
Integration of Mobile agents with SNMP:
Why and How

B. Pagurek, Y. Wang, and T. White
Department of Systems and Computer Engineering

Carleton University, Ottawa Ontario Canada
{bernie, ywang, tony}@sce.carleton.ca

Abstract
Mobile agents have been proposed as a solution to the problem of the management
of increasingly heterogeneous networks. However, the proposed solutions often
ignore the value of legacy solutions and protocols. This paper extends an existing
mobile agent framework targeted at network management with an architecture and
design for integration with an SNMP agent. Brief descriptions of the use of this
solution for the provisioning of ATM permanent virtual circuits and providing a
Mobile Agent MIB are also provided.

Keywords
SNMP, DPI, mobile agents

1. Introduction

In recent years, a number of papers involving mobile agents in network management
have been written. These have considered, for example, tasks of network health
monitoring [1], [2], fault diagnosis [3], and network configuration [4]. There are two
parts to the "why" question of the title: "Why mobile agents?" and "Why integrate?"
There are also two aspects to the "how" part of the title involving whether using pure
SNMP is sufficient to accomplish the integration, or whether some other protocol is
appropriate.

Although it is not the main focus of this paper, let us consider first, "Why mobile
agents?" The main argument used for mobile agents is to get management
intelligence out into the network where needed and preferably on the individual
devices. That is, what is needed, where it is needed, when it is needed. Efficiency
arguments concerning mobile agents depend very much on the problem to be solved,
and whether or not you think computing power is increasing faster than bandwidth.
There are very few examples in the literature that really present a commanding
argument based on real data for real problems, although a model has been proposed
[5]. No one has really come up with the killer mobile agent application yet, although
it is clear that in large networks it is not possible to monitor many sub-networks over
a WAN without causing a bottleneck at a centralized manager. This problem is
typically handled by employing distributed mid-level managers or data collectors
which usually are not mobile. SNMPv2 attempted to introduce the manager-to-
manager MIB for such purposes and failed (but mainly for other reasons).

 Recently also, the concept of Management by Delegation was expounded [6] and
the IETF Distributed Management (DISMAN) Working group has been working
since 1996 to formalize and standardize some of these ideas. Work initiated by Levy

0-7803-5930-5 (c) 2000 IEEE

and Case in 1993 on a script language and script management has evolved into the
DISMAN proposals including a standard MIB for delegating management scripts [7]
and a MIB for scheduling their execution [8]. Clearly, there is strong opinion that
such techniques are useful. In fact, it is possible to delegate Java programs as
scripts. There is however a difference between mobile code and mobile agents but
the dividing line is a constant source of argument. Mobile agents tend to have some
degree of intelligence and usually have a level of autonomy making them capable of
adaptive migration from node to node and capable of communication with other
agents. The script MIB appears to support mobile code with more limited
capabilities. In any event mobile agents in network management seem to be here to
stay, and are being actively investigated[1][2][20][21]. Delegation, among many
other tasks[11], is easily and flexibly accomplished by employing a mobile agent
platform based on Java, and Java Virtual Machines are now beginning to appear on
routers etc. Such systems as described in [9] and [10] are typically built much like
the one shown in Figure 1 below and suggest replacing a script with a mobile agent.

Now let us turn to the other part of the question, "Why integrate?" First of all
SNMP is likely to be the network management protocol of choice for the foreseeable
future and many network nodes will be equipped with an SNMP agent. Some of
these agents may be older legacy agents and some may be enhanced with more
modern additional extensibility instrumentation like the Distributed Protocol
Interface [12] (DPI) or its successor the Agent Extensibility Protocol [13], [14]
(AgentX protocol). These agents will already be gathering substantial node
information and even if mobile agents were being employed for new tasks, it would
be reasonable to take advantage of the existing capabilities of the resident SNMP
agent. With this in mind, let us consider the kinds of interaction that might be likely:

(a) A mobile agent may arrive at a node and wish to access data, such as interface
statistics, from the resident SNMP agent’s MIB. That is, it wants to Get or
perhaps even Set data in the SNMP MIB. One could equip the mobile agent
with SNMP managerial capabilities and allow the mobile agent, acting as a
manager, to issue SNMP request packets to the resident SNMP agent. Of course
the mobile agent would not have to be co-resident to be able to do this, but for
security reasons alone, it is not a good idea to allow a mobile agent to open a
socket to communicate with the SNMP agent. A better way would be to provide
a local SNMP service or a carefully controlled secure interface to the nodes
resources for this purpose. There would still need to be an application program
interface (API) or a mechanism that would give the mobile agent a way to make
its wishes known to the intermediary service. Such an approach has been
adopted in [1] and in [23] using readily available Java SNMP classes.

