
Dynamic Evolution of Network
Management Software by Software Hot-

Swapping

N. Feng*, G. Ao*, T. White+, B. Pagurek
Carleton University,

Ottawa, Ontario,Canada K1S 5B6
 pagurek@sce.carleton.ca

* Nortel Networks, Ottawa, Ontario
+Texar Corp. Ottawa, Ontario

Abstract
The computer communications world is very dynamic, requiring continual software
updating for correction, perfection, and increased functionality. The problem
addressed here is that of providing an evolutionary path for software that permits
updating without disrupting the operation and management of the network. This
problem is relevant to network management software which is also dynamic. For
example SNMPv3 is not yet a standard and is not yet widely deployed. Its initial
installations will need to be perfected as more experience is acquired. This paper
examines a software hot-swapping solution to the problem, whereby management
system software modules can be replaced dynamically without disrupting the
management process. The paper also discusses application of the technique to a
modular SNMPv3 system implemented in Java.

Keywords: Software hot swapping, SNMP, mobile code, transaction

1. Introduction
Software upgrading, needed for bug fixes, updates, or functionality upgrades, is
generally not easy. It is particularly difficult in computer communication networks
where software can be widely distributed across heterogeneous domains. The
problem is complicated even further by the requirement in some applications for
almost 100% availability. As a result, in many cases it is extremely important not to
have to take a system off line for software upgrading and/or recompilation. Software
hot-swapping means the replacement of a software program or a part of a program
while the whole software system remains in operation. Methods that allow for such
dynamic software replacement and their application to network management are the
object of this research.

Cercio and Pelaggi [2] outline the problem of software management within the
framework of network management and the need to adapt it to changing and
evolving needs. They also highlight and analyze several types of software
maintenance including corrective, adaptive, and expansive maintenance. They

suggest that effective software management allows considerable cost reduction and
conclude that expansive maintenance on a system in operation would require an
architecture that allows runtime insertion of new modules (without interrupting the
service). Our goal is to explore the applicability of hot-swapping as a solution to
these maintenance problems.

In the distributed computing world, mobile agent/code environments facilitated by
object-oriented techniques are examples of the type of middle-ware that can aid in the
construction of dynamic software replacement systems. The SNMP world has also
recognized the value of dynamic upgrading and extensibility in recent years. For
example protocols like the SNMP Agent-X protocol have been developed to allow the
dynamic extension of SNMP MIBs without the necessity of recompiling SNMP
agents. The script MIB [3] has been applied to extend the capabilities of remote nodes
by delegation. They are steps in the right direction; however, we are searching for a
broader solution which, for example, would allow us to install the Agent-X protocol
itself in an SNMP agent at runtime, or better yet extend the MIB itself within the
agent directly by module replacement. We are concerned with dynamically updating
the SNMP management infrastructure itself in a more fundamental way. This is partly
a problem of software management but it is also partly a protocol issue.

 As a first network management application to consider, we chose upgrading an
SNMPv3 entity. SNMPv3 is modular - made up of several subsystems with
interfaces that prescribe the interactions between the modules. One of these modules
for example is the Message Processing Subsystem that contains in turn a V3MP
(Version 3 Message Processing) module as shown in Fig. 4. SNMPv3 is still a not
widely used standards track protocol and there remain many outstanding issues of
interpretation that are being ironed out and will continue to be resolved for some time
to come. Many of these issues will show up as errors in the message processing
subsystem making it very useful to be able to upgrade it without having to
disruptively take the SNMP entities involved out of service for recompilation and
reinstallation. As another example, it might be necessary to fix a bug in the MD5
module of the Security Subsystem, desirably without having to interrupt the service
for any consequential interval. It may be desirable in the future to change from the
User Based Security Model itself to some yet unknown security model. The change
would have to be coordinated with all corresponding SNMP entities employing the
new security model, and this could be a formidable task if say hundreds of agents
were involved and needed to be recompiled and reloaded. However with some
planning ahead the change could certainly be dynamically achieved with considerable
benefit through hot-swapping, employing mobile code technology for code delivery
and class loading. This is discussed at greater length in section 6. Finally, hot-
swapping seems to offer a more fundamental and flexible way of accomplishing
expansive additions (new functionality) than attaching them externally to an agent
with a new specialized protocol introduced by rebuilding the agent.

