Facilitating Web Service Discovery in Distributed Web

Service Registries

Submitted By

Afiya S. Kassim, B.Eng.

A Thesis submitted to the Faculty of Graduate ®&sidind Research in partial fulfillment
of the requirements for the degree of
Master of Applied Science
in

Electrical Engineering

Ottawa-Carleton Institute for Electrical and CongyUEngineering
Faculty of Engineering

Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada, K1S 5B6

January, 2008

© Copyright

2008, Afiya S. Kassim

The undersigned recommend to the Faculty of Gradiatdies and Research

acceptance of the thesis

Facilitating Web Service Discovery in Distributed Web

Service Registries

Submitted by Afiya S. Kassim, B.Eng

in partial fulfilment of the requirements for tiegree of Master of Applied Science

Thesis Co-Supervisor

Professor Babak Esfandiari

Thesis Co-Supervisor

Professor Shikharesh Majumdar

Chair, Department of Systems and Computer Engingeri

Professor Victor C. Aitken

Carleton University

January 2008

Abstract

The management of distributed Web Service regstis an important issue in the
context of a Web Services based distributed sysfiém. current registry management
systems and proposals for distributed service meggsare investigated. Through this
investigation, it was discovered that none of thesteng proposals satisfy all the
requirements of scalability, availability, easenshnagement and flexibility in terms of
the management of the registries. Therefore, a JDetctory based registry
management system is introduced in this thesis. §ystem uses distributed Meta-
Directory nodes for the management of the senecgstries. The system also provides
flexibility as the routing used for inter-connedithe distributed Meta-Directory nodes
can be selected during deployment to accommodatermyrequirements. The distributed
Meta-Directory architecture enhances system pedaoa by allowing the user to choose
an appropriate network model, during configuratibased on the system state such as

bandwidth available and maximum allowable delayqesry message.

Acknowledgements

First and foremost | would like to thank God favigg me the opportunity to go
down this road as well as the strength and perageerto finally be in a position of
finishing my Master’s degree.

| am extremely grateful to the Ontario Centrekrtellence and Alcatel-Lucent for
providing operational funding for my research. lulbalso like to thank Bill St. Arnaud
and Darcy Quesnel from CANARIE for their help inttsgy up the PlanetLab
environment in which the experiments were performed

| would like to extend my gratitude to my supeorss Dr. Esfandiari and Dr.
Majumdar, for guiding me and always being thereffer assistance and answering my
3:00 AM emails. Without your support and expertisis would not have been possible.

This thesis is dedicated to my parents, Mzee Kassid Mama Kassim, who have
always supported me and instilled in me the behatf anything is possible as long as |
work hard at it. Nothing defines who | am or limitgy abilities in anything | pursue other
than my willingness and determination in achievingl love you and thank you for
raising me to be the person | am today.

| would also like to thank my siblings, Ally, Zuida, and Kamaria, for listening to
my complaints, reminding me that everything hapdens reason, and assuring me that
everything will work out in the end. You were alvgathere and made me feel that you
were always right next to me even though we aréiemnts apart.

Last but not least, this goes out to all my friemého have been my pillar of support
and my second family. Thank you for always beirgyéhand your constant check ups to

make sure | am still sane while working through¢hallenges this thesis presented.

Table of Contents

N = 1T I ¥ O P i
ACKNOWLEDGEMENTS. ...t e e e e e et e e e rnanaeaee)Y
LIST OF TABLES . ..o ot ettt e e e e e et e e e et e e ee et e e eaaaeaeees X
LIST OF FIGURES. ..ottt ettt e et e e e e e e e e e e aaas Xi
LIST OF ACRONYMS ..ot ettt e et e e e e e e et e e e e rnnn e e e eaan s XVi
CHAPTER 1 INTRODUCTION.....uuiiiiiiiiiiiie ettt e e et e e e e e aaans 1
11 BACKGROUND. ...ttt ettt ettt e et e e e e e e e et e e e et e e e eaa e eeenans 1.
1.2 FROBLEM MOTIVATION AND THE PROPOSEDSOLUTIONuuieiieiiiiiaeeeeeninaeaeeaeees 4
1.3 GONTRIBUTIONS ..ttt e et ettt e e e e et eetia s e e e et et seaeeeeeeestn e e e e e essna e e eeeensbnnaaaaeennes 6
1.4 ORGANIZATION ettt e e ettt e e e et e et e e e e e e eemmmasa e e e e e eesaa e e eeeeessn e eeeeenrnnnaaeas 7
CHAPTER 2 LITERATURE REVIEW ...t 9
21 DEPLOYMENT CLASSIFICATIONS. ... iiietitiieeaeeeetiaeeeeeestaaaeeeeesmmmnnn e eeeeesnnnnns 10
2.1.1 Centralized ArChitECIUIEcceuiuurieet e e e e e e e e e e e e eeeeeeeeaee s 10
2.1.2 Decentralized ArChiteCIUIEuuuuuuutmmmmmn e e 51
2.1.3 Meta-Directory ArchiteCtureoouuuiicemmmuiiiiiiee e 21
2.1.3.1 Centralized Meta-Directory ArchiteCture.............cccoeeeeevieiiiieeiinnnnns 23
2.1.3.2 Distributed Meta-Directory ArchiteCture.............ccovvvvvvvvvvieniiinnnnnnnn. 28
2.2 IS CUSSION. ..ttt ettt e e e et e e et e e ern e e e e ra e e e enneeaes 32
2.2.1 AVAIEDIITY ... 32
2.2.2 SCAlADIIILY e e 34
2.2.3 Ease of ManagemeNnt.......cccuuuiuiiiiuuiiieeeieee e 36

2.2 4 TrANSPAIEICY ...uuieiiiiiinaeeeeeettie e e e e e emaeeeeeatn e e e eeeetnn e e aeeeesnnnaeeeessnnnnns 37

2.2.5 Meta-DireCtory SYSIEIMccooiiiiiiiiiiiiiieeeeeieii e e e e e eeeeeeeaaae 39
2.25.1 Centralized Meta-Directory Approachccc.cccoovveeeeeeiiiiiiiiieeiiiiinns 40
2.2.5.2 A Network of Meta-DIreCtories..........coueeeiiiiiiiiiiiiiiiiieiee e 41

2.3 AN INTRODUCTION TO THESOLUTION: PROPOSEDMETA-DIRECTORY BASED

APPROACH. ...ttt e e 43
2.3.1 Configurable Routing Framework............ooi oo 47
CHAPTER 3 SYSTEM DESIGNt 49
3.1 DESIGNMODELS.....ccitiiiiiici et 49
3.1.1 Client Residing on the Service RegiStIY.....cccceceuurriiiiiiieeieeeeieeeeeeeiiiiines 49
3.1.2 Client residing on the Service Provider.........cccooceiiiiiiiiieieiieeeeeeiiiiiies 51
3.2 USECASES. ...ttt ettt r e e e e e ettt e e e e e 53
3.3 META-DIRECTORY SYSTEM DESIGN.....cuttiiiiiiiiiieeieeeeiieeeeeee 56
3.3.1 CHORD (DHT) MOGEeveeeeee et ee e, 56
3.3.2 Hash Table SrUCIUIEuuiiiiiiiiiii e 58
3.3.3 Publishing Service INformationceeeeeeiiiiiiiiiiii e 61
3.3.4 Deleting Service INfOrmMation..............oo o eeeeee oo e e 64
3.3.5 Querying Service INformation................uceeeemriiiiiien e 66
3.4 GONFIGURABLE ROUTING FRAMEWORKcoiiiiiiiiiiieeeieiitts e en e 66
3.4.1 NEetWOIrk MOUEISuiiiiiiiiiiiiiiiiee et 67
3.4.1.1 Fully Connected Model..........coooiiiiiiiiiiiiiie e 68
3.4.1.2 Fully Connected (DHT) Model..........comeeeeeiiieiiieeeii e 70
3.4.1.3 Super Peer MOdel........ccooooe i 73

Vi

3.4.2 Performance Analysis of Network Models.........cccoooiiiiiiiiiiiiiiiiiiiinnnn. 75
3.4.2.1 Total Number of Messages Exchanged ...cocoo.....ooooviiiiiiiiiiiinnnnnnn. 75
3.4.2.2 Total Number of HOPSooooiiiiiieeeeeeee e 80
3.4.2.3 Maintenance OVerheadoceummeeeererirmmiinianneee e e e eeeeeeeeeeenns 38

CHAPTER 4 IMPLEMENTATION ...ouuiii ettt 88
4.1 META-DIRECTORY ARCHITECTURE .. .ccttuuiaiitiaeeetieeenieeeeniaeeennasaeemnnnaeeenans 88
4.2 META-DIRECTORY SYSTEM IMPLEMENTATIONceiteruinaeeeeennnnneeeeeennnnnaaeaeeesd 09

4.2.1 Meta-Directory Sequence Diagramscoooccccccceeeeeeeieeeeeeeeiiiiiiiiens 94

CHAPTER S5 PROTOTYPE TESTING.....ciiiiiiiiiiiie ettt 104
5.1 FUNCTIONAL TESTING ...ccttiiiiiii ettt ettt ee e e e e e e e e e an e e enans 104

5.1.1 CHORD (DHT) NEWOIK.ovivieierieeeie s semammr st see s eesees s sieeseneeseeesenseaeees 105
5.1.1.1 NetWOrk SEIUP ..ooevieiiiiiiiiie e s 105
5.1.1.2 Publishing Service Informationcccooviiiiiiiiiiiiiii e, 108
5.1.1.3 Querying Service INformationcoeeveiiiiiiiiiiiiiieeee e 108

5.1.2 Fully Connected NEetWOIKcoouuiiiiimiiiiiiieee e 110
5.1.2.1 NetWOrk SEIUP ..cceveiiiiiiiiiee e 111
5.1.2.2 Publishing Service Informationcccoeeviiiiiiiiiiiii e, 112
5.1.2.3 Querying Service INformationooeevviiiiiiiiiiiiiinieeee e 113

5.1.3 Super Peer NEIWOIKuuuiiiiieeeeeee et ettt 115
5.1.3.1 NetWOrk SEIUP ..oceveeiiiiiiiieie e 115
5.1.3.2 Publishing Service Informationcoooviiiiiiiiiiiiiieeeeeeeeee 117

5.1.3.3 Querying Service INformationcoeeeviiiiiiiiiiiiiiieeee e 118
5.2 FERFORMANCEANALY SIS .. ceteeeite ettt e et e et e et e e emme e e e e e e e e en e e eenn s 121

5.2.1 Test Plan for the Performance Analysis Experiments......................... 122

5.2.2 Performance AnalysiS APProaches............occccceeeeeiiiiiiiiiiiiieee e 124
5.2.3 Performance Analysis using PlanetLab........cccccccooiiiiiiiiiiiiiiiiines 125
5.2.3.1 EXperimental OVEIVIEWiiieeeeeeiieeiiiiiiiiiesaae e e e e e e e e eeeeeeeenens 126
5.2.3.2 Experimental PArameters o eeeeeereummmniaananeaaeeeaseeeeeeeennns 126
5.2.3.3 Experimental RESUILSuuuimmn e 128
5.2.3.3.1 Effect of the Size of the Networkcccccoviiiiiiiiiii, 129
5.2.3.3.2 Effect of the Number of Attributes UsediiQuery...................... 131
5.2.4 Performance Analysis USiNg P2PSiM..........occorarceiiiieiiiiiieeeeiiiiiiinnn 133
5.2.4.1 SIMUIAtION OVEIVIEWuuuurereesmmmmiireeeieeeeereeeeeeeeaee e e e e e 341
5.2.4.2 Simulation Parametersooeeeeeemiiiiiiiiiiieieeee e 351
5.2.4.3 SIiMulation RESUILSuuuiiiiieeeeeiiiiiiiie e 137
5.2.4.3.1 Memory OVEIrNEAMuiiii ittt e e eeeeeeeees 138
5.2.4.3.2 NetWOrk DeIAYuuuuuiiiiiie ettt eeeeeeaeees 138
5.2.4.3.3 Path Lengthccooo i 140
5.2.4.3.4 Network Bandwidthoooimmmeeeiiiiiiiiii e 141
CHAPTER 6 ADAPTABLE ROUTING FRAMEWORKccooiiiiiiiiiiei e 143
6.1 ADAPTABLE ROUTING ALGORITHMSiiiiiiiiii et vn e 145
6.1.1 Changing the Maintenance State of the System............ccccceevvvieennenn. 147
6.1.2 Transforming the Network from an SPFC to an FCdnse..................... 147

6.1.3 Transforming the Network from an SPCHORD to a CHQRHT) Instance
149

6.1.4 Transforming the Network from an FC to an SPFCdnse..................... 152

viii

6.1.5 Transforming the Network from a CHORD (DHT) to &#C&HORD Instance

155
6.1.6 Transforming the Network from a CHORD (DHT) to @@HT 158
6.1.7 Transforming the Network from an FCDHT to a CHORIMT)............. 159
6.1.8 Algorithms Specific to the SP NOdEeS........coaaaaaeiiiiiieeeeeiis 159
6.1.9 Algorithm Specific to the Entry NOdes.......oooiiiiiiiiiiiei e 160
6.1.10 Algorithm used by the RT ... e 160
6.2 ANALYSIS OF TRANSFORMATIONALGORITHMS.....cutuiiiiiiiiiisieeeeeeeeeeeeeeennnnnnnnes 161
CHAPTER 7 CONCLUSIONS ... e 165
7.1 UMMARY sttt 165
7.1.1 Fully Connected NetwWOrkcoooiiiiiiiiiiiiiiee e 165
7.1.2 Fully Connected (DHT) NetwWork..........oooiii e 166
7.1.3 CHORD (DHT) NEWOTK. ...t eememes e eeeeeeeeeee s e s s s ensenes e 167
7.1.4 Super Peer NEIWOIKuuuuuiiieeee e st 167
7.2 DISCUSSION. ...ttt e 68l
7.2.1 AVAIlADIlItY ..o 168
7.2.2 SCAlADIlIY ...ccoeieiiee 168
7.2.3 Ease of Management..........coooiiiiiiiiiiiiieieeeeeeiiiiiins e e e eeeeeeeeennd 69l
7.2.4 TrANSPAIEINCY ..cevuuneeeiiiiiie e eeeeeti e e aeeeaa e e eeeeesn e eaeeessnn e aaeeessnnaaaaaanes 169
7.3 LIMITATIONS .ttt sr e e s e e s e e e e e e e e reennans nv7
7.4 FUTUREWORK ...ttt e e 171
REFERENGCESottt e 173
APPENDIX A: DERIVATION OF TRANSFORMATION COMPLEXITI ES....A77

List of Tables

TABLE 1 EVALUATION OF SYSTEMS...iuuiiiiiiitiieitee it ee e e e e et e et eeemaeesaesaneeaneaeanaeannns 38
TABLE 2 ATTRIBUTESHASHED BY THEMETA-DIRECTORY SYSTEM....ccvvniiiieeeiieeeiieeeeneeen. 60
TABLE SHASH TABLE CONTENTS ... ittiiitieeiteett e et ee et eetneeetneessnaentneeesneeesnaeenneesnaaesnnaes 61
TABLE 4 PERFORMANCEANALYSIS METRICS. ... ittt e eeeee e e e eea e eanes 122
TABLE 5 PERFORMANCEANALYSIS PARAMETERS. ... ccuiiiiiiiieitieieeiee e eee e e e e eaeenaes 123
TABLE 6 EXPERIMENTAL PARAMETERS ANDV ALUES......iiiiiiiiieiii et e e e e e 127
TABLE 7 SIMULATION PARAMETERS ANDVALUEScccuniiiiiiiieeiie et eeetee et e et eennaes 137
TABLE 8 TIME COMPLEXITY OF ALGORITHMS. ... ittniiiieiii et eeeteeetee e eea e e smneeeeaneeennns 162
TABLE 9 LIST OFINVARIANTS FOR EVERYNETWORK TRANSFORMATION........cccvuneernnnnnn. 163

List of Figures

FIGURE 1 CONCEPTUALVIEW OFWEB SERVICE COMPONENTS.ccuuuuiaeiiiiiiieaeeeeernaaaaaaeees 2
FIGURE 2 THE EXTRANET SERVICE ARCHITECTUREcctttttuiaeaieeiiiaaeeeeeeini e e eeeennmnnnns 4
FIGURE 3 AN EXAMPLE OF A CENTRALIZED ARCHITECTURE[25]....cccvviiiiiiiiiiiiiianeeeeeeeeee 11
FIGUREZA UDDI CORETYPES[4] .. it iii ittt ettt e e e e e e e e e 13
FIGURES AN EXAMPLE OF ADISTRIBUTED ARCHITECTURE[25]....ccvuiiiiiiiiiiiiiiieeeeeeeeeeeee 16
FIGURE G VIRTUAL SPACEBASED SYSTEM [17] «eevviiiiiiiiiiiiiiiiiee e eeeee s 19
FIGURE 7 THE AD-UDDI DISTRIBUTED ARCHITECTURE[B] .. uueeiiieee et 25
FIGURE8 METEOR COMMUNICATION LAYER OVERVIEW [26]coeiiiieiieiiieeeeeeeiiiinnn 24
FIGURE 9 WEB SERVICESSYNDICATION OVERVIEW [13] ..ceviiiiiiiiiiiiniiiee e 27
FIGURE 10 CLUSTERING OFWEB SERVICES[L8]...cceviiiiiiiiiiiiiiiiee e eeeee s 29
FIGURE11SRDERARCHITECTURE[LB].....ciiiiiiiiiiiiiiiiiiiiee e e e 30
FIGURE12DISTRIBUTED HASH TABLE ARCHITECTURE[L] ..ccoiiiiiiiiiiiiiiiiiiieee e 23
FIGURE 13 CENTRALIZED APPROACH. ... etttettiaeaaeeeiti e e e eeeetta e e e e eesmmmn s e e eaeesnnaaaeaeeenen 41
FIGURE 14 SERVICE PUBLISHING [L].1tttttuuuasieeeeeeeeeeeeeeeeeetittii i et 43
FIGURE 15DISTRIBUTED META-DIRECTORY APPROACH.......uuiiiitieeiiiiieeeiie e eeie e eanas 44
FIGURE 16 SERVICE PUBLISHING IN PROPOSEDMETA-DIRECTORY APPROACH................. 45
FIGURE31META-DIRECTORY SYSTEM USECASEDIAGRAMcoiiiiiiiiiieieiiiii e 53
FIGUREL7 CHORD(DHT) RING ...cettiiiiiiiiiitiiiees ettt e et e e e e e 57
FIGURE L8 META-DIRECTORY INTERFACE.uuuiiaiititiiiaaaeeeetiaaeeeeestisaaeaeeeaeesnnnaaaaeees 59
FIGURE 19 SERVICE PUBLISHING IN META-DIRECTORYNODES......cccuuiiiiiiiiiiieeeeeeeeiie e 62
FIGURE 20 SERVICE PUBLISHING AND MESSAGEDISTRIBUTION.......ccitiitiiaeeeeeiiieeeeeeeennns 64
FIGURE 21 DELETING SERVICE INFORMATION FROMMETA-DIRECTORYNODES............... 65

Xi

FIGURE 22 SERVICE DISCOVERY INDISTRIBUTED META-DIRECTORYNODES........c0vvven.... 66

FIGURE23FULLY CONNECTEDMODELcivttuiieeiiiiiiaeeeeeettie e e e e eeetsee e s e e s eeennnaaaaeeenes 68
FIGURE24 LOCAL DISTRIBUTION IMODEL......uuuiiiiiiiiiieeeeeeetiaa e e e eeeetia s aeaeeeeeeesenaaeeeeenes 69
FIGURE25FULLY CONNECTED(DHT) MODEL ...ccvvvttiiiiiiiaeeeeee e eeeeeeeeeeeiiiivie e 71
FIGURE26 DHT DATA DISTRIBUTION MODELuuiiiiiiiiiie e eeeiii e ee et eeeeeemene e 72
FIGURE 27 SUPERPEERMODEL ... iiiiiiitiee e ettt ettt e e e eemma s e e e e eean e e e e e eesann e 73

FIGURE 28 EFFECT OFNETWORK SIZE ON THETOTAL NUMBER OFMESSAGESEXCHANGED

PERQUERY 1.ittttitititi e ettt e e ettt e e et e e eet e e e eamaa e e e et e e e et eeeasaeeeaaaaeeeetn e eeesnnnnneeees 79
FIGURE 29 EFFECT OFNETWORK SIZE ON THE TOTAL NUMBER OFHOPS.........cccccvvvveeeen. 83
FIGURE 30 EFFECT OFNETWORK SIZE ON THE PERIODIC MESSAGESEXCHANGED............ 86
FIGURE 32 META-DIRECTORY ARCHITECTURE ...uuitttuueeitieeeetieeessineeessnessssnnensensnnnaaees 89

FIGURE 33 SERVICE PUBLISHING AND DISCOVERY INMETA-DIRECTORY COMPONENTS.. 90

FIGURE34META-DIRECTORY PACKAGESccuuuuiieaitiiiiaaeeeeeeii e e e eeeeetisaeeaeeeaeeennaaaeaeees 92
FIGURE35UML CLASS DIAGRAM FOR THE COMAKASSIM.OVERLAY PACKAGE 93
FIGURE36 SETTING UP AFULLY CONNECTEDNETWORKcccvttiiiiaeiiiiiiiaaeeeeeiiiaaeeeeenenans 59
FIGURE 37 CREATING A SUPERPEERNODEcciiiiiiiiiiiiiiie e 95
FIGURE 38 JOINING ORCREATING ADHT NETWORKccvuiiiiiiiiiiiiee e 96

FIGURE40PUBLISHING A SERVICE IN AFULLY CONNECTEDNETWORK SEQUENCE
1YY Y P 98
FIGURE41 PUBLISHING A SERVICE IN ADHT NETWORK SEQUENCEDIAGRAM 99

FIGURE42 DELETE SERVICE IN A FULLY CONNECTEDNETWORK SEQUENCEDIAGRAM . 100

Xii

FIGURE43 DELETE SERVICE IN ADHT NETWORK SEQUENCEDIAGRAMcovvevviivniennnnnn. 101

FIGURE 44 SERVICE DISCOVERY IN AFULLY CONNECTEDNETWORK SEQUENCEDIAGRAM

... 102
FIGURE 45 SERVICE DISCOVERY IN ADHT NETWORK SEQUENCEDIAGRAMcun.ee. 103
FIGUREABNETWORK SETUP.ciiiittiaeeeeeetia e e e e ettt e e e e e eeemmmsa e e e e eeesnn s aeaeeessnnaeaeennes 105
FIGUREA7 CREATING ADHT NODEoiiiiiieiiiiie e e 106
FIGURE48 CONNECTING TO ADHT NETWORKtiiiiiiiiiieeeeeeeiie e e e eetia e e aeeeeeeeeennns 106
FIGURE4A9DHT ADMINISTRATIVE CONSOLEcccuuuuiaiaiieiiiiaaaeeeeniiaaeeeeeesnmnaasaeeeeeees 107
FIGURE 50 PUBLISHING A SERVICE ON THEADMIN CONSOLE.......cctttttiaaeeeeiiniaeaeeeennnnnns 108
FIGURESLREGISTRY LOCATIONS. .. cttiiiiiiiieeett et e ettt e e e e e e et e e ea e e enaeeees 109
FIGURE 52 RESPONSE FROM THIREGISTRIESQUERIEDuuuivvviieeiiiieescsieeeennneesesnneeeens 109

FIGURES53 REGISTRY LOCATION RETURNED BY NARROWING THESCOPE OF THEQUERY110

FIGURE 54 RESPONSE FROM THHEREGISTRY ...tuuiiiiiiiiieiieeeeiaeeenieeeesiseeesimeeeeeenaeeennns 110
FIGURES5FULLY CONNECTEDADMINISTRATIVE CONSOLE.....ccciiiiiiieaeeeeriiaaeeeeeeieenns 111
FIGURES6 FULLY CONNECTEDNETWORK INSTANCE.uuiiiiiiiiiiiaaeeeeeiiiaaeeeeeeneneeenns 111
FIGURE 57 SERVICE PUBLISHING IN A FULLY CONNECTEDNETWORK.......cccvvuuiaaaieennnnnn. 112
FIGURE 58 SUCCESSFULSERVICE PUBLISHING IN A FULLY CONNECTEDNETWORK........ 112
FIGURES59 QUERY ISSUED BY THENODE LISTENING ONPORT6348.........cccoevvviiieiiiieee, 113
FIGURE 60 REQUESTRECEIVED BY NODE LISTENING ATPORTB347cvviiviieiiiiiieeeean, 113
FIGURE61 REQUESTRECEIVED BY NODE LISTENING ONPORTB346cccvvevviiniiiniinnnen, 114
FIGURE 62 RESPONSERECEIVED BY REQUESTINGNODE LISTENING ONPORT6348........ 115
FIGURE 63 SUPERPEER ADMINISTRATIVE CONSOLE......uiiiiiiiiiiaeaeeeeiiiaaeeeeeninnaeeaaeees 116
FIGURE 64 SUPERPEERNETWORK INSTANCE.ccctttuiaeeieeiiiiaeeeeeeeiiseeeeeessimnaesaeeeeeees 116

Xiii

FIGURE 65 SERVICE PUBLISHING IN SPCLUSTER.cuitieiiie et eee e e e e ermaenaens 117

FIGURE 66 SUCCESSFULSERVICE PUBLISHING IN SPCLUSTER......uuiiiiiiiiiieeeeeeeiiiaeeeeees 118
FIGUREG67 REQUESTRECEIVED BY ENTRY NODE......ciiviiiiiiiiiiiei e een e 119
FIGURE 68 REQUESTRECEIVED BY SUPERPEERNODE ATPORT6346.......cccvveviiineiinnn, 119
FIGURE 69 REQUESTRECEIVED BY SUPERPEERNODE ATPORT6347.....ccvviviiniiiniiinenn, 120
FIGURE 70 REQUESTRECEIVED BY THEENTRY NODENTE ..., 120
FIGURE 71 RESPONSERECEIVED BY NODENTB ... coiiiiiiiiiiii e 121
FIGURE 72 SEQUENCEDIAGRAM FOR PLANETLAB EXPERIMENTS.....ccviiriiiniiieeiieeneeennns 130
FIGURE 73 EFFECT OF THESIZE OF THENETWORK ON THEQUERY RESPONSETIME......... 131

FIGURE 74 EFFECT OF THENUMBER OFATTRIBUTES ON THEQUERY RESPONSETIME 132

FIGURE 75 EFFECT OF THESIZE OFNETWORK ON THEMEMORY OVERHEADccvvvve.... 138
FIGURE 76 EFFECT OF THESIZE OF THENETWORK ON THELOOKUPDELAYcvvvvvvenienenn. 139
FIGURE 77 EFFECT OF THESIZE OF THENETWORK ON THEPATH LENGTH. .. cuvvieeeieninnenns 140

FIGURE 78 EFFECT OF THESIZE OF THENETWORK ON THEBANDWIDTH USED PERQUERY

FIGURE 79 RUNTIME RE-CONFIGURATION. ..ttt eutetttnteaneeaenseasnseensesnseaseassensesensenenss 145

FIGURE8BOACTIONSPERFORMED BY ASYSTEM ADMINISTRATOR WHEN THENETWORK IS

IMODIFIED ...ttt ettt ettt e et et e e et e et e e e eea e e e eea s e e esnnnaeaees 147
FIGUREBL1TOGGLING THESTATE OF THESYSTEM...uuuuiiiiiiiiiiaaeeeeeiiieaeeeeeeinneeeeeneennees 147
FIGURE 82 CHANGING AN SPFCNETWORK TO ANFCNETWORK......uiiiiiiiiieeeeeeeiieee 148
FIGURE 83 EXAMPLE OF TRANSFORMATION FROMSPFCTOFC......cooviiiiiiiiiieien 149

FIGURE 84 CHANGING AN SPCHORDNETWORK TO ACHORD(DHT) NETWORK........ 150

FIGURE 85 EXAMPLE OF TRANSFORMATION FROMSPCHORDTO CHORD (DHT)........ 151

Xiv

FIGURE 86 CHANGING AN FCINSTANCE TO ASPFCINSTANCE......cccuuuiiiiiiiiiiiiee e 153
FIGURE 87 EXAMPLE OF TRANSFORMATION FROMFCTOSPFC.......ooiiiiiiii 154
FIGURE 88 CHANGING A CHORD(DHT) INSTANCE TO ANSPCHORDINSTANCE......... 156
FIGURE 89 EXAMPLE OF TRANSFORMATION FROMCHORD(DHT) To SPCHORD......... 157
FIGURE 90 CHANGING A CHORD(DHT) INSTANCE TO AFCDHTINSTANCE................. 158
FIGURE 91 CHANGING A FCDHT INSTANCE TO ACHORD(DHT) INSTANCE................. 159

FIGURE 92 GET THEREFERENCE OF ALL THECLUSTERS IN ASUPERPEERNETWORK 159

FIGURE94 DELETE KEY-VALUE PAIRS FROM ANODE......cuiuiiiiieiie e eeeeeeeaeeeaeneens 160

FIGURE 95 CREATE A POINT-TO-POINT CONNECTION WITHREMOTE NODES INLIST...... 161

XV

CORBA

DARPA

DAML-S

DHT

DUNS

FC

FCDHT

GLN

JiST

P2P

PC

RDF

Sax

SC

SFC

SOAP

SPCHORD

SPFC

SPFCDHT

UDDI

URI

uuID

List of Acronyms

Common Object Request Broker Architecture
Defense Advanced Research Projects Agency
DARPA Agent Markup Language for Services
Distributed Hash Table

Data Universal Numbering System

Fully Connected

Fully Connected (DHT)

Global Location Number

Java in Simulation Time

Peer-to-Peer

Primary Cluster

Resource Description Framework

Simple API for XML

Secondary Cluster

Hilbert Space-Filling Curve

Simple Object Access Protocol

Super Peer model (CHORD (DHT))

Super Peer model (Fully Connected)

Super Peer model (Fully Connected (DHT))
Universal Description, Discovery and Igtation
Universal Resource Identifier

Unique Universal Identifier

XVi

W3C

WS

WSDL

WSMX-DB

XML

XSD

World Wide Web Consortium

Web Service

Web Services Description Language

Web Service Modeling Execution Enviroem Database
Extensible Markup Language

XML Schema Definition

XVil

CHAPTER 1 INTRODUCTION

Web Service Registries are used to facilitate diseovery of Web Services in a
distributed system. The problem of management stiiduted registries is a topic that
has started attracting attention from a numbereskarchers. In a distributed registry
network, we want to provide a single registry visuch that the user does not need to
know the locations of all the registries they wamtjuery. Requests are sent to a single
interface that handles the propagation of the retiguéo multiple registries without
requiring any other input from the user. The resgsnare received from the multiple
registries and forwarded back to the requester filsensame interface. While providing
this service, the underlying configuration betwelea registries should not be modified
so that the solution can be applied to an alreadstieg network of distributed registries.