The advantage of such an approach is that one does not have to modify the
SNMP agent to provide access to its MIB. The cost of this is that the mobile
agent would need to have full SNMP managerial capabilities and would have to
handle such tasks as BER encoding. Another approach is to design a lightweight
protocol that would take advantage of the co-residency of the mobile and SNMP
agents. This approach is new and will be presented in section 4 of this paper
where the RDPI protocol [15] is described.

0-7803-5930-5 (c) 2000 IEEE

(b) A mobile agent may arrive at a node and have the capability of extending the
existing SNMP MIB with certain meta-variables that it brings with it. That is the
mobile agent may bring with it some state, some information from the outside
network at large, that it was charged with to explore and analyze. A manager
would have to know of the existence of such additional information to be able to
take advantage of it, but presumably it delegated the mobile agent to acquire
such information in the first place and would have defined it as a MIB sub-tree.

The SNMP DPI protocol [12] and its successor the AgentX protocol [13]
were designed specifically to allow a sub-agent process to extend or enhance an
existing SNMP agent by first registering with it, and then communicating with it
using the specified protocol. Clearly the SNMP agent would have to have the
protocol built in, but many agents today are DPI enabled and it appears that
many future agents will have the improved AgentX protocol incorporated.
Clearly a mobile agent could behave as an AgentX sub-agent, or better, would
employ an API of a local service that would securely accomplish the registration
and pass queries back and forth. In either case, the manager would need to have
predefined the new MIB variable to be dynamically added to the local SNMP
MIB. This approach was proposed earlier by the authors [9] and is developed
further here. It has also recently been adopted by others [24].

(c) A mobile agent, having acquired information during its migratory activity, may
arrive at a node that consequently implies a fault or degraded performance either
at that node or elsewhere in the network, and wish to send off a defined SNMP
trap to a remote SNMP manager. Both the AgentX and the DPI protocol are
designed to enable the SNMP agent to receive such a trap from a sub-
agent/mobile agent and transmit it to an SNMP manager.

(d) Finally, it is conceivable (but less likely) that some entity would like to send an
SNMP trap to a mobile agent which is acting in the role of an SNMP manager.
This assumes that the sender can actually locate the mobile "manager" using the
mobile agent environment’s agent location service. This feature could be part of
the RDPI protocol mentioned in (a) above.

At this point, we should define the acronym RDPI. It stands for the Reverse
Distributed Protocol Interface. If efficiency is an issue, and generally it is, the RDPI
protocol has certain advantages over using SNMP directly. The RDPI protocol is a
lightweight protocol that allows a process, usually running on the same node as the
agent, to issue SNMP managerial commands to that agent without having to do all
the work of BER encoding etc. In this respect, RDPI is related to SNMP the way
DPI was related to the now obsolescent SMUX protocol. The RDPI messages are a
subset of the DPI message set and they were designed to share the same structure as
the corresponding DPI message. The main difference is that where the DPI protocol
uses a group ID and an instance ID, the RDPI protocol uses just an object ID. RDPI
and DPI fit conceptually into the functional architecture as shown below in Figure 2.
The actual implementation employs an intermediary called the VMC between the
mobile agent and the SNMP agent for security and abstraction reasons.

 Following this introduction, section 2 briefly describes the mobile agent
environment used and the Virtual Managed Component (VMC) which serves as the
controlled interface to all of the nodes’ resources. Section 3 then briefly describes the
DPI protocol whose sub-agent side we implemented in Java for inclusion in mobile

0-7803-5930-5 (c) 2000 IEEE

agents. Section 4 describes the RDPI protocol in more detail while section 5
discusses the VMC architecture and the APIs used by mobile agents. Section 6
briefly describes a PVC configuration application that uses RDPI and this is
followed by the conclusions and references.

2. The Mobile Agent Environment

In order to perform network management functionality using mobile agents, it is
necessary to have an infrastructure that provides a framework for code mobility. An
infrastructure that supports this functionality has been developed as part of the
Perpetuum Mobile Procura Project in the Department of Systems and Computer
Engineering at Carleton University [9]. The Java programming language was chosen
for development of the infrastructure in order to take advantage of its inherent
platform independence and portability, support for code mobility, security, and
robustness.

