/Video

RTP Audio/Video

RAS
(Unreliable
End-to-end
Service)

Q.931
(Reliable
End-to-end
Service)

H.245
(Reliable
End-to-end
Service)

RTP
(Unreliable
End-to-end
Service)

RAS
(Unreliable
End-to-end
Service)

Q.931
(Reliable
End-to-end
Service)

H.245
(Reliable
End-to-end
Service)

RTP
(Unreliable
End-to-end
Service)

 Chapter 5. Design and Implementation

86

 Christian Gosselin implements the H.225 signaling in a parallel project. For the part of

integration with RTP, we choose Sun’s Java Media Framework (JMF) 2.0 as the API to

incorporate the audio and video together, and convert (encode/decode) the source to

packetized RTP data [SunJMF1999]. The RTP implementation will transmit the media using

RTP protocol to the destination computer or network in case of unicast or multicast. To

complete the demo, CORBA driven H.225/245 procedures were well integrated with the

audio/video packet transmission through RTP. The advantage for this kind of combination is

mentioned in a later section.

 The overall system architecture for our interface approach for H.323 Signaling based on

CORBA is illustrated as Figure 5.10.

Figure 5.10 System Architecture of CORBA-based Interface Approach for H.323

Signaling

-… -…

-… -…

H.323 Gatekeeper
- start osagent
- start naming

Endpoint 2 (Callee)
- setup event
channel
- starts oadj

Endpoint 1
(Caller)
- setup event
channel

Enterprise LAN (Ethernet)

(1) H.225 RAS
Messaging
(registration/
unregistration)

(3) H.225 Q.931 Messaging (call setup, call proceeding, alerting, connect),
(4) H.245 Messaging (capability exchange, master/slave determination,
logical channel signaling)

(5) Direct RTP Connection

(2) H.225 RAS
Messaging
(registration/
unregistration)

: osagent

 : object interface

IIOP

 Chapter 6. Performance Evaluation

87

Chapter 6

CORBA Performance Evaluation

 When CORBA is used, the implemented distributed system may have performance and

scalability problems, although they are functionally completed. CORBA performance

problems normally fall into one of the following categories: Delay problem at the light load

or delay problem at the heavy load. Typically, the goals of performance, scalability and

maintainability are in conflict. For example, increased scalability often implies a reduction in

performance. There are several techniques for gaining high performance in CORBA

applications and ensuring that the performance remains acceptable when the number of

clients or server objects increases dramatically. They are listed below, and some of them

have been addressed in our design: refining the object model, threading models, distributed

callbacks, client-side caching, performance monitoring, etc.

 This chapter presents the performance results from our experiments with the focus on

latency. Section 6.1 gives an overview of CORBA performance related issues, which serves

as the underlying guideline for our experiments. Section 6.2 presents our test environment

and experimental methods. Section 6.3 gives the results for our tests on ORB’s benchmark

(Visibroker for Java) and H.245 mimicked signaling procedures. Practical H.323 applications

are most likely developed under integrated protocol stacks, using C or Java sockets passing

PER messages. However, we did not have a usable H.323/H.245 test environment to

compare with, although originally we were supposed to get one from Ericsson. In our

benchmark tests, we compared Visibroker to sockets for raw data transferring to get valuable

 Chapter 6. Performance Evaluation

88

performance indications between message size and transfer bandwidth. Section 6.4 gives the

conclusions on performance experiments.

6.1 Performance Overview

6.1.1 IIOP Performance Limitations

 The basic IIOP performance limitation is determined by two fundamental parameters of

ORB sending remote messages: basic call latency, which is the minimum cost of sending any

message at all, and marshaling/demarshaling rate, which determines the cost of sending and

receiving parameter and return values depending on their size.

 For CORBA call latency, the cheapest message is a one-way static invocation that has no

parameters and does not return a result, like “oneway void nullCall();”. It sets the design

limitation for the number of invocations that the ORB can deliver per time interval. However,

the cost of call dispatch varies considerably among environments and depends on a large

number of variables, such as the underlying network technology, the CPU speed, the

operating system, the programming language, and the efficiency of the ORB run time itself.

Developing distributed applications relies more on the performance of the network. Ethernet

is the most common local area network. The capacity of Ethernet ranges from 10 Mbps to

100Mbps. Compared to typical CPU speeds, Ethernet is 3-4 orders of magnitude slower;

compared to typical disk speeds, it is 2 orders of magnitude slower. Previous research

showed that for a test environment such as 10Mbps Ethernet, between two UNIX

workstations (SPARC 20, 50MHz) and commercial ORBs, general-purpose ORBs had basic

call dispatch times of between 1 msec and 5 msec [Hennings1998]. The call latency time

could be reduced through performance optimized ORBs and improved test environment

 Chapter 6. Performance Evaluation

89

[Gokhale1998, Ahmad1999].

 The marshaling/demarshaling rate depends on the type of data transmitted. Simple types,

such as arrays of octet, typically marshaled fastest. Highly structured data, such as nested

user-defined types or object references, is usually marshaled more slow because the ORB has

to do more work at run time to collect the data from different memory locations and copy it

into a transmit buffer. The marshaling rate also depends on the environment variables. For a

rough guide from past experiments, marshaling rates were between 200kB/sec and 800kB/sec

between two UNIX workstations (SPARC 20, 50MHz) over 10Mbps Ethernet, depending on

the type of data and ORBs [Hennings1998].

6.1.2 GIOP Implications

 When comparing CORBA performance to TCP sockets, we noticed that most TCP

implementations included flow control and congestion avoidance mechanisms, which

reduced obtainable bandwidth well below what the underlying network will support. This

was particularly true for short connections, which suffered penalties for connection setup,

slow-start, and tear-down. Performance-intensive applications on the Internet, such as online

games, frequently turned to UDP. One of the H.323 rivals, SIP, could be carried on either

TCP or UDP. UDP was capable of achieving latency and throughput values near to those of

the underlying network. Unfortunately, the GIOP specification prohibited the use of UDP as

an underlying invocation protocol, since UDP is unreliable and connectionless. There had

been some discussion about a GIOP mapping to UDP on the OMG’s CORBA newsgroup,

and some ORBs offered proprietary protocols based on UDP [Mico1999], however no

standard implementation or connectionless version of GIOP existed.