An introduction to Web Services is covered in tluisapter along with the
introduction of an Extranet architecture. The Exétaarchitecture is used as an example
where the distributed registry management systapqgsed in this thesis can be applied.
Discussions on the motivation of this thesis ad waglits overall contributions are also

covered in this chapter.

1.1 Background

Web services are a paradigm that allow applicatitm communicate directly
regardless of the language or platform in a digtald architecture [4]. Web services
employ a Service Oriented Architecture [3] wherévgare is no longer a product but is
offered as a service. The applications are decoetpasto distributed services and

offered over the distributed system. The main caomepts required for the invocation of

a web service are the Universal Resource Iden{jti¢tl) of the web service as well as
the interface definitions on how the web serviceudth be invoked. The interface is
described using a machine-processable format sacthea Web Service Description
Language (WSDL) [5], and the messages are repessaming Extensible Markup
Language (XML) with Simple Object Access Protoc8OAP) as the communication
protocol.

In order for web services to be shared over thstriduted system, the service
providers publish the required components in aisemegistry whose location is known

to service requesters. This interaction is showateitail in Figure 1.

Service
Provider

Service Publishing

Service Invocatio

Service
Requester [«

Service
Registry

A 4

Service Discovery

Figure 1 Conceptual View of Web Service Componen{3]

The service provider is the entity that providé&/@b Service that can be invoked in
a distributed network. The service registry stdheslocation where the Web Service can
be invoked as well as binding details on how thebV&ervice can be invoked. The
service requester is the entity that wants to usseraice that is provided over the
distributed system. Figure 1 illustrates the comication model when there is only one

service registry.

In this thesis, an Extranet system [15] is usedlfiestration of the distributed Web
Service discovery system. Enterprises want to condusinesses with their customers,
suppliers, and or business partners electronicAllyExtranet achieves this objective by
providing a private network that allows enterprigesshare part of the enterprise’s
information and operations as seen in Figure 2.y\M&xtranets are expected to be Web
Service based due to the multi-million dollar inwesnt in Web Service technologies by
major software companies. Enterprises would alsotlh minimize their costs in terms of
management of the Extranet system. Thus thereaguarement for facilities that would
offer an Extranet service to enterprises wheredbeis of multiple enterprises operate
without interfering with each other. Such a fagilivill support many logically
independent Extranets, one for each enterprise ingartners, which are active
concurrently in the system.

In an Extranet system, a Web Service (WS) Gateigathe entry point to an
enterprises services and registries. A Service Bgqu must send all query messages
through the WS Gateway. The WS Registry is whereis® information is stored and
the Server is where the service can be invoked $graice Requester. A Remote Service
Requester is a WS requester who is located outiselmcal network of an enterprise.

As can be seen in Figure 2, the architecture ofEatranet introduces multiple
distributed registries in the network that intengect enterprises. When there are multiple
registries, a service requester needs to knowadtetibn of all the registries it needs to
guery when the requester wants to invoke a servVigis. poses a problem as there can be

a lot of registries in the network.

Service Invocation

Extranet :
g ., Enterprisé

A
= @
Remote Service Requester Enterpnse ﬁl

WS Registry '

Service Discove: = Registry
WS Gateway S Gatewa’ IE
WS Registry, .

Server

Extranet

& Enterprise
il

WS Regi m
g S Ggteway

Service Invocation
WS Registry

Service Requeste

Figure 2 The Extranet Service Architecture

1.2 Problem Motivation and the Proposed Solution

In order for an Extranet to perform effectivelysystem that manages the distributed
registries and offers the service requester a eingkerface to the network while the
system handles the communication among the multggestries needs to be devised. By
providing the service requester with a single digsey interface, such a system provides
a centralized registry view to the users whilerdisting the load in multiple registries.
Another important concern is the effective managenod the network through query
delay minimization and an effective utilizationtbé network bandwidth.

In a distributed registry environment, it is pamamt that the management of the

system is seamless to the userM#ta-Directory approachis used in this thesis to

manage the system such that the current distrilnatgidtry architecture already existing
in the companies does not have to be modified. @proach can be applied to any
distributed multiple registry-based system withmaurring a high installation overhead.
A Meta-Directory node stores information about distributed registries in the network.
Whenever a new service is published in the netwitik attributes that can be used in a
guery along with the location of the registry isfarded to the Meta-Directory node.

When a service discovery request is receivedaackas first performed in the Meta-
Directory system in order to find the registry thats the information, and then the
request is forwarded to the appropriate registhys Tnessage exchange among the nodes
in the Meta-Directory system and the registriesramsparent to the service requester.
From the service requester’s point of view, theuest is sent to one node in the system
and the response is received from the same node.

In a distributed environment it is also importaat minimize the delay incurred
during a query as well as minimize the network badth usage by a query. For
improved network performance, this research lodks eonfigurable network model for
the Meta-Directory nodes. The routing between thegavDirectory nodes can be chosen
based on network parameters, such as the numbdetai-Directory nodes, to provide
better system performance.

As we can see, there are a number of problemgiasst with distributed registry
systems. In order to facilitate web service discgyva distributed registry management
system has to address all these issues. The follpsection provides and discusses the

overall contributions of the Meta-Directory apprbaroposed in this thesis.

1.3 Contributions

Distributed Web Service registries offer an inséirey area of research in terms of
the management of the registries. This thesis m@pa system that supports large scale
service discovery in distributed Web Service regist

A Meta-Directory architecture which manages théedative discovery of Web
Services is introduced. The Meta-Directory nodesesthe location of the Web Service
registry that can answer a query in hash tablessdo facilitate searching. The important
characteristics of the Meta-Directory system arscdbed.

» Since information about the services that are dtamethe service registries are
saved in the Meta-Directory nodes, during a queny the service registries that
have the information requested will be queried. réfaee, the query does not
have to be propagated to all the distributed ragrsbdes.

 The Meta-Directory system allows the service prewvido publish service
information in any of the local registries and fand the registry information to
any of the Meta-Directory nodes in the system. Taisouples the registries from
the Meta-directory nodes so that the local registrare always available for
service publishing and discovery.

 The Meta-Directory system does not change the lyidgr communication
model of any of the already existing Web Servicengonents, i.e. the service
provider, requestor and registry.

* The framework allows the existence of multiple wlatted Meta-Directory nodes.

» The underlying distributed architecture is transparto the user that is provided
with a single registry view. The client only neddsknow the location of one of
the Meta-Directory nodes and the distributed systgetransparent to the user.

* The service requester does not need to know tredidmcof any of the service
registries.

» To minimize the inter-communication delay amongsthedistributed Meta-
Directory nodes, a configurable network model isaduced that can be used
when the system is being deployed. The system imeaiace for a given network
depends on the proper choice of a network modelagropriate protocol that
gives rise to good performance for a given systam thus be chosen by the
system administrator during the configuration @& fystem.

» The Meta-Directory system ensures that local bussingegistries are
accommodated hence creating a network of registries

* The distribution of the Meta-Directory nodes alsoswes that there is no
performance bottleneck and the system does natdate a single point of failure

as the information in the Meta-Directory nodeseiglicated.

1.4 Organization

This thesis outlines the Meta-Directory architeetuhat can be used in a Web
Service based distributed system that includes Eheranet environment. The
configurable network model of the system is desdilas well. Chapter 2 reviews the
existing literature on management of distributedistey systems and introduces the
Meta-Directory approach proposed in this thesisapgiér 3 introduces the Meta-

Directory system design as well as the configurdidenework that allows the system

administrator to choose the appropriate networkehddring system configuration. The
system implementation is described in chapter dap@r 5 introduces the evaluation
mechanisms followed in evaluating the Meta-Diregteystem as well as presents and
analyses the results. Chapter 6 provides an owereiethe adaptable framework and
provides the complexity and invariants for the alipons. Chapter 7 concludes the thesis,
discusses limitations of the Meta-Directory deseymd outlines future directions for

research.

CHAPTER 2 LITERATURE REVIEW

This chapter looks at the existing Web Servicestegiarchitectures for distributed
service systems. The problem this thesis is adidigess the management of distributed
service registries where the user is provided waitkingle registry view and the user is
oblivious to the existence and communication amamg distributed registries. Since the
system we are looking at consists of distributadise registries, the existing literature
will be analyzed in terms of scalability, availalyij ease of management and
transparency. In this thesis, scalability is dalires the ability of the architecture to
handle increasing load, as in service requestsyads as increasing number of web
service registry entries. Availability is the abyjliof the registry architecture to continue
with normal operation despite the presence of $aldase of management is in terms of
the administration of the architecture and transipey is the ability of the architecture to
manage the system without modifying the architectwf the existing service
components.

These architectures are described in detail andvamnall analysis on scalability,
availability, ease of management, and transparenpgrformed at the end of the section
in order to discuss and compare their performances.

The deployment of distributed service systems candlvided into three main
categories: the centralized, the decentralizedfamd/leta-Directory architectures.

» Centralized architectures incorporate the usesihgle centralized registry which

stores all the service descriptions of the distadwservice providers.

» Decentralized architectures often involve the exise of peer registries which

introduces autonomous behavior. The peers havel egsponsibilities and the

10

architecture is dynamic as peers can join and ldav@etwork without disrupting
service.

* The Meta-Directory architecture involves the inwotion of nodes that store
meta-information regarding the distributed regestri In this architecture, the
peers do not have equal responsibilities as therdiesdized architecture. In this
case, some of the peers have extra responsibdisi¢sey provide management of
the distributed peer registries.

This section provides an overview of these welviserregistry architectures

followed by examples of each type of architecture.

2.1 Deployment Classifications

This sub-section describes three deployment dieasons for distributed systems.
These architectures are the centralized, decemdthliand the Meta-Directory
architectures. A number of papers are analyzed thbduce and apply these
architectures and finally an overall analysis oestharchitectures based on scalability,

availability, ease of management and transparenpgrformed.

2.1.1 Centralized Architecture

In a centralized architecture, each service pevidould publish their service
descriptions in a centralized web service registeyver. Service clients would then
contact the well known centralized registry fonseg information. This is analogous to a
client/server architecture where the centralizegistey acts as the server. An example of
a centralized registry architecture is depictedrigure 3 where there exists a single

registry. Information on the location of the webvsees is stored in the Web Service

11

Modeling Execution Environment Database (WSMX-DB5]} After a service requester
receives the list of providers from the WSMX-DB icating the providers’ locations, the

requester is then able to contact the web servmaqgers directly.

G, e
g, : o g
by, By Fa B
" R Ed pC el
“?i’j Moo s FE OF e
- e s T
WSMX List .g i
“WEMK Lt

Vi EMDY Reqiabry it Sarvice

Serens Reguaster

Figure 3 An Example of a Centralized Architecture P5]

This section provides an overview of the UniverBadscription, Discovery and
Integration (UDDI) [4] registry that is used forlgishing and searching of web service
descriptions. UDDI is a standard for both the djwation of web services and
businesses. UDDI also supports the descriptiondsswbvery of the interfaces that can be
used to access the specified services. The welicsetescriptions are not part of the
UDDI specification but they can be referenced byngistModels. A web service
description can be provided by using Web Servicscibgtion Language (WSDL) [5].
UDDI uses standard technologies that are on topamwf operating stack. These
technologies are:

* XML for service definitions and querying,

* SOAP which is an XML communication protocol consigtof three parts: an

envelope defining a framework that describes theerds of a message and how

12

it should be processed, a set of encoding rulesXpressing application specific
data types, and a convention for representing rermalts and responses.
» HTTP over TCP/IP is used as the transport protocol.

In order for a service to register with the UDI@Distry, they must first define an
interface description document using WSDL and tdeploy it in a public Internet
location. The publisher must then send a SOAP patitin message to the registry that
also indicates the location of the WSDL using a URie service requester would query
the UDDI registry using either the web service naarghe business name and the UDDI
registry will respond with the location of the seesand description document.

The UDDI data model [4] consists of data structutbat are hierarchically
organized. The information about a web serviceescdbed in several categories where
each category provides a more detailed informati@n the one before it. A Unique
Universal Identifier (UUID) is used to identify daentity in the data model. There are
six data structures in the UDDI version 3 of theedfication: bussinessEntity,
businessService, bindingTemplate, tModels, pubi&ssertion, and operationalinfo
structures. The four core types and their relatiggssare shown in Figure 4.

The business entity module provides informatioroutbthe provider that has
published the service. These business entity strestencapsulate information about
Web services. They contain the following elementsmes and descriptions, contacts of
the people associated with the business entityggoaies that represent the business
entity’s features, identifiers such as a departrmemiber and discovery URI's which are

links to any additional documents describing thsitess entity.

13

businessEntity: Information about the tModel: Descriptions of specifications
party who publishes information about for services or value sets. Basis for
a senvica technical fingerprints

businessEntities contain
businessSenvices

bindingTemplates contain references to
thodels. These references designate the
interface specifications for 8 senvice.

businessService: Descriplive
information about & particular family of
technical senaces

businessServices contain
bindingTemplates

i |

| bindingTemplate: Technical
information about & service entry point
and implementation specs

Figure 4 UDDI Core Types [4]

A business service module represents the resoproggled by the business entities
in more detail. A business entity can representtipial business services. A business
service contains the names and descriptions asaselie set of categories that represent
the business service features and qualities suehvassion number. It should be noted
that a business service does not necessarily mprasWeb service, and other services
such as Common Object Request Broker Architect0f@RBA) [27] based services can
also be represented.

A binding template contains technical informatiamout the services offered. The
binding template contains information about the wetvice entry point and references to
tModels. A business service can contain one orentonding templates while the
binding template structure has a single logicairmss service parent.

The tModel is used to represent each distinct iBpaion, transport, protocol or

namespace. tModels enable the interoperability ebV8ervices and examples include

14

those based on WSDL, XML Schema Definition (XSDhdaother documents that
specify the interface that a Web Service may ché@semply with [4].

Many businesses have diverse descriptions and thigynt not be able to be
encapsulated in one business entity and hencedrdiseneed of defining the publisher
assertion structure. This structure provides areafe to the two related business entities
by using fromKey and toKey elements. The fromKesn&nt indicates the location of
the business entity that created the publishert@@seavhile the toKey element points to
the location of the business entity which has aezkthe relationship. This structure is
created by a service provider and if the two bussnentities are owned by different
providers, the other service provider needs to @ctiee relationship otherwise the
publisher assertion will not be created. If theibess entities are owned by the same
service provider, the publisher assertion is ceeatghout requiring an acknowledgment.

The operationalinfo structure provides informatiabout the UDDI core data
structures, that is the businessEntity, businesg&erbindingTemplate, and the tModel
structures. This information includes the date aame that the data structure was created
and modified, the identifier of the UDDI node thatstoring the information, and the
identity of the publisher.

The UDDI centralized architecture is discussedtgwovides the foundation for
extension to distributed architectures and as sultlbe referred to in this thesis but will
not be discussed any further.

The main disadvantage of using a centralized trgygi®de to store all the service
descriptions is that the centralized registry npdevides a single point of failure. If the

centralized node is not available, service requestdl not be able to discover any web

15

service information. In the Meta-Directory archit@e proposed in this thesis, the system
ensures availability as it provides multiple distied Meta-Directory nodes. Another
disadvantage of this architecture is that the sysi® not scalable as the number of
services that can be discovered is limited by thmeuwnt of memory available in the
centralized registry node. In our proposed Metae€iwry architecture, the system is
highly scalable as new Meta-Directory nodes camdied to the system as the number
of services provided increases. Due to the linateti of the centralized architecture,
researchers started looking at deploying distritbutegistries. The following sections

look at the deployment architectures when a systasrdistributed service registries.

2.1.2 Decentralized Architecture

The decentralized architectures discussed irs#aion such as [15] use peer-to-peer
(P2P) approaches in setting up communication and@tgbuted registries. All the peers
in the system have equal responsibilities and thetyas both service providers and
registries at the same time as depicted in the pbeam Figure 5. This is because each
peer has a local registry (for example the local MXS(Web Service Execution
Environment) registry) for storage of web serviesatiptions. In this example (Figure 5)
the service requester sends the request to oneapddhen the peer forwards the request
to another peer when it does not have a resporsepéer that can handle that request
then sends the response back to the requestere Hnelsitectures eliminate the single
registry bottleneck as well as improve scalabgityl ensure availability.

Hoschel{10] proposes a web service discovery architectuae is built on top of a

grid based architecture. The discovery layer is mpagad of four interfaces as well as a

16

tuple based universal data model. These four exted, called the Presenter, Consumer,
MinQuery and XQuery, are used for interaction amthrggpeers.
» The Presenter interface is used by clients toenatrithe service description by the
use of HTTP Get requests.
 The Consumer interface allows the provider to @ibla content link which
enables the consumer to retrieve the current canidre content link is only a
dynamic pointer to the location of the service dipsion.
* The MinQuery interface provides the simplest pdssgfuery support that returns
the full set of available tuples in the tuple space
* The XQuery interface on the other hand provides &@support by executing a
given XQuery to cover the available tuple space.u¥q is a query standard
developed by the XML Query working group of the \WdoWide Web
Consortium (W3C) that is designed to query coltewi of XML data. It is a
means to extract and manipulate data from XML damuis)or any data source

that uses a tree-structured model such as relatiatabases or office documents.

= Local
o j VA
+ S Raqiwy
Lozal #
WS P
Fagislry P Q"‘t - Lo
-' Fas? AF“*—?rh',hﬁ- | j'-“'z,x:x
j e W . Ramqisirg
P #
i L f f
ey ﬁ’ﬂjﬁ“
iT,i.!I:irl‘* el ?

Servica
Rppsiar

Figure 5 An Example of a Distributed Architecture [25]

17

Each peer can either support all or a subsetefattailable interfaces. A peer that
only searches for web services might only supploe €onsumer interface while a
publisher peer might only implement the Presemégriace. The registry peer on the
other hand may implement all four interfaces. Tdpproach ensures availability as there
is no single point of failure but it incurs a hight-up and maintenance overhead on the
four different interfaces.

Schmidt and Parashd20] propose an indexing scheme that associatels @éata
element with a sequence of keywords and uses theertiSpace-Filling Curve (SFC)
approach in mapping the data element keyword spadbe index space in order to
preserve locality. This is similar to existing d&dakup systems such as the CHORD [22]
lookup protocol in that it enhances the lookup pecot by providing flexibility in
keyword searches. In a DHT, the keys are partiloamong participating nodes and
messages can be efficiently routed to the uniqueeowf any given key. The CHORD
architecture treats nodes as points in a circlerevtiee keys are evenly distributed within
the nodes. Usually, in such distributed systems$ #na based on hash tables, a hash
function is applied to the key and maps elementtitlers to indices without the notion
of locality.

The authors of [20] go further in performing simibns of their architecture. The
simulation results show that their approach prowidealability as well as minimizes
message overhead and number of nodes involvedgdqtiary processing as the nodes
have a sense of locality. The main disadvantaglisoapproach is the extra processing
required to set up the Hilbert's SFC on top of nuamg the CHORD overlay P2P

network.

18

Banaei-Kashani et al.[11] introduce a fully decentralized and intercige
discovery service with semantic-level matching. tegaeer is composed of two
components, the local query engine and the comratioicengine:

 The communication engine provides an interface h® tiser and peers and

handles requests from the users and its neighbdheipeer-to-peer network.

* The local query engine handles the queries receik@d the communication

engine and searches for matching services witl@natal site or registry.

The authors also introduce a time-to-live valuattls used when queries are
forwarded to the neighboring peers. This time-te-lvalue is set by the peer where the
request originates from, and is decremented whenrg¢fuest is forwarded to another
peer. The peers stop forwarding the request wherithe-to-live value reaches zero.
DAML-S is used for semantically enriching the wedngce descriptions. This is used in
the communication engine when it receives respofrees the local query engine and
only returns the relevant responses based on sesant

The main advantage of this approach is that iticed the flooding of messages in
the network by ensuring that only semantically attresponses are returned. But since
the architecture is based on the Gnutella [9] pegreer framework, this framework
introduces a high level of message overhead bec#usequeries are forwarded
throughout the network and only the number of respe are minimized by using
semantics. The time-to-live mechanism limits thenbar of responses received hence it
is possible to miss relevant responses.

Sapkota et al.17] propose the use of distributed shared virspalces (in the form of

tuple spaces) for the publishing and discovery ebwservice descriptions, as illustrated

19

in Figure 6, in addition to the web service repmsgts such as UDDI. The web service
descriptions and user’s requirements are descrimdg a Resource Description
Framework (RDF) data model. They propose a numbeomponents that will be used

within the shared space of the discovery architectthese components include the
discovery manager which handles interaction with plhoviders and clients through an
interface, the query parser, the virtual space eeahd writer, the result filter or

matchmaker, which matches the results obtained thighuser’'s request returning only
the most appropriate responses and finally theagéorspace itself which stores the

resource descriptions.

[SewicaRaquestar I

'l .;;) =
i &

Figure 6 Virtual Space Based System [17]

In Figure 6 a service requester sends a requesttgdhe shared space using the
discovery manager. In this case the shared spae® it have the information for the
required service and it forwards the request tongighboring shared space, which then
forwards the request to its neighbors. Once thaiired information is found, the

response is sent back to the requester.

20

The authors claim that their approach is scalallé reliable as well as provides
support for resource limited devices such as mophenes without providing any
experimental nor simulation results. The main draeibof this approach is the overhead
incurred in the creation and maintenance of théuairshared spaces on top of the
maintenance of the information within the regisribemselves.

Toma et al[25] propose an architecture where all the reigstact as peers with
equal responsibility. Clusters are created basetherconcepts of service and domain
ontologies. The topology within the cluster healbased on a Hypercube P2P approach
that is adopted from [19].

This topology addresses the message routing caénvbeere the nodes are arranged
in a hypercube which is a generalization of a 3ectb n (the number of nodes)
dimensions. Intra-cluster, they employ a keywordsdoh search approach that is
forwarded to all peers while P2P search algoritlanesdeployed inter-cluster due to the
Hypercube topology. The cluster heads are organizaddypercube architecture.

The approach appears promising however test sesuduld be required to better
judge the efficacy. The disadvantage is that theeyaitimeout value on requests, which is
set by the peer where the request originates famu,is decremented when the request is
forwarded to another peer. The peers stop forwgrthia request when the timeout value
reaches zero. This limits the discovery scope @dhe best services may not be
discovered. Also, the underlying P2P architecteds$ to limited scalability due to the
flooding nature of queries and cannot include resolimited devices. The underlying

communication model between the service registigs has to be modified.

21

Overall, there are three main drawbacks to themtealized architectures described
here. All nodes in the network have equal respdlitgiland hence the architecture does
not allow the existence of heterogeneous nodesasiclodes with less computing power.
The second disadvantage to this approach is thaduts a high communication overhead
in large networks as messages might be potentsalht to all the peers. In the Meta-
Directory system proposed in this thesis, requastsonly forwarded to the service
registries that have the requested information. Thed disadvantage to these
architectures is that they all incur a high maiatese overhead. Our proposed Meta-
Directory system does not incur maintenance overla=sathe data between the Meta-
Directory nodes is managed seamlessly without reguany other input from the user
after system set-up.

Due to the drawbacks of the centralized and dealered approaches, researchers
started looking at providing architectures thabnporate features of both the centralized
and decentralized mechanisms so as to inheritdliandages of both architectures. This
is done by introducing super peers or root peeas pinovide a form of infrastructure
within the nodes while peer-to-peer operations raggntained within the clusters. The
following section discusses the literature thabnporates root peers for management of

distributed service registries.

2.1.3 Meta-Directory Architecture

Meta-Directory approaches combine both the ceamé@dl and decentralized
approaches so as to inherit the advantages of daihitectures. These architectures

introduce the notion of root peers or super peehschwv contain meta-information

22

regarding the registries. In the literature that haen reviewed for this thesis, three types
of indexing were performed.

* In the first category, all the distributed regissriforward their locations to the
super peer node. Whenever a new node joins, tligstee with the root node and
the root node informs them of the locations of thst of the registries in the
network. In this distribution, requests are forweddo all the registries in the
network as there is no specification to the sesviaered by each registry. The
root nodes merely store the locations of the distad registries.

* In the second category, the registries are categgbrinto groups where each
service registry only stores information for a specacategory. In this model,
requests are forwarded to the registries that deothe type of services associated
with the query.

* In the third category, the registries forward keyugassociated to the services
that they offer to the root nodes. In this typeirafexing, the requests are only
forwarded to the nodes that provide the serviceithdeing queried.

The super peers provide transparent registry acsbfe the web service provider
and requester are not aware of the distributedreatél the system. “The process of
registration and discovery is similar to the oneeldn a centralized scheme, except in
this case communication overhead is incurred antbagsuper peers when the search
includes several distributed registries” [7] . Téadybrid architectures are proposed so as
to reduce the bottleneck of using one public UD&isure availability, and improve
scalability when compared to centralized approactiésen compared to decentralized

approaches, the hybrid architectures reduce marageroverhead as now the

23

management cost is only applied to the super mawaissince all the nodes do not have
equal responsibility, this architecture allows #heéstence of nodes with less computing
power.

In this section, two categories of Meta-Direct@rgchitectures are discussed. One
category depends on one dedicated super peer toeethsit the architecture can provide
all the required functionality while the other ateltures introduce the notion of multiple

super peers.

2.1.3.1 Centralized Meta-Directory Architecture

In a Meta-Directory architecture, the system hast roegistries that index
information regarding the distributed registriehisTsection discusses literature that uses
a single dedicated node to store the informatiganding the multiple registries.

The Managing End-To-End Operations using Semantics BABR-S[26] project
provides an implementation of a distributed registructure composed of four different
types of peers as seen in Figure 7. The gatewayrpaeages the access to the peer-to-
peer network for new registry operations by indgxall web service registries. It is a
central entity that also informs the other peerthannetwork as soon as registry updates
are necessary. In this case, the gateway peer esdthe locations of the service
registries, so that when a new registry peer jthesnetwork, they can find out about all
the other registries in the network.

Registry updates occur whenever an operator jp&es pr leaves the network. The
operator peer controls a local registry as wellaats as a provider of the registry
ontology. The registry ontology captures the relahips among registries based on their

affiliations and domains. The auxiliary peers oatt as providers of registries ontology

24

but do not have control over any registries. Fintdike client peers are only instantiated to

allow users to use the capabilities of the METEOR-hitecture.

GWP

Peer ¥*

Paer X*

c o0 00

Registry 1 Registry 2 Registry K Registry N

GWP Gateway Peer controls access to the peer-to-peer network for
new registry operators

Peer 1% — Peer N* Operator Peers run Operator Services and act as providers of
Registries Ontology

Peer X', Peer Y Auxiliary Peers only act as providers of the Registries
Ontology

Registry 1 — Registry N Web service registries

Figure 7 METEOR Communication Layer Overview [26]

This architecture is scalable as only the gatepesy is responsible for managing the
system. The gateway peer unfortunately also acassasgle point of failure, even though
it does not impact the publishing and discoverweb services, new registries will not be
able to join the network if the gateway peer falifso, since the registry ontology needs
specific maintenance and management, the orgamnzatfi the registries is not trivial.

Another drawback of this approach is that wheacmest is received by the network,
the query is propagated to all the registries asetlis no classification on the types of
services offered by each registry. This drawbackddressed by the following papers

where thy provided a classification for the typéservices handled by each registry.

25

Du et al.[6] propose an active and distributed (Ad-UDDIYyisgry architecture as
seen in Figure 8, whereby the registry informatigndistributed among multiple
registries. Their architecture is based on a registry in the Root Registry Layer, which
is in charge of managing the active and distribugistries and does not store any data
related to the services themselves. The root rggisthis case stores the type of services

that each registry is providing.

Root Registry Layer

Ad-UDDI-3
Business Service \‘ Custo perServices) /
Registry Layer /
’ 1 Ad-UDDI-4
(CustomerServices!
Transportation)

Ad-UDDI-
(Transportatiqn)

Ad-UDDI-5

(CustomerSe

rvices)
Ad-UDDI-2 \

(Transportation | \

Service Layer /

Figure 8 The Ad-UDDI Distributed Architecture [6]

The business services are handled by the inteatgedegistries in the Business
Service Registry Layer which are classified basethe business service they handle, as
can be seen in Figure 8 where there are two bussieesrices: Transportation and
Customer Services. These intermediate registries twaregister with the root registry as

a web service, and they establish neighborhoodigekhips with other intermediate

26

registries which handle the same business claa8dit In Figure 8, Ad-UDDI-5 has a
relationship, signified by the dotted lines, witld-&DDI-3 and Ad-UDDI-4 since they
all deal with Customer Services. The Service Lagecomposed of the web service
providers and requesters. They also propose aveauibnitoring system on the registries
which monitors and updates the registry entriegyTdrgue that passive registries based
on UDDI are prone to outdated information hences ibetter to periodically ping the
service providers on their registry information.eirthsimulations confirm that Ad-UDDI
performs better than using a single UDDI registry.

Their approach ensures the real time validityhef tegistry information. But it still
suffers from a single point of failure, as new UDi@Qistries are not able to join the
network if the root registry is not available.

Papazoglou et al[13] propose a service syndication protocol whereblated
businesses form groups of interest with their owdDW peer registries that operate in a
decentralized peer-to-peer fashion (Figure 9). Taksp define the existence of super
peers which store a sub directory of a UDDI busnesgistry using the Syndication
UDDI where each service peer would publish theivise description. These super peers
register with a central UDDI registry which handtBscovery among the super peers. In
this case, the meta-information that is storedhm ¢entral UDDI registry provides the
type of services that are offered in the servigedgations.

The super peer manages the communication amongegeers and is responsible
for the joining and leaving of peers of service digations. These service peers are the
actual web service providers. They also provide esent mechanism for publish-

subscribe features which allow service peers tatfan in an independent way. This

27

enables the formation of peer acquaintance groupshwconsist of peers having the
same interests, and each knowing every membereirgtbup. The peers in the same
group can propagate web services within their owou without involving the super

peer.