As shown in Figure 1, every Network Component (NC) contains a Mobile Code
Daemon (MCD) running within a Java Virtual Machine (JVM). The MCD provides a
number of services that facilitate the execution of mobile agents. Included are: a
Mobile Code Manager (MCM) that manages the life cycle of a mobile agent from its
arrival and authentication at the network component to its migration or perhaps
destruction, a Migration Facilitator to transport mobile agents between NCs, a
Communication Facilitator for collaboration between local and remote mobile
agents, and an interface called the Virtual Managed Component which provides for
mobile agents accessing the NC’s managed objects and resources in a controlled and
secure way. The VMC is responsible for management of the mobile agents access
rights and the allocation of resources to that agent.

Once a mobile agent has been authenticated and accepted, it is instantiated as a
thread within the same JVM as the MCD. The MCD maintains handles to all the
instantiated mobile agents within via the MCM. Note that there can be more than one
instance of VMC and also that the mobile agents can obtain handles to the VMCs
from the MCM.

kernel (Managed Resources)

NC

JVM

MCD

VMC

listening on a port
(UDP or TCP)

MCM

MF
NC

MCD

JVM

NC

MCD

JVM

NC - Network Component
MCD - Mobile Code Daemon
MF - Migration Facility
MCM - Mobile Code Manager
VMC - Virtual Managed Component
JVM - Java Virtual Machine

compressed code

Mobile agent

Figure 1: Mobile Agent Infrastructure

0-7803-5930-5 (c) 2000 IEEE

The Virtual Managed Com nt shown in Figure 1 is a special subclass of the
mobile agent class that provid ernel access services to the mobile agents. After
analysis, a decision was mad
sockets or have the ability to
provides security to the mobi
ignorant mobile agents. A dec
into the VMCs is based on an
will be migrating off and on th
their network component.

The VMCs will communi
using protocols such as D
between a number of SNM
then attach their extended
RDPI handles local mobile
variation of SNMP itself. W
of management functions a
management station, such
services they are providing.

VMCs providing these
communicating with the SN
protocol. Conceivably, mul
the same time. It has bee
developed to provide an ab
VMC. This would provide
regardless of the underlying

A dual VMC implemen
described in section 5. On
implementation. Another
mobile agents. Interface
functionality. This solutio
complexity to a minimum.
VMCs could not be combi
reflects a preference for fle
processes (MIB extension
more detail about DPI, RDP

3. The SNMP DPI Pro

The Simple Network Manag
is an extension to SNMP
replacement of manageme
without requiring recompila
MIB is achieved by writing
via the SNMP-DPI. Sub-ag
not need to know SNMP m
also necessary to modify th
must keep track of all attac
agents support. It is respo
pone
es k
e that mobile agents should not have direct access to
 make direct connections with the SNMP agent. This
le environment while also allowing lightweight SNMP
ision to move complexity out of the mobile agents and
 analysis of their lifecycles. Typically, mobile agents
roughout their lives while VMCs will be stationary on

cate with the SNMP agent on the mobile agents’ behalf
PI/RDPI. The DPI protocol provides dynamic links

P sub-agents and the SNMP agent. The sub-agents can
MIBs to the standard MIB supported by the SNMP agent.
 agent requests to the SNMP agent and is a lightweight
ith DPI and RDPI, mobile agents can perform a full set
s well as provide new information to the central network
as the number of mobile agents on the component and the

 MIB extension and MIB access services could be
MP agent using DPI/RDPI, AgentX or some other local
tiple protocols could be active on the same component at
n decided that a set of interfaces should be designed and
straction of the communication between mobile agent and
 a constant, unchanging interface to the mobile agents
 VMC-SNMP communication implementation.
tation was proposed after analyzing the alternatives
e VMC would provide MIB access, using RDPI in this

VMC would provide MIB extension capability to the
s are proposed for each VMC that encapsulate this
n provides the required capability while keeping the
 It should be noted that there is no reason that the two
ned. The decision to design their interfaces separately
xibility, in recognition of the independence of the two

versus MIB access). The next few sections provide some
I and the VMC design.

tocol

ement Protocol Distributed Protocol Interface [12] (DPI)
 agents that permits the dynamic addition, deletion or
nt variables in the network component's SNMP MIB
tion of the SNMP agent. This extension of the SNMP
 so-called sub-agents that communicates with the agent
ents that communicate with the SNMP agent via DPI do
essaging, ASN.1 details and BER encoding rules. It is
e SNMP agent to make it DPI enabled. The SNMP agent
hed sub-agents and the MIB sub-trees that each of these
nsible for de-multiplexing a managers request using the

0-7803-5930-5 (c) 2000 IEEE

OIDs of variables included in the variable binding list, distributing them to the
appropriate sub-agents, and then collecting the responses into an overall response to
the original request. The work required to modify an SNMP agent to DPI enable it is
substantial but the resulting protocol is lightweight and efficient.