 Chapter 6. Performance Evaluation

90

 CDR and (more significantly) GIOP introduce increased message overhead. If platforms

share the same byte-ordering, then byte swapping is not an issue. But CDR may also

introduce padding into data structures to maintain alignment. Padding can improve

performance for platforms whose memory is aligned on natural boundaries, since messages

can be copied directly to memory. But padding can waste bandwidth if it must be included in

each member of a long sequence. The GIOP header also add the size of message. The header

begins with a 12-byte field providing version and message type information. The rest of the

header is variable length and possibly quite long, depending on the type of message. Request

headers, for example, include the full name of the operation being invoked. The comparison

project found that the length of an operation’s name could significantly affect performance

[DSRG2000].

 CORBA one-way operations could have only input arguments, must be returned void,

and could not raise any user-defined exceptions. The CORBA standard even stated that one-

way operations are only best-effort, not reliable. Intuitively, one-way operations indicated

that the client wished to send a message to the server and then forgot about it. UDP would

seem to have been a logical way to implement one-way operations, but because GIOP

required a reliable protocol, one-way operations were typically implemented using TCP (just

like all other operations). Not only did using TCP slow down the delivery of the message, but

it also required the sender to be blocked for the whole TCP process of connection startup,

message delivery, and shutdown. Declaring an operation as one-way was, therefore, not

likely to improve much of the performance.

 Currently, a potential workaround to enable CORBA applications to use UDP would be

to develop a UDP sender/receiver combination. CORBA could be used for all operations

 Chapter 6. Performance Evaluation

91

needing reliability (including sender and receiver set up), while the UDP sender/receiver

combination could be used for rapid, best-effort communication. While this solution would

require porting the UDP connector to each target platform, it would allow even performance-

intensive applications to take advantage of the facilities provided by CORBA. This was

exactly the scenario we experimented within section 5.7 for protocol integration.

6.1.3 Setting Interceptors in Message Sequence

The CORBA interceptor is interposed in the invocation (and response) paths between a

client and a target object. Visibroker interceptors work directly at the protocol layer and

provide a convenient way to track CORBA message sequences. Interceptors could be defined

at two levels: the request level and the message level. Request-level interceptors are given

access to a request object corresponding to the current request and are able to access and

modify this request before and after it is invoked. Message-level interceptors have access to

the actual message buffers before and after the messages are sent across the network. The

Visibroker time interceptor is a service application based on three interceptor interfaces, i.e.

BindInterceptor, ClientInterceptor, and ServerInterceptor. There are 10 points at which time

interceptors could be invoked during the processing of CORBA message, as shown in Figure

6.1. The time periods of Point 1-2 and 5-6 indicate the time for data marshaling. The time

period of Point 7-8 on the client side indicates the time for data demarshaling. The time

period of Point 3-4 on the server side indicates the time for data marshaling and request

demultiplexing. The request is dispatched based on the object reference and the operation

name from object adaptors to servants. Phase 9 and 10 are time periods for ORB binding and

locating.

 Chapter 6. Performance Evaluation

92

Figure 6.1 Points of Interceptors in Two-way CORBA Message Sequence

 Sample outputs from our test cases are shown as Listing 6.1 for two-way invocation. The

other communication delay covers the time costs on delay between point 2 and 3 or between

point 6 and 7 without ORB binding/locating; the end processing covers the time costs on

client request, server implementation processing. (ms = millisecond)

(Calling Endpoint)

bind: 340 ms

transferIndication: (prepare time) - 40 ms

transferIndication: (send time) - 0 ms

transferIndication: (receive time) - 100 ms

transferIndication: (total call) - 140 ms CESE Outgoing: 480ms

(Called Endpoint)

locate: 10 ms

transferIndication: (process time) - 50 ms

transferIndication: (prepare response) - 10 ms

transferIndication: (send time) - 0 ms

transferIndication: (total call) - 60 ms CESE Incoming : 70ms

Total Process (Including other communication delay, end processing): 760ms

Listing 6.1 Sample Output for Tracking Two-way CORBA Message Sequence though

Visibroker Interceptor

 In our experiments, we intended to use standard CORBA interceptors. However, recent

Other Communi-
cation delay

Reply

1 Prepare time 2

8 Receive time 7

3 Process time 4

6 Prepare response 5

(9)
ORB
interface
bind()

(10)
ORB
interface
located()

Marshaling/

Demarshaling

Demarshaling -
Demultiplexing
/Marshaling

Request
En

d
Pr

oc
es

si
ng

En
d

Pr
oc

es
si

ng

 Chapter 6. Performance Evaluation

93

research indicated that the existence of interceptors could slow down the overall performance

of the ORB, and suggested that ORBs be equipped with a set of lightweight measurement

upcalls that would signal when a particular request passed a prime point [DSRG2000]. Our

further test results also showed those measurements based on interceptors were very

inaccurate. Therefore, our tests were conducted through system calls without the involvement

of interceptors.

6.1.4 ORB Benchmarks

 Over the years, both the CORBA standard and the implementations of CORBA evolved

considerably. Various vendors offered a large range of C++ and Java ORBs differed in many

aspects. OMG Benchmarking Platform Special Interest Group (PSIG)’s Request for

Information (RFI) [OMGBench1998] and its replies such as the one from CORBA

comparison project [DSRG2000] provided guidance for appropriate measurements of

CORBA distributed systems. The objectives of CORBA benchmarking were to help ORB

users to evaluate an ORB implementation, and to evaluate a set of ORBs using the criteria as

follows:

? ? Standard Functionality, such as adherence to the IDL specification, basic remote

invocation functionality, interoperability, etc.

? ? Nonstandard Extensions, such as:

- Communication Extensions, like locating objects, binding to objects, instantiating

implementations

- Multi-threading Extensions, like multi-threaded servers (single thread, thread per

request, pool of threads, thread per client, thread per object), multi-threaded clients

 Chapter 6. Performance Evaluation

94

(non-blocking call, call-back receive), multi-thread ORB and concurrency

? ? Scalability in three aspects:

- speed with respect to number of objects

- resource consumption with respect to number of objects

- resource consumption with respect to the number of incoming (asynchronous) request

? ? Robustness:

- the support for building reliable servers

- the limitation on the data packet size in a single request

- the maximum number of objects with which the server and the client are able to cope

 The comparison project developed various test scenarios for the above ORB

benchmarking criteria and the evaluation for object services. So far, the on-going project

covers following ORBs: omniORB 2.5.0/2.7.1/3.0.0 B2, Orbix 2.2&2.3/3.0, Visibroker 3.0,

ORBacus 3.1.2/4.0.1, TAO 1.1.3. Since our CORBA-based interface approach did not bind

to specific vendor’s ORB, information published on the comparison reports and some

vendors’ performance tests [OMEX2000, JacORB2000] will have reference value for future

product development.