Once again, this architecture provides a singlatpaf failure since if the super peer
crashes, new nodes will not be able to join the gesups. Another drawback is that no
mechanism is available for getting the real tinaust of services.

All the proposals that provide a single dedicatedt registry node for storing
information about the services provide a singlenpof failure. This limitation was also
seen by a number of researchers who then proposedtrébuted network of root
registries that provide meta-information about thstributed service registries. These

proposals are discussed in detail in the follovaagtion.

Open travel e-markeiplace

Figure 9 Web Services Syndication Overview [13]

28

2.1.3.2 Distributed Meta-Directory Architecture

Due to the limitations of a centralized Meta-Diagt architecture, a number of
researchers proposed an architecture that invodvedistributed network of Meta-
Directories.

The authors in [18] propose a clustering approaele Figure 10) based on similar
web service descriptions. Example of clusters adécated by the light dotted circles in
Figure 10 where the services are classified in $eainbus service, hotel service, air
service, and train service. The clusters are maiedaby what they refer to as “super
nodes”, indicated by the heavy dotted circle in flgure. These super nodes are
dynamically elected based on their availabilityaitable storage and processing power.

The registries within the cluster register witte tbuper node and the super node
maintains communication within its cluster and wather cluster heads. In this paper, the
information stored in the super nodes indicateddbations of the registries that provide
the same service. The authors also propose a goahtosition mechanism which is
handled by the cluster heads. If a client’'s requestds to be handled by multiple
clusters, as the client might require multiple g=s, this request is decomposed by a
cluster head and the sub query instead of the quéry is then forwarded to the
appropriate cluster head(s). This reduces the rgessgerhead in large networks.

The authors claim that their approach enables badahcing, discovers web services
faster, requires less invocations, and is moreabt®al[18]. The main disadvantage of this
approach is that it incurs maintenance overheadngluthe dynamic creation and
maintenance of cluster heads. Also, a particulevice provider can only be a member of

one cluster and cannot provide services in mone time category.

29

HotelService

Youth H6$(9

Bucharesf

/ Qu h\Hoste
1RG5« eneva

Q
BusS
us ervnce\ :>m E DUC/O A|rSerV|ce

s -— e Ny
/ Q. U\ \(‘:\ N / _C)EasVJe\‘
/ DnC.\/\\ Dﬁé S \

b— wa..."/.mswﬂb IR 3"" |RS“’—d :

|

\\O/Q—DC /S//\ C%\\ DXCSBO /
\< \ arol

2 @wg:zf-% 20T

Use// ! Q/ gb%

kishRa

TrainService

Figure 10 Clustering of Web Services [18]

TheSahin et al[16] approach is based on a super peer networkghmiilt on top of
CHORD (the CHORD distribution model will be discadsin detail in Section 3.3.1) as
the distributed hash system (Figure 11). Here, dinger peers are elected based on
availability and computing power allowing the eriste of mobile nodes with limited
resources as the client peers. Therefore, this hadidevs the existence of heterogeneous
nodes. The communication among the super peer niesdaandled by the CHORD
system and it ensures that nodes are located ogN)Ihops, where N is the number of
nodes.

The client peers are directly connected to theesyeers. Services are advertised
using keywords and information on locating the mervprovider, the keywords are
hashed and forwarded to the super peer responfblstoring that keyword. This
approach stores the keywords for all the servi¢tesea by the client peers. Queries are
sent from the client peers to super peers who fimevard it within super peers using the

CHORD hash function which ensures that the regisefbrwarded to the appropriate

30

super peer, this in turn reduces the message goatiarhead that would be incurred in
peer networks without any form of infrastructurelsas [20]. The architecture does not
require a central administration as the peerseleest®d dynamically.

This architecture has two main advantages, simig the super peers form the
CHORD ring; the routing and joining/leaving costghm the ring are reduced. The
second advantage is that it can handle nodes wiirdgeneous resources as only the
super peers are expected to be able to handlengowtnd message forwarding
capabilities. The main disadvantage of this appgromc that it incurs maintenance
overhead during the dynamic creation and maintemahsuper peers. Also, there is no
discussion on the number of super peers requiredgieork size nor a discussion on the
number of client peers per cluster as there isonm fof cluster classification like the one
we have seen in [18] where clusters are basednoiasiservices. Another drawback to
this approach is that the service providers theveseform the CHORD ring hence the
underlying communication model between the seryic®/iders needs to be modified.
This limitation is addressed by [1] where the uhdeg communication model between
the service entities is not modified.

Client Peers —-st— — —

e 4 msg m
= CP
(D CPy

Chord Ring

Figure 11 SPIDER Architecture [16]

31

Banerjee et al[1] propose an architecture that is based on @grdices and UDDI
registries. The scalability of the UDDI registrissimproved by using Distributed Hash
Tables (DHT) as a mediation among multiple UDDIis&ies. A distributed hash table
maintains a collection of key-value pairs that ased for publishing and discovery. For
the deployment in [1], the key is a hash of a keylWfoom a service name or description.
There are multiple values for a single key, oneeach service containing the keyword.
Nodes are given an identifier by hashing eitheirthie address and port number, or
public key.

They propose an architecture that is composed@fypregistries (Figure 12) that
mediate the communication between the local UDDIstey and the DHT service. “The
DHT service is the glue that connects the proxyistegs together and facilitates
searching across registries.” [1] The proxy regissrin charge of publishing, deleting
and searching information in the UDDI registrieqieTclients communicate with the
proxy registries which then delegate the requesh@oDHT service. The DHT provides
information about the relevant registries henceryjoperations are only propagated to
relevant registries. The process is accomplishedilmply looking up the hashed key
instead of using a set of search parameters.

This architecture is able to support large scaseavery of web services as the
search operation is only done on the UDDI hashesleturned by the DHT service
instead of searching in all UDDI registries. Theirmdisadvantage of this architecture is
that the proxy services provide a single point afufe since if they break down; no

operations are possible within the network.

32

DDI Local Registry UDDI Local Registry

DHT Based Distribution

Frary Fegiatry

UDDI Local Registry
Figure 12 Distributed Hash Table Architecture [1]

Architectures that have nodes which are requicetde available provide a single
point of failure while the ones that dynamicallyes¢ super peers ensure availability
regardless of which nodes leave the network. Qlumised approaches on the other hand
do not provide a single point of failure and alsovide an added advantage to the other
approaches as they allow the existence of nodés limited computing power such as
mobile nodes. The following section discusses thapgrties in terms of availability,
scalability, ease of management and transparendleotentralized, decentralized and

hybrid architectures in more detail.

2.2 Discussion

This section provides a discussion on the prelouwsescribed web service

architectures in terms of availability, scalabiligase of management and transparency.

2.2.1 Availability

Availability in terms of fault tolerance, which ike ability of the web service

architecture to continue with normal operation desihe presence of faults, is discussed.

33

Centralized registry architectures are simple baytgive rise to a single point of
failure as well as a performance bottleneck sinkceeguests must be handled by
the single registry. To solve the problem of faalerance, a replication strategy
can be implemented. In the paper ®yn et al.[23] two replication schemas:
UDDI replication specification and Middleware reagaltion, were implemented
and compared. The UDDI replication protocol cansben as a lazy replication
strategy as the nodes periodically exchange statoisnation and if the receiving
node is missing some information then it sendsarterequest to the sender. The
middleware replication strategy employs a group mamication system that
supports group maintenance and reliable multiciéhenever a registry is
updated, it will immediately multicast the updaexjuest to all sites. Further
discussion of these strategies is beyond the sabibés paper.

Decentralized registry architectures ensure thdadbty of the service as all the
registry nodes have equal responsibility. The naomses also join and leave the
network dynamically without disrupting the servideailure of a registry peer
does not affect any other peer as each peer aatseggstry node.

The Meta-Directory approaches inherit the singlenpof failure disadvantage
due to the existence of super peers as well agmreteme peer functionalities
since the other nodes in the network maintain pe@eer communication. The
Ad-UDDI [6], METEOR-S [26], and the federated apgeb [13] depend on a
centralized node for the management of the sysWith these architectures, if
this root registry fails, publish and discovery mgmns will still be available but

new registries will not be able to join the netwarkd the other nodes will not be

34

informed if a registry fails or decides to removself from the system. The
distributed hash table approach using registry ipgogroposed banerjee et al.
[1] on the other hand would cause the partitionhghe network if the proxy
registries fail, since if a proxy registry failsaauses the isolation of that part of
the network. The cluster approach propose&apykota et al[18] and the SPiDer
approach [16] are more flexible as the super peeesdynamically selected.
Hence they do not provide a single point of failasea new super peer will be
dynamically selected by the system if the curreipes peer fails.
Hence, the architecture that provides the bestiladbility is based on the
decentralized approach. But there is a trade-divben availability and communication
overhead when using the decentralized approach. Méta-Directory architecture in

which the super nodes can be dynamically seledsedpaovides good availability.

2.2.2 Scalability

Scalability is discussed in terms of the abilifyttee architecture to handle increasing
load as well as an increase in the number of wehcgeregistry entries. The load in this
case is the increase in the arrival rate for seaparies per unit time. This section
compares the scalability of the three types ofiggctures discussed.

* The centralized approach provides limited scalgbiéis all the web service
descriptions are stored in a single entity. The Ibemof entries directly depends
on the storage capacity of the registry entity. iirty, the query arrival rate that
the architecture can handle at a time also dependke computing capacity of
the registry entity. A replication schema can bplamented to solve the problem

of scalability by having several servers which oféereplicated strategy. The

35

drawback to this approach is that replication reggiidata consistency to be
maintained and introduces an administrative ovethea

» Decentralized approaches offer a scalable soluwi®rthe load of the registry
entries are distributed among the peers leadimgcteased performance when the
web service application grows. There is a tradebeffveen scalability and the
communication overhead in decentralized architesturhis is because in some
decentralized architectures, when a query is saftitas potentially broadcast to
all the nodes and the results have to be propagdaisdall the nodes back to the
originating query node. However, if the resultrighe local registry it reduces the
search time when compared to the centralized appras there are fewer entries
to search from since the registries are smaller.

* Meta-Directory architectures also offer a scaladmution since they inherit the
properties of the decentralized architecture. Comoation overhead is reduced
due to the existence of dedicated super nodes.djeicing a global search, the
search queries are only forwarded to the superspeach of which then decides
if its cluster is involved with the query. If ndhe query request is not forwarded
to the peers within the cluster. In the case wheee clusters are arranged
according to the type of web service descripticiosesl (see [18] for example),
the communication overhead is reduced further asqtrery requests are only
forwarded to the appropriate super peers.

Even though decentralized approaches provide thet stalable solution, there is a
trade-off with communication overhead as requestsf@awarded to multiple nodes in

the peer network. The Meta-Directory architectysesvide a better solution in terms of

36

scalability as they reduce the communication owadhbut in turn they introduce an

additional administrative overhead.

2.2.3 Ease of Management

We look at the ease of management in terms of adtration of the architecture:

* Ensuring that important entities of the architeetare always available;

* Maintenance of business federations in terms of agiawg the clusters and

syndications;

* Routing and communication between the peers anerqgers in case of hybrid

architectures discussed that use super peers.

Centralized architectures are simple to set uprdg one entity is required to be
monitored. If there is no replication strategy itweal, there is also no coordination or
replication of information exchanged between remgist hence greatly reducing the
administrative costs.

Decentralized architectures that are discussetisnreport incur no administrative
overhead as registries can join or leave the nétwithout requiring any registration. A
registry does not need to know about a centraktggor super peers, it only needs to
know an arbitrary peer in order to publish or skafor a web service. Although
decentralized architectures do not require any g@mant, there are communication
overhead costs that have to be dealt with. Thesenmumication overhead costs are
incurred when a search query is executed sincenpally the message might be
forwarded to the whole network.

Meta-Directory architectures on the other handuireq administrative costs as

registries need to know about the network topolagy,the location of the super peers

37

and which cluster they belong to. These super pEscsneed to be monitored to ensure
that they are always available, otherwise somefifall web service functionalities will

not be available.

2.2.4 Transparency

The availability, scalability and management préips of the registry architectures
have been covered in the previous sections. Thusoseexplores the possibility of an
architecture to provide transparency. Transpareancthis case is the ability of the
architecture to manage the system without havingntalify the existing architecture
within the registry entities. In this section, wallwalso introduce the notion of
configurability which is the ability of the archdire to allow different configurations of
the system during system set-up. By different gamfitions, we are referring to the
communication model between the entities used ennlanagement of the distributed
service registries.

The centralized architecture provides transpara@scthe underlying architectures of
the registry entities (i.e. service provider, seeviequester, and service registry) are not
modified since there is only one service registrihie network.

In the decentralized architecture, the underh@nghitectures of the service registries
need to be modified as the service registries nawstrperform peer-to-peer operations
between them. This increases the management odelderaveen the service registries.
The underlying architectures of the service reqresind providers on the other hand are
not modified as they are provided with a singleisey view by any one of the peer

registries.

38

In the Meta-Directory architecture, the only agmio that provides transparency is
the one byBanerjee et al. [1],where the meta-information is stored in a DHT
distribution. The rest of the approaches require #ervice registries to register
themselves with a root registry as well as main{a@er-to-peer operations between
themselves. The approach ahin et al. [16] goes further by modifying the
communication between the service providers thermasel

In terms of configurability, no single proposedhatecture that has been reviewed
provides the functionality that has been described.

Table 1 provides a summary of the characterisiicall the previously discussed
existing approaches to the management of distitbWeb Service registries, in terms of
availability, scalability, ease of management arahdparency. The X’'s indicate the

property supported by the respective approach.

Table 1 Evaluation of Systems

Approaches Avalilability | Scalability Ease of Transparency
Management
Centralized X X
Decentralized X X
Meta-Directory:
Centralized X
Distributed :
Sahin et al. [16] X X
Sapkota et al. [18] X X
Banerjee et al. [1] X

As we can see from Table 1, the approach thatiggevmost of the properties ideal
for a system managing a network of distributed iservegistries is the proposal by
Banerjee et al[1] which is implemented using the Meta-Directoppeoach. The Meta-

Directory systems introduce nodes that store mdtarnation on the distributed

39

registries. Due to these advantages, the registnagement approach used in this thesis
uses the Meta-Directory approach.

The Meta-Directory approach used in this thesisrefscalability, adaptability, ease
of management, as well as flexibility. The systemoppsed in this thesis also allows the
choice of the right configuration during system-gptfor handling a given network state
such as the size of the network, the system load, ease of management. Another
advantage of the proposed Meta-Directory approathat the underlying architecture of
the service entities is not modified. The followisgction discusses in more detail the
state-of-the-art that has some similarities withr ddeta-Directory approach and
highlights the differences and the advantages efsistem proposed in this thesis to the

state-of-the-art.

2.2.5 Meta-Directory System

The previous section discussed the approachesntiyriused in the management of
distributed registries. The approaches discussedadpazoglou et al[13], Du et al.[6],
Verma et al[26], Banerjee et al[1], Sapkota et al[18], andSahin et al[16] in the
state-of-the-art introduce the Meta-Directory idedere information regarding the
distributed registries is stored in order to faatk the querying of distributed registries.

The Meta-Directory systems reviewed in this thesise meta-information regarding
the distributed registries in three different foriite meta-information can either be on
the location of the distributed registries sucht tiven new registries join the system,
they can get the location of all the registriegha network. The second form of meta-
information is on the types of services offeredthg distributed registries. This type of

distribution is used in a network where the re@stare classified based on the services

40

that they offer. Finally, the third type of metddmmation is based on the actual services
stored in each registry. In this system, the keywoassociated with each service are
advertised to the root registries thereby faciligtquerying based on the actual service.
There are two architectures of Meta-Directory eyst which are the centralized
system that uses only one Meta-Directory node aeddistributed system which uses
multiple decentralized Meta-Directory nodes. Thesten analyzes these approaches in

detail and points out their disadvantages.

2.2.5.1 Centralized Meta-Directory Approach

In a centralized Meta-Directory approach, theditere introduces a centralized node
that provides information regarding the distributedistries. The approaches discussed
by Papazoglou et al[13] andDu et al.[6] introduce a centralized UDDI node where
each of the distributed registries have to pultstif in a centralized node indicating the
type of services that are offered by the regisiiye approach byerma et al[26] also
uses a centralized node; but in this approacheh&aized node only stores the location
of the registry without any notion of the type engces offered by the registry. Figure
13 illustrates the basic structure used in thepeomghes. The main disadvantage of this
approach is that the root registry provides a simglint of failure. This is because if the
root registry is not available, new UDDI nodes witit be able to join the network. Also
if the root registry is not available, the appragei UDDI node cannot be located and as
such all the UDDI nodes will have to be queriedimlyia service discovery.

Due to the single point of failure limitation, eeschers started looking towards
solutions that involve more than one meta-directditye following section summarizes

the literature that use distributed meta-directteestore meta-information.

41

Root Registry

Figure 13 Centralized Approach

2.2.5.2 A Network of Meta-Directories

Due to the single point of failure drawback of thentralized Meta-Directory
approach, researchers proposed the use of a netwfiolketa-Directory nodes. The
approach introduced by the authors in [16] use®rspeers whereby the client peers
publish the services that they offer. The Superr$ée [16] are the actual service
providers in the distributed Web Service Discovigigchanism shown in Figure 11. This
means that the underlying communication model usethe service providers has to be
modified to support the indexing algorithms prowdsy CHORD.

The authors in [16] abstract away from using agryise registry. In [16], the service
providers advertise their services to the SupersPimat index the service keywords in
the DHT (as discussed in detalil in Section 2.1.3} forces the approach in [16] to be
a specific solution to a service discovery mechamasid cannot be applied to an already

existing system that uses UDDI compliant serviggsteies for example.

42

The authors in [18] on the other hand introducelwstering approach where
registries that provide the same type of servigenfa cluster and register themselves
with a super peer. The super peer in this case lamdys of the location of the service
registries and there is no indication as to theadervices offered by the registries but
only knows of the class of services that are offefidhe main drawback of this approach
is that it incurs a high maintenance overhead astiper peers are dynamically selected
and a registry can only provide service informafi@mnone category.

The proxy registry approach introduced Bgnerjee et aluses the Bamboo (DHT)
system [1]. In [1] each local registry is tied wighsingle proxy registry that links the
UDDI registries with the DHT service. This proxygrstry handles all the requests to the
underlying local registry. This one on one relasioip forces as many proxy registries as
there are service registries in the network.

The main of disadvantage of the approach in [lth& the service provider must
forward a publish request to the proxy registryoasged with the local registry as shown
in Figure 14. This property makes the approachljnpfovide a single point of failure
because if a proxy registry is not available, infation cannot be published in the local
registry that is associated with the proxy registry

As we have seen from the discussion on the prégpdbat use Meta-Directories,
even though these approaches have drawbacks,tith@yavide better solutions in terms
of scalability, ease of management, and flexibitiynpared to the rest of the literature in
the management of distributed registries. Due ®atlivantages of the Meta-Directory
approaches, our approach also uses Meta-Directggr snodes where we overcome the

disadvantages of the reviewed literature. The valg section introduces the Meta-

43

Directory system proposed in this thesis and dsesifiow we overcome the drawbacks

of the existing research.

Client Proxy UDDI Registry DHT Service Local UDDI

. Publish Service()

Publish Servié::e()

> Hash()

Publish Service()

Figure 14 Service Publishing in Proxy Registry Appoach [1]

2.3 An Introduction to the Solution: Proposed Meta-Directory Based
Approach

Our approach introduces a Meta-Directory layet ties information regarding the
services and registries that an enterprise wantsetpublicly available in the network.
The architecture used in this research is illusttah Figure 15. In this example, each
Meta-Directory node may be located on a Gatewapendistributed network. It should
be noted that the Meta-Directory nodes can be éacanywhere in the distributed
network as they do not rely on any services froem@ateways.

A Service Provider is an entity that provides Wheb Service in the distributed

system while the Service Requester is the clieat Wants to invoke the Web Service.

44

The Gateway is the entry point to an enterpris€s/iSe Registries. Information on how

the Web Services can be invoked is stored in theic&eRegistries.

Service

Registry Ser_nce
@ Registry
Registry
Gateway /\ Gateway

Meta-Directory Meta-Directory Service

Registry

i

)

Service
Registry

Service
Discovery

Registry
. Publishin
Service

Publishing

Service Gateway |
Provider Meta-Directory
Service S

Requester

.
e

Registry

Figure 15 Distributed Meta-Directory Approach

When a Service Provider wants to publish Web $erimformation, the Service
Provider first forwards the publish request to 8exvice Registry. Once the information
is stored in the Service Registry, the Service Evthen forwards the publish request
as well as the location of the Service Registryome of the Meta-Directory nodes as
shown in Figure 16. During a Web Service Discovéng, Service Requester only needs
to send a service request message to one of tha-Metctory nodes. The Meta-
Directory nodes then collaborate and return theugsted information to the Service
Requester. The collaboration among the Meta-Dirgatodes is determined by the data
distribution model and the forwarding algorithm dayed by the Meta-Directory nodes.

The distributed Meta-Directory approach is propgbbecause a centralized Meta-

Directory approach introduces a single point olufa similar to the schemes introduced

45

by Papazoglou et al[13], METEOR-S [26] andDu et al. [6] where the service

information is published in a centralized UDDI rstgy.

Service
Provider

Service
Registry

. 1. Publish Service

2. Publish Regié:try Location

Meta-Directory
Node

DHT
Service

_"_________

> 3. Save Entries

4. Publish Entries

> 5. Hash

Figure 16 Service Publishing in Proposed Meta-Dirdory Approach

Compared to the SPiDer approach [16], the Metaddary approach on the other

hand does not modify the underlying architectureany of the Web Service discovery

components (i.e. the service provider and the servegistry). The Meta-Directory

approach can be applied to any existing systemubed service registries which is not

possible with the system described in [16].

When compared to the approach by [18] which onityes the locations of the

registries based on the type of services offeredheyregistries, the Meta-Directory

approach proposed stores the keywords of the astuaices offered by the registries. In

[18] when a query is received by the super pedrastto be forwarded to all the registries

offering that type of service, while in our propbghe query is only propagated to the

registry that provides that particular service.cAlthe Meta-Directory approach does not

46

modify the registries themselves while in [18] theer peers are also service registries
with extra responsibilities.

The architecture proposed in this thesis overcothesproxy registry limitation in
[1] by allowing the service provider to publishtire local registry of its choice, and then
publishes the registry information in any Meta-Biery node. In our proposed
architecture, Meta-Directory nodes are not tiecaimy specific registries and therefore
they can be located anywhere in the network anenace provider can publish in any
one of them regardless of the UDDI registry logatibhe approach in [1] forces as many
proxy registries as service registries in the nekkwahile in our approach the number of
service registries does not affect the number ofaMirectory nodes since the Meta-
Directory nodes are not tied to any Service Ragsstr

Another advantage of this approach in the cortéxthe Extranet architecture is that
since the Meta-Directory nodes are located on th&eay, this approach allows the
existence of private registries within the netwoltkalso accommodates existing local
business registries thereby forming a network gisteées. The service providers only
forward the information they want to share with tig@work to the Meta-Directory nodes.
Private entries will not be forwarded to the Metaebtory node hence this architecture
provides security to internal enterprise informatio

Since the Meta-Directory nodes are distributedhi@ network and information is
replicated within the Meta-Directory nodes, as shoim the hash table structure
discussed in Section 3.3.2, this approach doeshagt a single point of failure.

Information is distributed in multiple nodes thhage the system load.

a7

The distributed Meta-Directory model abstracts distributed nature of the system
from the service provider, by providing a singléenface through the Meta-Directory
system that takes care of the querying and forwmgrdi messages among the distributed
Service Registries. Therefore the Service Requestes not have to know the locations
of any registries and only needs to know the locatif one Meta-Directory node thereby
giving the illusion of a centralized system.

For the Meta-Directory architecture to provide tbetperformance with varying
network size and available bandwidth, the routisgdufor interconnecting the Meta-
Directory nodes is configurable during system seflipis configurable framework is

introduced in the following section.

2.3.1 Configurable Routing Framework

Multiple network configurations were analyzed erms of their performance and
scalability and it was discovered that no singlencwnication protocol is suitable for
networks whose system configuration can evolve wimiee. A configurable routing
framework is hence introduced and implemented im tthesis. With this framework, the
system administrator can decide which configuraigoto be used. The various possible
configurations include CHORD (DHT), Fully Connectdeully Connected (DHT) and
Super Peer. These are discussed in detail in Qhzpte

Further analysis showed that a framework thatwalthe system configuration to be
modified during runtime would be ideal. Due to thesy adaptable framework and its
underlying algorithms are also introduced in thissis. The adaptable framework has not

been implemented but counts towards the futuresasteesearch for this thesis.

48

The next chapter looks at the overall design efdistributed Meta-Directory system
by discussing the Meta-Directory node design imt&epf the communication model, the
hash table structure and the hash table dataldisttn model. The configurable routing
framework is also introduced and analyzed by dsiagsthe network models that are
supported. The adaptable routing framework is thetnoduced by providing the

transformation algorithms that would allow the systto be modified during runtime.

49

CHAPTER 3 SYSTEM DESIGN

This chapter looks at the overall design of thstriiuted registry management
system that uses configurable distributed Metaddingy nodes. From the discussion in
the previous chapter, we have seen that therehege types of Meta-Directory systems.
The Meta-Directory system that is proposed in thésis saves information regarding the
services offered by the distributed service reigistrThe system stores the attributes that
are used when service information is queried framgastry.

There are two possible design models for the megdveta-Directory system. One
design involves the creation of a client on thevBerRegistry and in the other design the
client resides on the Service Provider. The two @e®dre discussed in the following
section followed by use cases and system desigmnathies, and then the configurability of

the network is demonstrated by describing the supgmetwork models.

3.1 Design Models

In Section 2.3, the Meta-Directory approach pregom this thesis was introduced.
There are two ways in which the Web Service comptnéService Provider, Service
Requester, and Service Registry) can interact thiéhMeta-directory System. The first
design that involves the creation of a client congra on the Service Registry is

discussed below.

3.1.1 Client Residing on the Service Registry

The Meta-Directory system proposed in this thesis be realized by creating a

client on all the Service Registries. These cliemii$ be in charge of communication

50

between the Meta-Directory System and the Web &ereomponents. Figure 17(a)
shows the message distribution when a service bdighed in this model. The Service
Provider forwards &ublish Serviceequest to the Service Registry. The Service Rgqgis
stores the service information and then forwardsstime request to the Meta-Directory
System. The Meta-Directory System then saves tf@nmation in the Meta-Directory
network.

Figure 17(b) illustrates the messages exchangedgda service discovery. The
Service Requester forwardalery Serviceequest to any one of the Service Registries.
The service registry receiving the request forwatts query to the Meta-Directory
System which then finds all the Service Registtiest have the information requested.
The Meta-Directory System then forwards Qeery Servicegequest to all the respective
Service Registries which return the response toMb&a-Directory System. The Meta-
Directory System then returns all the responsethéoService Registry which sent the

originating request which then forwards the respdnghe Service Requester.

Service Service ||Meta-Directory Service Service ||Meta-Directory || Service
Provider Registry System Requester|] [Registry 1 System Registry 2|
{ Publish Service | ‘Query Service !

—

: ' : iQuery Service !
) S o J [
Publish Service : ' :

: .
: :

Service Details 1= = = = = = = =
L '

(a) Service Publishing (b) Service Discovery

Figure 17 Sequence Diagrams for Service Registry Bign

51

This model abstracts the existence of multipleviSerRegistries from the Service
Provider as well as the Service Requester. TheiceRrovider publishes in a Service
Registry of its choice and the Service Requestegrigst any one of the Service

Registries. The following model introduces a clientthe Service Provider.

3.1.2 Client residing on the Service Provider

A second model that can be used to realize thedeectory system proposed in
this thesis is by having a publishing client on 8exvice Providers instead. Figure 18(a)
shows the message exchange when service informatmrblished in this design model.
The Service Provider first send®ablish Serviceequest to the Service Registry. Once a
confirmation is received from the Service Regidtmat the information is saved, the
Service Provider forwards Bublish Registry Locatiomequest to the Meta-Directory
System. ThePublish Registry Locatiomessage includes the originmdublish Service
request along with the location of the Service Biegithe information is stored in. The
Meta-Directory System then stores the informatloat tan be used to query the service.

Figure 18(b) illustrates the message distributiioming service discovery. In this
model, the Service Requester forwards @eery Servicaequest directly to the Meta-
Directory System. Similar to the previous desidre Meta-Directory System finds the
Service Registries that have the information retpeeand forwards the request to the
Service Registries. Unlike the previous designeoihe Meta-Directory System receives
the response from the Service Registry, the sy$tewards the response directly to the
Service Requester.

In this model, during Service Discovery, the quergssages are only propagated the

Service Registries which have responses for theygiéhile in the previous model, the

52

Service Registry that receives the request mighhawe the information requested but it
must participate in the message exchange sincdiém resides on the Service Registry.
Any of these two designs can be used to analyzeénformance of the proposed
Meta-Directory system because once the systemviecai request; the flow of messages
is exactly the same. The system first finds ther@ppate Service Registries and
forwards the request to them. In this thesis, tbeehthat was implemented was the one
that involves the client residing on the Servicevitter. This model does not require any
changes on the Service Registry nor the Servicei€ater. The client is required on the
Service Provider only when information is being lmhed in the network. The rest of the
thesis will refer to this model as the Meta-Diregtesystem. The following section

discusses the Use Cases of the proposed Meta-@riyesytstem.

Service Service Meta-Directory Service | |Meta-Directory Service
Provider Registry System Provider System Registry
PPublish Service; ! Query Service |
—_— : —_—

; f i : Find :
Publish Registry Location
i ; Save E ; i
' : : ! Query Service '
i = e e

i Service Details !
—_—

(a) Service Publishing (b) Service Discovery

Figure 18 Sequence Diagrams for Service Provider Bgn

53

3.2 Use Cases

Figure 19 shows the use case diagram for the Mettory System. There are four
actors that interact with the Meta-Directory Systerthe ServiceRequester,
ServiceProvider, SystemAdministrator and the SeReyistry. The ServiceRequester is
the entity that is looking for a service it can ake in the distributed network. The
ServiceProvider is the company that provides a \Betvice. The ServiceRegistry is the

location where information on how the web serviae be invoked is stored.