A sub-agent wishing to extend the SNMP agent’s MIB must go through a few
steps to do so. First, the sub-agent must open a connection to the agent. The sub-
agent then registers the roots of any sub-trees that it wishes to provide. Once
registered, the SNMP agent will handle requests for those objects from network
management stations. The sub-agents are invisible to these stations, only the
expanded SNMP MIB is known.

The DPI enabled SNMP agent is a standard agent modified to recognize requests
initiated by a sub-agent and those initiated by a manager. For our project, we chose
to modify the source of the publicly available UCD SNMPv1 agent [16] written in C.

The requests that can be initiated by a sub-agent are OPEN, REGISTER,
UNREGISTER, ARE_YOU_THERE and CLOSE, all of which are for DPI control
purposes, and a TRAP. The agent responds to OPEN, REGISTER, UNREGISTER
and ARE_YOU_THERE with a RESPONSE packet. The CLOSE packet is just
accepted by the agent which then closes the physical connection. The TRAP packet
is also just accepted and then forwarded by the agent to a manager without returning
any information to the sub-agent, but it is a true management information packet.

The requests that can be initiated by a manager directed towards a DPI sub-
agents are: GET, GETNEXT, and SET. These are requests directed to the extended
part of the MIB and it is the agent's duty to direct the request to the appropriate sub-
agent based on the OIDs involved. The agent responds with a RESPONSE packet.
See the bottom of Figure 2 for an overview of the DPI packet flow. In this figure, the
XMS-SNMP Agent (the eXstensible Mobility Supported SNMP Agent) represents
an SNMP agent enabled with both the DPI and RDPI protocols.

Mobile
Subagent

R
D

PI
 I

nt
er

fa
ce

SNMP Interface

 DPI Interface

 SNMP
 Engine

 Static
MIB

trapresponse
get
getnext
set

 SNMP Agent

NMS (Manager)

Extension
 MIB

trapresponse
open
register
unregister
close
response

get, getnext
set/commit
undo/action

DPI Protocol

SNMP Protocol

Mobile
Agent

get
getnext
set

RDPI Protocol

response

t
Figure 2: Functional Architecture of DPI-RDPI Agen
0-7803-5930-5 (c) 2000 IEEE

The Reverse Distributed Protocol Interface is new and was designed to reverse
the direction of requests and responses. It will be discussed more fully in the next
section. RDPI defines a method for accessing the SNMP Agent MIB without the
necessity of creating full SNMP messages in SNMP Protocol Data Units (PDU), or
encoding the data with the ASN.1 Basic Encoding Rules. This allows mobile agents
to efficiently access the SNMP Agent MIB including any extensions provided by
other mobile agents via DPI. This efficiency is realized on both ends of the protocol;
the mobile agent saves while creating requests and processing responses; and the
SNMP agent saves while processing requests and creating responses. The left side of
Figure 2 also shows the RDPI packet flow.

4. The RDPI Protocol

The purpose of the RDPI protocol is to give a registered sub-agent access to the
SNMP MIB of an RDPI enabled SNMP agent without having to undertake the
overhead of BER encoding and decoding. This lightweight protocol is modeled on
the DPI protocol and, in fact, reuses the PDU format for the Get and Set operations.
The main difference is in the agent where the incoming request, say a SET, must fit
into the agent processing stream further down the line than an SNMP Set.
Modifying an SNMP agent to RDPI enable it, is in fact easier than enabling it for the
DPI protocol. The savings in both message overhead and message processing make
the effort worthwhile.

Table 1 below shows the Set packet format and indicates the overhead involved.

 Offset (Octets) Field Overhead
(Octets)

 0 Packet length to follow (MSB to LSB) 2
 2 Protocol version (=2)
 3 Protocol minor version (=2)
 4 Protocol release (=2)
 5 Packet ID (MSB to LSB)
 7 Packet type = SNMP_RDPI_SET (=3)
 8 Community name length (MSB to LSB) 2
 10 Community name (if any)
 10 + L1 Object ID with two NULLs 2
 10 + L2 Variable type 1
 10 + L2 + 1 Length of value (2 octets, MSB to LSB) 2
 10 + L2 + 3 Value
 10 + L3 Optionally more variable-bindings

(Object ID, type, length, value)
 Note: L1 = length of community name

 L2 = L1 + strlen(object ID) + 2
 L3 = L2 + 3 + length of value

Table 1. RDPI SET Packet and Overhead Calculation

0-7803-5930-5 (c) 2000 IEEE

Here we take overhead to mean the extra octets needed for encoding and
decoding purposes only. For this example with a single varbind variable, RDPI has
nine octets of overhead whereas an equivalent SNMPv1 Set packet would use 23
octets of overhead. For additional varbinds, SNMP uses six octets of overhead while
RDPI uses five for each.

