

E-commerce Service Components with
Multiple Classes of Service and

Dynamic Adaptability Mechanisms

Vladimir Tosic, Bernard Pagurek

OCIECE-01-09
May 2001

E-commerce Service Components with Multiple Classes
of Service and Dynamic Adaptability Mechanisms

Vladimir Tosic, Bernard Pagurek

Department of Systems and Computer Engineering, Carleton University
1125 Colonel By Drive, K1S 5B6, Ottawa, Canada
{vladimir,bernie}@sce.carleton.ca

Abstract. Dynamic engineering and adaptation of complex e- and m-commerce
systems supports business agility and flexibility. This work-in-progress paper
presents research on service components with several distinct classes of service,
called service offerings, and their dynamic adaptation. Having multiple service
offerings enables a service component to provide to every consumer an appro-
priate level of service and quality of service (QoS). It also supports different
capabilities, rights, and needs of consumers of the service component. Service
components and service offerings are described in a comprehensive XML-based
specification that describes functionality, dependencies from other service com-
ponents, functional and QoS constraints, authorization policies, as well as cost.
Dynamic adaptation mechanisms that we explore are based on the manipulation
of service offerings. Our mechanisms enhance robustness of the relationship be-
tween a service component and its consumer. This robustness is important in e-
and m-commerce systems due to the issues of trust and customer retention.

1. Introduction

We define a service component as a composable, reusable, and replaceable self-
contained unit of service provisioning and management. It encapsulates some busi-
ness logic and data and can be reused in different service compositions. It can also be
detached from the service composition and replaced with another appropriate service
component, possibly from a different vendor. It is important to note that a service
component can provide not only software functionality and data, but also access to
some hardware resources like memory, printing, network bandwidth, etc. This soft-
ware-hardware integration opens some issues that we are exploring in our research.

We make a distinction between a service component and a service – a service has
some business-oriented meaning for an end user, while a service component has value
primarily in service compositions and not when it is used in isolation. This distinction
is context-dependent – the same unit of business logic and data can be a service com-
ponent in one context and a service in another. We also make a distinction between a
service component as a unit of service provisioning and implementation-level con-
cepts like a software component and a distributed object. A service component is a
higher-level concept and it can be implemented with one or many software compo-
nents, with one or many distributed objects, with some combination of software com-

ponents and distributed objects, or with some other technologies, for example, mobile
code. A service component can also be a composition of lower-level service compo-
nents. Implementation of a service component is hidden from its consumers – con-
sumers get information only about the provided services and eventually about the
requirements--like the presence of other service components--that have to be satisfied
in order to use this service component in a service composition.

Although service components can be also composed statically (i.e., during the de-
sign time), we are particularly interested in dynamic (i.e., runtime) composition of
service components and dynamic adaptation of service compositions to various
changes. Our goal is to better support flexibility and adaptability of complex systems
like e-commerce and m-commerce software. Dynamic composition of service com-
ponents enables more agile development of new services, with minimal interruption
to running applications. On the other hand, dynamic adaptation of composite services
is needed in order to accommodate changes that cannot be accommodated on lower
system levels (like communication software, operating system, etc.). Such changes
are especially significant in m-commerce and other mobile computing systems.

In this work-in-progress paper we present our ongoing research on service compo-
nents with multiple classes of service and dynamic adaptation of their service compo-
sitions. This work is related to the work on dynamic service composition conducted in
our research group [5]. We will illustrate our concepts on a gradually introduced e-
commerce example. At the end of the paper we will summarize the relevance of our
work for engineering of complex e- and m-commerce systems.