6.2 Experimental Strategy and Test Environment

 Our experiments focused on two parts: Visibroker for Java benchmark and H.245

signaling performance. The benchmark tests were expected to indicate the some key message

effects to the time. The H.245 signaling tests were more specific to H.245 messages. In the

 Chapter 6. Performance Evaluation

95

benchmark part, we used the strategies mentioned in the comparison project for the standard

functionality and the communication extensions. In cases for large amount data transfer, Java

socket and C socket were tested along with Visibroker to show the network or CPU bound.

The marshaling tests focused on Visibroker only. The marshaling tests were run 5000 loops

without the bootstrapping influences. Since the tests fetched system current time in

millisecond, this looping approach provided a simple way to get more accurate and reliable

results, to factor out the disruptions from the measurements, hardware interrupts and

scheduling interrupts in the Windows environment.

 The H.245 latency test strategy was used to analyze the bottleneck causes of the delay,

check the impact of message type and size, as well as the number of requests. The layer

complexity and the size of an H.245 message varied because of the optional fields. For

example, except for the IP/TCP/TPKT header, the layer of TerminalCapabilitySet message

varied from 1 to 5 levels of Sequence/Choice, and the sizes ranged from 14 octets to around

100 octets depending on the optional fields. The result was also compared with the signaling

latency of PER encoded H.245 sample messages. All tests were run 50 times to get the

average time result.

 The test environment for both parts is listed as follows:

? ? CPU: Two Pentium II 350MHz, 512KB cache PC with 128MB RAM each, for client and

server program respectively

? ? Operating System: Windows NT Workstation 4.0 with SP5

? ? Network: 100Mbps Ethernet using 3Com Fast Etherlink Adapter

? ? Compiler: Sun JDK 1.2.2

 Chapter 6. Performance Evaluation

96

? ? Java VM: Just-in-Time (JIT) from Microsoft/Sun

? ? Middleware: Visibroker for Java 3.3 (bundled with JBuilder 3 from Inprise)

6.3 Performance Results

6.3.1 Benchmark Test Results

 The following object operations were evaluated by Visibroker for Java. The results

highlighted the performance aspects when applications were developed based on Visibroker.

? ? Remote Object Connection

 A client connected to a remote object that was registered on a server program. The

average time was 1.8 ms (milliseconds) for the first trip. (The result will be compared later

with marshaling costs.)

? ? Remote Object Creation

 After a client connected to an existing remote object, the existing remote objects

generated a new object, then returned it as a remote object reference to the client. The

average time was 6.3 ms. During this process, an osagent searched the remote machine where

the remote object existed by using a registry list on the network. This list kept the IOR

information about server objects for client lookup.

? ? Remote Method Call

 A remote method received integers as arguments, and returned an integer.

interface ArgTransfer {

 long methodA1(in long a1);

 long methodA2(in long a1, in long a2);

 Chapter 6. Performance Evaluation

97

 long methodA3(in long a1, in long a2, in long a3);

 long methodA4(in long a1, in long a2, in long a3, in long a4);

…

};

Listing 6.2 Remote Method Call Test IDL

 Here, we added tests for Java socket, which used the Java socket library and

DataOutputStream class, and for C socket, which used the Windows C socket library. The

buffer size was 32KB. As shown in Table 6.1 for 3 argument tests, the C socket was the

fastest, followed with the Java socket, and the Visibroker was the slowest.

Table 6.1 Remote Method Call Time for 3 Arguments

Visibroker Java Socket C Socket

0.73 ms 0.32 ms 0.28 ms

 Our tests also showed that increasing the number of arguments does not affect the delay

in Visibroker. The number of arguments can be increased up to 100, without a delay

difference.

? ? Numerical Data Transfer

 The following tests compared the performance of Visibroker to that of sockets for

numerical data transfer. Different array size of byte, int and double were transferred to test

the relation between transfer bandwidth and message size. The results are given in Table 6.2,

6.3, 6.4 with matching Figure 6.2, 6.3, 6.4 to roughly illustrate the corresponding network or

CPU bound.

interface NumercialTransfer {

 typedef sequence<octet> ByteArray;

 Chapter 6. Performance Evaluation

98

 typedef sequence<long> IntArray;

 typedef sequence<double> DoubleArray;

 void methodByte (in ByteArray ba);

 void methodInt (in IntArray ia);

 void methodDouble (in DoubleArray da);

};

Listing 6.3 Numercial Data Transfer Test IDL

- byte array transfer, array size from 0.3125KB to 256KB

Table 6.2 Byte Array Transfer Bandwidth

 Compare Items

Msg. Size (KB) Transfer Bandwidth (MB/s)

Visibroker Java Socket C Socket

0.03125 0.04 0.13 0.18

0.0625 0.08 0.26 0.33

0.125 0.14 0.45 0.54

0.25 0.22 0.63 0.82

0.5 0.51 1.42 1.42

1 1.22 1.62 2.52

2 1.65 3.01 3.53

4 1.75 4.86 5.43

8 2.48 6.08 6.65

16 3.52 7.12 7.57

32 3.85 8.22 8.22

64 3.82 9.22 8.86

128 3.61 9.40 9.01

256 4.31 9.38 9.03

 reaching network bound of

12.5MB/s ideally provided by

100BaseT Ethernet

 Chapter 6. Performance Evaluation

99

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160 180 200 220 240
Array Size in KB

Tr
an

sf
er

 B
an

dw
id

th
 in

 M
B

/s Visibroker
Java Socket

C Socket

Figure 6.2 Performance Comparison for Byte Array Transfer Bandwidth

- int array transfer, array size from 0.125KB to 1024KB

Table 6.3 Int Array Transfer Bandwidth

 Compare Items

Msg. Size (KB) Transfer Bandwidth (MB/s)

Visibroker Java Socket C Socket

0.125 0.16 0.41 1.02

0.25 0.32 0.65 1.42

0.5 0.54 0.83 1.84

1 0.98 1.01 2.20

2 1.25 1.45 2.86

4 1.42 1.56 4.36

8 1.49 1.74 5.32

16 1.69 1.79 6.06

32 1.73 1.86 6.76

64 1.79 2.45 7.22

128 2.02 2.78 7.35

256 1.86

re
ac

hi
ng

 C
PU

 b
ou

nd
 a

s
co

m
pa

re
d

to

C
 S

oc
ke

t w
hi

ch
 is

 s
til

l i
nc

re
as

in
g

3.06 7.25

 Chapter 6. Performance Evaluation

100

512 1.90 3.23 6.82

1024 1.82

3.32 6.78

Figure 6.3 Performance Comparison for Int Array Transfer Bandwidth

- double array transfer, array size from 0.25KB to 2048KB

Table 6.4 Double Array Transfer Bandwidth

 Compare Items

Msg. Size (KB) Transfer Bandwidth (MB/s)