4.1 Performance Analysis
Aside from the overhead, RDPI is somewhat faster in decoding packets. For

example, SNMP BER encodes every field in a generic way including header fields.
RDPI, where possible, fixes the size and offset of fields. RDPI also eliminates the
need for decoding "SEQUENCE OF" varbinds and n occurrences of
SEQUENCE{name, value} in the variable-binding list. RDPI does not encode object
identifiers in the same way as does SNMP. They are just strings with dots in them.
And so on. Clearly the SNMP agent can decode an RDPI packet much faster than an
SNMP packet. The larger the number of varbinds, the more prominent the efficiency
of using RDPI. Furthermore, RDPI doesn’t limit the packet size as SNMP does, and
this is important when many SNMP packets would be involved.

The system described herein was implemented and performance measurement
indicates that RDPI is about three times faster than SNMP in packet processing. The
question arises as to whether such an improvement warrants a new protocol like
RDPI. First of all RDPI is not really a new protocol but a subset of DPI used in a
different way. (Agent-X is very similar and could be used). Anyone implementing
an extensibility protocol like DPI can easily include RDPI, and the symmetry is
attractive. Second, there are situations where the improved performance could be
critical because large tables may need to be acquired by a mobile agent. In the high
speed ATM domain for example[22], there are cases where SNMP agents already
have to resort to statistical sampling because of the volume of data involved.

5. The VMC Interface Design

As indicated earlier, there are several possible designs for Mobile Agent – SNMP
Agent interaction. The first is one in which the mobile agent interacts directly with
the SNMP agent. This approach was discarded for a number of reasons. It requires
mobile agents to be able to open sockets, which is a security issue. It also leads to
larger, more complex mobile code because the overhead of communicating with the
SNMP agent is not trivial, whether using SNMP or DPI/RDPI.

The second approach is to place a single intermediary VMC as an SNMP service
between the mobile agents and the SNMP agent. While this approach satisfies the
design requirements and does not have the problems mentioned above, it involves
grouping two separate functions into a single class. Object oriented design principles
would suggest that the interfaces should not be grafted together in an unnatural
fashion. The approach selected for this project was to design the two functions, MIB
extension and MIB access, as separate and unrelated.

Figure 3 shows the architecture of the selected approach. The entire network
component is depicted, with two sub-components identified. The SNMP Agent and
the Mobile Code Environment (in the JVM) contain the network management
functionality of the network component.

0-7803-5930-5 (c) 2000 IEEE

Interactions between t
in all cases where, in pra
until the response is re
VMCMIBExtend interfac
functionality modeled on
called MIBExtender, has
SNMP MIB. This inter
requests, from the SNMP

The link between th
represents the fact that th
Manager for any signific
MIB extensions. If a mo
unavailable, through eithe
must deregister the mobile

5.1 VMC Design
Two VMC interfaces wer
interface is implemented
communicate with the S
design shown in Figu
VMCMIBExtend interfac
protocol to communicate
VMC design shown in Fig

5.1.1 VMCAccess

Requests from any mobil
to the SNMP agent. As s
request. The mobile age
processed to strip away an

1&

-90�0&(
0&'

0&0

90&([WHQG90&$FFHVV

0$0$

0$

6103�$JHQW
0,%

NC: Network Component
JVM: Java Virtual Machine
MCE: Mobile Code

Environment
MCD: Mobile Code Daemon
MCM: Mobile Code Manager
MA: Mobile Agent
VMC: Virtual Managed

Component
MIB: Management

Information Base
VMCAccess: VMC providing

MAs access to MIB
VMCExtend: VMC allowing

Mas to extend the
SNMP MIB

SF
CF

MF

MF:
SF:
CF:

Migration Facilitator
Security Facility
Communication Facilitator
Figure 3: Dual VMC Design
he mobile agents and VMCs are depicted as bi-directional
ctice, the mobile agent calls to VMCAccess merely block
ady. VMCExtend interactions are more complex. A
e has been defined that provides a lightweight set of
 that provided by the DPI protocol. Another interface,

 been defined for any mobile agent wishing to extend the
face is used by the VMC to notify the mobile agent of
agent, within the sub-tree(s) that it is providing.
e Mobile Code Manager and the VMCExtend object
e VMCExtend object will register with the Mobile Code

ant mobile agent events that might affect the provision of
bile agent that had registered to extend the MIB becomes
r impolite migration or premature death, the VMCExtend
 agent to prevent future unserviceable requests.