2. Service Offerings Representing Multiple Classes of Service

A service component can serve many different consumers, possibly at the same time.
To improve flexibility and adaptability of compositions of service components, it can
be useful for a service component to offer several different classes of service. These
classes of service can differ in usage privileges, service priorities, response times
guaranteed to consumers, verbosity of response information, etc. The concept of
classes of service also supports different capabilities and rights of potential consumers
of the service component. Further, different classes of service may imply different
utilization of the underlying hardware and software resources and, consequently, have
different prices. Multiple classes of service enable discrete customization of the re-
ceived service and QoS and limit the complexity of required management. This ap-
proach does not exclude having customization of service and QoS by means of appro-
priate service parameters, but in the latter cases management can be more complex.

The issues of Quality of Service (QoS) and balancing of limited underlying re-
sources are particularly motivating for having multiple classes of service. If the under-
lying resources were unlimited, all consumers would always get the highest possible
QoS. Unfortunately, this is not the case, so is suitable to provide different QoS to
different classes of service component’s consumers. Service components that are
provided by third parties on a pay-per-use basis are very illustrative in this respect.
Their service component providers want to achieve maximal monetary gain with
optimal utilization of resources. On the other hand, consumers want to receive service

and QoS they need and are willing to pay for, while minimizing the
price/performance ratio. Consequently, providing different classes of service for a
service component increases the chance of succeeding in the market because of the
flexibility to accommodate several classes of consumer.

Let us now illustrate the previous discussion with an e-commerce example. Stock
market notification can be implemented as a pay-per-use service component with
multiple classes of service that differ in provided QoS (for example, the rate of notifi-
cation or verbosity of provided information) and in price. On the other hand, some
financial analysis software can also be provided as a pay-per-use service component
with multiple classes of service to accommodate different types of its consumers.
These two service components can be composed in a way that the stock market notifi-
cation component provides information to the financial analysis component that in
turn provides the results of its analyses (e.g., recommendations) to its consumers.

Our approach to providing multiple classes of service is based on the concept of
service offerings. A service component can have multiple service offerings each rep-
resenting a different class of service. Note that a service component can offer to its
consumers one or more distinct interfaces. By “interface” we mean a unit of function-
ality (this term should not be confused with the homonymous concept in some pro-
gramming languages). If a service component offers more than one interface, then
service offerings are specified on two levels. First, for every interface one or more
service offerings are defined. Then, service offerings of the service component are
defined as allowed combinations of interface-level service offerings. Service offerings
of one interface relate to the same functionality, but differ in authorization rights and
QoS constraints, as well as cost.

We specify service components, including their interfaces and service offerings, in
a comprehensive XML-based (eXtensible Markup Language) notation. We place a
particular emphasis on the formal specification of different types of constraints –
functional constraints (pre- and postconditions, and invariants), non-functional con-
straints (QoS guaranteed to consumers and QoS required from cooperating service
components), and authorization policies (describing what subset of service compo-
nent’s functionality a service offering provides and under what conditions). Formal
specification of functional constraints supports software reliability, reusability, main-
tainability, and evolvability. However, for service components we also need formal
specification of other kinds of constraints [2]. We believe that as the number of serv-
ice components on the market that offer similar functionality increases, the offered
QoS and price/performance ratio, as well as adaptability, will become the main com-
petitive advantages. Therefore, our comprehensive specification of service compo-
nents supports choosing appropriate service components and service offerings, e.g., in
the process of dynamic service composition. Additionally, it can also be beneficial to
minimize unexpected feature interactions in service compositions. Note that, while a
service offering contains specification of different types of constraints, these specifi-
cations are separated into multiple distinct layers in order to achieve greater flexibility
and reusability.

3. Dynamic Adaptation Mechanisms

We also believe that dynamic adaptation mechanisms that are based on manipulation
of classes of service, i.e., service offerings, are beneficial for both service component
providers and consumers, especially in the case of pay-per-use relationships. Service
component providers do not want to lose existing consumers when changes occur. If
consumers have to find another service component to accommodate the change, they
might chose one from a competing vendor. On the other hand, in many cases the
change has to be accommodated quickly. In some cases, finding and choosing an
appropriate alternative service component can turn out to be too slow and its success
cannot always be guaranteed. Also, for some consumers it may be inconvenient to
look for another service component every time the circumstances of operation change.
Such a situation may occur in e- and m-commerce systems when choosing an alterna-
tive service component would require establishment of new trust relationships.