Visibroker Java Socket C Socket

0.25 0.31 0.56 0.85

0.5 0.72 0.75 1.36

1 1.01 1.05 2.03

2 1.34 1.22 2.88

4 1.52 1.18 4.40

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200 220 240

A rray Size in KB

Visibroker

Java Socket

C Socket 0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Visibroker

Java Socket

C Socket

 Chapter 6. Performance Evaluation

101

8 2.06 1.27 5.40

16 2.23 1.29 6.32

32 2.28 1.33 7.00

64 2.40 1.35 7.52

128 2.24 1.98 7.70

256 2.19 2.23 7.61

512 2.06 2.56 7.01

1024 1.96 2.78 6.86

2048 1.93 re
ac

hi
ng

 C
PU

 b
ou

nd
 a

s
co

m
pa

re
d

to
 C

 S
oc

ke
t

w
hi

ch
 is

 s
til

l i
nc

re
as

in
g

2.95 6.93

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200 220 240

Array Size in KB

Tr
an

sf
er

 B
an

dw
id

th
 in

 M
B

/s

Visibroker

Java Socket

C Socket

Figure 6.4 Performance Comparison for Double Array Transfer Bandwidth

 The result showed that byte array transfer had a similar transfer rate for both C and Java

socket. When the data amount were added, both can reached the maximum data transfer rate

near the 100Mbit/s of the network bound. For int and double array transfer, the Java socket

was far worse than that of C socket. The reason was the high cost of byte reordering and data

copy in cases for Java, which led to the CPU being bound for medium array size (4KB to

1MB). Visibroker for Java’s byte array transfer had a better performance result compared to

its int/double array transfer, which also had the CPU being bound for medium array transfer.

 Chapter 6. Performance Evaluation

102

For small amount data transfer that is size less than 1KB, in all cases, the bandwidth followed

the increase of data size. The point to be mentioned here is that H.245 messages were

normally less than 1KB. So, in terms of message size, the increase of message size followed

the increase of the transfer bandwidth. This will lighten the effect of message size on delays.

? ? Visibroker Marshaling Test for Primitive and Complex Data Types

 The following tests were conducted on Visibroker only, with the IDL as Listing 6.4.

interface Marshal {

 enum DateEnum {

 Mon, Tue, …

 };

 union DateUnion switch (DateEnum){

 case Mon: boolean ub;

 case Tue: char uc;

…

 };

 typedef sequence<boolean> SeqBoolean;

 typedef sequence<char> SeqChar;

 typedef sequence<double> SeqDouble;

 typedef sequence<float> SeqFloat;

 typedef sequence<long> SeqLong;

 typedef sequence<octet> SeqOctet;

 typedef sequence<short> SeqShort;

 typedef sequence<string> SeqString;

 struct Octboo_T1 {

 octet octetVal;

 boolean booleanVal;

 };

 typedef string<5> BString_T1;

 typedef sequence<float,5> BSeqFloat_T2;

 typedef sequence<Octboo_T1,5> BSeqOctboo_T2;

 typedef sequence<BString_T,5> BSeqBString_T2;

 typedef sequence<BSeqFloat_T2,5> BSeqBSeqFloat_T3;

 typedef sequence<BSeqOctboo_T2,5> BSeqBSeqOctboo_T3;

 Chapter 6. Performance Evaluation

103

 typedef sequence<BSeqBString_T2,5> BSeqBSeqBString_T3;

 // test 1

 void nullCall();

 // test 2

 void sendPrimitives(in boolean b, in char c, in double d, in float f, in long l, in octet o, in short s);

 // test 3

 void sendString(in string str);

 // test 4

 void sendUnion(in DateUnion u);

 // test 5

 void sendSeqPrimitives(in SeqBoolean sb, in SeqChar sc, in SeqDouble sd,

 in SeqFloat sf, in SeqLong sl, in SeqOctet so, in SeqShort ss);

 // test 6

 void sendSeqStrings(in SeqString sstr);

 // test 7

 void sendSeqSeqs (

 in BSeqBSeqBString_T3 ssstr, in BSeqBSeqOctboo_T3 ssoctboo, in BSeqBSeqFloat_T3 ssf);

…

};

Listing 6.4 Marshaling Test IDL Example

 Test case test1 represented a "null call". Test cases test2, test3, and test4 marshaled

primitives (arguments being passed together or separately), string (length=80), and union

types. Test cases test5 and test6 marshaled sequences of primitives (length=10), strings

(length=20). Test case test7 marshaled nested sequences. We also varied the number of

sequence size during the test. Table 6.5 indicated the average execution time of the

invocation in 5000 loops without the bootstrapping.

Table 6.5 Marshaling Test for Round Trip Times

 Test1 Test2 Test3 Test4 Test5 Test6 Test7

Average time in 5000 loops (ms) 0.725 0.738 0.744 0.745 0.822 1.030 2.730

 Chapter 6. Performance Evaluation

104

 Compared with the previous results for bootstrapping cost, such as opening a

connection, locating and creating an object, it was shown that there was a significant

difference between the time it took to invoke an operation for the first time and for all

subsequent times. The marshaling costs for passing primitive data types were slightly

different, and the variation was about 10%. Time to pass a sequence or an array of a basic

IDL data type depended mostly on the length of data in octets. Unless a very large number of

complex arguments were passed, the constant overhead of an invocation overshadowed the

impact of argument sizes and types. Hence, it paid off to call less often with more arguments

than vice versa.

 As roughly illustrated in Figure 6.5, a high throughput rate can could usually be

achieved by using few requests, each transferring a large amount of data, instead of many

requests, each transferring a small amount of data. However, when transferring an extremely

large amount of data in a single message, the throughput rate decreased.

Figure 6.5 Dependency between Data Throughput and Message Size

Small Large
Message
size
(MB/reques

Throughput
(MB/s)

Low

High

 Chapter 6. Performance Evaluation

105

6.3.2 H.245 Signaling Test Results

 The H.245 signaling tests were kept in the same test environment and followed the

similar test strategies as the ones used in previous benchmark tests. The sample result of our

H.245 call latency test is shown as Figure 6.6, which presents the average distribution of the

time in a CORBA invocation under the cases of H.245 signaling procedures, such as

capability exchange, master slave determination, logical channel signaling.