 To provide a software hot-swap capability it is necessary to provide solutions to
determining when it is okay to upgrade, how long should be allowed for the upgrade,
what the unit or module for swapping should be and how it can be made swappable,
and what the support infrastructure should be. To accomplish the task, one must
design an architecture for a swappable module, modularize the application so the

required components are swappable, then design the transactions that will accomplish
the goal of getting the replacement code to the desired location, getting the target
system into a swappable state, replacing the code, and restart the system with its state
restored. All this needs to be done in a fail-safe way while minimizing its side effects
on the performance of applications. Whatever the changes to be made, the advantage
of dynamic software hot-swapping lies in accomplishing the task with minimal
interruption to the system. Anyone who has dealt with large amounts of regular
polling data for maintaining an up-to-date feel for the system and for anomaly
detection and location, has had to handle missing or “dirty” data when applying his
algorithms. This is an impediment to investigating new data-mining and fault
management techniques. Being able to evolve the system within a single polling
interval is an example of a very desirable goal.

This paper continues with a description of a number of terms and a description of
the issues in object swapping. The paper then discusses the software hot-swap
architecture, its components, and the hot swap mechanism in some detail.
Subsequently, we explain how this architecture has been used to dynamically upgrade
SNMPv3 entities and the issues arising.

2. Software Hot-Swapping
Before we describe our software hot-swap architecture in detail, we first examine
some of the swap-related problems.

2.1 Issues in Object Swapping

First, there is the Referential Transparency Problem. In Figure 2a, object A asks
object B for service. If we want to use object B1 to replace object B, object A has to
change the reference from B to B1. This means that object A must know the change.
However, as depicted in Figure 2b, if A has passed B’s handle to object C, then C will
retain the reference to B even if A has changed the reference to B1. Thus, if we want
to swap object B with B1, we have to make all the objects that get B’s handle replace
the reference to B with the one to B1. Here, the replacement of an object is not

transparent to its internal clients. In some cases, the object to be swapped may have
no idea about its internal clients, and thus have difficulty in notifying its clients of the
replacement.

Second, we have the State Transfer Problem. To achieve the objectives of hot-
swapping, we have to transfer the state of object B to B1 so that the application runs
consistently. The state of an object summarizes its history, namely its attribute values
and its current execution status. However, if the object B is executing a number of

B1

A

B B

B1

AC

Fig. 2a Fig. 2b

Figure 2. Referential Transparency Problem

operations concurrently (if it is multi-threaded), its state may keep changing. This
makes the transfer of state from one object to another a complex task.

Third, we have the Mutual Referential Problem. This problem severely
complicates hot-swapping, as modules may depend upon each other for services. In
such cases, multiple modules must be swapped in one transaction and the order of
swapping may be important, possibly because of the State Transfer Problem outlined
in the previous paragraph. At a higher level the SNMP manager(client)-agent(server)
relationship falls within a similar category if an upgrade changes the protocol and
necessitates synchronized swap transactions on both sides of the relationship.

2.2 Requirements

It must be pointed out that software hot-swapping should not affect the robustness of
the S-Application. In other words, if the swap involves swapping multiple interacting
S-modules, even at remotely located nodes, in order to maintain the integrity of the
system the swap might have to be atomic or all-or-nothing. All related swap
transactions need to be successful or the operation fails. This is similar to the nature
of SNMP’s atomic set operation when multiple variables are to be set. If the hot swap
transaction fails, the S-Application should be able to continue to provide services to
its clients. This requires that the swap transaction should be a two-phase commit
transaction, which means that the transaction should be either committed or aborted
and rolled back.

The swap transaction should also complete in a reasonable amount of time. What
is timely depends very much on the application. High availability systems such as
those that occur in telecom switching allow for very small downtime at any time.
Network management, while not considered critical real-time work can be
compromised if critical information like a notification is lost or there are excessive
delays in processing. This can easily happen in large networks simply because of the
many players involved, and in fact, this is where speed in hot-swapping becomes
critical.