e introduced in the previous section. The VMCMIBAccess
 by the VMCRDPI class, using the RDPI protocol to
NMP agent. The VMCAccess component in the VMC
re 3 is an instance of the class VMCRDPI. The
e is implemented by the VMCDPI class, using the DPI
with the SNMP agent. The VMCExtend component in the
ure 3 is an instance of the class VMCMIBExtend.

e agent are converted by the VMC to RDPI and forwarded
uch, the mobile agents’ thread is used to process the RDPI
nt blocks while awaiting a response. The response is
y RDPI elements and the mobile agent receives the results

0-7803-5930-5 (c) 2000 IEEE

as a return value. While this serializes access to the MIB, it significantly reduces the
complexity of the interaction between mobile agent and MIB. It avoids the issue of
having responses arriving out of order when multiple requests can be processed
simultaneously. A multi-threaded design was considered but rejected on the grounds
of implementation complexity and marginal added utility.

5.1.2 VMCExtend

This VMC has a more complex set of requirements. It must act as an intermediary
between the mobile agent and the SNMP agent for requests by the mobile agent to
open connections, register sub-trees, de-register sub-trees and close connections. It
must also handle SNMP agent request for extended MIB variables and SNMP
instructions to de-register sub-trees, or close the connection.

The two event types (SNMP driven and mobile agent driven) lead to some
significant design challenges. This VMC must be capable of listening for requests
from the SNMP agent via the DPI port, and thus, it must have at least one thread.
The question of how many threads to have is a complex engineering issue. The
options that were considered were a single thread or one thread per mobile agent. A
pool-based solution was also considered. A single thread would have to be complex
to handle requests for multiple mobile agents. It could become a performance
bottleneck because after calling the appropriate MIB function of the mobile agent
(get, getnext or set) it could be blocked. While waiting, no other SNMP DPI
requests could be processed, even though there are no significant resource sharing or
critical section issues. This approach was discarded as slow and unnecessarily
complex.

A related variation is one by which a single agent that neither blocks when
listening on the DPI port for an SNMP message nor when awaiting a mobile agent
extended MIB response to a previous SNMP DPI request. The VMC must be able to
map the MIB sub-tree requested with the appropriate MIB extending mobile agent.
This internal table could grow quite complex and would need to be protected from
multiple accesses that could violate its critical sections. Thus, this design would
appear to merely move the bottleneck deeper into the VMC to the sub-tree / mobile
agent linked data structure. This problem surfaces again in the opposite direction.
Any request forwarded to a mobile agent must be remembered by the VMC. Upon
completion, the return message must carry the appropriate DPI packet number to let
the SNMP agent know to which request the response is associated.

A third approach would be to create an individual thread for each MIB extending
mobile agent. The requests originating from the mobile agent (open, register,
deregister and close) would be handled within the thread of the mobile agent itself.
Requests originating from the SNMP agent would be handled by a devoted listening
thread that would then call the appropriate interface functions of the MIB extending
mobile agent.

0-7803-5930-5 (c) 2000 IEEE

This scheme has obvious design advantages in that there is no need for a
complicated central registry that must be accessed for each event. The
implementation of a class that is concerned only with one mobile agent and one DPI
connection would obviously be more straightforward than those mentioned
previously.

Figure 4: MIBExtender Handlers

Thus, the implementation chosen was to create a one to one mapping between
mobile agents (MIBExtenders) and associated VMC sub-components, called
MIBExtenderHandlers. These handlers are active objects that handle both directions
of communication between the SNMP agent and mobile agent. This is shown in
Figure 4.

In this design, the VMC class itself is a passive component that handles the
creation of the extender-handler mapping, and holds records of the mappings and
sub-tree registration lists. It mainly acts as an initial point of access for
MIBExtenders and a shared resource for the active MIBExtenderHandlers. While
there is a potential bottleneck in the central registry of mobile agent/extender handler
mappings, this is negated by the fact that access to this database is only required
when a mobile agent requests a new connection. All of a mobile agent’s open

SNMP Agent

Mobile Agent
(MIBExtender)

Mobile Agent
(MIBExtender)

MIBExtenderHandler

VMCDPI

MIBExtenderHandler

Request from SNMP agent (close,get, getnext, set, etc)

Request from mobile agent (open, register, close, etc)

Response from mobile agent to get, getnext, set

DPI Packets

0-7803-5930-5 (c) 2000 IEEE

connections are handled via a single VMC thread to ease any critical section
complexity during implementation. Since the thread blocks within the mobile
agent’s thread during a request, any subsequent DPI requests are queued lower down
in the IP protocol stack.