Figure 6.6 Average Distribution of Time in a Sample CORBA Invocation

? ? Bootstrapping Costs

 A large portion of time was spent on ORB binding, object locating, communication

delay and object implementation processing, totally a count of more than 75%. There were

several reasons for this large overhead. First of all, the osagent had to search the registry list

to find the right object to invoke. The intra-ORB communications between osagent might

also introduce extra time overhead. Reducing the number of osagents in the network could

speed up the communication. The binding operation is not part of CORBA standard. It is a

Visibroker’s proprietary extension allowing dynamic communication to the Visibroker for

Java directory service. Different ORB implementations might give significant different

Pr
op

or
tio

n
(%

)

Marshaling Demarshaling ORB Communication Object End

 Binding Delay Location Processing

60
50
40
30
20
10
 0

 Chapter 6. Performance Evaluation

106

results. Second, starting the server object (like initial object_to_string()) took the extra first

time cost. Other than those reasons, Object activation daemon, which functioned as an

implementation repository, was relatively time-consuming for the first time object activation,

but reached a much better performance in later activation.

? ? Marshaling/Demarshaling Costs

 The marshaling/demarshaling engines in the ORB performed data conversion between

the native format used in the client/server implementation and the CORBA CDR format. For

data structures, the sending ORB must collect the data from different locations in memory

and copy it into a transmit buffer. Then, later on, the receiving ORB must call the traversal

routine to parse the structure based on whatever definition for the structure it has. The

marshaling/demarshaling costs, which count for about 15% - 25% of the total time costs,

weighed as another important factor in call latency. The differences of H.245 message size

due to various optional fields were not the critical factors affecting the performance.

? ? CDR verses PER

 An early report in 1993 showed that PER could provide a relatively small size of

encoded message and up to the speed of 12Mbps for data encoding and decoding, as

compared to that of hand coded C en/decoder. In their tests, the C en/decoder had a relatively

large size of encoded message (more than two times) and an even faster speed of 240 Mbps

for en/decoding (Tests run on a MIPS R3260, 48MB RAM, Unix OS 4.51) [Sample1993]. In

order to get comparable result for the signaling of H245 messages, we set up a separate

experiment based on a commercial ASN.1 compiler and PER encoder/decoder (Java) from

OSS Nokalva [Nokalva2000]. The company also provided an ASN.1 PER encode/decode

tool for C/C++, and the related open source information was available from the OpenH323

 Chapter 6. Performance Evaluation

107

project [OpenH3232000]. The result in Table 6.6 shows the times for transferring message of

Terminal Capability Set as Listing 5.1 described. Obviously, PER provided a much faster

encoding/decoding speed than CDR, but this just shown what a typical implementation could

be achieved when using commercial off the shelf tools. Developers can always do better by

doing custom optimizations or by taking advantage of newer state of the art technologies

when they become available, such as much faster processors.

Table 6.6 PER and CDR Marshaling Tests for H.245 TCS Message Sample

5000 loop average Mashaling(Encoding) Demashaling(Decoding)

PER (ms) 0.445 0.654

CDR (ms) 1.256 1.345

6.4 Performance Conclusions

 Sum up the test results, the latency of H.323/H.245 signaling is determined by a number

of factors, such as ORB binding and message marshaling/demarshaling costs. The ORB

binding time is an important, but proprietary factor, which might be changed for other vendor

products. The sizes or the types of the complex messages affect the marshaling/demarshaling

costs, but they are not in the range that may cause network or CPU resource problems.

Reducing the number of remote calls with composed messages to carry on enhanced

functionality may give a better system performance. The first time bootstrapping has a longer

overhead than the rest of the times for invocations. The performance is also influenced by the

implementation language, target machine (underlying instruction set architecture) and

optimization of approaches.

Chapter 7. Conclusions and Future Work

108

Chapter 7

Conclusions and Future Work

7.1 Conclusions

 We viewed this project as an exploring and learning process. This CORBA-based

interface-centric signaling approach was positioned to provide a vision for future telephony

services. We proved that CORBA clients with limited resources can provide all the H.323-

like end system capabilities. We found this approach:

? ? Made it easier for program developers to express the service capability on a distributed

computing environment as it defines the message and operation in common accessible

IDL interfaces. It had the advantage not only of all the inherent distribution

transparencies, but also the simplicity that came from using a single messaging protocol,

IIOP.

? ? Using CORBA as a network wrapper eliminated a lot of low-level (and traditionally

error-prone) coding tasks such as parsing typed data and performing byte-order

conversions, and facilitated interoperability between different platforms and

programming languages. CORBA also made it easy to move the locations of application

components around within the network, without altering any code.

? ? Using various CORBA services helped programmers to achieve advanced functionality in

the implementation.

Chapter 7. Conclusions and Future Work

109

? ? The H.245 message with complex data structure in CORBA requests did have an impact

on call set-up delays, although the amount was less important compared to costs in ORB

binding, and end processing. For distributed applications where bandwidth and latency

requirements were well below what was available at the transport layer, CORBA was

seen as an obvious choice as the development architecture.

7.2 Future Work

 The work of this thesis offered a number of research opportunities:

? ? While comprehensive in scope, H.323 has been faulted for being too bulky, both in terms

of documentation as well as in the complex interplay of several protocols. This could lead

to more than 15 signaling messages for single point-to-point call set-up. Its competitor,

SIP, while equally comprehensive, offered a simpler alternative by being “Internet ready”

when introducing telephony value-added services. Future research may be directed to

implementing our CORBA-based interface-centric approach in SIP.

? ? CORBA provided a set of high-level, reusable services, which potentially save a great

deal of development time. Besides the ones mentioned in our approach, other services

such as notification service, persistency object service, object transaction service,

concurrency services are worth exploring in the telecommunication environment.

? ? As with IP telephony, wireless Internet is another fast growing industrial sector with

similar concerns and challenges. Further research could test our interface-centric

approach on hand-held devices through a set of Wireless Application Protocols (WAP),

which uses ASN.1-based binary XML (eXtensible Markup Language) for narrow-band

communications [WAPForum2000].

Chapter 7. Conclusions and Future Work

110

? ? One of the advantages offered by CORBA was the application’s scalability, which was

recognized as a primary factor to be considered in the design of distributed system.

Further research on CORBA’s usage in IP telephony services could be conducted on

factors affecting scalability, such as multithreading offered by ORB core, demultiplexing

offered by object adapter and implementation repository.