To avoid breaking the relationship between a service component and a consumer,
we are researching dynamic adaptation mechanisms that are based on manipulation of
service offerings and developing an appropriate management infrastructure and algo-
rithms. We are exploring switching between service offerings, deactiva-
tion/reactivation of existing service offerings, and creation of new appropriate service
offerings. The detailed discussion of these mechanisms and the corresponding infra-
structure is beyond the scope of this work-in-progress paper, so we will only illustrate
them on the previously introduced e-commerce example and note a couple of points.

In a turbulent stock market the adaptability of the relationship between the stock
market notification component and the financial analysis component might be a very
valuable feature. For example, depending on the analysis of the current situation, the
financial analysis component could want to dynamically switch between different
service offerings of the stock market notification component. Also, if a consumer of
the financial analysis component wants to adjust the service it gets, this adjustment
might require dynamic adaptation of the relationship between the two service compo-
nents. If for some reason (e.g., mobility) there are some temporary disturbances of the
communication between the two components, then the financial analysis component
might have to temporarily deactivate some of its service offerings. These service
offerings can eventually be reactivated after another change of circumstances. Dy-
namic evolution (versioning) of the stock market notification component can result in
the need to dynamically create new service offerings for this service component, but
also, as a result, for the financial analysis component. Note that creation of new serv-
ice offerings is not creation of new functionality or new functional interfaces, but
creation of new sets of QoS constraints and authorization policies for the existing
functionality. However, this mechanism can be a useful support for dynamic evolu-
tion of service components, especially for describing effects on co-operating service
components (the financial analysis component in the given example).

Also note that the issue with dynamic deactivation/reactivation of service offerings
is what to do with the consumers using a deactivated service offering. We are devel-
oping support to automatically switch such consumers to an appropriate alternative
service offering of the same service component and then notify these consumers about
the change. A crucial aspect of this support is how to relate service offerings in order
to decide on which service offering to switch. This issue can, but need not, be linked

to the issue of relating service offerings in order to enable their easier and more flexi-
ble specification. We are still exploring several possible alternatives for representing
these relationships, including single inheritance, multiple inheritance, mixins, special
tables, as well as various combinations of several mechanisms.

4. Conclusions and Future Work

Dynamic service composition and adaptation mechanisms support business agility
and flexibility and therefore we believe that they can useful for some (if not many) e-
and m-commerce systems. The concepts that we are working on support the flexibility
and adaptability of e- and m-commerce systems in several ways. For example:
1. Multiple classes of service support different consumers with different characteris-

tics, including power and/or type of devices they execute on. They also enable a
service component to provide to every consumer an appropriate level of service
and QoS and to better balance limited underlying resources.

2. For complex systems, like e- and m-commerce systems, manageability is a very
important issue. As advocated in telecommunications service management, one
advantage of having a relatively limited number of classes of service over other
types of service customization is manageability.

3. Formal specification of various constraints supports more precise discovery of
appropriate service components and classes of service.

4. Although the dynamic adaptation mechanisms that we are developing have limited
power compared to finding alternative service components, they enable faster and
simpler adaptation and enhance robustness of the relationship between a service
component and its consumer. They enable a service component provider to retain
existing consumers and also do not require establishment of new trust relationships
between service components. We believe that these mechanisms are suitable for
situations when the required adaptation is relatively limited and acceptable for the
consumer. Examples of such adaptations are a small temporary degradation of
service and a temporary switch to a more expensive class of service in order to sus-
tain the overall level of service. These mechanisms are one way to accommodate
some changes caused by mobile communications, which is an important issue in
m-commerce systems.