 Finally, we require that all S-Applications be written in Java in order to take
advantage of its location independence, dynamic configurable class loaders,
reflection, and garbage collection facilities. There is however a price to pay in slower
execution and problems with different JVM versions. Java also produces some
obstacles by hiding part of a module’s state in the JVM. We recognize that much of
the environment could be accomplished in C++ but only with a great deal of extra
work to simulate Java facilities like reflection.

2.3 Research on Software Hot-Swapping

Useful technology for hot-swapping is limited in availability and capability. The state
of the art up to 1993 was well reviewed in [6] where it was pointed out that dynamic
linking was not the best technology to solve the problem and that dynamic updating
cannot be done if some kind of indirection between the program modules that invoke
each other cannot be incorporated into a language or its underlying runtime system.
Moreover techniques for preserving the correctness of a program being updated must
also be provided. A telecom application of dynamic software replacement [7]

involved use of the specialized Chorus real-time operating system for swapping at the
process level. It was limited to process-structured programs using only message-
based communication between the processes. Typically reported replacement times
were of the order of 20 to 50 milliseconds depending on what was being swapped and
its size.

More recently the rapid maturity of Java and recent work on mobile agents and
code [9], [14] have contributed to available technology building blocks by making
code delivery to an active application fairly straightforward. Probably the closest
work to ours is contained in the Dynamic Component Updating System [11] that uses
Java and a wrapper architecture to provide the necessary indirection. Their system
like most such systems provides for transfer of only part of the modules state and so is
limited to swapping non-active objects. We are the first team to publish on software
hot-swapping in network management with a design based on mobile code and Java.

In our research, we analyzed several approaches [1]. These were a Java Virtual
Machine (JVM) modification approach, an Observer Pattern approach, a Proxy
Pattern approach, and a Mediator Pattern approach. The last three approaches are
based on design patterns [5]. A design pattern addresses a recurring design problem
that arises in specific situations and describes a solution. Modifying the JVM would
make manipulation of object references possible thus solving the referential
transparency problem. It would also make available the system stack etc. thus making
the entire state of a module accessible. Such a technique was used in the NOMADS
system [13] to facilitate what is termed strong mobility for mobile agents. This
feature would allow the entire state of a mobile agent to be captured so the agent may
safely resume operation at a remote site from exactly where it left off before moving.
This ability would be extremely useful for hot-swapping because it might allow a
swap to occur at any instant. After a comparative analysis of advantages and
disadvantages, described in some detail in [1], the Proxy Pattern approach was
implemented to provide the indirection needed to solve the referential problems. JVM
modification is held in reserve for systems where very high availability is critical
enough to warrant employing a non-standard JVM to solve difficult state transfer
problems.

3. New Software Hot-Swapping Infrastructure
The following sections provide a detailed design and rules for designing an S-
Module.

3.1 Architectural Elements and Services

In our architecture, shown in Figure 1, an S-Application is composed of S-
Components each made up of an S-Module and an S-proxy, Non-S-Module
components, and a Swap Manager. As described in detail in [1], only an S-Module
can be swapped. In order to control an S-Module swap transaction we introduce the
Swap Manager. An S-Module can cooperate with other S-Modules and non-S-
Module components that form part of the same application program. Together, they
provide services to clients at run-time, and communicate with the Swap Manager.
Clients in our system may be external, demanding service from the S-Application, or

internal, meaning the interaction of one S-Application module with another. The
Swap Manager has access to all S-Modules and provides the services shown in Table
1:

 The biggest difference between an S-Module and a non-S-Module is that the
upgrading of an S-Module will not interrupt the running of the S-Application, while
upgrading a non-S-Module generally needs re-compilation, re-linking and re-starting
the S-Application. When we design an S-Module, special characteristics have to be
taken into consideration, such as attribute mapping and interfaces.

3.2 Characteristics of an S-Module

• Identity: An S-module has a unique identity that is made up of S-Module type
and S-Module identifier.

• Version: An S-Module has an associated version with major and minor indices
and annotation that describes the nature of the changes from a previous version.

• Service: The same type of S-Modules should have the same set of services. For
example, a security S-Module should provide the following basic services:
encryption, decryption, authorization, and authentication. As long as two S-Mod-
ules have the same set of services, they can be swappable.