 References

111

REFERENCES

1. [Ahmad1999] Ahmad, I, Majumdar, S., “Achieving High Performance in CORBA-based
Systems with Limited Heterogeneity”, under review, 1999

2. [ASNHome1997] ASN.1 Home, http://www-sop.inria.fr/rodeo/personnel/hoschka/
asn1.html

3. [ASNResource2000] ASN.1 Resource Links,
http://asn1.elibel.tm.fr/en/links/index.htm#tools

4. [Balabanian1996] Balabanian, V., etal., “An Introduction to DSM-CC (Digital Storage
Media – Command and Control)”, IEEE Communications Magazine, pp122-127,
November 1996

5. [Beddus2000] Beddus, S., etal., “Opening Up Networks with JAIN Parlay”, IEEE
Communications Magazine, 136-143, April 2000

6. [BellLabs1998] Bell Labs Translation Tools, http://nsm.research.bell-
labs.com/~mazum/CorbaSnmp/ register.html

7. [Berg1998] Berg, H. A., Brennan, S., “CORBA and Intelligent Network (IN)
Internetworking”, IS&N’98, pp463-475, 1998

8. [Biswas1999] Biswas, J., etal., “White Paper on Application Programming Interfaces for
Networks”, IEEE P1520, January 1999

9. [DAVIC1998] DAVIC 1.4 Specification, 1998

10. [DSRG2000] Distributed Systems Research Group, Charles University, “CORBA
Comparison Project”, http://nenya.ms.mff.cuni.cz/thegroup/COMP/, 2000

11. [Dubuisson2000] Dubuisson, O., “ASN.1 – Communication between Heterogeneous
Systems”, Academic Press, 2000

12. [Fischbeck1999] Fischbeck, N., Kath, Kath, O., “CORBA Internetworking over SS.7”,
IS&N’99, pp101-113, 1999

13. [Gokhale1998] Gokhale, A. S., Schmidt, D.C., “Measuring and Optimizing CORBA
Latency and Scalability Over High-speed Networks”, IEEE Transaction on Computers,
pp391-413, April 1998

14. [Hamdi1999] Hamdi, M., etal., “Voice Service Internetworking for PSTN and IP
Networks”, IEEE Communications Magazine, pp104-111, May 1999

15. [Henning1998] Henning, M., Vinoski, S., “Advanced CORBA Programming with C++”,
AWL, 1998

16. [Inprise1999] Inprise, “Visibroker for Java 3.3/4.0 Programmer’s Guide”, 1998/1999

17. [InprisePress2000] Inprise, http://www.inprise.nl/about/press/2000/ericsson.html, 2000

18. [ITU1995] ITU RM-ODP, “Reference Model of Open Distributed Processing”, 1995-
2000, http://www.dstc.edu.au/Research/Projects/ODP/standards.html

 References

112

19. [ITU1996a] ITU-T Rec. H.323, “Visual Telephone Systems and Terminal Equipment for
Local Area Networks which Provide a Non-Guaranteed Quality of Service”, May 1996

20. [ITU1996b] ITU-T Rec. H.225, “Line Transmission of Non-Telephone Signals”, May
1996

21. [ITU1996c] ITU-T Rec. H.245, “Control Protocol for Multimedia Communication – Line
Transmission of Non-Telephone Signals”, June 1996

22. [JacORB2000] JacORB, http://jacorb.inf.fu-berlin.de/, 2000

23. [Jepsen2000] Jepsen, T., “Java and Telecommunications in the New Millennium”, IEEE
Communications Magazine, January 2000

24. [JIDM1997] Joint Inter-Domain Management (JIDM): Specification Translation,
http://www.opengroup.org/onlinepubs/8349099/toc.htm, 1997

25. [Kaliski1993] Kaliski, B. S., “A Layman’s Guide to a Subset of ASN.1, BER, and DER”,
ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc, An RSA Laboratories Technical Note,
November 1, 1993

26. [Lu1999] Lu, T., Pagurek, B., “Report on the Comparison of Multimedia Control
Specification”, Project Report, October 1999

27. [Lu2000] Lu, T., Pagurek, B., “H.323 Signaling Using CORBA – Implementing H.245
Control Protocol for Multimedia Communication”, Project Report, May 2000

28. [Mico1999] Kay Roemer, http://www.cs.uni-magdeburg.de/~aschultz/mico/mico-
announce/msg00000.html, 1999

29. [Mitra1999a] Mitra, N., “A Long-Term Approach to Signaling for IP-based Services”,
Ericsson Internal, April 1999

30. [Mitra1999b] Mitra, N., Glitho, R., “Research Proposal for: H323 Signaling Using
CORBA”, Ericsson Internal, April 1999

31. [Mitra1999c] Mitra, N., Brennan, R., “Design of the CORBA/TC Inter-working
Gateway”, IS&N’99, pp84-100, 1999

32. [Mungee1999] Mungee, S., Surendran, N., Schmidt, D. C., “The Design and Performance
of a CORBA Audio/Video Streaming Service”, HICSS-32 Int’l Conference on System
Sciences, 14pp, January 1999

33. [Nexus1999] Nexus Translation Tools, http://ain.kyungpook.ac.kr/nexus/download.html

34. [Nokalva2000] Nokalva, OSS ASN.1 Tools for Java (PER),
http://www.oss.com/products/asn1java/javatools.html, 2000

35. [OMEX2000] OMEX benchmark tests for performance, scalability, interoperability and
conformance, for Orbix2.3, Orbix 3, Visibroker, M3, OmniORB, Mico,
http://www.omex.ch/CorbaTB/corbatb.htm

36. [OMG1998] OMG Specification, “CORBA Services: Common Object Services
Specification”, 1998, http://www.omg.org/library/csindx.html

 References

113

37. [OMG2000] OMG Specification, “CORBA: Common Object Request Broker
Architecture and Specification”, v 2.4, OMG, October 2000,
http://www.omg.org/library/c2indx.html

38. [OMGBench1998] OMG PSIG, “ORBOS Platform Task Force Benchmark RFI”, May
1998

39. [OMGTC1998a] OMG TC Document, “CORBA Messaging”, May 1998

40. [OMGTC1998b] OMG Telecom Specification, “Notification Service”, June 1998

41. [OMGTelecom1998a] OMG Telecom Specification, “Control and Management of
Audio/Video Streams”, June 1998

42. [OMGTelecom1998b] OMG Telecom Specification, “Interworking between CORBA and
TC Systems”, October 1998

43. [OMGTelecom1998c] OMG Telecom RFP, “JIDM Interaction Translation – Final
Submission to OMG’s CORBA/TMN Interworking RFP”, October 1998