Weta-Directary System

Publizh Service
Delete Service

ServiceProvider

==gxtend==

Service Mot Found

==extends==

Dizcover Service

Select Topology 4

SystemAdministrator ServiceRegistry

ServiceRequester

Figure 19 Meta-Directory System Use Case Diagram

The following are the Use Case descriptions forMlata-Directory System:
Use Case Nam&elect Topology

Actors: Initiated by the SystemAdministrator

54

Entry Condition: The system is being deployed damed3ystemAdministrator has selected
the underlying network model

Flow of Events:

1. The SystemAdministrator selects a network
2. The Meta-Directory node sets its internal overlagwork model to the selected
model

Exit Condition: The network model of the node haer set to that selected by the
system administrator.

Use Case Nam®ublish Service
Actors: Initiated by ServiceProvider

Entry Condition: ServiceProvider has registered thervice information in a
ServiceRegistry.

Flow of Events:

1. ServiceProvider forwards the information publishethe Meta-Directory
system.

2. Meta-Directory node receiving the publish messaaghhs the attributes and
stores the attributes.

3. Meta-Directory system informs the ServiceProvidet the information was
successfully published in the system.

Exit Condition: The information is stored in the tdeDirectory system in key-value
pairs.

Use Case Nam®elete Service
Actors: Initiated by the ServiceProvider

Entry Condition: The service information has beefetéd by the ServiceProvider from
the ServiceRegistry

Flow of Events:

1. ServiceProvider sends a delete information mestsatie Meta-Directory system

2. Meta-Directory node receiving the delete messagehdm the attributes and
deletes the attributes.

3. Meta-Directory system informs the ServiceProvideattthe information was
successfully deleted from the system.

55

Exit Condition: The service information is succedlsfdeleted from the Meta-Directory
system.

Use Case Nam@iscover Service
Actors: Initiated by the ServiceRequester, commateis with the ServiceRegistry

Entry Condition: The ServiceRequester has indicdted she/he wants to discover a
service.

Flow of Events:

1. ServiceRequester sends a service discovery mess#ugeMeta-Directory
system.

2. The Meta-Directory node hashes the attributes atslthe location of the
ServiceRegistries.

3. The Meta-Directory node forwards the service digcgvrequest to the
ServiceRegistries.

4. The ServiceRegistries respond with the servicelldeta

5. The Meta-Directory System forwards the serviceitieta the ServiceRequester.

Exit Condition: The ServiceRequester has receiaéatination on how to invoke the
service.

Use Case Nam&ervice Not Found
Actors: Communicates with the ServiceProvider, BeRequestor

Entry Condition: This is an extend Use Case th&iggered by the Discover Service Use
Case and the Delete Service Use Case when theseamnot be located in the system.

Flow of events:
1. The service information is not found in the Metadatory system.
2. The Meta-Directory system informs the actor thatt $ee message that the

service is not found

Exit Condition: The actor that initiated the extelgdUse Case has been informed that
the service could not be found.

After covering the Use Cases for the Meta-Directoatwork proposed in this thesis,
the decisions made during the design of the Metadry system are discussed in the

following section.

56

3.3 Meta-Directory System Design

The Meta-Directory system is composed of disteduMeta-Directory nodes that
store the location of the service registries basethe services stored in those registries.
In order to design the system, the underlying cpmfition between the Meta-Directory
nodes as well as the structure of the data storéteinodes needs to be discussed.

This section presents the Meta-Directory systean i deployed using the CHORD
(DHT) network model. The CHORD (DHT) model is dissad and the underlying hash
table data distribution model is covered, and thananalysis is provided for service

publication, service deletion and service queryqrared on the network.

3.3.1 CHORD (DHT) Model

This forwarding algorithm is a structured algomithvhereby the nodes only know of
a subset of nodes in the network. There are natuleies in this model, as each Meta-
Directory node has the same responsibilities agdbeof the Meta-Directory nodes in
the network shown in Figui20.
A formal definition of the CHORD (DHT) model is mented [22]:

* A CHORD (DHT) network is a directed graph G = {\} With vertices V,
representing the nodes and edges E, represenériopgjer table.

* [Each vertex is labeled by its ID

* The degree of each vertex in the graph =

* The graph’s size |E| = N(lgi§ — 0.5)

This structured forwarding model is deployed usthg CHORD [22] algorithm
where each peer has a unique ID and is only reserfer a subset of the hashed values

and only knows of its neighbors in the network. ltaocde and key is assigned rarbit

57

identifier using SHA-1 [22] as a base hash functiéach key is assigned to the node
whose node ID is equal to or a successor to thevkkie. The nodes are arranged in a
ring as shown in Figur0 and each node hasm neighbors where thdientry of the
routing table contains the identity of the firstdeothat succeeds by at least ‘2 in the
identifier circle [22]. The neighborhood table alsmwn as the finger table includes both
the CHORD identifier and the IP address of thevah node and the first entry is the
immediate successor on the circle.

Figure20 shows a CHORD (DHT) ring with 8 nodes and stpfrkeys withm = 6.
The successor of identifier 28 is node 32; theeetay 28 would be located at node 32.
Similarly, keys 49 and 51 would be located at nbilekey 65 at node 72, and key 98 at

node 1. Figur@0 also shows the finger table for N14.

K98

Finger Tabl

K65

N14 +1 N21

N14 + 2 N21

N59
N14 + ¢ N21

N14 + ¢ N32

N14 + 1¢ N32
ksl — 1

N51 N14 + 3; N48

K49

Figure 20 CHORD (DHT) Ring

When a publish request message is received byta-Bieectory node, the Meta-
Directory node hashes the attributes and the k&yevpairs it is responsible for are

stored locally. The Meta-Directory node then fordgathe other key-value pairs to the

58

responsible nodes by routing the messages thrasigieighbors. When a query request is
received, the Meta-Directory nodes follow the saimevarding algorithm as when a
publish request is received.

The following section describes the key-value gaiucture in the hash tables used

for the CHORD (DHT) network.

3.3.2 Hash Table Structure

This section presents the structure of the halledaused in the management of
distributed registries using the Meta-Directory i@g@eh. A hash table is used in all the
data distribution models as this is where the mfmtion about the Service Registry that
can respond to a query is stored. Since the valuka key-value pair in the hash table
provides the location of the relevant registriagery messages are only propagated to the
relevant registries.

In our system, the information in the registries stored using the Universal
Description, Discovery and Integration (UDDI) [4igpocol. The UDDI protocol has a
standardized query interface. This query interfacditates the information stored in the
hash tables as only the UDDI attributes that caguszied are stored in the hash table as
key-value pairs. The key is the hashed value ofttrédbute and the value is the location
of the Service Registry that has information regaydhat attribute (as can be seen in the
example in Table 3). It should be noted that netrghing that is in the service registries
is forwarded to the Meta-Directory system but ot keywords of the subset of
services that are offered to the Extranet membads the locations of the registries

corresponding to the services have to be senetMita-Directory system.

59

Even though the UDDI interface is the one usedexplaining the hash table
architecture in this thesis, the design of the hablhes can accommodate any registry
protocol because the attribute value is concatdnaith the attribute name when it is
hashed. This facilitates the use of any publicatiod query protocol that is followed by
the service registry. The only additional attribumeall the publish messages is the
location of the service registry where the Web Berecan be invoked.

The query interface supports the functions shawfigure 21 that are compatible
with the UDDI publish and query functions. The M&mectory system only supports
the save, delete, and find functions associatet thié business, service, and tModel
entities of the UDDI protocol and does not suppbe get details function. This is
because, in order to get the details of the estitlee user must know the entity 1D, which
in turn means the user already knows the locatiothe® service registry and therefore

does not need to route the message through the Medetory system.

void save_business(businessName, discoveryURL, iden tifier,
category, registryLocation);
void save_service(serviceName, businessName, catego ry,

registryLocation);
void save_tModel(tModelName, identifier, category,
registryLocation);

void delete_business(businessName, discoveryURL, id entifier,
category,registryLocation);
void delete_service(serviceName, businessName, cate gory,

registryLocation);
void delete_tModel(tModelName, identifier, category ,
registryLocation);

String find_business(businessName, discoveryURL, id entifier,
category);

String find_service(serviceName, businessName, cate gory);
String find_tModel(tModelName, identifier, category ;

Figure 21 Meta-Directory Interface

The savefunctions are used by the service provider to ishbdervice and business

information in the Meta-Directory nodes. THeletefunctions are called by the service

60

provider whenever they want to delete service aminess information from the Meta-
Directory system. Théind functions are called by the service requesters edmmthey
want to find web service information and they ddaibw the location of the registry that
has the information. All these messages can beaim®d to any of the Meta-Directory
nodes in the system.

Table 2 lists that attributes from the messageBigure 21 that are hashed in the
Meta-Directory system. These attributes provide kleg and the “registry location”
attribute provides the value stored in the haslesalicach attribute is hashed individually
so that if only one attribute is supplied, suchhescategory, whenfand function is used,

the system will query all the registries that hagevice information in that category.

Table 2 Attributes Hashed by the Meta-Directory Sygem

Hashed Attributes

BusinessName

DiscoveryURL

Identifier

Category

ServiceName

tModelName

When thesaveanddeletefunctions are used, all the attributes are requingiile one
or all of the attributes can be provided durindirad request. When more than one

attribute is provided by a service requester, {fstesn employs an AND function to the

61

attributes and only returns the registry locatithe have information on all the provided
attributes.

Table 3 shows an example of the contents of a tadtd when three businesses were
published as follows: save_business(name::senasadar,
location::www.services.com),save_business(namenuanications,location::www.com
munications.ca), and save_business(name::softioegtidn::www.registry.com:8080).
The name attributes were hashed to produce the 3&®¥/s574, and 283 respectively as
shown in Table 3.

After looking at the contents of the Hash Talike, following section illustrates how
the hash table data is distributed among multipletavDirectory nodes when service

information is published in the system.

Table 3 Hash Table Contents

Key Value

342 www.services.com
574 www.communications.ca
283 www.registry.com:8080

3.3.3 Publishing Service Information

Figure 22 shows the attribute distribution whepublish message is sent to the
Meta-Directory network. In this example, each MBigectory node in the network
follows the CHORD (DHT) protocol thereby handlingsabset of hash values. This
ensures that regardless of the attribute beingdiaghe load is evenly distributed in the

network. The attributes are hashed individuallyhvtite attribute name concatenated with

62

the attribute value. This is done in order to digtiish attributes that have the same name.
For example, there can be a company with the bssiname software, while at the same
time another company could be providing a servicgeu the category software. These
two attributes are distinguished by concatenatimggattribute name with the value when

applying the hash function.

i save_business(name::photonics, \
H Gy TTTTT o T m T e e

URL::www.photonics.com, i1 hash (businessName::photonics) = 9432 i
GLN::5673, i1 hash (businessLocation:: www.photonics.com) = 1675 3
category::software, i} hash (GLN::5673) = 3125 :
location::www.photonics.com/info.html) ! hash (businessCategory::software) = 5674

Meta-Directory Node A
P(1 - 3333)
S(8334 — 10000 & 3334 - 5000,

www.photonics.com/info.html

3125 ‘www.photonics.com/info.html

9432 www.photonics.com/info. html

Meta-Directory Node C Meta-Directory Node B
] P(6667 — 10000) P(3334 - 6666)
S(5001 - 6666 & 1 - 1666) S(1667 — 3333 & 6667 - 8333

YWW.: ics.com/info. 5674 | www.photonics.com/info.html
www. photonics.com/info. html 1675 | www.ph ics.com/info. html
3125 | www.photonics.com/info. html

Figure 22 Service Publishing in Meta-Directory Nods

To address the problem of introducing a singlenpaif failure, Figure 22 also
illustrates the data replication algorithm followéd the Meta-Directory system. In
addition to the primary range of values that a Meaitectory node stores, there are also
secondary replicated key-value pairs that a Metaddory node is responsible for to
avoid losing information if a Meta-Directory nodeesl The secondary key-value pairs
are replicated values that are introduced to ensdendancy in the network and these
are illustrated in the figure by the range of valshown in italics. The secondary keys
are selected so that each Meta-Directory node tkay-&alue replication of the first half

of values handled by the successor and the latdfr df values handled by the

63

predecessor. This ensures that the hashed infamatievenly distributed among the
distributed Meta-Directory nodes.

The Meta-Directory node receiving the publish ejlthashes the attributes received
as shown by Meta-Directory Node A in Figure 22.tms example, the attribute
“businessName” is concatenated with the attribatee “photonics” and then hashed to
create the hashed key number 9432, the attribuigiribssLocation” is concatenated with
its value “www.photonics.com” to produce the key736the attribute “GLN” which
indicates the unique business global location nunibeconcatenated with the value
“5673” to produce the key 3125 and the attributasihessCategory” concatenated with
the value “software” is hashed to create the kduev®674. Once all the attributes are
hashed, the Meta-Directory node that received thidigh request stores the key-value
pairs that it is responsible for, and forwards td@aining key-value pairs to the relevant
Meta-directory node.

In Figure 22, Meta-Directory Node A then stores kiey-value pairs for the primary
keys 1675 and 3125 and the secondary key 9432 gine@esponsible for the primary
keys in the range of 1 to 3333 and the secondayy kethe range of 8334 to 10000 and
3334 to 5000. The secondary keys replicate hathefrange of values covered by both
the predecessor and successor nodes. Also, ine~@@ir the key-value pairs for the
primary key 9432 and secondary key 5674 are themaimled to Meta-Directory Node C
and that of the primary key 5674 and secondary & and 3125 are forwarded to
Meta-Directory Node B as per the data distribustnucture indicated.

For simplicity, the rest of the examples in thestson only show the primary range

of values that are handled by a Meta-Directory nddgure 23 illustrates the message

64

distribution when another business publishes i8snass information in the network. The
business published in Figure 23 provides Web Sesvim the same category (i.e.
software) as the business information publisheBigure 22. In this case, there are two
entries for the hash value 5674 as shown in Fig8re

The service information can now be queried onge ftublished in the network. To
illustrate how the services are deleted from tharitiuted Meta-Directory nodes, the
following section shows how the delete requestssam to the system and how the

information is removed from the network.

save_business(name::software solutions,
URL::www.softsoln.com, e
DUNS::2354, : : hash (businessName::software solutions) = 2354

category::software, i1 hash (businessLocation::www.softsoln.com) = 7893 !
location::www.softsoln.com/registry) ; i hash (DUNS::2354) = 3456 :

e i a SERE e ! hash (businessCategory::software) = 5674

T
Meta-Directory Node A
(1-3333)

1675 | www.photonics.com/info.html

2354 www.softsoln.com/registry

3125 | www.photonics.com/info.html

Se—
Meta-Directory Node B
(3334 - 6666)

7893 www.softsoln.com/registry 3456 www.softsoln.com/registry
9432 | www.photonics.com/info.html 5674 www.softsoln.com/registry
5674 | www.photonics.com/info.html

Figure 23 Service Publishing and Message Distribudn

Meta-Directory Node C
(6667 —10000)

3.3.4 Deleting Service Information

When a service provider decides to remove infoionafrom the Meta-Directory
system, the service provider will use one of de¢etefunctions shown in the interface

definition in Figure 21. If a service provider wartb delete business information from

65

the Meta-Directory system, they will sendl@lete businesmessage to one of the Meta-
Directory nodes.

If the delete_busines$unction in Figure 24 is forwarded to the Meta+aitory
network in Figure 23, the attributes will be hashgdhe Meta-Directory node receiving
the query. The receiving node will then delete kbg-value entries it is responsible for,
in this case the entry with the key 2354 and vaWwew.softsoln.com/registry” will be
deleted, and forward delete requests for the renmikeys to the nodes responsible for
those entries. That is, a delete request for tlys B456 and 5674 with corresponding
values of “www.softsoln.com/registry” will be forw@ded to Meta-Directory Node B and
a delete request for the key 7893 and value “wwisstm.com/registry” will be
forwarded to Meta-Directory Node C. Once the kelpgaentries corresponding to the
hashed keys are deleted from the network, the mktwill result in the hash table entries

shown in Figure 24.

i delete_business(name::software solutions, \
; URL:www.softsoln.com, :

DUNS::2354, : . hash (businessName::software solutions) = 2354
Category::software, i | hash (businessLocation::www.softsoln.com) = 7893 !
location::www.softsoln.com/registry) | i hash (DUNS::2354) = 3456 ;

T E hash (businessCategory::software) = 5674

S ——
Meta-Directory Node A
(1-3333)

1675 | www.photonics.com/info.html
www.photonics.com/info.html
Meta-Directory Node C

S ——
Meta-Directory Node B
(6667 —10000) (3334 - 6666)

\ |9432| www.photonics.com/info.html | 5674 ww\\nphotonics.com/info.html/_|

Figure 24 Deleting Service Information from Meta-Drectory Nodes

66

3.3.5 Querying Service Information

Figure 25 illustrates a query message where acserequester is querying for
businesses that provide services under the softeatsgory. In this example, there are
two entries for the hashed value, thereby queryinggistries in both
www.softsoln.com/registry and www.photonics.condihtml| locations. If the query
message wabnd_business(DUNS::2354, category::softwanegtead, the two attributes
are hashed independently producing the hash keéy8 84d 5674 respectively. For these
hash values only www.softsoln.com/registry willdpgeried for the business information.

The next section introduces the configurable rguframework used in this thesis.
This framework allows the system administrator hoase the overlay network used in
connecting the Meta-Directory nodes during deplaytne

S——
/ Meta-Directory Node A
(1-13333)

I~

~

1675 www.photonics.com/info.html
2354 www.softsoln.com/registrv
3125 www.photonics.com/info.html

S ——
Meta-Directory Node C Meta-Directory Node B
(6667 — 10000) (3334 - 6666)

/ 7893 www.softsoln.com/registrv 3456 www.softsoln.com/registry
___________________ 9432 | www.photonics.com/info.html 5674 www.softsoln.com/registrv
i find_business(category::software) ! 5674 | www.photonics.com/info.html /

Figure 25 Service Discovery in Distributed Meta-Diectory Nodes

3.4 Configurable Routing Framework

Because of the design of the system, such thaidds the details of the network
deployment from the registries, the underlying camioation framework between the

Meta-Directory nodes can be configurable. Becadighi® property, the Meta-Directory

67

system allows the system administrator to chooseuttderlying network model between
the distributed Meta-Directory nodes when the sysie being deployed. This section
looks at the network models that are supported aralyzes the performance of these

models.

3.4.1 Network Models

This sub-section examines, analyses, and disctissesetwork models that are used
for inter-connecting the Meta-Directory nodes. A&dletical performance analysis based
on the number of hops per query, the total numberessages exchanged per query, and
the total number of periodic messages exchangedtidt number of nodes is performed.

In addition to the CHORD (DHT) protocol covered $®ction 3.3.1, three other
network models for Meta-Directory nodes in thissiBeare discussed so as to compare
the performance of structured as well as unstradtunetwork models. The three
additional models are:

* The Fully Connected Model

* The Fully Connected (DHT) Model

* The Super Peer Model

This analysis will help the system administratodetermining at start-up, and for a
given expected load, which network will provide teetperformance. The network
models can be divided into three different categgorin the first category, each Meta-
Directory node is connected to every other Meta€iory node in the network. The
second category introduces a network model wheoh @deta-Directory node only
knows of the location of a subset of Meta-Directandes in the network. In the final

category, Super Peers and clusters of Meta-Dirgctodes are introduced.

68

3.4.1.1 Fully Connected Model

In the first category we are going to look at adelovhere each Meta-Directory node
in the network is directly connected to every othata-Directory node in the network.
In the model in Figure 26, there is no structuréhi data distribution among the Meta-
Directory nodes. When a message is publishedhalhfished entries are stored locally in
the Meta-Directory node that received the publisquest. Therefore, when a Meta-
Directory node receives a query, it then broadctmtsrequest to all the other nodes in
the network. This model is introduced because fitimizes response time since the query
is broadcasted to all the nodes in the network thedefore the total number of hops

required to find a response is always equal to one.

Figure 26 Fully Connected Model

The Fully Connected (FC) model icampletegraph G = {V, E}. Where the degree
of each vertex in the graph = N — 1.

In order to understand the structure of the Fullgnnected Model, the data
distribution model in the hash tables needs tollostiated. For the Fully Connected
Model, the hash table data distribution model fsrred to as the local distribution model
because when data is published in a Meta-Direatode in this system, all the attributes

are hashed and the resulting key-value pairs startte local hash table.

69

This is illustrated in Figure 27 where the two ibesses are published in two
different nodes; therefore the received businefsgrmmation is stored locally. Hashing is
done so that in the future during the implementatbthe runtime reconfiguration of the
network models (with the transformation algorithiosbe discussed in Chapter 6 the
underlying data model does not have to be modifibén the network is reconfigured
between the CHORD (DHT) model and the Fully Cone@chodel.

In the example in Figure 27, Meta-Directory Noderekeives the save_business
request from the “photonics” company. Meta-Diregtdlode A hashes the attributes as
per the hashing convention discussed in Sectio,3t3hen stores all the hashed keys in
the local hash table with the hash value being Itdmation of the service registry
(www.photonics.com/info.html). “software solutiongin the other hand forwards its
save_business request to the Meta-directory Nodketefore all the hashed keys for the

“software solutions” company are then stored lgciallthe Meta-Directory Node C.

save_business(name::photonics,
: URL::www.photonics.com,
| GLN::5673, 5

category::software, :
location::www.photonics.com/info.html)

~——

S
TTeTememmemosssssesososessosooeoooooooo osmmsmemeemeeiey Meta-Directory
' save_business(name::software solutions, Node A

URL::www.softsoln.com,

DUNS::2354 1675 www.photonics.com/info.html
category::software, i 3125 WWW nhotnn‘:c com 1:m°0 html
location::www.softsoln.com/registry) H 9432 WWW nhotnn‘.c com 1'm°0 html
NS = S £ 5674 www.photonics.com/info.html

Meta-Directory
Node C

2354 www.softsoln.com/registry BN

3456 www.softsoln.com/registr
5674 www.softsoln.com/registry
7893 www.softsoln.com/registry

Figure 27 Local Distribution Model

70

When a service discovery request is receivediafreceiving Meta-Directory node
does not have the values for all the keys in tlsealiery request, the Meta-Directory
node broadcasts the keys to the rest of the noddinetwork as there is no indication
as to where the hashed key could be stored.

In this data distribution model, messages aresant among nodes during a publish
request as all the data is stored locally. Thed¥igatage of this approach is that the data
may not be evenly distributed in the network asigad~igure 27, where Meta-Directory
Node B does not have any data since there was smdss information published
directly at that node.

The following section illustrates the Fully Context (DHT) structure as well as the

hash table data distribution in Fully Connected T Hetworks.

3.4.1.2 Fully Connected (DHT) Model

In the Fully Connected (DHT) model, see FiguretB®,data distribution among the
Meta-Directory nodes follows a structured distribontmodel such that each node only
handles a subset of hash entries. In this casen whileta-Directory node receives a
request, the Meta-Directory node only forwards rthessage to the appropriate node in
charge of the hashed key. Therefore, when comgartfee model in Section 3.4.1.1, this
model does not flood the network during a discoveguest but incurs a higher overhead
during a publish request as the published ent@e® o be forwarded to the appropriate
Meta-Directory nodes.

The Fully Connected (DHT) (FCDHT) model is a spéaase of the CHORD
(DHT) graph in that it is @omplete CHORD (DHT) graph where the degree of each

vertex in the graph = N — 1.

71

Since in the Fully Connected (DHT) Model the ket pairs are forwarded to the
appropriate node, the algorithm used for the seleatf which node the key-value pair is

forwarded to needs to be described.

K98
v N1
ksl F— ¢
N51 21
K49
N48 N32

K28

Figure 28 Fully Connected (DHT) Model

In Figure 29, the two businesses publish busim#fesmation in the same Meta-
Directory nodes as those in Figure 27. In this cse entries are hashed in the Meta-
Directory node that receives the request, but thetaNDirectory node receiving the
request only saves the key-value pairs that gsponsible for in the local hash table and
forwards the rest of the key-value pairs to theeptfieta-Directory nodes in the network
(as was discussed in Section 3.3.3). It shoulddtednthat this distribution model can be
implemented using the CHORD (DHT) forwarding altfam by setting the size of the
finger table greater or equal to the maximum nundfenodes that will ever be in the
system. This ensures that the graph is always aimpthen nodes join and leave the
network.

In the example in Figure 29, hashing is done talpce hash values in the range of 1

to 10000. Therefore, to ensure that the data islgwdstributed in the network, Meta-

72

Directory Node A is responsible for the hash kayshe range of 1 to 3333, Meta-
Directory Node B for hash keys in the range of 3888666 and Meta-Directory Node C
for the keys in the range of 6667 to 100000.

Meta-Directory Node A receives the save_ businesgigst from the “photonics”
company and hashes the attributes. Meta-DirectageMNA then only stores the keys that
fall in the range of 1 to 3333, in this case thgsk&675 and 3125 for the “photonics”

corporation. The remaining hashed keys are forvehtdeheir respective nodes.

| save_business(name::photonics, ;
URL::www.photonics.com,
GLN::5673, ;

category::software, :
location::www.photonics.com/info.html) |

S ——
Meta-Directory Node A
(1-3333)

1675 www.photonics.com/info.html
2354 www.softsoln.com/registry
www.photonics.com/info.html

save_business(name::software solutions,
URL::www.softsoln.com,
DUNS::2354,
category::software, !
location::www.softsoln.com/registry) \!

Meta-Directory Node B
(3334-6666)

Meta-Directory Node C
(6667-10000)

71893 www.soﬁS(?ln.com/?egistrV 3456 www.softsoln.com/registry
9432 www.photonics.com/info.html 5674 o T |
5674 www.softsoln.com/registry

Figure 29 DHT Data Distribution Model

The advantage of using the DHT model is that thta ds also replicated in the
network such that the same entry can be found ileadt two nodes at any time as
illustrated in Section 3.3.3. This ensures thatdygtem does not have a single point of

failure and data is not lost if a Meta-Directorydeogoes offline. This distribution model

73

incurs an overhead during a publish request, benmsures that the load is shared among

the Meta-Directory nodes in the network.

3.4.1.3 Super Peer Model

Figure 30 illustrates a Super Peer network whemgbyps of Meta-Directory nodes
form clusters of collaborating nodes which commatecwith the rest of the network
through designated Super Peers. This network isattieical and the Meta-Directory

nodes in the clusters form the Client Peers.

MD

\
MD
(2501-5000)

5 /
\ MD
(5001-7500)

MBD: Meta-Directory Node
SP: Super Peer Node

Figure 30 Super Peer Model

The Client Peers have the same responsibilitighe@adleta-Directory nodes in the
other categories and they can communicate using ainthe previously discussed

forwarding algorithms. The Super Peers have extéspansibilities as they have to

74

communicate with and manage the clusters as welbasnunicate with the other Super
Peers in the network.

When a request is received by a Meta-Directoryenadsearch is first performed in
the local hash table and then forwarded withindhester depending on the forwarding
algorithm used within that cluster. In this mod&hce the data stored in the clusters is
independent of each other, after the search ispgagdormed within the cluster the request
is then forwarded to the Super Peer that broadtiastsequest to the other Super Peers in
the network. The rest of the Super Peers conclyrémward the request within their
clusters and if a response is found, the respang@warded back to the Meta-Directory
node which sent the originating request.

The Super Peer network can be defined as follows:

* The Super Peer network consists of three sub-grap8sper Peer graph, a

Cluster graph, and a graph that connects the Stgmrand the Cluster graphs

» A Super Peer graph G ={V, E} is a FC graph where:

V ={SPy, SR,....., SR.4, and Nepis the total number of super peer nodes
E = {(SP.SR), (SR, SR)).......... , (SRep.p SR}
* Acluster graph G ={V, E} for each cluster whicheither a FC, CHORD, or
FCDHT graph
* A connection graph G ={V, E} for each cluster whiis a FC graph where:
V = {SP;, Ng}, and SRis the Super Peer of cluster i ang tie node that is
connected to the Super Peer responsible foreclusthere iLl 1, ..., N
and N is the number of clusters

E ={(SR, Nej)}

75

The following sub-section presents a theoreti@afggmance analysis of the Fully

Connected, Fully Connected (DHT), CHORD (DHT), &inel Super Peer model.

3.4.2 Performance Analysis of Network Models

A theoretical analysis was performed on the presiyp discussed network models
and the results of this analysis are describedim gection. For a number of different
performance metrics, a worst case analysis was todetermine which model performs

better based on the state of the network.

3.4.2.1 Total Number of Messages Exchanged

The first analysis was done in order to studyitgact of the size of the network on
the total number of messages exchanged among pedegiery message. With the Fully
Connected model, each node is connected to aliddes in the network and there is no
indication as to where information is stored beeahg data is stored locally by the node
receiving the publish request (see Section 3.4.Bdgause of this model, when a request
is received, if the node receiving the request dagshave the required information, the
node broadcasts the request to all the nodes iméteork consisting of N nodes.

Therefore the total number of query messaggseNt is given by:
Ng=N-1 (3.1)

A response message is only sent by the node tlsahmanswer to the query message.
Hence, the total number of messagesikthanged in a fully connected network in the

worst case is given by:

Ne= Ng + 1 (3.2)

76
Using equation (3.1) and equation (3.2), we get:
Nt =N (33)

This makes the total number of messages excharggegupry increase linearly with the
size of the network (see Figure 31).

In the Fully Connected (DHT) model, that can belired by using the CHORD
(DHT) protocol where all the nodes in the network aeighbors of each other (see
Figure 28), the data is stored based on the idestibn of the node. Therefore, when a
qguery is received, if the node that received therguwoes not have the data, that node
forwards the query to the node that is respongtriehat hashed key (see discussion in
Section 3.4.1.2). In this case only one requesert in the network to the responsible
node that sends a reply message. Therefore, thientohber of messages exchanged per
guery message is given by:

Ni=2 (3.4)
and is therefore constant.
The structured forwarding model discussed in $ac8.3.1 can be fully realized

using the CHORD (DHT) forwarding algorithm. In ti®rst case, the total number of

guery messages exchanged in a network of N nodpges by [22]:
Ng = logN (3.5)

A response message is only sent by the node havimegponse to the query message.
Thus, the total number of messages exchanged ey qua CHORD (DHT) model is

given by:

Ny =Ny +1 (3.6)

77

Using equation (3.5) and equation (3.6), we getdked number of messages:
N; = logpN + 1 (3.7)

The total number of messages exchanged in the rletworeases logarithmically with
the size of the network as can be seen in Figure 31

As for the Super Peer model, it is characterizgdhdving a maximum of Nnodes
per cluster and the nodes are evenly distributethennetwork whenever a new node

joins the network. For example, if the number ofle® increases fromd\to Nc + 1

. . Nc+1 .
nodes, the network will consist of two clustersh/vrlcz— nodes per cluster. With the

current implementation, increasing the number okters in the network requires the
system administrator to create a new Super Peez.idte algorithms to be used in the
network reconfiguration to ensure that the numberodes is evenly distributed between
the clusters will be covered in Chapter 6 For thpe® Peer model used in this evaluation
Nc = 5 and the communication inside the clusterdofed the CHORD (DHT)
forwarding algorithm, while the Super Peer nodesnmmnicate using the Fully
Connected model. The plot in Figure 31 illustratessworst case scenario during a query
such that requests have to be forwarded to alGtiper Peer nodes whenever a request is
received. The total number of messages exchangadSuaper Peer network is equal to
the total number of messages exchanged among fhexr Beers and the total number of
messages exchanged within the clusters.