TABLE 1. Swap Manager services

Service Explanation

Listening Waits for new S-Modules and instantiates them

Security Performs authentication of incoming S-Modules

Transaction Provides control of hot swapping transaction

Timing Ensures timely completion of swap transaction

Event Notification of hot swap events to observers

Repository Caches S-Module states during transaction

S-ModuleSwap

S-Component

Non-S-Module

S-Application

S-Module
Manager

Figure 1. Software Hot-Swapping Architecture

S-Module S-Proxy

 S-Component

• Finite State: An S-Module should have a finite set of internal states. In some
states an S-Module is swappable, in others not. If and only if an S-Module is in a
swappable state, can the hot-swapping transaction take place. Any service pro-
vided by the S-Module should finish within a finite time, and the S-Module
returns to an “idle” state after completing the service.

• Dependency List: Any S-Module should have a dependency list that includes the
S-Modules that it depends on. Before an S-Module can be activated, its dependent
S-Modules must have been loaded into the S-Application.

• Mapping Rules: Associated with each S-Module is a set of mapping rules, which
control the transfer of its internal state between versions of the S-Module.

• Persistence: During a hot-swap transaction, the system resources held by an S-
Module, such as opened files, in-service communication channels, etc., should be
released or transferred to the new S-Module.

3.3 S-Component Design using the Proxy Pattern

The Proxy Pattern can be used to provide access control to an object by having a
surrogate or placeholder for it [5]. Since this is the approach we adopted, we discuss it
in some detail. Each S-Module has one proxy object (here we call it the S-Proxy
object) associated with it. This is shown in Figure 3. An S-Module and its S-Proxy
constitute an S-Component. Using the Proxy Pattern, the hot-swapping system
contains one Swap Manager, several S-Components and other non-S-Module objects.
The S-Proxy is not swappable, it is created once when the S-Application starts up and
the corresponding S-Module object is first instantiated.

A hot swapping scenario in the Proxy Pattern approach looks like this:
1. The Swap Manager gets a message from its listening service. The incoming mes-

sage includes all the information about a new S-Module, including its identity, the
version of the S-Module, and the code for instantiating objects, etc.

2. After the security service finishes the authentication successfully, the incoming
new S-Module is instantiated.

3. The Swap Manager searches for the S-Proxy of the current S-Module (here we
call it the old S-Module) with the specific identity, and sends a message to the S-
Proxy to block any new method calls, and starts the timing service.

4. Then the Swap Manager checks with the S-Proxy if the old S-Module is in a swap-
pable state. If it is not in a swappable state, the Swap Manager will wait until all
the interactions with this S-Module finish.

5. When the old S-Module enters the swappable state, the Swap Manager calls the S-
Proxy to get the internal state of the old S-Module and map it to the state in the
new S-Module. The mapping rules are applied here.

6. After the new S-Module has been successfully initialized, the Swap Manager ini-
tiates a hot-swapping transaction by changing the reference to the old S-Module in
the S-Proxy with the reference to the new S-Module.

7. The timing service stops timing and checks to see if the transaction is finished. If
yes, this hot-swapping transaction is successful. The Swap Manager releases the
blocked calls. The old S-Module can now be removed.

8. If during the step 4 to step 6, the timing service gets a time-out event, this transac-
tion fails. The Swap Manager sends out a notification about this transaction and
releases the blocked calls.

3.4 S-Module Design Discussion

The Proxy Pattern approach solves the “Referential Transparency Problem”
described in Section 2.1, because all the client objects only have references to the S-
Proxy. Only the S-Proxy has a reference to the S-Module. In other words, the client
objects and the S-Module are decoupled by the S-Proxy. As a result of this the client
objects need not be aware of the swapping transactions between the S-Proxy and the
Swap Manager.

This approach is more suitable for situations where the interfaces of the S-Proxy
do not change, although some of the methods of the old and the new S-Module can be
different. This is so called dynamic messaging which will be discussed in the next
section. A general solution to the problem in which the S-Proxy’s interface changes is
the subject of ongoing research.