44. [OpenH3232000] The Open H323, www.openh323.org, 2000

45. [Orbycom2000] Orbycom Translation Tools, http://www.orbycom.fr/translators.html

46. [Parlay2000] The Parlay Forum, www.parlay.org, 2000

47. [Rasmussen1998] Rasmussen, S., “A CORBA to CMIP Gateway: A Marriage of
Management Technologies”, IS&N, pp477-492, 1998

48. [Sample1993] Sample, M., “Implementing Efficient Encoders and Decoders for Network
Data Representations”, IEEE INFOCOM, pp11441153, 1993

49. [Schmidt2000] Schmidt, D.C., http://www.cs.wustl.edu/~schmidt/corba-overview.html

50. [Schulzrinne1997] Schulzrinne, H, “A Comprehensive Multimedia Control Architecture
for the Internet”, Network and Operating System Support for Digital Audio and Video,
Proceedings of the IEEE 7th International Workshop on, 1997

51. [Schulzrinne1998] Schulzrinne, H., Rosenberg, J., “Signaling for Internet Telephony”,
IEEE Proceedings, 6th Int’l Conference on Network Protocols, pp298-307, 1998

52. [Siegel1999] Siegel, J., “A Preview of CORBA 3”, IEEE Computer, pp114-116, May
1999

53. [SunJAIN2000] “The JAIN APIs”, Sun Microsystems, http://www.java.sun.com/
products/jain/, 2000

54. [SunJMF1999] “Java Media Framework API Guide”, JMF 2.0 FCS, Sun Microsystems,
November, 1999

55. [WAPForum2000] www.wapforum.org, 2000

 Appendix A

114

Appendix A: Conversion of H.245 Message Syntax (ASN.1 to

IDL)

This document attached with h245.idl file for a better demonstration of the conversion.

1. Partial hierarchy illustration for Capability Exchange Module in h245.idl:

Level 1: h245CLIENT.idl

Level 2: tLM.idl

Level 3: cE.idl

Level 4: cETLC.idl, cEMC.idl

Level 5: cEVC.idl, cEAC.idl, cEDC.idl, cEC.idl

Level 6: nSM.idl, sNM.idl

Level 7: ASN1Types.idl

2. Full Module definitions:

module tLM: Top level message

module sNM: Sequence number message definition

module nSM: Non standard message definition

module mSD: Master-slave determination definition

module cE: Capability exchange definition

module cETLC: Capability exchange definitions : top level capability description

module cEMC: Capability exchange definition: Multiplex capabilities

module cEVC: capability exchange definition: Video capabilities

module cEAC: Capability exchange definition: Audio capabilities

module cEDC: Capability exchange definitions: Data capabilities

module cEC: Capability exchange definition: Conference

module lCS: Logical channel signaling definitions

module h223MT: H.223 multiplex table definitions

module rM: Request mode definitions

module rMM: Request mode definitions: Mode description

 Appendix A

115

module rMV: Request mode definitions: Video modes

module rMA: Request mode definitions: Audio modes

module rMD: Request mode definitions: Data modes

module rME: Request mode definitions: Encryption modes

module rTD: Round trip delay definitions

module mL: maintenance loop definitions

module cOMM: Communication mode definitions

module cREQ: Conference request definitions

module cRSP: Conference response definitions

module h223ARR: H223AnnexA reconfiguration request definitions

module h223AARR: H223 Annex A reconfiguration response definitions

module cMSTCS: Command message: Send terminal capability set

module cME: Command message: Encryption

module cMFC: Command message: Flow control

module cMCES: Command message: Change or end session

module cMCC: Command message: Conference commands

module cMMH230C: Command message: Miscellaneous H.230-like commands

module iM: Indication message definitions

module iMFNU: Indication message module: Function not understood

module iMFNS: Indication message: Function not supported

module iMC: Indication message: Conference

module iMMH230I: Indication message: Miscellaneous H.230-like indication

module iMJI: Indication message: Jitter indication

module iMH223LCS: Indication message: H.223 logical channel skew

module iMH225MLCS: Indication message: H.225.0 maximum logical channel skew

module iMMCLI: Indication message: MC location indication

module iMVI: Indication message: Vendor identification

module iMNATMVCI: Indication message: New ATM virtual channel indication

module iMUI: Indication message: User input

 Appendix A

116

3. Diagram for H245 Message Modules

Notes:

1. “ ” : include relationship;

2. All modules include ASN1Types Module;

3. H245SignalingEntity Module working on top of TLMModule with user specific

interfaces based on procedure definitions

TLMModule

ASN1TYPE

NSM

MSD

CE

CEMC

CETLC

SNM

NSM

NSM

CEVC

NSM

CEAC

NSM

CEDC

NSM

CEC

NSM

 Appendix A

117

NSM

CEVC

CEAC

CEDC

LCS

RME

CREQ

SNM

H223MT

RM

RMM

NSM

RMV

NSM

RMA

NSM

RMD

NSM

RME

NSM

CEDC

SNM

 Appendix A

118

SNM

RTD

LCS

ML

NSM

COMM

RMV

RMA

RMD

LCS

CREQ

CREQ

CRSP

H223ARR

H223AARR

CE

CMSTCS

SNM

CME

NSM

LCS

CMFC

 Appendix A

119

NSM

CMCES

LCS

CMCC

CREQ

LCS

CMMH230C

TLM

IMFNU

IMC

IMFNS

LCS

IMMH230I

LCS

IMJI

LCS

IMH223LCS

LCS

IMH225ML

LCS

IMMCLI

 Appendix A

120

4. Content of ASN1Types.idl

// ASN1Types.idl

#ifndef _ASN1TYPES_IDL_

#define _ASN1TYPES_IDL_

#pragma javaPackage GlobalASN1Types

#pragma prefix "GlobalASN1Types"

// ASN.1 base types

typedef octet ASN1_Null;

typedef boolean ASN1_Boolean;

typedef short ASN1_Integer16;

typedef unsigned long ASN1_Integer;

typedef long ASN1_Integer64[2];

// unsigned integers

typedef unsigned short ASN1_Unsigned16;

typedef unsigned long ASN1_Unsigned;

typedef unsigned long ASN1_Unsigned64[2];

typedef double ASN1_Real;

typedef sequence<octet> ASN1_BitString; // PIDL defined

typedef sequence<octet> ASN1_OctetString;

typedef string ASN1_ObjectIdentifier;

typedef any ASN1_Any;

typedef any ASN1_DefinedAny;

struct ASN1_External {

 ASN1_ObjectIdentifier syntax;