In this implementation, a central (within the VMC) registry of registered sub-
trees is also maintained. The DPI protocol itself provides for multiple overlapping
registrations. The protocol calls for the DPI enhanced SNMP agent to only forward
SNMP requests to the MIB extender with the highest priority. This concept could
lead to inconsistent situations where a central manager does not truly know which
MIB extender has serviced the request. If a MIB was merely a read-only database,
that would be bad enough, but SNMP agents and mobile agents can have their states
changed via a set request. No self-respecting central manager will issue such an
instruction when it cannot know which SNMP DPI sub-agent will be registered with
the highest priority.

To provide deterministic runtime behavior, the capability has been included, in
our implementation, to have the VMC reject overlapping sub-tree registration
attempts.

6. Application to PVC Configuration and a Mobile Agent MIB

Consider a network of heterogeneous ATM switches. No standard protocol exists for
the configuration of permanent virtual circuits and so users resort to fax, telephone
etc. to establish permanent connections. The approach we developed based on
mobile agents [17], [18] utilizes a mobile configuration agent to serially visit the
nodes or delegation agents to go in parallel, and in addition handle resource
allocation exceptions.

In any event, a mobile agent arrives at a switch with a resident SNMP agent and
needs to access its ATM MIB to check on VPI/VCI usage and bandwidth
availability. It also needs to set values in a MIB table in order to establish a cross-
connection. In this scenario, the mobile configuration agent looks up the
VMCAccess VMC by contacting the Mobile Code Manager and then using the
VMCMIBAccess interface implemented by it in order to interact with the resident
SNMP agent. In case of failure to acquire resources like VPI/VCI indicators or
bandwidth, the serial mobile agent needs to backtrack to the previous switch. This
approach was compared with parallel delegation agents communicating with each
other for exception handling[18] and in some circumstances can perform better.
The main motivation for the mobile agent approach however was to provide the
intelligence imbedded to handle the heterogeneity of the individual switch agents.

For the purpose of managing mobile agents, each MCD needs to keep track of the
number of visiting mobile agents, their history, the resources they consume, and
other pertinent information. With the above design, a convenient way of
implementing this local mobile agent MIB is by VMCExtend extending the SNMP
MIB using DPI. If there is no resident SNMP agent, then VMCExtend can provide
the same information via the abstract interface VMCMIBExtend in a transparent
way, one of the advantages of the design.

0-7803-5930-5 (c) 2000 IEEE

7. Conclusions

This paper clearly identifies the need for mobile agent solutions to network
management problems that acknowledge the utility of legacy solutions and protocols.
SNMP is arguably the most important network management protocol in service
today; the research reported here acknowledging this argument by extending an
existing mobile agent framework already used within the network management
domain [19], [20]. The implemented design exploits the standard DPI protocol and
proposes an extended RDPI protocol in order to enhance the interaction of mobile
agents with SNMP agents. The dual VMC approach implemented has been used to
solve the ATM PVC configuration problem [18], with interesting results. At the
time of implementation, DPI code was most readily available but this has evolved
into the Agent-X protocol which is very similar. Conversion to Agent-X would be
very straightforward.

Acknowledgements

We would like to acknowledge the support of Communications and Information
Technology Ontario (CITO) and the Natural Science and Engineering Research
Council (NSERC) for their financial support of this work. We would also like to
thank Peter Drake and Patricia Cuesta Rivalta for their contributions to the work
reported here.

References

[1] Zapf M., Hermann K., and Geihs K., "Decentralized SNMP Management with
Mobile Agents." In Proceedings of IM ’99, Boston, May 1999.

[2] Ferudin M., Kasteleijn W., and Krause W., "Distributed Management with
Mobile Components." In Proceedings of IM ’99, the 6th IFIP/IEEE International
Symposium on Integrated Network management, pp857-870, Boston, 1999.

[3] White T., Bieszczad A., and Pagurek B., "Distributed Fault location in Networks
Using Mobile Agents" In Proceedings of the Second International Workshop on
Intelligent Agents in Telecommunications Applications (IATA ’98), Springer
Verlag Pub., Paris July 4th - 7th, 1998.

[4] Pagurek B., Li Y., Bieszczad A., and Susilo G., "Configuration Management in
Heterogeneous ATM Environments using Mobile Agents." In Proceedings of
the Second International Workshop on Intelligent Agents in
Telecommunications Applications (IATA ’98), Springer Verlag Pub., Paris July
4th - 7th, 1998.

[5] Baldi M., Gai S., and Picco G. P., "Exploiting Code Mobility in Decentralized
and Flexible Network Management", First International Workshop on Mobile
Agents Mobile Agents’97, pp 13-26, Berlin, Germany, April 7-8, 1997.