Each S-Module object has one S-Proxy object created for it when the S-
Application starts. The hot-swapping transaction will not generate new S-Proxy
objects. If the system has many S-Modules, the overhead of creating and managing
the same number of S-Proxy objects cannot be ignored.

As a result of the requirement for dynamic messaging [8], Java reflection is used.
Although Java reflection allows for the identification of all the members that are
associated with an object (field members and method members) and makes it possible
for that object to interact with them, using it can affect system performance
significantly. There is again a trade-off between the flexibility of the architecture and

aS-Proxy
aClient

SignalInterface

Swap Manager

RetrieveStatesInterface
SwapControlInterface
HandleCallExceptionInterface

aS-Module

 DoesNotUnderstandInterface

BehaviorInterface

 MappingStateInterface

aS-Component

 BehaviorInterfaceNewBehaviorInterface

RetrieveStatesInterface

SwapInterface

Figure 3. The S-Module and its S-Proxy

its performance. For network management, the flexibility in extending functionality
likely outweighs the performance issues.

4. S-Module and S-Proxy Interface Design
This section specifies the S-Component.

4.1 S-Module and S-Proxy interfaces

As shown in Figure 3, an S-Module must implement the following interfaces among
which only the BehaviorInterface corresponds to the services provided by the
originating module:

• SwapInterface: This interface allows the S-Module to participate in a swap trans-
action; preparation for swapping, voting and cleanup upon transaction commit.

• BehaviorInterface: This interface shows the actual behavior of an S-Module and
allows its S-Proxy to use services provided by this S-Module.

• MappingStateInterface: This interface maps the states of the same kind of S-
Modules from one version to another. The Swap Manager uses this interface to
initialize a new S-Module properly.

• RetrieveStateInterface: This interface gets the states of the current S-Module, or
it could return the states of any of the previous versions.

• DoesNotUnderstandInterface: This interface handles the exceptions that a ser-
vice is requested but it is not provided by this S-Module.

Also, the corresponding S-Proxy must implement the following interfaces:

• BehaviorInterface: This interface publishes the behavior and services of the
underlying S-Module; the implementation here is to forward the external calls to
the corresponding S-Module.

• NewBehaviorInterface: This interface is used by the external clients to send
dynamic messages to the methods that do not exist in the S-Proxy’s Behavior-
Interface.

• SignalInterface: This interface is used by the Swap Manager to check and control
access to the S-Proxy.

• RetrieveStatesInterface: This interface is used by the Swap Manager to retrieve
the states of the current corresponding S-Modules during a hot-swapping transac-
tion. The request is passed through to the associated S-Module.

• HandleCallExceptionInterface: This interface allows the designer of an S-Com-
ponent to handle the exceptional cases that may happen inside the S-Proxy.

• SwapControlInterface: The SwapControlInterface extends the SwapInterface.
Through this interface the Swap Manager controls the transaction of the hot-swap-
ping procedure. Security is applied here to ensure that only the Swap Manager
uses the interface.

4.2 Client interaction scenarios after hot-swapping

Once an S-Module has been hot-swapped, clients begin to interact with it. Three
interaction scenarios are possible of which the last two are not mutually exclusive.
New and old S-Modules have same BehaviorInterface
This is a simple case since the new S-Module and the old S-Module have the exactly
same behavior methods. The activity inside the S-Proxy will be the same as with both
the old and the new S-Module. In this case a client (aClient) sends a message to the S-
Proxy (aS-Proxy) by calling the sameMethod with parameter args. Then aS-Proxy
forwards the call to the just swapped-in S-Module (newS-Module) directly. The
NoSuchMethodException will not occur because the newS-Module has the same
method as published on the aS-Proxy.
New S-Module does not have all old S-Module methods
In this case, the new version S-Module has changed the behavior methods in its
BehaviorInterface. This could happen when the new version of an S-Module stops
supporting some of the older version’s functionalities, or simply because the new S-
Module requires different parameters for a particular method. Here, one of the
behavior methods in aS-Proxy is the oldMethod; aClient sends a message to aS-Proxy
by calling the oldMethod with args as the parameter. Since the newS-Module does
not support this oldMethod, a NoSuchMethodException will occur in aS-Proxy while
it tries to forward the call to the newS-Module. This NoSuchMethodException will be
caught and handled by the HandleCallExceptionInterface of the S-Proxy. Finally, aS-
proxy will send a message to the newS-Module’s DoesNotUnderstandInterface with
the method name (oldMethod) and the parameter (args). From now on it is the newS-
Module’s responsibility to diagnose and make further decisions.
New S-Module has methods that old S-Module does not
In this case, the new S-Module has added some new methods in its BehaviorInterface.
This is more likely to happen when the caller is also an S-Module that has been hot-
swapped. The client S-Module (here we call it clientS-Module) needs to call the new
S-Module’s new method (aNewMethod). However, the S-Proxy of the new S-Module
does not have this aNewMethod in its BehaviorInterface. Here the following steps
need to be taken:
1. The clientS-Module must send a message to the S-Proxy’s NewMethodInterface