Since the Super Peers communicate using the Evlhywected model, equation (3.1)
is applied to a network having a total o§fSuper Peers giving the total number of query

messages exchanged among the Super Peers as:

78
Ngs = Nsp— 1 (3.8)

The total number of query messages exchangednwtitlei clusters in a network of
clusters, is realized by applying equation (3.5altdhe clusters where each clustéras
a total of Nt nodes. Therefore, the total number of query messagchanged within all
the clusters is given by:

ch = ilogz(Nc) (39)

i=1

A response is only returned by the cluster thatdaesponse to the query message.
This response message is first sent from the cleasr to the Super Peer that then
forwards the message to the requesting Super Raeforwards the message directly to
the requesting client node. Therefore, the totahlber of messages exchanged in a Super

Peer network is given by:
Nt = Ngs + Ngc + 3 (3.10)

Using equation (3.8), equation (3.9), and equatioh0), we get:

N; = Nsp+ »_l0gz(Ne) + 2 (3.11)

i=1

For example, Figure 31 shows that the number ofsages increases from 3 to 7
when the number of nodes in the network changes fdle = 5 to N: = 6 for the Super
Peer network. When there are 6 nodes, there willmeclusters with three nodes per
cluster. Therefore, applying equation (3.11), tlheenher of messages exchanged in the
network is then given by:

Ni =2 +10g(3) + log(3) + 2= 7

79

In conclusion, in terms of the total number of sagges exchanged per query, the
Fully Connected (DHT) model performs better thantlz¢ other discussed networks as
the total number of messages is always equal The.Fully Connected model provides
the worst performance as the total number of messagreases linearly to the size of
the network. Therefore, there is a lot of netwadffic when a query is received. The
performances of the other two networks lie betwibese two extremes and they increase
logarithmically with the size of the network as yhare based on CHORD and in the
CHORD algorithm the number of messages exchangedetermined by an O(LOG N)
where N is the size of the network [22]. The CHORIHT) model performs better than
the Super Peer model when the number of clustereases as the Super Peer model
incurs additional message exchange among the SReers which follow a Fully

Connected protocol.

Search - Total Number of Messages

30

(%] 7 /
o i
=]
& 20
%]]
g |
= 151
o 4
g] Ma—.—n—/‘—H
ElO: W
> i
zZ]
51
07{\ T T T T T T T T T T T T T T T

A A T R S TR - . R)

Number of Nodes

‘ —a— CHORD (DHT) —e— Fully Connected —— Super Peer —— Fully Connected (DHT) ‘

Figure 31 Effect of Network Size on the Total Numbeof Messages Exchanged per

Query

80

3.4.2.2 Total Number of Hops

The second analysis was performed on the totabeumf hops a message takes in
the network before a result is found, that is thtalthumber of hops before the message
reaches the node that can answer to the querytotéenumber of hops determines the
network delay per query and it is defined as thenler of nodes traversed by a query
message before reaching the node that has thectoegponse. The variation in the
maximum number of hops per query with the sizehef metwork is presented and the
analysis illustrates the worst case scenario wheenode receiving the request from a
client does not have a response and the requéstnarded within the rest of the nodes
in the network. With the unstructured Fully Conrectmodel, each node is directly

connected to every other node in the network; ftbezehe total number of hops is given
by:
Ne=1 (3.12)

Thus the total number of hops in a Fully Connectextlel is constant regardless of the
size of the network (as seen in Figure 32).

In the Fully Connected (DHT) model, if the nodattimeceives the query initially
does not have an answer to the query, the nodeafdswnthat request to the node
responsible for the hashed key. In this case,dt& humber of hops the query message

takes within the network is given by:
Ni=1 (3.13)

The total number of hops in a Fully Connected (DHiT9del is thus also a constant

regardless of the size of the network (as seenguré 32).

81

With the structured forwarding model realized gs®@HORD, the total number of

hops before a response is found in a network obdien is given by [22]:
N; = logeN (3.14)

This is equal to the total humber of messages exygthin the network because the
messages are not broadcast in the network butateeyorwarded from one node to the
next.

In the Super Peer model the total number of hejika same as the CHORD (DHT)
model when there is only one cluster. When thereage than one cluster in the network,
the query message is first forwarded within thestduthat received the message. Since
the clusters communicate using the CHORD (DHT) qwol, equation (3.14) is applied
to the first cluster and the total number of hapghe first cluster having NNnodes is

given by:
Nh1 = logpN; (3.15)

If a response is not found in the cluster that ikezkethe request, the query message
is then broadcast by the Super Peer to the reeedduper Peers in the network following
the Fully Connected network model. Applying equat{@.12) to the Super Peers, the

total number of hops in the Super Peers is given by

The Super Peers concurrently forward the requeasimwiheir clusters following the
CHORD (DHT) protocol. Since the total number of &apfers to the number of nodes

traversed in order to find the node that can ansheeguery, equation (3.14) is applied to

82

the cluster that has the response for the queryingake total number of hops in the

second cluster having,Modes equal to:
Nh2 = logpN> (3.17)
The total number of hops in a Super Peer netwottkus given by:
Nt = Nh1 + Nps + Nn2 (3.18)

Using equation (3.15), equation (3.16), equatiod{B and equation (3.18), the total

number of hops in a Super Peer network is givetheyollowing general equation:
N; =1 + logN; + logpN» (3.19)

For example, when the number of clusters increése® (that is the size of the
network increases from 5 to 6 nodes); the total memof hops increases from 2 to 4 as
now two extra messages are exchanged between th8uper Peers. This causes a jump
in the number of hops in the Super Peer networkneter a new cluster is created due to
a new node joining the system. But as the sizeeas®s to 11 nodes, the number of hops
reduces a little as now there are three clustetts twio clusters having 4 nodes and one
cluster having three nodes. Since the nodes ardyedistributed among the clusters, the
maximum number of hops reduces. But when at leastdusters have 5 nodes per
cluster, the maximum number of hops becomes constia® hops (see Figure 32).
Therefore, the total number of hops in a Super Retwvork is equal to the total number
of hops per cluster plus one extra hop for the ags&xchange among the Super Peers.

In terms of the total number of hops, the Fullyn@ected models show the best
performance, as regardless of the size of the nk&tthe total number of hops per query

message before a result is found is always equal.tWith the CHORD (DHT)

83

architecture the total number of hops increasesarithgnically. With the Super Peer
model, the number of hops is higher than in a CHQRHBT) network when the number
of nodes is between 6 and 50. But when the numbeodes reaches a point such that
there are two clusters in the Super Peer model wébh5 nodes, the maximum number
of hops per query message stabilizes to 6 hopmpesage. Thus for larger networks the
Super Peer model performs better than the CHORDT{Otrotocol in terms of the total

number of hops.

Search - Total Number of Hops

| AP
L e
NP

r

Number of Hops

TTT T T T T T T T T T T T T T ITTT7T
0O oM N~ 3 0N o0 MmN A9 W o MN~N ASWm o MmN~ dWn o M~
I = N N N OO O < F < 0O 0O O© © O© N~ N~ 0 0 o & O

Number of Nodes

‘ —s— CHORD (DHT) —— Fully Connected —— Super Peer —<— Fully Connected (DHT) ‘

Figure 32 Effect of Network Size on the Total Numbeof Hops

3.4.2.3 Maintenance Overhead

The third analysis was performed on the overheadrred in the maintenance of the
network. In the Fully Connected protocol, the nodesnot organized in any manner and
messages are only exchanged among the nodes winmtegoins or leaves the system.

When there is no change in the network configurattbere is no maintenance incurred

84

in this network. Therefore as can be seen in Fi@3ethere are no periodic messages
exchanged among the nodes in the Fully Connectettino

Both the Fully Connected (DHT) model and the CHO@®IBIT) model are realized
using the Distributed Hash Table architecture whallethe nodes have a unique
identification and keys are stored in the node thatsponsible for them. With these
architectures, there are overheads incurred fontamtenance of the system. With the
CHORD (DHT) algorithm, maintenance is done periatlijcto ensure that the successors
and predecessors of a node have not changed. &grmade in a DHT network a total of
three messages are exchanged periodically, thengatiessage from the predecessor to
successor, the response message from the suceegbdhe final notification from the
predecessor to the successor [22]. Thereforeotaériumber of messages exchanged in

a network of N nodes to ensure that the successoteps are stable is given by:
Ns= (3 *N) (3.20)

In addition to the messages exchanged to verity shccessor, there is also
maintenance overhead to ensure that the entrighenfinger tables are stable. For
maintenance of the finger table entries, in a ndtvad N nodes, the number of periodic
messages sent by each node for each finger tagieeis by [22]:

Nt = logeN (3.21)
Therefore, applying equation (3.21) to all the &ngable entries, the total number of

messages periodically sent by each node havjriopgér table entries is given by:

Nf = N¢ * |ngN (3.22)

85

Applying equation (3.22) to all the nodes in thewwek, the total number of periodic

messages for maintenance of the finger table srfsrea network of N nodes is given by:
Ninv = N * Nt * logoN (3.23)

The total number of periodic messages exchangedDHT network is equal to the
sum of messages exchanged to stabilize the succpssaters and the number of

messages exchanged to stabilize the finger talbieegm@nd is given by:
N; = Ns + Nin (3.24)

Applying equation (3.20), equation (3.23), and eiguma (3.24), the total number of

periodic messages exchanged in a DHT network isngby:
N = (3*N) + (N * Nt * logzN) (3.25)

Figure 33 illustrates the Fully Connected (DHT)dabwhere the size of the finger
table is equal to (N — 1) and the CHORD (DHT) moakekre the size of the finger table
is equal to logN since the nodes only know of their successors.

The Super Peer network used in this evaluatiomnvdols messages within the
clusters using the CHORD (DHT) model where the siz¢he finger table is equal to
one. The total number of periodic messages exclogingthe Super Peer network is equal
to the sum of all the periodic messages exchangedlpster as there is no maintenance
overhead among the Super Peers as they commuosgiatethe Fully Connected model.

Since the clusters within the Super Peer networkmunicate using the CHORD
(DHT) algorithm, equation (3.25) is applied tothié clusters. In a network with N nodes
and n clusters, where each cluster i has a totid| obdes and Nfinger table entries, the

total number of periodic messages exchanged iStiper Peer network is then given by:

86

N;=(3*N)+ Zn:(Ni* Nri * l0g-Ni) (3.26)

i=1

For the maintenance overhead, the Fully Conneateluitecture performs better than
all the other architectures since there are no t@aamce messages exchanged in the
network. The Fully Connected (DHT) architecturetba other hand performs the worst
with the number of messages increasing as a polhdomction of the size of the
network. The Super Peer model performs slightlyeodhan a network deployed using

CHORD (DHT) alone as illustrated in Figure 33.

Periodic Messages

Number of Messages
o O
o O
o O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Nodes

—=— CHORD (DHT) —e— Fully Connected —a— Super Peer —x— Fully Connected (DHT)

Figure 33 Effect of Network Size on the Periodic M&sages Exchanged

Due to these results, it can be seen that theme &ngle network model that is the
best for any given network size. For different parfance metrics a specific model may
be better than the remaining models. Thereforenfigurable system would be ideal for

a distributed system that connects different enigep with varying network sizes.

87

The following chapter discusses how the distridukéeta-Directory system was
implemented. Chapter 4 also covers the implemamtatif the configurable routing
framework whereby during system setup, the systdows the user to deploy the

distributed network in any of the discussed netwamifigurations.

88

CHAPTER 4 IMPLEMENTATION

The Meta-Directory system was implemented usingaJas the programming
language as well as a number of open source apphlisathat were used as the
foundation in the implementation.

This chapter outlines the Meta-Directory composertd discusses the roles of each
component along with the messages the componembirds to. The following section
discusses the components of the Meta-directoryitaathre in more detail and Section
4.2 discusses how the proposed Meta-Directory systas implemented by providing

the tools used and the sequence diagrams.

4.1 Meta-Directory Architecture

This section covers the three components withen NMreta-Directory architecture.
These components, as shown in Figure 34, are thec8aBroker, the Communication
Overlay and the Hash Table. The Hash Table is wiherdey-value pairs corresponding
to the registry and service information is stor€de actual information that is stored in
the Hash Table was covered in detail in sectior23.3

The Communication Overlay provides the publisterfatce and query interface for
the Service Provider and Service Requester. Then@ontation Overlay also forwards
requests to the local Hash Table. The Communic&eerlay is responsible for handling
the network setup and message forwarding amongigttiebuted Meta-Directory nodes
in the network.

The Service Broker receives the Service Registcation and the query from the

Communication Overlay and forwards the query toappropriate Service Registry. The

89

Service Broker then forwards the response from Skevice Registry to the Service
Requester. Figure 35 gives an illustrative sequetiegram showing the message

exchange among the components when a service issipedb and during a service

discovery.
T A 1
Nsarice i Meta-Directory |
[—— - e
| Registry je : » Service Broker
' H T Qarnvira
- 7} ! Service A ANA=Z
Service | ! Discovery |Dan::iact~-
Publishing I‘ { 7 neyuestLeln
‘ Communication Overlay[*
> J
Service Registry P%hshmg Y
Provider Il
Hash Tabie

...

Figure 34 Meta-Directory Architecture

When a Service Provider wants to publish seruidermation, the Service Provider
first forwards the message to the Service Regighiyce the message is saved in the
Service Registry, the Service Provider sends thesage to the Meta-Directory System.
This message is received by the Communication @yenlterface of the Meta-Directory
node which then parses and hashes the attributésfaawards them to the Meta-
Directory nodes responsible for that hash valuesforage.

During a Service Discovery, the Service Requesesids the query to the Meta-
Directory System through the Communication Ovetliaterface. The interface parses
and hashes the query and sends a search requiébs Hash Table. The Hash Table
returns the location of the Service Registry. Toeation of the Service Registry along

with the query is then forwarded to the Servicek®ro The Service Broker forwards the

90

guery to the appropriate Service Registry and #spanse received from the Registry is
then forwarded back to the Service Requester b{pémeice Broker.
The following sub-section covers the implementatiof the Meta-Directory

components and detailed sequence diagrams areligwrssed.

Meta-Directory System

Service Service Communication Hash Service Service
Provider| |Registry Overlay Table Broker Requester

i1. Publish Service :
e ————! :
Service { i 2. PublishRegistry]Location :

Publishing i 3. Save Entries

—_—
: 1. Query for S:ervice . ~
2. Fil::ld Registry Locatiion : '
_—
- ' ; Service
3. Forward the query and registry location E >Disc0very

4 Query Registr}:l

h |
] i R S e B — »

3. Service fInformatipn
—_— /

Figure 35 Service Publishing and Discovery in Met®irectory Components

4.2 Meta-Directory System Implementation

This section explains how the configurable MeteaeDiory system was
implemented. For the implementation of the MetaeDiory system, an existing CHORD
implementation was used to realize both the Fulbyi@zcted (DHT) and the CHORD
(DHT) network models.

Open Chord [12] was used for the CHORD implemématOpen Chord is a stable
Java implementation of the CHORD forwarding aldoritthat was developed by the
Distributed and Mobile Systems Group of Bambergvdrsity. The Open Chord system

allows the user to use the CHORD distributed habletwithin any Java application. The

91

following properties of Open Chord provide advaetgo the implementation of the
Meta-Directory system.

* Open Chord provides easy to use interfaces formrsgnous and asynchronous
utilization of CHORD.

» The user can store any serializable Java objebimwiihe distributed hash table.

* The programmer can create custom keys to assalatdeanvith.

* Provides transparent maintenance of CHORD forwagrdimd routing tables.

» Facilitates configurable replication of entrieshiit the distributed network. This
is very useful because if a node dies or leavelowit notice, the other nodes in
the system will have the replicated data.

* Open Chord provides a remote communication protbaséd on Java sockets.

* Open Chord also provides a local communicationqualt that can be used to
create networks within the same virtual machine tBsting and presentation
purposes.

For the CHORD (DHT) distribution model, Open Chaevds deployed as is and no
manipulation was done in the system for the forwayalgorithm. In order to emulate a
structured Fully Connected (DHT) network, the Opéhord forwarding table was
modified to include all the nodes in the networkeTize of the forwarding table also has
to be maintained such that it is always greatem the number of nodes in the network.
This way, the forwarding table will always have {N-hodes in the forwarding table
where N is the total number of nodes.

Figure 36 illustrates the association betweentiee packages used in the Meta-

Directory implementation. Theom.akassim.overlapackage contains the classes that

92

implement the fully connected, the Fully Connec{BdHT), and the CHORD (DHT)
forwarding algorithms for the Meta-Directory System The
de.uniba.wiai.lspi.chord.service.implackage implements the CHORD communication
protocol using the Open Chord implementation. Tloen.akassim.overlay package
achieves its functionality by using incorporatinige tfunctionality provided by the

de.uniba.wiai.lspi.chord.service.impl package.

| f# de.uniba.wiai.lspi.chord.senvice.impl

fi# com.akassim.overlay

Figure 36 Meta-Directory Packages

The classes implemented in the com.akassim.ovpdalage are shown in the class
diagram in Figure 37. The Network interface prosideunified interface for the message
processing, network joining and network leaving cliosns of the ChordRing,
FullyConnected, and SuperPeer classes. This is iqadv as the underlying
communication model, and it is transparent to theruThe user will send the messages
in the same format regardless of the underlyingsags distribution protocol.

The ChordRing class implements both the Fully Gated (DHT) distribution
model and the CHORD (DHT) distribution model. Théo&IRing class provides a
setSuccessorList method so that the size of theafaling table can be modified during
runtime. This provides the ability of the network ¢volve from a Fully Connected
(DHT) model to a CHORD (DHT) system without the deé shutting down the system.

The FullyConnected class implements the fully @mted unstructured distribution

model. For this model, the hash table entries aved locally by the receiving node as

93

discussed in section 3.4.1.1. This is because tb@directory nodes are not classified
to handle only a subset of hash table entries h@never a publish request is received,;
the receiving Meta-directory node stores all theg k&ue pairs in the local hash table.

The SuperPeer class implements the protocol fiSilper Peer nodes. These Super
Peer nodes are instantiated when there is moredharcluster in the network and the

communication is per the Super Peer network asisissr in Section 3.4.1.3.

sinterfaces

@ pletwork

@ jointetwork(in hostAddress: String, in port: irt)
@ leavehetwark()
@ senddMessagelin searchMessage: Stringl: String

= @ SuperPeer
@ ChordRing
o SuperPeer()

@ getConn(): FullyConnectedConnection

@ joinMetwvorkiin hostAddress: String, in port: int)
@ leaveMetvwork()

@ sendMessage(in searchMessage: String): String

Oc ChordRinglin ¢ Chordimpl, in port: int)

& compareResults

m connectToErtryMocelin hostaddress: String, in port: int)

@ createhetwork()

@ getRing(): Chordimpl

@ inserlin key. String, in value: String: String

@ joinketwork(in hostaddress: String, in port int)

@ joinMetwork(in hostAddress: String, in port: int, in foPort: int)
@ leavehetwork()

m gueryDHTNetwork(in searchiessage: String, in values: LinkedHashbag, in list: ArrayList): Hashtable
@ removelin key: String, in value: String): String

@ retrizveln key: String): Set

@ sendMessage(in searchMessage: String): String

@ setSuccessorList(in size: int)

B startGnutellaConnection()

@ FullyConnected

& FulyConnecteds)

& compareResutts

@ getConn(): FulyConnectedConnection

@ joinketworklin hostAddress: String, in port: int)

T T LI)

ms gueryLocalHashTaklelin searchiessage: String, in values: LinkedHashMap, in list: ArrayList) Hashtahle
@ sendMessage(in searchMessage: String): String

@ SaxParser «lmparts

sitnports ;
iMmports N—

& SaxParser() S AN [3 Admininterface
@ characters(in ch: char(], in start: int, in length: irt) |
@ endDocument() \|‘ & cresteChord(in port: int)
@ endEletnertlin Ui String, in name: String, in gharme: String) o

© ServiceBroker o cresteFullyConnected()
@ getErtries(): LinkedHashMap B createSuperPeet()
@ getlist() Arraylist -

getlist() Y P eeesm & main(in args: Stringl])

@ startDocument(] & oueryRegistry(): String & selectBootsiraptin network: ChordRing)
@ startBlement(in uri: String, in name: String, in ghlame: String, in stts: Attributes) . 0 OS showResults(in response: String)
runi

;o showsStatus(in chord: ChardRing)

Figure 37 UML Class Diagram for the com.akassim.ovty Package

The ServiceBroker class implements the ServickBroomponent of the Meta-
Directory architecture. As such, a ServiceBrokerinstantiated whenever a registry
location is found in the Meta-Directory System dhed user’s query has to be forwarded

to the registry.

94

The SaxParser class implements a Simple API foLXBkx) Parser that is a serial
access parser API for XML [21]. This parser triggére appropriate event whenever an
element is found in the data. This class is usepatise the messages received as all
communication is done using the XML format.

The Admininterface class was implemented for mgstpurposes. This interface
instantiates the different architectures as wefbasards requests to the architectures.

The following section discusses the sequence aagrthat realize the Meta-

Directory use cases.

4.2.1 Meta-Directory Sequence Diagrams

This section illustrates the sequence diagramisrdaize the Meta-Directory Use
Cases. The first Use Case that we are going todbak the “Select Topology” Use Case
which is initiated by the System Administrator. $hs the Use Case that allows the
system administrator to select the network modelindusystem deployment. This
flexibility is provided so as to ensure that thewwrk's performance provides low
latency as well as minimizes network bandwidth esbgsed on the initial state of the
system.

Figure 38 shows the message interaction when aNteta-directory node wants to
join a Fully Connected network. A new instance e FullyConnected class is created
and whenever a new node has to be added as a oeighe joinNetwork method is
invoked with the IP address and port number ohth& node passed on as parameters.

When the system administrator wants to create perspeer node, the message

interaction in Figure 39 is followed. A new instanaf the SuperPeer class is created, and

95

the IP address and port number of the other superspn the network as well as the
entry node of the cluster the super peer is resplenfor must be passed to the instance.

(9 : Admininterface

—1 (& : FullyConnected

createFullyConnected)

FullyConnected()

joinfetwork(String int) |

Figure 38 Setting up a Fully Connected Network

(= : Adminlrterface

I}:..‘- 1 (5 | SuperPeer
create=uperPesr()
SuperPeet()

jointetswarkl =tring int)

¥

Figure 39 Creating a Super Peer Node

96

When a node joins or creates a DHT network, thesange interactions in Figure 40
are invoked instead. In this case, a new instah€hordRing is created first. If the node
wants to create a new network, the createNetworthodeis invoked on the ChordRing,
otherwise a bootstrap node has to be selected thhenexisting network. The IP address
and the port number of the bootstrap node is thessqd to the ChordRing instance
through the joinNetwork method.

(& : Adminirterface

ot

—
createChordiint) @ : ChordRing

ChordRinglChordimpl int)

|

[Create a new network]

createbetwarkl

——_ l——

(e { ——————————————————— T
-l
selectBootztrapl ChordRing |

joinMetwarkString jint)

|
| |
-
|
| |
I_fL - showStatusChordRing |
|
[

Figure 40 Joining or Creating a DHT Network

97

During runtime, the network can be varied betwdenFully Connected (DHT) and

the CHORD (DHT) model. This property is made pdssithrough the ChordRing

interface as illustrated in Figure 41. The setSssod.ist method is invoked on any one

of the ChordRing instances and the internal routinghitecture of the Meta-Directory

node is modified to the selected architecture. Vle¢a-Directory node then invokes the

setSuccessorList method on the rest of the nodéaginetwork.

(& : Adminlrterfacg

setsuccessarList(int)

(= : ChordRing

{2 Modes : ChordRing

loop

[far all hodes in the network]

zetSuccessorList(int)

Figure 41 Adapting the Network between Fully Conneed (DHT) and CHORD

(DHT)

Figure 42 shows the message exchange when a esasvipublished in a fully

connected network. The sendMessage method is idvekiéh the XML query as the

String parameter. The FullyConnected instance mtistizs a SaxParser and forwards the

XML query to the parser. Once the message is passed the attributes identified

through the getEntries method, the key-value patiesthen forwarded and saved in the

local hash table using the addAll interface. Théy&onnected instance then invokes the

98

showResults method of the Admininterface that wahldw if the publish request was

successful.

(& : Admininterface (& : FullyConnected (& LocalHashTakle : Entries

sendiessageString): String | (5 : SaxParser
- f—r— ol

sendhlessageString): String o SaxParser()

getEntries): LinkedHaShMiE |

]

addAII(JSt_at)

I ' ’“D
showResUtS String)

T

|

Figure 42 Publishing a Service in a Fully Connectetletwork Sequence Diagram

When a service is published in a DHT network, ritessage is forwarded from the
Network interface to the ChordRing instance assitlated in Figure 43. The ChordRing
instantiates a SaxParser and forwards the XML ngessathe parser. Once the message
is parsed, the ChordRing instance saves the atgbn the DHT network. The Open
Chord package handles the data distribution andaiaing algorithms of the system in
this case. Therefore, the attributes are distribukeough the DHT network based on
their hashed key values. Once the data is hanthedChordRing instance invokes the
showResults method of the Admininterface indicating outcome of the request. That

is, if the publish request was successful or not.

99

(& Adminlnterface €9 : Metwork (& : ChordRing

.] | {5 : SaxParser
sendkessage String) String —_—
= zendhessage] String): String | SaxParzer()
T —
[

getErtries(: LinkedHashMaf_ |
- for all ertries |
] insert(=tring, String): Strinl;
|

|

|

|

|

shioyy Regutts(String)

Figure 43 Publishing a Service in a DHT Network Segence Diagram

Figure 44 illustrates the sequence diagram fodtiete service use case in the fully
connected network. This sequence diagram is sital&igure 42, except when querying
the hash table, instead of publishing the vallesy aire deleted from the local hash table.
It should be noted that this architecture forcesSkrvice Provider to only send the delete
request to the same Meta-Directory node that thelighu request was sent to. The
showResults method would then indicate if the dedetrvice request was successful.

The flow of messages when a service is deleted &dHT network is similar to the
interactions when a service is published. Thih®as in Figure 45. The only difference
in this case is that once the attributes are hasheemove entries request is forwarded in
the network for all the hashed keys. The main difiee between the delete function in

the DHT network and that of the Fully Connectednmek is that the Service Requestor

100

can send the delete service request to any of tB&@-Mirectory nodes in the DHT

network.

(& : Adminirterface 9 : Metwork (& : FullyConnected (9 LocalHashTable : Entries

—] —_—— (9 : SaxParser
J zendessacge] String): Stringhi [
-) sendMessagelStringl: Strin
. GE(SIG) SNG | SaxParser(

getEntries() LinkedHaShMaE |

removeAllkSetj

showRes g0 Strincg)

Figure 44 Delete Service in a Fully Connected NetwoSequence Diagram

The main feature of the Meta-Directory systenh&sdervice discovery use case. In a
fully connected network, Figure 46, the messagirss passed to the SaxParser which
parses the XML message. Once the attributes aegvezt; they are first forwarded to the
local hash table for retrieval of the correspondmagues. Since the key-value entries can
be stored anywhere in the network, the messag®éalbast to all the nodes in the Meta-
Directory network. The initializing Meta-Directonyode then waits for responses from

the other Meta-Directory nodes.

101

(5 = Adminitter fac 9 - Metweork {5 : ChordRing

| zendMessageString); Stringh _| |
EendiessageString); Strlrlgi

(5 - SaxParser
SaxParzer)
-

]

getErtries(); LinkedHashiagp |

- faor all entries
] removel String, String); String

showeRes it String)

Figure 45 Delete Service in a DHT Network Sequendgiagram

Once the responses are received, the Meta-Diseatmde then invokes the
compareResults method. With this method, the Metadibry node ensures that the
query is only forwarded to the appropriate Seryrmgistries. For example, if a user
sends a service discovery request where they akenlp for a company called “Network
Solutions” that offers services in the “movie” agiey. These two attributes are hashed
independently and forwarded to the network. Theaulteswill include all the Service
Registries that have information on all the servioffered by “Network Solutions” as
well as all the companies that offer services unider‘movie” category. Therefore, the

Meta-Directory node then compares the results anyl queries the Service Registry(s)

102

that provide service information in the “movie” egory for “Network Solutions”. The
Meta-Directory node then instantiates a ServiceBrajving the ServiceBroker instance
the query message along with a list of the SeriRegistries. The ServiceBroker then

gueries all the Service Registries in the list etdrns the response to the user.

(@ Adminktertacd €3 Network (& _FulyConnectss (5 LocalHashTable : Ertries & . FullyConnscts ServiceRegistr

T (@ :SasParser _—
[Jeencmessagerstring) sm.;gJ SaiParser()

senoMessageSiring) String

getEntries(): L\nkedHashMa’pl |

]

getEntrisshiDy Set

tor alllD's. i
|

opt
[net &l Entries Found]

senuMessagedSmng] String

|
|
|
\
\
|
|
\
\
|
|
|
\
I
= = -
far sl Modes i the Metwork [l
|
T
\
|
|
\
|
|
\
\
|

|
|
|
B
f
|
|

—]
] cnmparERESuNs(Hashlab‘EStrmg) String

ServiceBroker(ArrayList String)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

rung)

queryReuistry(String). String
for all registries

showResults(String)

e

Figure 46 Service Discovery in a Fully Connected N&ork Sequence Diagram

In the case of a DHT based network, once thebates are parsed and hashed, the
values corresponding to the hashed keys are rettiltom the network using the Open
Chord interface as shown in Figure 47. The resales then compared using the

compareResults function as was done in the fullynected network discussed in the

103

previous paragraph. The results are then forwatdegh instance of the ServiceBroker
which queries all the registries retrieved with ffeevice discovery request. The response
from the Service Registries is then forwarded tadke user.