5. Dynamic software evolution with minimal disruption to consumers is important for
many e- and m-commerce systems. This is a very complex issue, but our mecha-
nism and infrastructure for dynamic creation of new service offerings provide
some support for describing effects of dynamic evolution on co-operating compo-
nents. Another research project [3] within our research group is working on some
other aspects of dynamic software evolution.
Apart from the work recently done in our research group on dynamic service com-

position [5] and dynamic software evolution [3], several other related works should be
noted. First of all, some of our ideas, most notably providing different classes of serv-
ice, are extrapolations and modifications of some telecommunications service engi-
neering and management concepts. Particularly influential were the TINA (Telecom-
munications Information Networking Architecture) standard [4] and the work on

differentiated services called DiffServ [1]. While these works are specific to the tele-
communications domain, our work tries to address issues of general service compo-
nents in converged computing/communication systems. Another set of related work
are several recent industrial initiatives, most notably Microsoft’s .NET [6] and Sun’s
Open Net Environment (ONE) [9], that are based on the concept of a Web service. A
Web service is a service component (in our definition) that communicates by means
of XML-based standards. We concentrate our efforts on researching service-level
issues that are currently not addressed by these industrial initiatives. Our work is not
bound to service components that communicate using XML-based standards because
we want to research issues that independent of the communication mechanism used.
On the other hand, we find the work on adaptable software and dynamic software
evolution, like the works reviewed in [7], to also be related to our work, although we
explore dynamic adaptation mechanisms different from the architecture-based ap-
proaches. While our work tries to address some issues that are outside the scope of
component-based software engineering, the work in this area, especially on support-
ing dynamism, like [8], has had an influence on our work. Our work on comprehen-
sively describing service components is strongly influenced by the ideas from [2].

We have developed the main concepts of our approach, but there are still a number
of important issues that we are currently working on. Most of these issues are related
to the management infrastructure and algorithms supporting dynamic adaptation in
various situations, including dynamic evolution of service components. Examples are
the infrastructure support for minimizing the overhead of dynamic switching, mecha-
nisms for relating service offerings in order to support their easier specification and
automatic switching, and the infrastructure for dynamic creation of new service offer-
ings. We are working on a prototype implementation of our concepts.

References

1. Aimoto, T., Miyake, S: Overview of DiffServ Technology: Its Mechanisms and Imple-
mentation. IEICE Trans. Inf. & Syst., Vol. E83-D, No. 5 (May 2000) 957-964

2. Beugnard, A., Jezequel, J.-M., Plouzeau, N., Watkins, D.: Making Components Contract
Aware. Computer, IEEE Computer Society Press (July 1999) 38-45

3. Feng, N., Ao, G., White, T., Pagurek, B.: Dynamic Evolution of Network Management
Software by Software Hot-Swapping. Accepted at IM 2001 (Seattle, USA, May 2001)

4. Kristiansen, L. (ed.): Service Architecture, Version 5.0. TINA-C (June 16, 1997)
5. Mennie, D., Pagurek, B.: An Architecture to Support Dynamic Composition of Service

Components. Presented at WCOP 2000 (Sophia Antipolis, France, June 2000). On-line at:
http://www.ipd.hk-r.se/bosch/WCOP2000/submissions/mennie.pdf

6. Microsoft Corporation: Microsoft .NET. WWW page (2001). On-line at:
http://www.microsoft.com/net/

7. Oreizy, P., Medvidovic, N., Taylor, R. N.: Architecture-Based Software Runtime Evolu-
tion. In Proc. of ICSE'98, ACM Press (Kyoto, Japan, April 1998) 177-186

8. Pryce, N., Dulay, N.: Dynamic Architectures and Architectural Styles for Distributed
Programs. In Proc. of FTDCS'99, IEEE Computer Society Press (Cape Town, South Af-
rica, December 1999)

9. Sun Microsystems: Sun Open Net Environment (Sun ONE). WWW page (2001). On-line
at: http://www.sun.com/software/sunone/