 ASN1_DefinedAny data_value; // by syntax

NSM

IMVI

IMNATMV

NSM

IMUI

 Appendix A

121

};

// ASN.1 strings which may not contain binary zeros

typedef string ASN1_IA5String;

typedef string ASN1_NumericString;

typedef string ASN1_PrintableString;

typedef string ASN1_TeletexString;

typedef string ASN1_T61String;

typedef string ASN1_VideotexString;

typedef string ASN1_VisibleString;

typedef ASN1_VisibleString ASN1_GeneralizedTime; // PIDL defined

typedef ASN1_VisibleString ASN1_UTCTime;

// ASN.1 strings which may contain binary zeros

typedef sequence<octet> ASN1_BMPString;

typedef sequence<octet> ASN1_GeneralString;

typedef sequence<octet> ASN1_GraphicString;

typedef sequence<octet> ASN1_ISO646String;

typedef sequence<octet> ASN1_UniversalString;

typedef ASN1_GraphicString ASN1_ObjectDescriptor;

#pragma javaPackage

#endif

/* _ASN1TYPES_IDL_ */

 Appendix B

122

Appendix B: CORBA-based Interface-centric Approach

Implementation for H.323 Signaling (Screen Shot)

H.323 Gatekeeper:

Step 1. Start Visibroker Smart Agent (osagent):

When programmers develop CORBA application, all attributes and operations of the remote

implementation are defined in CORBA Interface Definition Language (IDL). However, IDL

does not cover any concept about where the remote object is located or how to connect to it.

The CORBA specification defines how an object implementation makes itself available to

start receiving invocations and how it creates a unique reference for itself, the Interoperable

Object Reference (IOR). Visibroker smart agent (osagent) is a dynamic, distributed directory

service that provides facilities for both client applications and object implementations. Object

implementations register their objects with the osagent so that client applications can locate

and use those objects. When an object or implementation is destroyed, the osagent removes

them from the list of available objects.

 Appendix B

123

Step 2. Start CORBA Naming Service (H.225):

The naming service allows us to associate one or more logical names with an object

implementation and stores those names in a namespace. There are important differences

between the Visibroker naming service and osagent. The naming service allows object

implementation to bind logical names to its object at runtime. The Visibroker 3.3 naming

service must be start with vbj, which is the JDK provide by Inprise, since some irregularities

have been noticed with JDK1.2.2 from SUN.

 Appendix B

124

Step 4. Start Gatekeeper (Domain Controller) (H.225):

 Appendix B

125

H323 Caller Side

Step 1. Start URL Naming Service (H.245 optional):

This is an alternative to the CORBA Naming Service and osagent to locate objects as used in

H.225 part. The URL Naming Service uses any commercial Web Server as a Directory

Service for retrieving stringified object IORs. The only requirement is that the Web

Server/firewall enables HTTP PUT commands. Here, we use Visibroker Gatekeeper (IIOP

Proxy Server) to simulate the function of Web Server.

 Appendix B

126

Step 2. Start Event Service for Capability Changes (H.245):

CORBA Event Service supports asynchronous, disconnected communications between

CORBA clients. There are three primary participants in the Event Service: Consumer,

Supplier, and Channel. There are two general approaches for initiating event communication

between suppliers and consumers: The Push Model and the Pull Model. The contents of

events are of type Any, which provides a loosely typed interface between consumers and

suppliers. Here, we implemented the Push Model to allow H.245 Capability Exchange

Signaling Entity (CESE) to notify its capability changes to the other end. This is done after

regular H.245 signaling.

 Appendix B

127

Step 3. Start H323 Terminal:

This is the GUI of H.323 Caller for demonstrating H.225/H.245 signaling procedures. This

part starts after Step. 2 in the Callee side.

Step 3.1

An H.323 Caller enters the alias of its own address, as ted@sce.carleton.ca, followed with the

destination address, as christian@info.uqam.ca. The user clicks the “Create Terminal” button

to create the H.225 RAS terminal.

 Appendix B

128

Step 3.2

An H.323 Caller registers in Domain Controller. Please check Step 3.3 on the Callee side for

Domain Controller’s reaction.

Step 3.3

An H.323 Caller creates an outgoing call with Q.931 messages.

 Appendix B

129

Step 3.4

An H.323 Caller places a direct call to the Callee. Please check Step 3.4 on the Callee side

for the Callee’s reaction.

Step 3.5

An H.323 Caller gets the reaction from the Callee.

 Appendix B

130

Step 3.6

An H.323 Caller starts H.245 signaling. There are three procedures altogether, i.e. Capability

Exchange, Master/Slave Determination and Logical Channel Signaling. Messages are

translated from their original definition in ASN.1 to CORBA IDL user defined data types.

The time box indicates the time for all three procedures. We have done some analysis and

made improvements on the performance by using Visibroker message interceptor.

 Appendix B

131

Step 4. Start RTP video transmission:

This is implemented with Java Media Framework (JMF) 2.0. Using the RTP port number

agreed to in previous H.245 Logical Channel Signaling procedures, a caller starts to transfer

the video across the wire. Instead of transmitting the local file as

“file:/C:/Jbuilder/myprojects/test/h323080300/Jmfworld.avi”, the program also can capture

datasource as “vfw://0” on Windows or “sunvideo://0/1/JPEG” on Solaris through a video

camera and corresponding video board. Some formats of video may not be transferred

because of the limitation in support for codec.

 Appendix B

132

H323Callee:

Step 1. Start URL Naming Service (H.245 optional):

 Appendix B

133

Step 2. Start Object Activation Daemon (H.245 optional)

The Object Activation Daemon (OAD) handles large systems of object implementation.

OAD works in conjunction with the CORBA Implementation Repository database to start up

object implementation on demand. It uses state objects to indicate whether the Server Object

is active, inactive or waiting for activation as for H.245 signaling entities.

 Appendix B

134

Step 3. Start H323 Terminal

Step 3.1

An H.323 Callee enters the alias of its own address, as christian@info.uqam.ca, followed

with the destination address, as ted@sce.carleton.ca. Click the “Create Terminal” button to

create the H.225 RAS terminal.

 Appendix B

135

Step 3.2

Terminal created and registered at Domain Controller.

Step 3.3

Domain Controller matches alias to IOR.

 Appendix B

136

Step 3.4

Receive Incoming call.

Step 3.5

Send back “Alert”.

 Appendix B

137

Step 3.6

Send back “Connect”.

 Appendix B

138

Step 4. Be ready to receive RTP Video:

 Appendix B

139

Step 4.1

Receiving video transmitted from Caller. See, the globe is rolling. ?