A Meta-Directory system implementation was thuslieed and the following
section evaluates the prototype implemented byoparhg functional tests on the system
as well as analyses the scalability of the systeraugh performance tests done using

PlanetLab.

(® _ Admininterface &9 : Network (ChordRing ServiceRegistry

| | | (9 . SaxParser
il Stri Stri
L _=E0 e gsagn(Sting) nrjg-i zendMessagelString): String | SaxParser()

J

getErtries(): L\nkedHasthﬁ |

:

| for sl entries
retrievelString): Set

gl

-
compareResuts(LinkedList int String): String
(® : ServiceBroken

ServiceBraker ArrayList String) -

run() g

for all registries

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|jgzeryl?egls‘try(81rmg) Strlng
|
T

showResults(String)

Figure 47 Service Discovery in a DHT Network Sequexe Diagram

104

CHAPTER 5 PROTOTYPE TESTING

A Meta-Directory prototype was designed and immated as per the design and
implementation methodologies discussed in the previ chapters. During
implementation, unit tests were performed on eagittion to ensure that the system
performs as per the use cases described. In adddidhe unit tests, evaluations were
performed so as to analyze the Meta-Directory’sgoerance in terms of the functional
requirements. The functional testing was done suenthat the prototype conforms to
the Meta-Directory’s specification as per the uases discussed. Performance analysis
was also done on the Meta-Directory prototype Itesitate the scalability of the system.

This chapter presents and discusses the resuftsiped on the system.

5.1 Functional Testing

This sub-section looks at the functional testirgf@rmed on the Meta-Directory
prototype implemented. In order to view the resutsthe Meta-Directory node, an
administrative interface was developed that caruded to probe the Meta-Directory
nodes as well as display the results from the Metectory nodes.

Currently the Meta-Directory prototype allows gtatonfiguration of the network
model during deployment. When the administrativerifiace is started, the user has an
option of deciding which network (see Figure 48ynomg the Fully Connected, Fully
Connected (DHT), CHORD (DHT), and the Super Pedworks the Meta-Directory
node is going to use in the overlay layer when compating with other Meta-Directory

nodes.

105

It should be noted that when a Fully Connectedenigdcreated on a machine, the
system automatically selects the port number 63l@ha default port that the Fully
Connected node is listening on. On the other harman creating a DHT network the
user has to specify the port the Meta-Directoryenadll be listening on as shown in
Figure 48. Also, more than one node can be creatdle same machine by specifying a
different port number, for the Fully Connected ndtie port number automatically
increments to the next available port.

2 . n |
=) 2t iy | i,, 1]@

Choose a Hode Type

Super Peer

Fully Connected

For a DHT network you need to specify the port you are listening on:

DHT Based (Fully Connected {DHT) or CHORD {DHT})

Figure 48 Network Setup

5.1.1 CHORD (DHT) Network

A CHORD (DHT) network is realized by creating atwerk graph as per the
discussion on CHORD (DHT) networks in Section 3.3liis section illustrates how a
CHORD (DHT) network can be created as well as shiowg information is published

and searched in the network.

5.1.1.1 Network Setup

When the user decides to start a DHT node, thehasethe option of either creating

a new DHT network or joining an already existing DHetwork as illustrated in Figure

106

49. If the user decides to join a pre-existing rekythe IP address, the DHT port, and
FC port of the bootstrap node in the pre-existiagvwork has to be provided as shown in
Figure 50. The FC port has to be provided to fd#i the communication between
clusters if the network consists of multiple clustdf a new DHT network is created, the
user automatically gets a DHT administrative scr@eshown in Figure 51.

rgw Metwork Man... j hﬁﬁi

Create or Join a DHT network

Create a DHT Hetwork

Join a DHT Hetwork

Figure 49 Creating a DHT Node

4 : " |
=N B DTN T T Jdﬂ

Enter the IP Address of bootstrap node: |1 42.168.0.102 |

Enter the DHT port: |5002 |

Enter the FC port: (G346 |

Connect: Connect to Network

Figure 50 Connecting to a DHT Network

The administrative screen in Figure 51 illustrates node ID in the DHT network,
as well as the IP address and the port that the molistening on. With this screen, the
Meta-Directory nodes can be tested by manuallyrimgg searching, and deleting entries
from the hash tables or by passing an XML requesugh the text screen provided.

During runtime, the user can also modify the DHIwork from a Fully Connected

(DHT) to a CHORD (DHT) network by modifying the nber of references the DHT

node has in its finger table. The next section shbeaw information is published in a

CHORD (DHT) network.

107

I RN TS

= B]X]

The node IDis : 57

The URL is: 192.168.0.102

The node is listening on port: 5003
Change the size of the references

Modify the number of references

Add entry to the network
Enter the key:

Enter the value:

| Add Entry |
Find an entry in the network

Enter the key:

| Search Entrny |
Delete an entry

Enter the key:

Enter the value:

| Remove Entry |

Show walues stored in local node

Show Values

Send an XML request

Send to Hetwork

Figure 51 DHT Administrative Console

108

5.1.1.2 Publishing Service Information

For the functional testing performed in this saatiall the requests were sent using
XML messages as shown in Figure 52. In order tduawe the system, business and
service information must first be published in tietwork. Figure 52 shows one of the
XML messages sent through the network to publibbsaness service.

Send an XML request

=Pmlversion="1.0" encoding="ut-2"%=

=zoapernyEmvelope xmins soapem="http.'schemas.xmlsoap. orgisoapfenvelopel=
=zoapernBody=

=save_senice generic="2.0" xmins="urn:uddi-org.api_v2"=
=husinessService=

=name=vaccination=/name=

=husinessMame=health care=/businessMName=
=descriplion=provides vaccine services=/description=
=categoryBag=

=keyedReference thModelkey="uddiuddiorg.ubr.general_category
keyMame="Geaneral Categony”

keyfalue="health" 1=

=/categoryBag=

=/businessServicas=
=redistryLocation=localhost3080=reqistryLocation=
=/save_senice=

=/snapenyBoddy=

=/soapenvEnvelope=

Send to Network

1]

Figure 52 Publishing a Service on the Admin Console

Once business and service information was savebdeimetwork, search messages
were passed to the network through the Admin Censotetermine if the prototype was
functioning properly as per the use cases. Thesziaguand system responses are

discussed in the following section.

5.1.1.3 Querying Service Information

A find service request was then sent through #tevork with “vaccination” as the

attribute for the service name. In this case thevosk returns two locations (as seen in

109

Figure 53) that have “vaccination” as the servieena. As per the specifications of the
Meta-Directory system, the system also queriesategions found and returns the results

from the registries. Figure 54 shows the resulisrned from the system.

Send an XML request

Location(s) found:
134117 60618080
localhoste030

Figure 53 Registry Locations

i ResnltEsronN WDk J Lﬂ a*
Response from: localhost 3080
=Ml version="1.0" encoding="UTF-8""==s0apenmn:Envelope
¥mins:soapenv="http:ffschemas xmlsoap.orgisoapfenvelopea®
wminssd="http: i w3 orgl 2001 ML chema”
wrminssi="httpfaanan e 3 0rfl 2001 HMLSchema-instance"
=s0apeny:Body=
=semvicelist generic="2.0" operator="jIDDI org" ¥mins="urnuddi-org:api_v2"=
=semicelnfos=
=gervicelnfo businesskey="3826C4C0-FREE-11DE-34Z0-BY 4009091 GAZ"
sericekey="38709F00-FEEBE-11DB-9F00-C0921F05 486 2"
=name=vaccination=fname:=
=/semicelnfo=
=/semicelnfos=
=/semicelist=
=fsoapenyBody=
=fsnapenvEmvelope=
Exception from: 134,117 60.61:8080:
java.netMoRouteToHostException: Mo route to host: connect

Figure 54 Response from the Registries Queried

The location at “134.117.60.61:8080” did not havBervice Registry running hence
an exception was returned to the user. These seshlbw that the system handles

exceptions from unavailable Service Registries.

110

When the query request is narrowed, such thafjtleey message illustrates both the
service name as “vaccination” and the business raemfaealth care”, the system in this

case will only query one registry as shown in Fegbb and Figure 56.

Send an XML request

Location(s) found:
localhost 8080

Figure 55 Registry Location Returned by Narrowing he Scope of the Query

i ResnltENronNEtwork J J ﬂ‘
Fesponse from: localhost 8080

=vumlversion="1.0" encoding="UTF-8"?==s0apem.Envelope
¥mins soapeny="http:ffschemas xmlsoap.orgfsoapfenvelopes
rminsxsd="http: e w3 orgf 2001 HMLSchema”
¥minsxsi="hitpc et w3 org 2001 HMLSchema-instance”=
=s0apeny:Body=

=semvicelist generic="2.0" operator="jIDDI org" ¥mins="urnuddi-org:api_v2"=
=semicelnfos=
=gervicelnfo businesskey="3826C4C0-FREE-11DE-34Z0-BY 4009091 GAZ"

servicekey="38709F00-FEGEE-110DB-9F00-C0921FO5486C" =
=name=vaccination=name=

=/semicelnfo=
=/semicelnfos=
=/semicelist=
=fsoapenyBody=
=fsoapenyEnvelope=

Figure 56 Response from the Registry

5.1.2 Fully Connected Network

A Fully Connected network is realized by creataghetwork graph as per the
discussion on Fully Connected networks in Sectidnl3l. This section illustrates how a

Fully Connected network can be created as welhas/s how information is published

and searched in a the network.

111

5.1.2.1 Network Setup

When the user decides to deploy the network ugiag-ully Connected protocol, a
node communicating with the Fully Connected netwisrkhus deployed and the screen
in Figure 57 is then shown. The view shows thed&ess of the node as well as the port
the node is listening on. The user can also useitherface to connect to additional
Meta-Directory nodes using the Fully Connected guol by providing the IP address as

well as the port number to connect to.

é’Fu‘!; Connecied UNETWDTH JJLE

The local URL is: 192.168.0.102 ;6346
Enter the IP Address of host: | |

Enter the port: | |

Add Host ‘ Add Host |

Send XML message through the network

‘ Send XML Message

Figure 57 Fully Connected Administrative Console

For testing the functionality of a Fully Connecteable, three nodes were created and
connected to each other as per the Fully Connguteidcol in Section 3.4.1.1. These

nodes and the ports they were listening on arstrtited in Figure 58.

P: 6346 P: 6347

P: 6348

Figure 58 Fully Connected Network Instance

112

5.1.2.2 Publishing Service Information

When a fully connected node receives a publistugsty the node hashes all the
attributes received and stores the key-value paitee local hash table as per the Fully
Connected protocol discussed in Section 3.4.1durEi59 shows the service information
that is published in the fully connected node thdistening on port 6346. If the service

information is published successfully, the corresping key-value pairs are displayed as

shown in Figure 60.

é’FU‘!}'CU“UE';[EﬂJ‘ELMUI:'. \jda‘
The local URL is: 192.168.0.102 16346
Enter the IP Address of host: | |

Enter the port: | |

Add Host

Add Host |

=2l wersion="1.0" encoding="ut-8"?=
=soapeny.Envelope xmins:soapeny="hitpischemas xmlsoap.org/soaplenvelope/=
=g0apenv.Body=
=save_business generic="2.0" xmins="urm:uddi-org:api_v2"=
=husinessEntity=
=name=health care=iname=
=lhusinessEntity=
Send XML message through the network =registryLocation=localhost8080=iregistryLocation=
=lsave_hugingss=
=IsoapenvBody=
=<IspapanyEnelopes]

‘ Send XML Message

Figure 59 Service Publishing in a Fully Connected &work

é?u\!/ Connecied INElwprks le-‘]ﬂ‘

The local URL is: 192.168.0.102 1 6346

Enter the IP Address of host: | |

Enter the port; | |

Add Host ‘ Add Host |
Added { key = 83 value = localhost 8080}

Send XML message through the network

‘ Send XML Message |

Figure 60 Successful Service Publishing in a Fullgonnected Network

113

5.1.2.3 Querying Service Information

To illustrate the communication and the hash \aldistribution of a Fully
Connected network, a query was issued for the a@stored in the node listening on port
6346 by the node listening on port 6348 as showrrigure 61. As per the Fully
Connected network specifications, the request rsvdoded to all the nodes in the
network. In this instance (see Figure 58) the retjigeforwarded to the nodes listening
on ports 6347 and 6346 as illustrated in Figura®@ Figure 63.

é’Fu‘!_,‘ Connecied INemworis _J_J‘_j
The local URL is: 192.168.0.102 16348

Enter the IP Address of host:
Enter the port:

Add Host Add Host

=2l wersion="1.0" encoding="ut-8"?=
=soapeny.Envelope xmins:soapenv="hitpdischerr xmlsoap.org/soaplenvelope/=
=g0apenv.Body=
=find_business generic="2 0" xmins="urn:uddi-orgapi_v"=
=name=health care<inames=
=ifind_business=
=lsoapenrBody=
Send XML message through the network =/soapenvEnvelope=

Send XML Message

Figure 61 Query Issued by the Node Listening on Pb6348

C:“Documents and Settings“akassim~Systemllorkspace~GChord>java com.akassim.overla
y.AdminInterface

URL: 192.168.08.182:6347

Incoming connection

Incoming connection accepted

Recieved greeting response: GHNUTELLA-B.6 2808 OK from host: localhost

Connection started on: localhost

Fully Connected Node received guery: 8:19:380 PMH GMT-B5:88

<?xml version="1.0" encoding="utf-8"7>

K soapenv:Envelope xmlns:soapenv="http:/“schemas.xmlsoap.org-soaps/envelope/">
<zoapenuv :Body>

<find_business generic="2_0" xmlns="urn:uddi-org:api_uv2">

<name*health care{/name’

K/Find_busziness?

< /zoapenv :Body>

<soapenv:Envelope >

Figure 62 Request Received by Node Listening at Rd347

114

C:~Documents and SettingssakassimsSyszstemllorkszpace~GChord>java com.akassim.overla
v AdminInterface

URL: 192.168.8.182:6346

Recieved greeting response: GHUTELLA-B.6 288 OK from host: localhost
Connection started on: localhost

Recieved greeting response: GHUTELLA-@.6 2808 OK from host: localhost
Connection started on: localhost

Fully Connected Mode received guery: 8:19:380 PM GMT-B5:88

{<?Txml version="1.8" encoding="utf-8"%>

<soapenv:Envelope xmlns:soapenv="http:/rschemas.xmlsoap.org/soapsenvelope/ ">
{soapenv:Body>

{find_business generic=""2.0" xmlns="urn:uddi-org:api_v2">

<name *health care< name>

{sFind_business>

FileServer returning guery hit: <?xml version="1.0" encoding="utf-8"'7>
<zoapenv:Envelope xmlnsz:soapenv="http: s schemasz.xmlzoap.org-ssoapsenvelope ">
<zoapenv:Body>

<find buszinesz generic="2_8" xmnlns="urn:uddi-org:api vd'>

<name *health care< name?>

{find_business>

{soapenv :Body>

< /zoapenv :Envelope >

Figure 63 Request Received by Node Listening on R@346

The nodes receiving the forwarded query then bketireir local hash tables and a
response is only sent to the requesting nodeefysiry location is found. In this case the
node listening on port 6346 returns the responskea@equesting node that was listening
on port 6348 as shown in Figure 63. The responseived by the requesting node is
shown in Figure 64 and it contains the IP addresk @ort of the node that responded
along with the location of the service registryeTquery shown in Figure 61 is forwarded
to the registry location and the response froms#reice registry is also shown in Figure
64. The response from the service registry inclutiesnames of the services that the
business offers as well as the business and setegige so that the requesting node can

use these keys to query for more information diydobm the service registry.

115

a -]
[« |

C:“Documents and Settings“akasszim~SystemWlorkspace~GChord>java com.akaszim.overla
y.AdminInterface
URL: 192_168_.0.182:6348
Incoming connection
connection accepted
connection
connection accepted

received reply: 8:17:36 PM GHT-B5:088
Port :

1)
IP Address:192_168_.A.1A2
ID: GUID: [cB1[aB1[BA1[661[cAIlaBI[AIIG6]1IcAllaB1[A1IGG]IIcAllaBIIA]I6G]
Received response:
Response from: localhost:-888@:
<?xml version="1.0" encoding="UTF-8"?><{soapenv:Envelope xmlns:soapenv="http:-/ sc
hemas .xmlsoap.orgssoapsenve lopes" xmlns:xsd="http: 7vwuwuw.uw3l.org 2001 MLSchema” x
mlns :xsi="http: vuw_wl._ org /2001 -AMLSchema—instance'>
{zoapenv :Body>
<businessList generic="2.0" operator="jUDDI.org" xmlns="urn:uddi—org:api_uv2">
{businessInfos>
{huszinessInfo businessHey="3826C4CH-FobB-11DB-84CA-B748D2D?16AB"" >
<name *health care<{/name>
<description>provides health services<-/description>
{servicelnfos>
{zervicelnfo busineszHKey="3826C4CA-F66BE—11DB—84CA-B748D?D716A8" serviceley
="387A9FAA-F66B—11DB-9FAB-CAY 21 FAS 4566 >
<name>vaccination{/name>
{s/zservicelnfo>
{s/servicelnfos>
<<husinessInfo>
{/businessInfos?
{sbusinessList>
{/zoapenv :Body>
<ssoapenv:Envelope’

xxx%END Search session received replysoes

Figure 64 Response Received by Requesting Node kising on Port 6348

5.1.3 Super Peer Network

A Super Peer network is realized by creating avagt graph as per the discussion
on Super Peer networks in Section 3.4.1.3. Thisicgedllustrates how a Super Peer
network can be created as well as shows how infitcom#s published and searched in a

Super Peer network.

5.1.3.1 Network Setup
To create a Super Peer network, super peer nodsst lme created to manage the
clusters of Meta-Directory nodes. A Super Peer niedereated by selecting the Super

Peer button using the network setup administratieesole in Figure 48. The screen

116

would then change to that shown in Figure 65 irtthgathat the node is now a Super
Peer node. The console shows the IP address assvéie port the super peer node is
listening on. With the administrative console, tmer can connect to other nodes by
inputting the IP address of other super peer nodéee network as well as the IP address

of the entry node of the respective cluster.

&= SUPEREEETINDHE: ‘_JJLB]
The local URL is: 192.168.0.102 : 6346
Enter the IP Address of host: | |

Enter the port: | |

Add Host Add Host —|

Figure 65 Super Peer Administrative Console

Two clusters communicating using CHORD (DHT) wereated using the network
setup instructions in Section 5.1.1.1, each witeé¢modes as shown in Figure 66. Two
super peer nodes listening on ports 6346 and 6&t& also created and each super peer

node was connected to the entry node of the clasterell as to each other.

N7C
P:6346
N7B
P:6347
N6B

Figure 66 Super Peer Network Instance

5.1.3.2 Publishing Service Information

117

For this Super Peer network, services are puldighéhe clusters in the same way as

services are published in a CHORD (DHT) networldascribed in Section 5.1.1.2. To

test the Super Peer network, the service informatias published in node ND9 as

shown in Figure 67. Once the service was publislied, results in Figure 68 were

displayed to show that the service information wsesed successfully. Service

information can be published in the rest of theasokh a similar manner.

The following section discusses and illustratew lservices are queried in a Super

Peer network.

o UEIT) =il

- [Elx)

The node ID is : D9

The URL is: 192.168.0.102

The node is listening on port: 5005
Change the size of the references

| Modify the number of references

Show values stored in local node

| Show Values

Send an XML request

=?mlversion="1.0" encoding="ut-8"%=

=s0apeny Envelope xmins soapeny="http:¥schemas xmlsoap omfsoapienveloper =
=goapeny Bodys=

=gave_husiness generic="2.0" xmins="urn:uddi-org:api_va"=
=husinessEntity=

=hame=health care=amea:=

=lhusinessEntity=
=registryLocation=localhost8080=/registryLocation=
=Isave_business=

=lsoapenyBady=

=lsoapeny.Envelopas

Send to Network

Figure 67 Service Publishing in SP Cluster

118

£ UIT) [51,0010 A=
The node ID is : D9

The URL is: 192.168.0.102
The node is listening on port: 5005

Change the size of the references

| Modify the number of references ‘

Show walues stared in local node

| Show Values ‘

Send an XML request

husinessnamehealth care : localhost 2030 added succestully

Send to Network

Figure 68 Successful Service Publishing in SP Clest

5.1.3.3 Querying Service Information

Service discovery in a Super Peer network wasddsy introducing a query on node
N7B (see Figure 66). This service discovery reqtests the network model in the Super
Peer network to ensure that queries are forwardigdinwclusters if the cluster that
received the query does not have a response.dridsi case, the query is looking for a
business with a business name “health care”. Assawe in the previous section, this
business was saved in node ND9 to test inter-clusienmunication; the query was

initiated at node N7B (see communication graphiguie 66).

119

Node N7B searched within its cluster and sinceethe no service saved in that
cluster with the business name “health care”, M¢dB forwarded the request (see Figure

69) to the entry node which is node N6A in thisecas

3 - |o| x|
Recieved greeting response: GNUTELLA/B.6 288 OK from host: localhost

Connection started on: localhost

DHT network joined with node ID 6A

The URL iz: ocsocket:--127.8.0.1:5882~

Mode received gquery: <?xml version="1.8" encoding=""utf-8"7>

K soapenv:Envelope xmlns:soapenv="http: /»schemas.xmlsoap.org-soap-envelopes">
<zoapenuv :Body>

<find_business generic="2.0" xmlns="urn:uddi-org:api_uv2">

<name*health care{/name’

<sfind_business?

Figure 69 Request Received by Entry Node

The entry node N6A forwarded the request to thpespeer node it is connected to.
According to Figure 66, this is the super peer ntidd is listening at port 6346. The
guery message is received by the super peer nodihasn in Figure 70 and then
forwarded to the super peer node at port 6347 fsgare 71). The super peer node at
port 6347 passed the request to the entry nodbeo$e¢cond cluster. In this case, recall

communication graph in Figure 66, node N7E is thieyenode of the second cluster.

& REE
4]

C:“Documents and Settings“akasszim~Systemllorkspace~GChord>java com.akassim.overla
y.AdminInterface

Super Peer URL: 127 .8.8.1:6346

Recieved greeting response: GHNUTELLA-B.6 2808 OK from host: localhost

Connection started on: localhost

Incoming connection

Incoming connection accepted

SuperPeer received guery: <{¥xml version="1.0" encoding="utf-§"7>
<soapenv:Envelope xmlns:soapenv="http:i/schemas.xmlsoap.org/soaps/envelope ">
<zoapenuv :Body>

<find_business generic="2.8" xmlns="urn:uddi-org:api_uv2">
<name>*health care{/name’

<sfind_business?

< /zoapenv :Body>

< ssoapenv:Envelope >

Figure 70 Request Received by Super Peer Node atrP6346

120

& REE
<]

C:“Documents and Settings“akassim~Systemllorkspace~GChord>java com.akassim.overla
y.AdminInterface

Super Peer URL: 127 .8.8.1:6347

Recieved greeting response: GNUTELLA-BA.6 288 OK from host: localhost

Connection started on: localhost

Recieved greeting response: GHNUTELLA-B.6 2808 OK from host: localhost

Connection started on: localhost

SuperPeer received guery: <?xml version="1.0" encoding="utf-8"7?>
Ksoapenv:Envelope xmlns:soapenv="http:/“schemas.xmlsoap.org-soaps/envelope/">

<soapenv:Body>

<find_business generic="2_.0A" xmlns="urn:uddi-org:api_uv2">
<name>*health care<{/name’

Ko/Ffind_business?

< ssoapeny :BodyX>

<ssoapenu Envelope >

Figure 71 Request Received by Super Peer Node atrP6347

Node N7E then received the request and queriedegbend CHORD (DHT) cluster

as shown in Figure 72. Once the response was foutite second cluster, node N7E

returned the query response to the node whererip@ating request came from. In this

case, the response is forwarded directly to nodB ($ée Figure 73). The response has

the business information node N7B was queryingdimng with the location of the

registry that was queried as well as the businegs &nd service keys used in the registry

so that node N7B can use these keys to get mavemation directly from the registry.

& REE

C:xDocuments and Settingsakassims\SystemWorkspace“GChord>java cum.akassim.uuerlal’
y.AdminInterface

Gnutella URL: 127 .A.8.1:6349

DHT network created with node ID 7E

The URL is: ocsocket://127.0.08.1:5%8683/

Incoming connection

Incoming connection accepted

Mode received gquery: <?xml version="1.8" encoding="utf-8"7>
Ksoapenv:Envelope xmlns:soapenv="http:/“schemas.xmlsoap.org-soaps/envelope/">
<soapenv:Body>

<find_business generic="2_0" xmlns="urn:uddi-org:api_uv2">

<name>*health care< name>

Ko/Ffind_business?

< ssoapeny :Body>

< /zoapenu Envelope >

FileServer returning guery hit: <?xml version="1.0" encoding="utf-8"7?>
Ksoapenv:Envelope xmlns:soapenv="http:/“schemas.xmlsoap.org-soaps/envelope ">
<soapenv:Body>

<find_business generic="2_0" xmlns="urn:uddi-org:api_uv2">

<name>*health care< name>

Ko/Ffind_business?

< ssoapeny :Body>

</zoapenu Envelope >

Figure 72 Request Received by the Entry Node N7E

121

C:~Documents and Settings“akasszim“SystemWorkspace-GChord>java cnm.akassim.nuerlal’
y.AdminInterface
Gnutella URL: 127.8.8.1:6348
DHT network created with node ID 7B
The URL is: ocsocket:r-127_8.8.1:5808-
Incoming connection
Incoming connection accepted
Incoming connection
Incoming connection accepted
xxxxMpde Received Replysoexx
Port: 6349
IP Addre=ss:127.8.8.1
Received response:
Rezponse from: localhost:86@8@:
<?xml wversion="1.8" encoding="UTF-8"7*{soapenv:Envelope xmlns:soapenuv="http:-rsc
hemas . xmlsoap.org-ssoap-senvelopes" xmlns:xsd="http: 7vww_uw3d. org 2001 -EMLSchema” x
mlns ixsi="http: Ywuw_uwl . org 20801 -ZMLSchema—instance>
{soapenv:Body>
{husinessList generic=""2_.08" operator="jUDDI.org" xmlns="urn:uddi—org-api_uv2">
<businessInfos>
<husinessInfo businessKey="3826C4CA-FahB-11DE—84CA-B740D2D216A8">
<name*health care{/name>
{description>provides health services{sdescription?
<servicelnfos>
<servicelnfo businessKey="3826C4CA-F66B—11DB-84CA-B748D?D716A8" serviceley
="387A9FA8-FooB-11DB-9FAA-CAY 21 FAL 456G >
{name>vaccination<{/name >
<sservicelnfo>
{/servicelnfos>
{+buszinessInfo’
<s/businessInfos>
<shusinessList>
{ssoapenv :Body>
</soapenu Envelope >

Figure 73 Response Received by Node N7B

Section 5.1 illustrated how the Meta-Directoryteys can be initialized as well as
how information is published and queried for eaetwork model. As it can be seen that
the administrative console is very user friendtyisieasy to set up a network of Meta-
Directory nodes. The following section shows hovalréme scalability tests were

performed on the distributed Meta-Directory system.

5.2 Performance Analysis

One of the main contributions of this thesis scalable Meta-Directory system that
gives rise to good query response times. In o@dlustrate the scalability of the system,

performance analysis is performed on the prototyphis section presents the

122

performance analysis approach, the test plan ®p#iformance analysis, and the results

of the experiments that were performed.

5.2.1 Test Plan for the Performance Analysis Experiments

Before performing the performance analysis expenits, a test plan that outlines the
parameters to be varied and the metrics to beatetlehad to be developed. Table 4 lists
the performance metrics used to illustrate theafddtly of the Meta-Directory system.
The response time for a query is the differencénme between a Meta-Directory node
receiving a query request from a service requesidrthe Meta-Directory node returning
the response to the requestor. The average baridugéd illustrates the average network
bandwidth used when the network is handling a queguest. The average number of
hops is the number of Meta-Directory nodes a queggsage traverses on average before
a response is found, while the average number stages exchanged shows the number
of messages exchanged in the Meta-Directory sysienaverage in order to find a
response to a query. The routing table size illisyr the memory overhead in

maintaining the Meta-Directory system.

Table 4 Performance Metrics

Experiment Metrics

RT: Average response time for a query

B: Average bandwidth used per query

NH: Average number of hops per query

NM: Average number of messages

exchanged per query

SRT: Size of the routing table

123

A number of parameters are varied to test theegysiTable 5 lists the parameters
used in testing the scalability of the Meta-Diregtesystem. The number of Meta-
Directory nodes is varied in order to understand itmpact of the network size on
performance. The number of service registries tilies the effect of the distributed
nature of the service registries. The number ofices per registry determines the
memory load on the distributed Meta-Directory nodeshis determines the number of
entries in the Meta-Directory network. The numbérkey-value entries in the Meta-

Directory nodes indicates the amount of memory goresl by the Meta-directory nodes.

Table 5 Performance Parameters

Experimental Parameters

Number of Meta-Directory nodes

Number of service registries

The number of services per registry

The number of key-value entries in the

Meta-Directory nodes

The type of query

The number of attributes per query

The query arrival rate

The type of distribution for the query

arrival rate

There are three types of queries that can betsemtMeta-Directory system. These
are thefind_businessfind_serviceand find_tModel queries as shown in the interface

definitions in Figure 21. The number of attributesed in a query has a direct effect on

124

performance metrics such as the query response Tim is because each attribute may
be stored in a different Meta-directory node andjugry would result in messages
forwarded to the same number of nodes as the nuofilagtributes. The query arrival rate
and the inter-arrival time distribution, such aspémential, determine the load on the
Meta-Directory nodes. The following section preseahie different approaches that were

discussed to be applied in testing the scalalfithe Meta-Directory system.