indicating the name of the new method in which it is interested (aNewMethod)
and the necessary parameters (args).

2. The S-Proxy will check if the new S-Module has the required new method. Here,
Java reflection will be used.

3. If yes, the new S-Module has that new method with the parameter, the S-Proxy
will invoke the new method.

4. If no, a message will be sent to the new S-Module’s DoesNotUnderstandInterface.
It is again the new S-Module’s responsibility to make further decisions.

5. Transactions
There are two types of transactions in our hot-swap architecture. The first one, called
an S-Application transaction -- which is invoked by an S-Application’s clients -- is
for the application to provide service to its clients. The second one -- called a swap

transaction -- constitutes a two-phase commit protocol that is used for hot-swapping
S-modules and is invoked by the Swap Manager. The protocol used for hot-swapping
is inspired by the Jini transaction protocol [10].

5.1 The S-Application Transaction

Our hot-swap technique was applied in a distributed environment. The remote clients
may invoke an S-Application transaction through a socket with a proprietary
application-layer protocol, or standard distributed computing technologies such as
HTTP, Java RMI, CORBA, etc.

In a distributed computing environment, it is natural that clients may initiate
several transactions concurrently, especially through RMI or CORBA. Therefore, our
hot-swap technique supports concurrent S-Application transactions. Otherwise, it will
be very limited from a practical point of view. However, supporting concurrent
transactions is a very challenging proposition for a hot-swap technique. An S-module
may execute several operations simultaneously; consequently, it is quite difficult to
get a persistent state from an old S-module and transfer it to the new one. Modifying
the JVM would alleviate this problem but in our SNMP agent implementation this
was not considered necessary.

Any S-module to be swapped should agree to being swapped before the swap
transaction begins. To do this, the Swap Manager should block new calls to the S-
module and allow it to complete its existing operations. Again, if the instantaneous
state could be captured then it might not be necessary to allow the old S-module to
complete all the operations in progress and reach an idle state.

As mentioned previously, the swap transaction is invoked by the Swap Manager
in order to swap the old S-module out of the application and make the new one
operational. To ensure the consistency of the application, the swap transaction should
be either committed or aborted. Naturally, if several new S-modules have certain
inter-dependency relationships, either all or none of them will be swapped in the same
swap transaction. Because of space limitations, details of the swap transaction and the
complete state machine are left to [1]. We simply reiterate that with the S-proxy
approach, it is necessary to queue incoming requests while allowing the involved
module to reach a swappable state, and then commit or abort as needed.

6. Hot-Swapping within the SNMP Context
The UQAM Java implementation of SNMPv3 [15] was chosen because of its very

modular implementation making it easy to identify several modules as candidates for
hot-swapping. As indicated in section 1, the entire Message Processing Subsystem
and the V3MP component were obvious candidates, as were the User Based Security
Model itself and the MD5, SHA, and DES modules.