[6] Yemini Y., Goldszmidt G., and Yemini S., "Network Management by
Delegation." Proceedings of ISINM '91, Integrated Management II (Krishnan
and Zimmer Eds.) pp. 95-97, North Holland Pub., April 1991.

[7] Levi D., Schönwälder J., "Definitions of Managed Objects for the Delegation of
Management Scripts. RFC 2592, May 1999.

[8] Levi D., Schönwälder J., "Definitions of Managed Objects for Scheduling
Management Operations. RFC 2591, May 1999.

0-7803-5930-5 (c) 2000 IEEE

[9] Susilo G., Bieszczad A., Pagurek B., “Infrastructure for Advanced Network
Management Based on Mobile Code.” In Proceedings of NOMS '98, New
Orleans February 1998. See also
http://www.sce.carleton.ca/netmanage/publications.html

[10] GRASSHOPPER - The OMG-MASIF conformant Mobile Agent Platform,
http://www.ikv.de/products/grasshopper/index.html.

[11] Bieszczad A., White T., and Pagurek B., "Mobile Agents for Network
Management." In IEEE Communications Surveys, September 1998.

[12] Wijnen B., Carpenter G., Curran K., Sehgal A., Waters G. "The SNMP
Distributed Protocol Interface", Version 2.0, RFC 1592, March 1994.

[13] Daniele M., Wijnen B., and Francisco D., "Agent Extensibility Protocol
Version 1", RFC2257, January 1998.

[14] Agent Extensibility Issue, The Simple Times, Volume 4, Number 2. April 1996,
http:// www.simple-times.org

[15] Wang Y., "Integration of a Mobile Agent Environment with Legacy SNMP."
M.Eng. Thesis, Carleton University, Dept. of Systems and Computer
Engineering, Ottawa Canada, August 1998.

[16] UCD-SNMP Implementation, ftp://ftp.ece.ucdavis.edu/pub/snmp/ucd-
snmp.tar.gz

[17] Pagurek B., Li Y., Bieszczad A., Susilo G., "Network Configuration
Management In Heterogeneous ATM Environments." In Proceedings of the
Second International Workshop on Agents in Telecommunications Applications
(IATA'98), Agent World' 98, Paris, France, July 4th-7th, 1998.

[18] Boyer, J., Pagurek, B., White, T., "Methodologies for PVC Configuration in
Heterogeneous ATM Environments Using Intelligent Mobile Agents."
Proceedings of MATA '99, Ottawa, Oct. 99. World Scientific Publishing Co.,
Singapore. pp211-228.

[19] White T., Pagurek B., and Bieszczad A., "Network Modeling For Management
Applications Using Intelligent Mobile Agents," accepted for publication in a
special issue on Mobile Agents of the Journal of Network and Systems
Management to be published in September, 1999.

[20] Knight G., and Hazemi R., "Mobile agent based management in the INSERT
project," accepted for publication in a special issue on Mobile Agents of the
Journal of Network and Systems Management to be published in September,
1999.

[21] Gavalas D., Greenwood D., et al "Advanced Network Monitoring Applications
Based on Mobile/Intelligent Agent Technology" to appear in Computer
Communications, Special Issue on Mobile Agents in Communications, 2000.

[22] Bierman, A., and McCloghrie, K., "ATM-RMON MIB: Remote Network
Monitoring MIB Extensions for ATM Networks", IETF draft-bierman-rmon-
atmrmon-01.txt, May 1996.

[23] Simoes P., Silva L., Boavida F., "Integrating SNMP into a Mobile Agents
Infrastructure" Proc. of IEEE/IFIP DSOM '99, Zurich Oct.1999.

[24] Simoes P., Reis R., Silva L., and Boavida F., "Enabling Mobile Agent
Technology for Legacy Network Management Frameworks" Proceedings of
IEEE Softcomm '99, Oct. 1999.

0-7803-5930-5 (c) 2000 IEEE

http://www.sce.carleton.ca/netmanage/
http://www.ikv.de/products/grasshopper/index.html
ftp://ftp.ece.ucdavis.edu/pub/snmp/ucd-snmp.tar.gz
ftp://ftp.ece.ucdavis.edu/pub/snmp/ucd-snmp.tar.gz

	Introduction
	The Mobile Agent Environment
	The SNMP DPI Protocol
	The RDPI Protocol
	Performance Analysis

	The VMC Interface Design
	VMC Design
	VMCAccess
	VMCExtend

	Application to PVC Configuration and a Mobile Agent MIB
	Conclusions
	Acknowledgements
	References