5.2.2 Performance Analysis Approaches

A number of approaches were proposed to analyzeénformance of the Meta-
Directory system proposed in this thesis. The fqgproach that was proposed is based
on running the prototype on an isolated networlas®o measure the performance. This
provides control over all the network parametetsisTapproach was not feasible as we
were not able to get an isolated network of attle# machines so as to test the
scalability of the system. Since a large isolatetivork was not at our disposal, running a
simulator based on the Meta-Directory system wapgsed as a simulation would also
allow control over the network parameters.

It was not possible to develop a simulator for slystem due to the limitation on
time. After further research we discovered thatréhes a program called Java in
Simulation Time (JiST) which is a high-performarmdiscrete event simulation engine
that runs over a standard Java virtual machine [2].

JiST provides an environment where the simulatiothe does not have to be written
in a simulation specific language such as the discevent network simulator [24]. JiST
also provides control over all the network paramsetes it creates a simulation of the

actual program. Unfortunately JiST was only compatwith Java version 1.4 and the

125

Meta-Directory system relies on an implementatidnC&HHORD that was built using
version 1.5 of Java.

During the course of our research, we ran acrossw@ork known as PlanetLab [14]
which is a global research network that providesnivers access to a distributed network
of computers. These computers are provided worledviidm academic institutions and
research labs where people run tests on distribstimége, network mapping, peer-to-
peer systems, distributed hash tables, and quemgegsing [14]. We were able to get
access to the PlanetLab network and run our pno¢oon the distributed network. The
following section gives the overview of the testsnron PlanetLab, provides and

discusses the results.

5.2.3 Performance Analysis using PlanetLab

Tests were performed on the PlanetLab networknedyae the performance of the
Meta-Directory prototype on a distributed netwoflhe average response time as the
number of Meta-Directory nodes increases in thdesysis analyzed in this section.
Performance analysis was also done to see the efféte number of attributes used in a
guery on the average response time. Even thougte®Rkb offers a distributed test bed,
users do not have control over the network. Parammeised in the experiments cannot be
isolated and as such there is a limitation to tteeaments that can be performed on the
PlanetLab network. An overview of the experimerfitdlowed by a discussion on the
network parameters and the experimental resultspegsented in the following sub-

sections.

126

5.2.3.1 Experimental Overview

PlanetLab is a community that provides an opetfgta for developing, deploying,
testing and accessing planetary scale services PldhetLab was initiated by Princeton
University and its main aim is to provide a worlde@inetwork of computers that can be
used for research in planetary scale services. udber of research institutions and
universities all around the world are members ainBtLab. The following section

provides an overview of the parameters used imgatip the PlanetLab experiments.

5.2.3.2 Experimental Parameters

In order to evaluate the performance of the Metaddory prototype using
PlanetLab, a number of parameters had to be swtdaer to initialize the system. These
parameters are set so as to configure the netwookder to generate the results that are
going to be analyzed in this section.

Table 6 lists the parameters that were kept cahstaoughout the experiments.
Each node randomly generates queries from a poalaiable services, with the time
between queries modeled as an exponential disoibuwith the mean equal to the
lookup mearvalue. Thenumber of registrieparameter indicates the total number of
registries in the network. This value was set tdt 3ook over 10 hours to upload the
binaries needed to set up a UDDI registry on adllaab node. The average number of
businesses per Meta-Directory node was set to lihatothe average number of key-
value entries per Meta-Directory node would be #fis is because each business
information entry would require the creation of fdeey-value entries, one each for the
business name, the discoveryURL, the category lamddentifier as shown in the Meta-

Directory interface presented in Figure 21. An agerof 40 key-value entries per Meta-

127

Directory node provides a low probability of havialj the requested key-value pairs in
the same Meta-Directory node. This property forites Meta-Directory node receiving

the request to contact remote Meta-Directory nddethe values.

Table 6 Fixed Experimental Parameters

Parameter Value
Lookup mean 300 000 ms
Number of registries 3
Number of business per Meta- 10
Directory node
Number of key-value entries per 40
Meta-Directory node
Run time 6 HRS
Sleep time before generating the
initial request 200000 ms
The type of query find_business

Therun timeof the experiment is the run length for each expent that was done
on the PlanetLab network. This value was set tooGrd1 and each experiment was
repeated 10 times. For each experiment we cotleateleast 5000 results. Before a
Meta-Directory node started generating requestseep time was set to 500,000 ms to
provide enough time for all the Meta-Directory nsde join the network and the key-
value entries to be distributed to the respongilaides. In other words, the sleep time

ensures that queries are generated after the retsvstable.

128

In this experiment, the query generated was oé fypd_business. This type of
guery was used because it is the only one whetebypiamber of attributes per query can
be equal to 4 which is the maximum number of aiteb.

In addition to the parameters shown in Table 6 attual business information saved
in the Meta-Directory nodes had to be initializkttially, we tried to retrieve UDDI data
from publicly available service registries that kkbbe reused in our experiments. After
further research, it was discovered that curretiigre is no publicly available UDDI
registry and the last one, which was provided bythrods [28], was suspended back in
2005. Therefore, all the business information hadbe¢ created so that every business
entry was unique. For the experiments describgtismsection, each business entry was
unique and as such each query request would ragstite Meta-Directory system to
guery only one service registry.

Experiments were performed to evaluate the etiette size of the network and the
number of attributes on the average response filmefollowing sub-sections discuss the

results of these experiments.

5.2.3.3 Experimental Results

This section presents and discusses the scajabilithe Meta-Directory prototype
when the prototype was evaluated on the Planeteablied. The prototype that was
deployed was based on the CHORD (DHT) network madehis is a likely choice for
large networks as shown in the theoretical analysiSection 3.4.2. Two types of
experiments were run: one in which the number ofaM&rectory nodes in the system
was varied and the other in which the number ofbaites per query was varied. The

results of the experiments are presented next.

129

5.2.3.3.1 Effect of the Size of the Network

This section analyzes the average response tiouerad per query message and this
is the average time taken when a Meta-Directoryenateives a query request to the
time the response is received from the servicestggiby the Meta-Directory node.
Therefore this is the total time taken to searchtfe values, which is the registry
location, in the Meta-Directory system and the titaken to query the service registry
and receive a response from the service registry.

The sequence diagram in Figure 74 shows the messhgt contribute to the query
response time measured in these experiments. Whéatadirectory node receives a
guery request, the node first hashes all the atefin the request in order to get the
keys For eachkey, the Meta-Directory node then forwardgget_Valuerequest to the
Meta-Directory node responsible for that key. Ot Meta-Directory node gets all the
valueswhich indicate the registry locations for tkeys,the node then compares the
results and only queries the registry that hasimédion on all the attributes by sending a
find_businessnessage to it.

In testing the effect of the network size on therage response time, the number of
attributes used in all the queries generated waaléq 4. The number was set to 4 so as
to get the maximum response time of the systemesihis the maximum number of
attributes possible in the Meta-Directory interface

Initially PlanetLab promised the existence of 080 nodes in the network. But
after joining the network, we were only able to gbbut 300 stable nodes at a time. This
limited our experiments to a maximum of 250 nodesnast of the nodes would become

unavailable during the experiments.

130

. Remote Meta- Remote Meta- .
Meta-Directory . . Service
Node Directory | Directory Reistr
' Node 1 Node N gty
A Meta- L, ' '
Directory node : :
receives a query : loop for all attributes
i hash (attribute)
; loop for all keys
' getValue(Keyl) '
. :
: getValue(KeyN)
- S —————
i ﬁndﬁbusiq:ess(array::attributes)
54— ————————————————— e o = - —— [e] -

Figure 74 Sequence Diagram for PlanetLab Experimest

PlanetLab provided a very unstable network sinkbe parameters cannot be
controlled during the experiment and a number béptisers are using the system at the
same time. Hence the results were variable andahadmber of outliers and huge
standard deviations in the ranges of 5 *.10he outliers had to be removed which
reduced the standard deviation of the experimenssdund 3 * 18 The graphs given in
this thesis show the trend of the results withréthiced standard deviation.

In Figure 75 it can be seen that the query regpdinge increases logarithmically
with the size of the network which is consistenthmthe theoretical evaluation that was
presented in Section 3.4.2.

The maximum response time is the average maxinesponse time recorded for all
the query responses. During the experiments, it alss observed that the maximum
response time also increases logarithmically withrietwork size as seen in Figure 75. It

was observed that the maximum response time wamardouble the average response

131

time. This maximum response time for a network 60 Zhodes is approximately 24
seconds (see Figure 75) in the PlanetLab networkhnib heavily loaded by applications
of other users in the system. If the experimenteevperformed in an isolated network,
the response times are expected to be lower.

The small slope of the query response time cunv€igure 75 indicates that the
Meta-Directory system proposed in this thesis madde with respect to the number of

nodes in the system.

QUERY RESPONSE TIME
28000
24000 —
= 20000
w —
=
= 16000
w
2 12000 | . .
5 —
o
v 8000
w
14
4000
0 T T T T
50 100 150 200 250 300
NUMBER OF NODES
= Average Response Time 4 Maximum Response Time‘

Figure 75 Effect of the Size of the Network on th@uery Response Time

5.2.3.3.2 Effect of the Number of Attributes Used in a Query

This section investigates the effect the numbeattofbutes used in a query on the
average response time of the Meta-Directory systenmm the discussion on the hash
table structure presented in Section 3.3.2 and tf@mrMeta-Directory interface functions
described in Figure 21, it can be seen that fine_business, find_serviceand
find_tModelfunctions allow the client to use one or moreilattes in the query. This
flexibility led us to investigate the effects oketimumber of attributes used in a query on

the average response time.

132

To observe these effects, experiments were peddrom a network of 50 machines
using the PlanetLab test bed. The messages thaibtaa to the response time are the
same as those shown in the sequence diagram ineFigu The PlanetLab experiments
showed that the average response time increaszsliirwith the number of attributes as
shown in Figure 76, and the maximum response tilse iacreases linearly with the

number of attributes.

QUERY RESPONSE TIME (50 Nodes)

20000

18000 |
A 16000 |
< 14000
w
2 12000 _—
w
W 10000
g 8000 -
B 6000 |
w
X 4000 /

2000

0 ‘ ‘ ‘
1 2 3 4

NUMBER OF ATTRIBUTES

‘+ Average Response Time —— Maximum Response Time ‘

Figure 76 Effect of the Number of Attributes on theQuery Response Time

Even though the PlanetLab environment providesidelyw distributed network
which is ideal for the testing of distributed sys& it presents an extremely challenging
environment for our Meta-Directory system as ithesavily loaded by applications of
other users and very volatile as it is not guamhtihat all the nodes will be available
during the course of the experiment. It should died that the PlanetLab results are for a
pessimistic scenario because there are other afiphs by other users which are running
at the same time. Since we have no control overethgronment of the PlanetLab

system, we were not able to measure the total nuwfbmessages exchanged, nor the

133

bandwidth consumed by the query messages. Duesse fimitations, simulations were
instead performed on the underlying protocol, CelORD, using a simulator that was
able to provide the desired results. This simulatan also run simulations for
experiments for more than 250 nodes which was atdilon with the PlanetLab

environment.

Further analysis of the Fully Connected (DHT) a@HORD (DHT) based on
simulation is presented in the next section. Situtawas only performed on the DHT
models as the simulator was specific to DHT mo@JsThe simulation based analysis
provides the results for a higher number of nodewell as provides additional metrics,
such as bandwidth used, which could not be capturdae prototype analysis presented

in this section.

5.2.4 Performance Analysis using P2PSim

Simulations were performed to analyze the Meta@ory’'s configurable routing
framework and how it helps in terms of the netwdekay, path length and the bandwidth
used per query. The memory overhead incurred iningnthe network is also analyzed
in this section. Simulations were performed socasrisure that the system is scalable to
large network sizes which could not be achievedigisnstances of the prototype in a
small number of machines. Simulations were perfornma the CHORD (DHT)
algorithm and the Fully Connected (DHT) algorithm.

Simulation was also done so as to evaluate a metwwt is close to a real
distributed deployment where the nodes are nowvedill the time in the network.
The main difference between this evaluation andthie®retical evaluation in Section

3.4.2 is that in the simulation model query messagee sent by multiple nodes

134

concurrently in the network following an exponehulistribution that is discussed in
Section 5.2.4.2. The theoretical analysis did nohstder multiple clients active
concurrently in the system. The number of bytesaared by the routing tables is also a
factor that could not be determined by the thecaégvaluation. The average number of
bytes used per query could also not be determindtia theoretical evaluation but is
captured in the simulation results.

An overview of the simulation, followed by a dission on the simulation

parameters and the simulation results are preséamtéd following sub-sections.

5.2.4.1 Simulation Overview

In order to evaluate the effectiveness of the igoméble routing architecture, a peer-
to-peer simulator called P2PSim [8] developed atRiarallel and Distributed Operating
Systems Group at M.I.T. was used. The P2PSim stomia a multi-threaded discrete
event simulator that is written in C++ and runs ONIX operating systems. The
simulator already provides three different impletaéions of the CHORD (DHT)
protocol, an instance called Chord that only allosigcessors, an instance called
ChordFinger that allows successors and a succéiss@nd finally an instance called
ChordFingerPNS that allows successors, a succdssoand a proximity neighbor
selection list. The proximity neighbor selectiorstlistores neighbors based on the
estimated latency among the nodes. The most statldase of the P2PSim simulator is
based on the ChordFingerPNS instance. Therefoee,réBults in this section were
generated using the ChordFingerPNS instance &s thd CHORD (DHT) protocol and

with additional parameters for the Fully Conned®#iT) protocol and the configurable

135

network. The parameters that were introduced talsita the protocols are explained and

discussed in the next section.

5.2.4.2 Simulation Parameters

Simulation parameters are the values used to gumefithe simulator in order to
generate the results that are going to be analyeéuis section. Table 7 illustrates the
parameters that were kept constant throughoutitelaion for the CHORD (DHT) and
Fully Connected (DHT) protocols. Thiéemean deathmearandlookupmearvalues are
randomly generated with an exponential distributioth the indicated mean values. The
lifemeanparameter indicates the average time a nodevis alithe simulation while the
deathmearparameter is the average time a node is not dkaila the system. These
parameters allow the simulator to model a netwohiens the nodes are not always
available. Since thexittimewhich is the total simulation time was set to 21800 ms as
recommended by [8], thHdemeanwas set to 3600000 ms and tteathmeario 100 ms
so that the nodes are alive in the system for anage of 2159950 ms which is 99.998%
of the simulation time.

Each node sends search requests for a randomigrajed key, with the time
between search requests modeled as an exponestidhdion with the mean equal to
thelookupmearvalue. As was suggested in [8], Stattimethat indicates the time during
the simulation when the collection of performandatistics should start was set to
10800000 mspnstimerindicates how often the finger table entries sticag stabilized
and basictimer indicates how often the nodes should stabilize $hecessor and
predecessor (as per the CHORD specification in)[22]ese routing table entries need to

be stabilized as the nodes in the network are o¢eaall the time hence the entries

136

could be pointing to a node that is not availalbleese timers were both set to 9000 ms to
ensure that the routing tables were consistent Wighnetwork state. With theecurs
parameter set to one, it indicates that the loolslnasild be performed recursively, that is
a new request is sent through the network evdmeirésponse from the previous request
was not received yet. This was done to ensuretligasimulation closely models a real
network.

The maxlookuptimedetermines when to stop sending a lookup reteyrésponse is
not correct. A value of 0 indicates that no lookegries should be performed in this
simulation so as to minimize the effect of the ratwtraffic for resent messages to the
overall network traffic. With thenitstate parameter set to 1 it indicates that when the
simulation starts, all the nodes should start stadble state such that the network is
already set up and the finger tables are alreaghylpted. The averag®mund trip time
indicates the network delay between two nodes ahatdirectly connected. This is the
sum of the average time elapsed for a request pessaeach the remote node and that
for the response message to return to the reqgesbite.

For the simulations, bhaseparameter had to be introduced in the simulatidre
baseparameter indicates the number of entries each Bétle should have in its finger
table such that the state of the finger table isabtp (B-1)*logsN where B is thédase
and N is the size of the network. For a CHORD (DiH&)work thebasewas set to 2 (as
per the CHORD [22] specification) for all the siratibns while for the Fully Connected
(DHT) network thebasewas set equal to the size of the network.

Simulations were performed using the P2PSim simulatr the size of the network

ranging from 50 nodes to 1400 nodes. Simulationsldcanly be performed to a

137

maximum of 1400 nodes due to the limitations of ¢siraulator in simulating the Fully
Connected (DHT) protocol. The simulations took @areek to complete and were run on
three linux machines with Intel Pentium 4 processwith 2.6GHz of processing speed,

58.4GB of hard drive and 512MB of RAM.

Table 7 Simulation Parameters and Values

Parameter Value
lifemean 3600000 ms
deathmean 100 ms
lookupmean 600000 ms
exittime 21600000 ms
stattime 10800000 ms
pnstimer 9000 ms
basictimer 9000 ms
recurs 1
maxlookuptime 0
initstate 1
round trip time 30 ms

The simulation results were collected for the rknsize varying from 50 to 1400
nodes and the network delay, path length, bandwiddd per query, and the memory

overhead results are illustrated and discussdukifiallowing section.

5.2.4.3 Simulation Results

This section evaluates and discusses the perfaegnah a Fully Connected

(DHT) protocol and the CHORD (DHT) protocol. Thesués for the memory overhead

138

incurred in the network, the response delay, thk [gngth for a query message and the

amount of bandwidth used per query message arensapgvdiscussed.

5.2.4.3.1 Memory Overhead

This section analyses the memory consumed byothieng tables in the two network
models. According to the results in Figure 77 sitclearly shown that the size of the
routing table increases linearly with the sizehsd hetwork in a Fully Connected (DHT)
model while the size of the routing tables in tHé@RD (DHT) network is stable to the

network size.

Memory Overhead

1000
900

800

700 /
600 - /

500

400

300 - /

200

100 //

0

Routing Table Size

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Number of Nodes

‘ = CHORD (DHT) a Fully Connected (DHT) \

Figure 77 Effect of the Size of Network on the Menty Overhead

Therefore, the memory overhead incurred due tortling tables of the Fully
Connected (DHT) protocol is O(N) (where N is theesof the network) while that of the
CHORD (DHT) protocol is O(1) as shown in Figure The following section illustrates

the results of the network delay analysis.

5.2.4.3.2 Network Delay

139

The network delay in this simulation is in ternfstloe time taken from a request
being sent from a node to the time the responsecesived by the node. Recall that the
simulation was performed on the nodes with an @esraund trip time of 30 ms (see
Table 7). Figure 78 shows the average network delays per lookup in the CHORD
(DHT) protocol and the Fully Connected (DHT) praibcThe network delay for the
Fully Connected (DHT) protocol remains constantaetund 35 ms with increasing
network size while that of the CHORD (DHT) protodntreases logarithmically with
network size. These results are consistent withthkeretical results acquired from the

evaluation in Section 3.4.2.

Lookup Delay

100
90 +

» .’.—(__-——,—"_’, - ——
70 /
60

50 A //-

40
30
20
10 A

0

Mean Delay (ms)

T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Number of Nodes

‘ = CHORD (DHT) 4 Fully Connected (DHT) ‘

Figure 78 Effect of the Size of the Network on theookup Delay

With the results in Figure 78, it can be seen thatFully Connected (DHT) protocol
minimizes network delay per query as was indicétethe theoretical evaluation done in
Section 3.4.2. It should also be noted that theop not only minimizes delay but it
also ensures that the average delay remains congtanvarying network size. The rate

of increase of the delay in the CHORD (DHT) netwatken the size of the network was

140

between 50 and 500 nodes was high, but when theoriesize was at around 600 nodes,
the rate of increase of the network delay in theOQ&D (DHT) network was beginning to
stabilize. The following sub-section shows the tssaf the path length analysis on the

two algorithms which illustrates the average nundfdrops incurred per query.

5.2.4.3.3 Path Length

The path length in this thesis is defined as terage number of hops required to
get the response back to the requesting node. @hdts from the P2PSim simulator,
where the size of the network was varied from 50480 nodes, are illustrated by the
graph in Figure 79. The results from the simulé&orthe average number of hops in the
CHORD (DHT) network and the Fully Connected (DHEfwiork are consistent with the

theoretical calculations that were done in Seci@h?2.

Path Length

(o2}

o

//
//-"

4

IS

N

Average Number of Hops
w

[

o

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Number of Nodes

‘ = CHORD (DHT) a Fully Connected (DHT) ‘

Figure 79 Effect of the Size of the Network on thPath Length

The average number of hops for the CHORD (DHT)omllgm increases
logarithmically with the network size while the nber of hops for the Fully Connected

(DHT) algorithm remains stable at 2 hops per regudsese results show that the Fully

141

Connected (DHT) algorithm also minimizes the averagmber of hops a message
traverses per query messages.

Another parameter that was also compared was éh&ork bandwidth used per
guery message. This illustrates the overall traffithe network during a request and is

discussed in detail in the following section.

5.2.4.3.4 Network Bandwidth

The network bandwidth depends on the average nuwofbleytes exchanged in the
network per query message. This includes the nuwibeytes used when forwarding the
request through the network to the appropriate rente the number of bytes used to
forward the response back to the requesting node.

The average number of bytes per query in the Fatynected (DHT) model is
approximately 100 bytes for different network sizssshown in Figure 80. The average
number of bytes used per query message in a CH@RLO) network on the other hand
increases logarithmically with the network size.

In a CHORD (DHT) environment, when a node has arygui first exchanges
protocol specific messages so as to find the nbdehas the appropriate key. After the
node is found, the query is then forwarded to pgaaticular node. In a CHORD (DHT)
network, the number of these protocol specific ragss increases logarithmically with
network size. Thus, the average number of bytesquery message in Figure 80
increases logarithmically for a CHORD (DHT) netwoik a Fully Connected (DHT)
network, no messages are exchanged to find theoppate node and thus the average
number of bytes per query message is approximdi@Qy for the different number of

nodes.

142

In Figure 80, we can see that in a network of 1406Qes, the difference in bytes
exchanged per query message between the Fully Cath@OHT) and CHORD (DHT)
is around 100 bytes. When the total number of ggeare taken into consideration, the
difference in the total number of bytes will alswrease and contribute to an increase in

the network bandwidth.

Average Humber of Bytes used per Query
_am
il
)
& om0
=
: ________—l-—-——"——__I
a’ z:lj n
; ’/,_.,-r—
o
E 150
o f
v | -
g 00 =
fn]
£
2 =
]
i
0 - S - - —— - —— =
0 100 200 0 40 S0 GO0 700 SO0 900 1000 1100 1200 4300 1400
Murber of Modes
[# EHORD (DHT) & Fully Connected (DHT)|

Figure 80 Effect of the Size of the Network on thBandwidth Used per Query

Finally, the adaptable framework with the corresting transformation algorithms
is presented and analyzed in the following chapgteough their complexity and
invariants. These algorithms can be implementethabruntime network transformation

can be performed.

143

CHAPTER 6 ADAPTABLE ROUTING

FRAMEWORK

This chapter introduces the adaptable routing éwmork that would take the
configurable framework one step further by allowihg system configuration between
the Meta-Directory nodes to be changed after tiseesy has been deployed.

The algorithms for the adaptable framework arefulsbecause if the system
administrator wants to minimize the network trafiicurred by the periodic messages
exchanged so as to increase the available netwankviidth, the network can be
changed from the Fully Connected (DHT) to the CHORMBIT) network when the size
of the network is such that the network trafficatezl by the total number of messages for
the Fully Connected (DHT) model is too high for thetwork (see Figure 33). On the
other hand, in order to minimize query delay, tledwork can be changed from the
CHORD (DHT) to the Super Peer network when the remdd nodes is such that the
total number of hops per query message for the rSBper network is less those for a
CHORD (DHT) network (see Figure 32).

This framework will make it possible to evolveria Fully Connected model to the
Super Peer model and vice versa. Adaptability alglo be supported among the Fully
Connected (DHT), CHORD (DHT), and the Super Pedwaosks. This flexibility will
allow the Meta-Directory nodes to provide good perfance for a specific system
configuration and state.

A framework for an adaptable configuration coutddesigned in the future. In this

chapter, we will provide a preliminary study of tlegjuired algorithms to provide such a

144

framework. Once implemented, this framework wouldva a network administrator to
change the routing used among the Meta-Directodeadased on the state of the system
such as number of Meta-Directory nodes and bandivadailable in the network.
This adaptable framework would be built upon thwr fnetwork models discussed in
Section 3.4.1. Once again, the four network modeds
e The CHORD (DHT) model
* The Fully Connected model (FC)
* The Fully Connected (DHT) model (FCDHT)
* The Super Peer model which can either be a:
o Fully Connected Super Peer model (SPFC) where thestecs
communicate using the FC model
0 The Fully Connected (DHT) Super Peer model (SPFCDWfere the
clusters communicate using the FCDHT model
0 The CHORD (DHT) Super Peer model (SPCHORD) wheeediusters
communicate using the CHORD (DHT) model
The performance metrics were calculated with vagyietwork sizes, and from these
results, it can be seen that when the network &llsone dedicated Meta-Directory node
can be selected to act as a centralized repositoeye all the registry information will be
stored. When the network size increases to a lthadl the one Meta-Directory node
cannot handle the load, a network of Meta-Directovges can be created where related
businesses would share the storage space whictbevithanaged by super peers. These
super peer nodes will then be peers of each otitewauld communicate directly. As the

size of the network increases further, these sppers can create a P2P communication

145

overlay protocol such as CHORD (DHT) for communimat This will further reduce the
communication overhead among the super peers fgriage networks. During

runtime, the framework would allow the system adstrator to change the network
model used among the four discussed models. Thavarin Figure 81 illustrate the
network changes that would be supported by theridihges introduced in the following

section.

CHORD(DHT)

N1 N15
Fully
Connected N50 27

a

27 N 15
N27
N5
15 35
Fully Connected

N27 (DHT)

N35

Figure 81 Runtime Re-Configuration

6.1 Adaptable Routing Algorithms

The following pseudo code illustrates the alganishthat should be used when the
network needs to be modified. The algorithms indbate sub-routines and they are
discussed in detail further in this section. It @dobe noted again that these algorithms
have not been implemented but they provide a basithe adaptable framework which

can be supported by the Meta-Directory systemerfuiture.

146

The following assumptions are used in realizirgdadaptable routing algorithms:

I. We assume that a system administrator monitorsxéteork in terms of query
delay, memory, and network bandwidth usage. Thexihghdecides when the
system configuration should be changed.

ii. There is a monitoring system that can keep track®furrent state of the system
in terms of the underlying communication graph, nbenber of nodes, the type of
each node (super peer or client node), and theidocaf each node.

ili. The nodes in the network understand the configumatbommands and are able to
react to such commands.

iv. It is acceptable for the system to be unavailablaporarily during a network
configuration change.

v. The nodes can maintain their states prior to bplaged under the maintenance
mode and they can resume the queries that wereongplete once the system is
back online.

vi. The nodes can stop processing publish and quenyesés) when they are in

maintenance mode but they can process configuraiange commands.

vii. At any point in time, each node is reachable from@rg other node in the network
The actions in Figure 82 have to be performedhaysystem administrator. Before
the underlying configuration is modified, the systéas to be placed in maintenance
mode, then the network can be modified, and them ghistem is removed from
maintenance. The rest of the sections in this @nalpustrate the algorithms that should
be followed when the configuration for the Meta-d2itory nodes needs to be modified

during runtime.

set Mai nt enance (true, nodes);
changeNet wor k (fromNet wor k, toNetworKk);

set Mai nt enance (fal se, nodes);

147

Figure 82 Actions Performed by a System Administrair when the Network is

Modified

6.1.1 Changing the Maintenance State of the System

The protocol described in Figure 83 is followedewtthe system is set or removed

from the maintenance mode. This protocol can omyapplied when the assumptions

listed in Section 6.1 hold.

void setMaintenance (boolean input, List nodes) {
if (input) {
for all (nodes) {
Set state of node to “maintenance”;
Stop accepting any requests from service provide
requestors;
Save state of requests that were not complete;

}else {
for all (nodes) {
Set state of node to “active”;
Complete requests that were queued;
Start accepting requests;

rs and

Figure 83 Toggling the State of the System

6.1.2 Transforming the Network from an SPFC to an FC Insaince

Figure 84 illustrates the protocol followed whére tnetwork is changed from an

SPFC to an FC network. The algorithm is a gendgalrithm that can be applied to any

number of clusters.

148

boolean changeNetwork (SPFC , FC) {
List clusters = get d ust er s(SPFC);

List superpeers = SPFC.getSuperPeers();
/I returns a reference to all the Super Peer nodes

for (i= 1; i < clusters.size(); i++){
Cluster currentCluster = clusters.getEntry(i);

List nodes = currentCluster.getNodes();
/I returns a reference to all the nodes in the clus ter

for (j = 0; j < nodes.size(); j++) {

currentRT = nodes.getEntry(j).getRoutingTable()
Il returns a reference to the node’s routing table

for (k=(i—1); k>=0; k--) {
currentRT. addRTEntri es
(clusters.getEntry(k).getNodes());
/I add all the nodes in the clusters with a
/I lower index than the current node’s index
/l'in the array to the current cluster

}

for (i = 0; i < superpeers.size(); i++) {
SuperPeer currentSP = superpeers.getEntry(i);
currentSP.destroySP(); // Destroy the Super Peer node
}

return true;

Figure 84 Changing an SPFC Network to an FC Network

The following example illustrates the steps folemhand the resulting network when

is illustrated in Figure 85 when it is applied be tSPFC instance.

the algorithm in Figure 84 is applied to an SPF&ance that has two clusters. Each step

1. Select one cluster to be the Primary Cluster (P@)tae other cluster will be the

Secondary Cluster (SC)
2. For each node in the SC

a. Add all the nodes in the PC as neighbors

149

3. Destroy the Super Peer nodes

17

N3

Mm

A

Figure 85 Example of Transformation from SPFC to FC

6.1.3 Transforming the Network from an SPCHORD to a CHORD (DHT)

Instance

Figure 86 illustrates the protocol followed whére tnetwork is changed from an
SPCHORD to a CHORD (DHT) network instance. The atlym is a general algorithm

that can be applied to any number of clusters.