 Figure 4 shows the S-module decomposition implemented in our first
experiments with an SNMPv3 agent. The larger S-Modules are shown shaded and
some of the smaller S-Modules and their corresponding S-Proxies are shown
unshaded. Provided that the replacement S-module is purely corrective or perhaps
adaptive, but does not change the protocol, and provided that the operation can be
accomplished fast enough, then the swap can be carried out at only the target node,

independent of its remote client-server partner. Using estimated times from [4], if the
SNMP messages are small, for example, packets of the order of 1000 bytes, for an
agent to finish processing its current packet and to reach a swappable state, should not
take more than approximately 50 milliseconds. If very large datagrams are being used
for efficiency, it can take longer to reach the required state. We have measured swap
times - the time the S-module is actually out of service - of under 30 milliseconds
(comparable to times indicated in [7]). The time depends more on the complexity of
the inter-module dependencies and the state to be transferred than on the size of the
modules. This measurement indicates that there should be no difficulty in slipping a
swap transaction into any reasonable polling interval unnoticed, unless the agent is
severely overloaded for other reasons. If USM authentication is used, and if network
latency of up to 500 milliseconds is assumed, there is very small risk of authentication
failure due to delay because USM allows delays of up to 150 seconds. Even with
very large SNMP requests, there should be no trouble finishing off processing the
current packet and carrying out the swap transaction.

 Now consider a situation in which the replacement module contains some kind of
protocol change that requires synchronization between the manager and agents, for
example, if the MD5 algorithm were being replaced by some new SuperMd12
algorithm, or the encryption algorithm was being upgraded. This situation means
that swap transactions at both ends would need to be synchronized by a "global" swap
manager which would have to insure system integrity with a multi-phase commit
procedure, but at this higher level. If only a single manager and a few agents were
involved, there still would not be a problem. If, however, 1000 agents were involved
and an atomic global swap were required, then all the local swap transactions must

U D P

Sw ap M a n a g e r

c o m m a n d g e n e r a t o r
appl ica t ion

n o t i f i c a t i o n o r i g i n a t o r
app l i ca t ion

n o t i f i c a t i o n r e c e i v e r
appl ica t ion

PD U D i spa tcher

M e s s a g e D i s p a t c h e r

T r a n s p o r t M a p p i n g
(e . g . R F C 1 9 0 6)

V 1 M P

V 3 M P

M e s s a g e P r o c e s s i n g
S u b s y s t e m

Secur i t y
S u b s y s t e m

U s e r - b a s e d S e c u r i t y M o d e l

S _ P r o x y M D 5 M D 5 M o d u l e

S _ P r o x y S H A S H A M o d u l e

S _ P r o x y D E S D E S M o d u l e

Sw a p p a b l e S N M P E n g i n e

N etwork

N o te : d a s h e d p a r t s a r e a d d e d f r o m
 h o t - s w a p p i n g f r a m e w o r k

SN M P ent i ty

Figure 4. SNMP Entity S-Modules

succeed at all the heterogeneous SNMP entities involved or the whole process must
be rolled back. Just processing acknowledgments alone from 1000 remote agents can
take 5 to 10 seconds. Because bottlenecks tend to occur at the manager, clearly a two
phase commit procedure over a WAN would have to be done with care and
efficiency. The speed and robustness of hot-swap transactions would be needed in
this management situation and also should make the update process feasible.

First of all, the replacement S-module needs to be sent out from the managing
station to all the participants, and, to insure synchronization the code needs to be
delivered and ready for swapping before the local swap transactions are initiated.
Although we want the swap to occur quickly once it has started, it usually does not
have to be done immediately; as a result, there is usually time to prepare. There are
several ways this process can be carried out both within and outside of the SNMP
protocol. Within SNMP the script MIB [3] provides for a manager pushing scripts to
another SNMP entity. With the appropriate instrumentation, Java programs could be
included. Outside of the SNMP protocol, there are several mobile code dispatching
technologies that can be included, like RMI and even CORBA. In any of these cases,
it would be useful to multicast the dispatching process or have it carried out from a
separate code server so that the load on the manager station can be minimized. We
must remember that the SNMP manager is still carrying out its regular polling duties,
polling each agent every 5 minutes, for example, and the manager and network may
already be under a severe load.

Assuming that the replacement S-module has already been marshaled at the
remote nodes, it is now time to initiate the synchronized swap activity. This could be
done with a multicast command to proceed. Network latency should not be an issue.
Otherwise, if the remote clocks were reasonably synchronized, the Schedule MIB
associated with the Script MIB could be employed to initiate swap execution at
essentially the same time. Normally, the two phase commit approach requires that
each participant signal that it is prepared to do the swap. However, there should be no
problem in omitting this signalling, if the normal SNMP requests are not individually
too heavy, and if suitable rollback provisions have been made (the normal SNMP set
request does not require pre-acknowledgment).

7. Conclusions
This paper has described an architecture and implementation for the swapping of

modules within a running application with minimal disruption of service provided by
that application. In our research, we have found that the Proxy Pattern approach
seems more reasonable than others; however, this conclusion is based on the
assumption that the S-Proxy is not swappable. Based on our measured performance,
we believe that the approach appears quite feasible for upgrading SNMP during
regular operation. We have not yet applied it to a large scale situation with many
nodes, but preliminary analysis is encouraging. Moreover, if faster swap transactions
are required, we are prepared to go the modified JVM route, in which instantaneous
state capture is possible. The result would be that the time to reach a swappable state
once the swap transaction has been initiated, would be greatly reduced. While the
research reported here has focused on an important network management software
entity -- an SNMPv3 entity -- the work is more widely applicable within the network

management domain, which includes service management. Our current work involves
automating the generation of S-modules and proxies, exploring the applicability of
global safe checkpointing to the general problem and determining just what is
swappable (the concept of an S-critical section has arisen in this context).

8. Acknowledgments
We would like to acknowledge the financial support provided by Nortel Networks
We would also like to thank Professor Omar Cherakaoui of UQAM, the University
of Quebec in Montreal for the Java source to their Modular SNMPv3 agent [15].

9. References
[1] Feng, N., Ao, G., White,T., and Pagurek, B., “Software Hot-swapping Tech-

nology Design”, Technical Report SCE-99-04, Systems and Computer Engineer-
ing, Carleton University, Ottawa, Canada, June 1999.

[2] Cerchio, L., and Pelaggi, A., “Software Management: An Important Side Issue of
Network Management”, IEEE NOMS ‘92, pp.383-396.

[3] Levi, D., and Schonwalder, J., “Definitions of Managed Objects for the Delega-
tion of Management Scripts”, IETF RFC-2592, May 1999.

[4] Stallings,W., “SNMP, SNMPv2, SNMPv3 and Rmon 1 and 2”, 3rd Edition,
Addison Wesley Publishing Co., 1999.

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns, Elements of
Reusable object-Oriented Software”, Addison-Wesley Publishing Co., 1995.

[6] Segal M., and Frieder, O., “On-the-fly Program Modification: Systems for
Dynamic Upgrading”, IEEE Software, March 1993, pp.53-65.

[7] Hauptmann, S., and Wasel, J., “On-line Maintenance with On-the-fly Software
Replacement”, Third International Conference on Configurable Distributed Sys-
tems, IEEE Computer Society Press, pp 70-80, 96, May 1996

[8] Blewitt, A., “Using dynamic messaging in Java”, available at URL: http://
www.javaworld.com/javaworld/javatips/jw-javatip71.html.

[9] Nelson, J., “Programming Mobile Objects with Java”, John Wiley & Sons, 1999.
[10] Waldo J. “Jini Architectural Overview” available at URL: http://java.sun.com/

jini/whitepapers/.
[11] Plasil, F., Balek, D., and Janecek R., “SOFA/DCUP: Architecture for Compo-

nent Trading and Dynamic Updating”, ICCDS ‘98, International Conference on
Configurable Distributed Systems, Annapolis, May 4, 1998.

[12] Laddaga R., and Veitch, J., “Dynamic object technology”, Communications of
the ACM, Vol. 40, No. 5, pp. 36-38, 1997.

[13] Suri, N., Bradshaw J., et al “NOMADS: Toward a Strong and Safe Mobile
Agent System”, Agents 2000, The Fourth International Conference on Autono-
mous Agents, Barcelona, June 2000.

[14] Bieszczad, A., White T., and Pagurek, B., “Mobile Agents for Network Manage-
ment”, IEEE Communications Surveys, 1(1) : 2-9, 1998.

[15] “Modular SNMP,” available at URL: http://www.teleinfo.uqam.ca/snmp/.
[16] “Mobile Code Toolkit,” available at URL: http://www.sce.carleton.ca/netman-

age/mctoolkit/