150

boolean changeNetwork (SPCHORD, CHORD) {
List clusters = get d ust er s(SPCHORD);
List superpeers = SPCHORD.getSuperPeers ();

Cluster primaryCluster = clusters.getEntry(0);

SuperPeer primarySP = primaryCluster.getSuperPeer ();
/I returns a reference to the Super Peer node

for (i=1;i < clusters.size(); i++) {

currentCluster = clusters.getEntry(i);
entryNode = currentCluster.getEntryNode();
currentSP = currentCluster.getSuperPeer ();
keyValueEntries = entryNode.retrieveAllEntries();
/I retrieves all the key-value registry entries in the
/I cluster
currentSP. publ i shToC ust er (primarySP, keyValueEntries);

entryNode. del et eEnt ri es(keyValueEntries);
List nodes = currentCluster.getNodes();

for (j = 0; j < nodes.size(); j++) {
currentNode = nodes.getEntry(j);
currentNode.leaveCluster(currentCluster);
currentNode.joinCluster(primaryCluster);

}

for (i = 0; i < superpeers.size(); i++) {
currentSP = superpeers.getEntry(i);
currentSP.destroySP();

}

return true;

Figure 86 Changing an SPCHORD Network to a CHORD (BIT) Network

The following example illustrates the steps folemhand the resulting network when
the algorithm in Figure 86 is applied to an SPCHORBtance that has two clusters.
Each step that causes the change in the netwopk gsallustrated in Figure 87 when it
is applied to the SPCHORD instance. Only the ndtvgpaph changes are illustrated and
changes in the key-value entries are not showrguaré 87.

1. Select the primary cluster (PC) that all the nadiéisbe joining to create one

cluster in the end, the other cluster will be taesdary cluster (SC)

151

Ny

SF

M

Ns

My Nz

17

Mm

J £
Ny n

7

Figure 87 Example of Transformation from SPCHORD toCHORD (DHT)

. The SC'’s entry node retrieves all the key-valueiesnin the SC and sends a
publish request to the PC through its SP

. The Meta-Directory node in the PC that is connetdeitie SP saves the key-
value pairs it receives into the PC
For each node in the SC

a. leave the SC and join the PC as a new node (eenddes have no entries)

152

5. Destroy the Super Peer nodes

6.1.4 Transforming the Network from an FC to an SPFC Insance

Figure 88 illustrates the protocol followed whée nhetwork is changed from an FC
network to an SPFC network where the network ig Bgb m clusters and the number of
nodes per cluster is balanced within the clusters.

The following example shown in Figure 89 illusestthe steps followed and the
resulting network when the algorithm in Figure 8&pplied to an FC instance to create
an SPFC instance with two clusters.

1. Create two Super Peer nodes
2. Select which nodes belong to the PC and which nbelesg to the SC
3. For the SP responsible for the PC
a. Pass the IP address of the entry node of the PC
4. For the SP responsible for the SC
a. Pass the IP address of the entry node of the SC
b. Pass the IP address of the SP responsible forGhe P
5. For the nodes that should be in the PC

a. Drop all connections to the nodes that are supptusbd in the SC

153

boolean changeNetwork (FC, SPFC, m) {
List superpeers, entryNodes, routingTables;
List nodes = FC.getNodes();

for(i=0; i<m; i++){

superpeers.addEntry(createSP()); // create m Sup er Peers
}
for(i=0; i<m; i++){
entryNodes.addEntry(nodes.getEntry(round(nodes.si ze()/m) *i));
}
for (i=0; i<m; i++){
routingTables.addEntry(superpeers.getEntry(i).getRo utingTable();
/I get a reference to the Super Peer routing tabl es
}

for(i=0; i<m; i++){
List nodesToSP;
nodesToSP.addEntry(entryNodes.getEntry(i));
/I add entry node to list

if (i!=0){

for(=i—-1;]>=0;j-){
nodesToSP.addEntry(superpeers.getEntry(j));
// add the Super Peers whose indices in the list are
/lless than the current Super Peer

}

routingTables.getEntry(i). addRTENt ri es(nodesToSP);
/I populate SP’s RT

}

for (i=0;i<m—1;i++){
for (j = round(nodes.size()/m) * i ;
j < round(nodes.size()/m) * (i+1); j++) {

currentNode = nodes.getEntry(j);
currentRT = currentNode.getRoutingTable();

for (k = round(nodes.size()/m) * (i+1);
k < nodes.size(); k++}
currentRT.removeRTEntry(nodes.getEntry(k));

}
}
}

return true;

Figure 88 Changing an FC Instance to an SPFC Instae

154

Figure 89 Example of Transformation from FC to SPFC

155

6.1.5 Transforming the Network from a CHORD (DHT) to an SPCHORD

Instance

Figure 90 illustrates the algorithm followed where network is changed from a
CHORD (DHT) network to an SPCHORD network where tework is split intom
clusters and the number of nodes per cluster anloall within the clusters.

The following example illustrates the steps folemhand the resulting network when
the algorithm in Figure 90 is applied to a CHORDH({D instance to create an
SPCHORD instance with two clusters. Figure 91 itltes the changes in the network
graph when the algorithm is applied but does nawskthe key-value pair messages
forwarded within the network.

1. Create two Super Peer nodes

2. Select which nodes belong to which cluster, oneary cluster (PC) and a

secondary cluster (SC)

3. For the SP responsible for the PC

a. Pass the IP address of the entry node of the PC
4. For the SP responsible for the SC
a. Pass the IP address of the entry node of the SC
b. Pass the IP address of the SP responsible forGhe P

5. The node that is supposed to be in the SC anchisented to the SP responsible

for the SC (entry node), leaves the PC and crea8S

6. For each node belonging to the SC

a. leaves the PC and joins the SC

7. To even out the key-value entries in the nodes:

156

boolean changeNetwork (CHORD, SPCHORD, m) {
List nodes = CHORD.getNodes();
for(i=0; i<m; i++){

superpeers.addEntry(createSP()); // create m Sup er Peers

}
for (i=0; i<m; i++) {// get reference to en try nodes
entryNodes.addEntry(nodes.getEntry(round(nodes.siz e()/m) *i);
}
for(i=0; i<m; i++){

routingTables.addEntry(superpeers.getEntry(i).getRo utingTable();
}

for(i=0; i<m; i++){
List nodesToSP;
nodesToSP.addEntry(entryNodes.getEntry(i));
/[add entry node to list
if (i!=0){
forj=i-1,j>=0;j-){
nodesToSP.addEntry(superpeers.getEntry(j));
// add the Super Peers whose indices in the list are
/lless than the current Super Peer

}

routingTables.getEntry(i). addRTENt ri es(nodesToSP);
/I populate SP’s RT

for(i=1;i<m;i++){
currentEntryNode = entryNodes.getEntry(i);
currentEntryNode.leaveCluster(CHORD));
currentCluster = currentEntryNode.createCluster();
for (j = 1+[round(nodes.size()/m) *i] ;
j <round(nodes.size()/m) * (i+1); j++) {
currentNode = nodes.getEntry(j);
currentNode.leaveCluster(CHORD);
currentNode.joinCluster(currentCluster);

}

ListkeyValueEntries = entryNodes.getEntry(0).retrie veAllEntries();

for(i=0;i<m-—1;i++){
[/l balance the key-value pairs per cluster
for (j = round(keyValueEntries.size()/m) * i;

j < round(keyValueEntries.size()/m) * (i+1);) {
entriesToForward.addEntry(keyValueEntries.getEnt ry(j);
}
superpeers.getEntry(0). publ i shTod ust er
(superpeers.getEntry(i+1), entriesToForward);
entryNodes.getEntry(0). del et eEnt ri es(entriesToForward);

}

return true;

Figure 90 Changing a CHORD (DHT) Instance to an SPBORD Instance

157

n, SF

N

Ny

Figure 91 Example of Transformation from CHORD (DHT) to SPCHORD

158

a. The Meta-Directory node in the PC that is connettetie SP responsible
for the PC, retrieves half of the key-value pairshe PC and sends a
publish request for the retrieved entries to thetl8Gugh its SP

b. The SP connected to the PC passes the publishstequée SP connected
to the SC

c. The SP connected to the SC passes the publishstaqube Meta-
Directory node it is connected to

d. The Meta-Directory node receiving the request séveskey-value pairs it
receives from the publish request in the SC

e. The entry node to the PC deletes the forwardedesrfiom the PC

6.1.6 Transforming the Network from a CHORD (DHT) to an FCDHT

Figure 92 illustrates the algorithm followed where network is changed from a
CHORD (DHT) network to a FCDHT network. The routitadple size is modified so that

it accommodates all the nodes in the network tmfarcomplete network graph.

boolean changeNetwork (CHORD, FCDHT) {
List nodes = CHORD.getNodes();
for (i = 0; i < nodes.size(); i++) {

nodes.getEntry(i).setRoutingTableSize(nodes.size()—1);
Il When this is applied in CHORD, the network ch anges its
/I finger table entries to reflect the size

}

return true;

}

Figure 92 Changing a CHORD (DHT) Instance to an FCBIT Instance

159

6.1.7 Transforming the Network from an FCDHT to a CHORD (DHT)
Figure 93 illustrates the algorithm followed where network is changed from a
FCDHT network to a CHORD (DHT) network. The routitadple size is set to conform to

the CHORD protocol [22].

boolean changeNetwork (FCDHT, CHORD) {
List nodes = FCDHT.getNodes();
for (i= 0; i < nodes.size(); i++) {
nodes.getEntry(i).setRoutingTableSize(log onodes.size());

}

return true;

}

Figure 93 Changing an FCDHT Instance to a CHORD (DH) Instance

6.1.8 Algorithms Specific to the SP Nodes

Figure 94 shows the algorithm followed by the Supeer network to get a reference
to all the clusters in the network and Figure 93strates the protocol used to forward a

set of key-value pair entries from one Super Pkestaer to another.

Cluster getClusters (Network SPNetwork) {

List superpeers = SPNetwork.getSuperPeers();
/I gets a reference to all the SP nodes

List clusters;
for (i = 0; i < superpeers.size(); i++) {

clusters.addEntry(superpeers.getEntry(i).getClust er());
Il returns a reference to a cluster

}

return clusters;

Figure 94 Get the Reference of all the Clusters ia Super Peer Network

160

void publishToCluster (SuperPeer SP, List keyValueE ntries) {
SP.publishEntries(keyValueEntries);
/I the message is passed through the network from the receiving

/I Super Peer to the Super Peer SP.
}

void publishEntries (List keyValueEntries) {
Cluster localCluster = getCluster();
Node entryNode = localCluster.getEntryNode();

for (i=0; i< keyValueEntries.size(); i++) {
entryNode.publishEntry (keyValueEntries.getEntry(0));
//save the key-value pair in the cluster

Figure 95 Publish Key-Value Pairs to a Cluster thragh the Super Peer Node

6.1.9 Algorithm Specific to the Entry Nodes

The algorithm in Figure 96 is applied to an emipde so as to delete all the key-

value pair entries from the cluster.

void deleteEntries (List keyValueEntries) {
for (i=0; i< keyValueEntries.size(); i++) {

removeEntry(keyValueEntries.getEntry(i));
/I delete the key-value pair from the cluster

Figure 96 Delete Key-Value Pairs from a Node

6.1.10Algorithm used by the RT

The algorithm in Figure 97 is used by the Fullyn@ected network when a node is

added as a neighbor in the routing table. The ndukre this algorithm is invoked sends

161

a connection request message to the remote nodenaedhe connection is accepted, the
two nodes then have a direct point to point conanct
The following section analyzes the complexity led algorithms as well as identifies

the invariants for each transformation.

void addRTEntries (List locations) {
for (i=0;i<locations.size(); i++) {

addIP(locations.getEntry(i));

Figure 97 Create a Point-To-Point Connection with BRmote Nodes in List

6.2 Analysis of Transformation Algorithms

Analysis was performed for the transformation atbms in terms of the time
complexity as well as the invariants for each tfamsation. The complexity is expressed
in big O notation. Table 8 shows the complexityeath algorithm, and discussions on
how the complexities were deduced can be found ppefdix A. Table 9 shows the

invariants for each transformation where:

N+ is the total number of nodes

* Ngpis the total number of Super Peer nodes

* Ncis the total number of clusters

* Ngiis the total number of nodes in a cluster

* Ny is the total number of key-value registry entries

* Ngtis the total number of routing table entries faclke node which is equal to

the degree of the node

162

* Ngis the graph’s size which is the total numberdyges or connections in the
network
The following chapter summarizes the thesis kst finalyzing the models supported
by the Meta-Directory system proposed in this the&idiscussion is provided
illustrating the properties as well as the advaesagf the Meta-Directory system.

Limitations and future directions of the researmhaso discussed in Chapter 7.

Table 8 Time complexity of Algorithms

Algorithm Complexity

setMaintenance (boolean input, List nodes) (N
addRTEntries (List locations) O/
deleteEntries (List keyValueEntries) QN

publishToCluster (SuperPeer SP, List

keyValueEntries) ONv)
getClusters (Network SPNetwork) oM

changeNetwork (SPFC , FC) O\ N+°)

changeNetwork (SPCHORD, CHORD) QMN T * Log Nt) + O(Nc * Nkv)
changeNetwork (FC , SPFC) QN N+

O(Nc?) + O(Nc * Nt * Log Nr)
+ O(NC * NKV)

changeNetwork (CHORD , SPCHORD

changeNetwork (CHORD , FCDHT) O(N

changeNetwork (FCDHT , CHORD) O(N

163

Table 9 List of Invariants for every Network Transformation

Network Invariants
Transformation Pre-Conditions Post-Conditions
Instance
From an SPFC to Ne Ne
i.N7T= " Nei+ Nc i.N7= " Na
an FC instance i1 =
il NRT= Nci—l ii. NRT= NT—l
i:NCNci(Nci—l) NT(NT—].)
ii. Ng= Y ———— + . Ng = ——
£ Zl 2 2
Nc(Nc —-1) N
2

iv. The total number of key-val
constant

v. The total number of key-val
constant

ue registry entries pade is

ue registry entrieshie hetwork is

From
SPCHORD
CHORD instance

an

~

g

to

Nc

i.N7T= " Nei+ Nc
i=1

il NgrT = |ngNci
Nc

iii. Ne=)" Nei(logzNgi — 0.5)

i=1

N Nc(Nc —-1) N
2

Nc

Nc

i NT: Z Nei
i=1

ii. NgrT = |092NT

lii. Ng = Nt (logoNt — 0.5)

iv. The total number of key-val
constant

ue registry entrieshia hetwork is

From an FC to ai
SPFC instance

NC
i.Nt= ZNci >= Nc
i=1
il NRT: NT— 1
Nt(Nr -1

2

iii. Ng =

Nc
i. Nt= ZNCH‘ Nc
i=1
ii. NRT = Nci -1
i=Ne Nei(Nei =1
ii. Ne = Z¥ ¥
= 2

Nc(Nc —-1) +N
- C

2

iv. The total number of key-val
constant

v. The total number of key-val
constant

ue registry entries pade is

ue registry entrieshia hetwork is

164

From a CHORD tg
an SPCHORD

Ne
i.N7T= " Ne>= Nc
i=1

Ne
i.N7= > N+ Ne
i=1

instance || NRT_= |ngNT ii. NgrT = |092Nci
. Ng = NT(|092NT — 05) Ne
iii. Ne=) Nei(log2Nei — 0.5)
i=1
N Nc(Nc —-1) N
2
iv. The total number of key-value registry entriesha hetwork is
constant
From a CHORD tg Ne) Ne
i.NT= ZNci i.Nt= ZNci
an FCDHT i=1 i=1
. il. NgrT = |Og2NT ii. Nrr=Nr—-1
Instance iii. N = Nr(logsNT — 0.5) Nr(Nr 1)
. Ng= ———
2
iv. The total number of key-value registry entries pade is
constant
v. The total number of key-value registry entrieshia hetwork is
constant
From an FCDHT Ne , e
i.NT= ZNci I.Nt= ZNci
to a CHORD i=1 i=1
. il Ner=Nr-1 ii. NgrT = |Og2NT
nstance Nr(Nr —1) iii. Ne = Nr(logeNt — 0.5)
. Ne= ———
2

iv. The total number of key-value registry entries pade is

constant

v. The total number of key-value registry entrieshia hetwork is

constant

165

CHAPTER 7 CONCLUSIONS

This thesis introduced a system that supportselagale service discovery in
distributed Web Service registries. The Meta-Dwegt system allows the service
requesters to send one request to a Meta-Direntmg which will forward the request to
the relevant registries without the service regerektiving any prior knowledge to the
location of these registries. The distributed ratoir the Meta-Directory system adopted
in this thesis is transparent to the clients wheomovided with a single interface.

This design decision also allows us to introduasoafigurable framework for the
underlying network configuration for the Meta-Ditey nodes. Concluding remarks
regarding the Meta-Directory system, discussionstioa limitations of the current

prototype and future directions of this researehavered in this chapter.

7.1 Summary

The Meta-Directory system that was implementediges a configurable system in
which the network model used for interconnecting tfleta-Directory nodes can be
chosen from Fully Connected, Fully Connected (DHIJORD (DHT) and the Super

Peer models. A summary of these supported netwsi®vided in this section.

7.1.1 Fully Connected Network

The Fully Connected network provides a configarativhereby there is no specific
structure as to where the hashed values are storéde network and each node is

connected to every other node in the network. Waemessage is published in the

166

network, the Meta-Directory node receiving the mibrequest hashes the attributes and
stores all the hashed keys in the local hash table.

The advantage to this approach is that there mmaiotenance overhead on the Meta-
Directory nodes regarding the hashed keys. Thesiodb need to have the location of
all the other nodes in the network in their routtagles. The main disadvantage to this
approach is that a query incurs a high bandwid#rioead because if the node receiving
the query does not have the key being searchedndte has to broadcast the query
message to all the other nodes in the network.€efbiex, this model is not scalable but is
suitable for small networks as it does not consastevork bandwidth for maintenance of

the network.

7.1.2 Fully Connected (DHT) Network

The Fully Connected (DHT) network is similar tcetpreviously discussed Fully
Connected network in Section 7.1.1. The main diffiee between these two networks is
that the Fully Connected (DHT) network is structureuch that each node is only
responsible for a subset of hashed keys. With iglel, when a publish request is
received, the Meta-Directory node receiving theuesqy hashes the attributes and then
only stores the hashed keys it is responsiblerfahe local hash table. The remaining
keys are then sent to the Meta-Directory nodesoresiple for them.

The main advantage to this approach comparedutg Eonnected model (Section
7.1.1), is that during a query, if a key is notridun the local hash table, the query is
forwarded directly to the node responsible for treshed key. Therefore, only one
request message is sent to the network and thefréds¢ nodes are not flooded with the

request message therefore reducing the networknbdtidused per query.

167

The main disadvantage of this model is when the ef the network is large. This
can cause a significant maintenance overhead iméhgork as periodic messages are
exchanged among all the nodes in the network (@e&i4.2) to maintain the correct

state of the network.

7.1.3 CHORD (DHT) Network

The CHORD (DHT) network is realized as per the GBDspecifications in [22].
This is similar to the Fully Connected (DHT) modsl each node is only responsible for
a range of hash values. The difference betweervibemodels is that in the CHORD
(DHT) network, each node only knows of a subsehades in the network which are
known as the neighbors of the node.

Since each node only knows of a subset of nodakdmetwork, if a request is
forwarded in the network, the request has to béebthrough the node’s neighbors in
order to reach the node that is responsible fdrithghed key. This causes a disadvantage
as a higher number of messages to be sent thrbegietwork per query compared to the
Fully Connected (DHT) model. This network howevetraduces less maintenance
overhead as each node only needs to manage thegreutries for a subset of nodes in

the network.

7.1.4 Super Peer Network

The Super Peer network introduces clusters of Ndatactory nodes and Super
Peers which are responsible for the maintenantieeoflusters as well as having a direct

communication to the rest of the Super Peers iméteork.

168

In large networks, the Super Peer model providemnatant delay per query message
as shown by the total number of hops analysis guréi 32. This makes the Super Peer
model scalable as the clusters can be maintainachetwork size suitable for the state of
the system and the network delay will be minimizegiardless of the number of nodes in
the system when compared to the CHORD (DHT) netwbDhle Super Peers only need to
know of the state of their clusters and maintaireati communication with the other

Super Peers in the network.

7.2 Discussion

We were able to design and implement a distribiMeth-Directory system that also
gives the user the ability of selecting the netwookfiguration for the distributed Meta-
Directory nodes. The framework introduced in thisesis addresses availability,
scalability, ease of management, and flexibilitthe$e attributes are discussed and

summarized in this sub-section.

7.2.1 Availability

The distributed Meta-Directory architecture ensutet the operation of the system
is not interrupted if any one of the nodes is o#li This is achieved by replicating the
data stored in the hash tables such that each tab#is keys overlap with the keys
handled by the predecessor and successor. Ther#fersystem does not have a single

point of failure and is always available.

7.2.2 Scalability

Scalability is achieved in the Meta-Directory gystas all of the networks offered by

the system are highly scalable. A Super Peer n&twerforms very well in large

169

networks as it introduces clusters of nodes witbheaode having a super peer that

propagates queries within the cluster as well &simthe super peers.

7.2.3 Ease of Management

The Meta-Directory system is easy to manage asthal underlying query
propagation, network configuration changes and caomaoation are handled by the
Meta-Directory system. The system administratoryameds to set up the system by
specifying the preferred network configuration agerything else is handled by the
underlying system. The overall management of thetaNDerectory nodes is thus

seamless.

7.2.4 Transparency

The system is transparent as it does not modyyodithe underlying architecture of
the service registries. The communication betwéendistributed Meta-Directory nodes
is not tied to the architecture of the service sg@gs as the Meta-Directory nodes are
decoupled from the service registries.

The system is also flexible as the network camsélected from any of the four
supported networks during the deployment of théesysThis flexibility ensures that the
system provides good performance in terms of ndtwletay per query, bandwidth used
per query, the path length per query and the memegyhead of the routing tables based

on the state of the system during deployment.

The advantages of the distributed Meta-Directystean can be briefly summarized

as follows:

170

The Meta-Directory system allows the service prevido publish service
information in any of the local registries and fand the registry information to
any of the Meta-Directory nodes in the system. &itite Meta-Directory nodes
are not tied to any local registry, as was dongjnthis decouples the registries
from the Meta-directory nodes so that the localsteigs are always available for
service publishing and discovery.

The Meta-Directory system does not change the Wyidgr communication
model of any of the already existing Web Servicenponents, which is the
communication between the service providers, servenuesters, and service
registries.

The Meta-Directory architecture enhances systenfopeance by providing a
system administrator the ability of choosing anrappate interconnection model
among Fully Connected, Fully Connected (DHT), CHOHRIHT), and Super
Peer networks during deployment.

Since the Meta-Directory nodes are an added layertop of the existing
registries, the architecture accommodates exisiimgl business registries of
different enterprises hence creating a networlegistries.

The load is shared among the distributed Meta-Dorgaodes.

The data in the Meta-Directory nodes is replicateguch a way that a key-value
pair can be found in two Meta-Directory nodes at paint in time. This ensures
that the system does not provide a single poirfaiafre.

Depending on the system adopted, the service regquasly needs to know the

location of at least one registry or one Meta-Cimeg node and the query will be

171

propagated within the network by the underlying ommication overlay layer.
The distributed nature of the system is transpdretite user.

* The query does not have to be propagated to allisteibuted registry nodes
since information about the services that are dtamethe service registries are
saved in the Meta-Directory nodes. Therefore, tmdyservice registries that have

the information requested will be queried.

7.3 Limitations

In the Meta-Directory system proposed, there i dimitation to the results

presented in this thesis:

* In order to fully investigate the performance bk tMeta-Directory system
implemented, further experiments need to be perdrnby varying more
parameters. Such experiments could not be perforduedto time limitation.
These experiments should be performed using theeRlab test bed or by
creating a simulator so that control over all thestam parameters such as

network traffic can be achieved.

7.4 Future Work

This thesis also provided algorithms that can pelied when the underlying
network configuration needs to be changed aftersttstem has already been deployed.
Further analysis and implementation of these algms are needed, so that the system
administrator could indicate the underlying confagion the system should be changed

to and the system would change the underlying né&twmdel accordingly.

172

With the algorithms provided, runtime topology obe between the Fully
Connected model to any of the DHT models is nosjdes after the system is deployed.
Design and implementation of these algorithms riedxt investigated.

As future research in this topic, an implementatod a dynamic runtime network
change algorithm needs to be investigated. Thismdmork will allow the system
administrator to set parameters such as the sizbeohetwork and the bandwidth that
will be used as thresholds for determining if therent network between the Meta-
Directory nodes should be changed. The systemchéktk the current system state and
compare it with the values set by the system adsmator and perform the network
changes automatically without requiring furtheruhfrom the administrator.

Another area that should be looked at as futuseareh is the implementation of
replicated Meta-Directory nodes when a network épldyed with only one Meta-
Directory node. This is important to ensure thatslistem is always available and it does
not incur a single point of failure when there islyoone centralized Meta-Directory
node. This redundant node will keep a replicatibalbthe entries in the primary Meta-
Directory node.

Further design and implementation is requiredr@nadministrative console so that
the administrator can view the overall state of sgstem. With this view, the user can
determine the best configuration given the statetld system and the system

requirements.

173

REFERENCES

[1] S. Banerjee, S. Basu, S. Garg, S. Garg, S, Reéviullan, P. Sharma, “Scalable Grid
Service Discovery based on UDDI", iRroceedings of the '3 International
Workshop on Middleware For Grid Computin@renoble, France, December 2005,
pp.1-6.

[2] R. Barr, “JiST / SWANS - Java in Simulation Teéni Scalable Wireless Ad Hoc
Network Simulator”, 2005, available from http:/fjece.cornell.edu/. (accessed
November, 2007).

[3] D. Barry, “Web Services and Service-Orientectiitectures”, 2005, available from
http://www.service-architecture.com.(accessed R09Q7).

[4] L. Clement, A. Hately, C. V. Riegen, T. Rogefsds.), “UDDI Specification
Technical Committee Draft: Version 3.0.27, 2004, aiable from
http://uddi.org/pubs/uddi_v3.htm. (accessed JuBeep

[5] J. Colgrave, K. Januszewski, “Using WSDL in &DI Registry: Version 2.0.2",
2004, available from http://www.oasis-open.org/cattees/uddi-spec/doc/tn/uddi-
spec-tc-tn-wsdl-v2.htm. (accessed June, 2006).

[6] Z. Du, J. Huai, Y. Liu, “Ad-UDDI: An Active andistributed Service Registry”, in
Proceedings of the "6 International Workshop on Technologies for E-Ses
Trondheim, Norway, September 2005, pp. 58-71.

[7] S. Dustdar, M. Treiber, “A View Based Analysth Web Service Registries”,
Distributed and Parallel Databases Journalpl. 18, No. 2, September 2005, pp.

147-171.

174

[8] T. Gill, F. Kaashoek, J. Li, R. Morris, J. $iing, “P2PSim: A Simulator for Peer-to-
Peer Protocols”, 2005, available from http://pdsailcmit.edu/p2psim/index.html.
(accessed July, 2007).

[9] “Gnutella Protocol Definition”, 2003, available from http://rfc-
gnutella.sourceforge.net/. (accessed June, 2007).

[10] W. Hoschek, “The Web Service Discovery Architee”, in Proceedings of the
International IEEE/ACM Supercomputing ConferenBaltimore, USA, November
2002, pp. 1-15.

[11] F. B. Kashani, C. Chen, C. Shahabi, “WSPDS: bWeervices Peer-to-Peer
Discovery Service”, irProceedings of the International Conference on rihisted
System Computingas Vegas, USA, June 2004, pp. 733-743.

[12] “Open Chord Specification”, 2007, availablerfr http://open-chord.sourceforge.net.
(accessed June, 2007).

[13] M.P. Papazoglou, B.J. Kramer, J. Yang, “Legang Web-Services and Peer-to-Peer
Networks”, in Proceedings of the 5 International Conference on Advanced
Information Systems Engineerin§lagenfurt, Austria, June 2003, pp. 485-501.

[14] “PLANETLAB — An open platform for developingdeploying, and accessing
planetary-scale services”, 2007, available fromp:Hthww.planet-lab.org/. (accessed
November, 2007).

[15] Y. Qiao, L. Serghi, G. Papandreou, S. Majumé#arParker, “Web Services Extranet
Registry”, Technical ReportAlcatel-Lucent and Carleton University, Ottawa, ON,

2005.

175

[16] O. D. Sahin, C. E. Gerede, D. Agrawal, A. BEbbadi, O. Ibarra, J. Su, “SPiDer:

P2P-Based Web service Discovery”, Proceedings of the "8 International

Conference in Service-Oriented Computindmsterdam, The Netherlands,

December 2005, pp. 157-169.

[17] B. Sapkota, D. Roman, D. Fensel, “Distributéleb Service Discovery

Architecture”, in Proceedings of the Advanced International Confeseran
Telecommunications and International ConferenceDastributed System and Web
Applications and Service§Gaudeloupe, French Caribbean, February 2006, . 13
142.

[18] B. Sapkota, L. Vasiliu, I. Toma, D. Roman, Bussler, “Peer-to-Peer Technology
Usage in Web Service Discovery and Matchmaking” Pimceedings of the'®

International Conference on Web Information Systand EngineeringNew York,

USA, November 2005, pp. 418-425.

[19] M. Schlosser, M. Sintek, S. Decker, W. Nefdl,Scalable and Ontology-Based P2P

Infrastructure for Semantic Web Services”, Rroceedings of the Second

International Conference on Peer-to-Peer ComputiMashington, USA, September

2002, pp. 104-111.
[20] C. Schmidt, M. Parashar, “A Peer-to-Peer Apgioto Web Service Discovery,”

World Wide Web JournaY/ol. 7, No. 2, June 2004, pp. 211-229.

[21] “Simple API for XML, 2007, available from
http://en.wikipedia.org/wiki/Simple_API_for_XML. (@essed August, 2007).
[22] I. Stoica, R. Morris, D. Karger, M.F. Kaashoék Balakrishnan, “Chord: A scalable

peer-to-peer lookup services for distributed systgrplications”, inProceedings of

176

the Special Interest Group on Data Communicati®an Diego, USA, August 2001,
pp. 149-160.

[23] C. Sun, Y. Lin, and B. Kemme, “Comparison oDDI Registry Replication
Strategies,” inProceedings of the International Conference on WsHyvices
(ICWS’04),San Diego, USA, July 2004, pp. 218-225.

[24] “The Network Simulator - ns-2”, 2007, availabl from
http://www.isi.edu/nsnam/ns/. (accessed Novemls7p

[25] I. Toma, B. Sapkota, J. Scicluna, J. M. GomBz,Roman, D. Fensel, “A P2P
Discovery mechanism for Web Service Execution Eonment”, inProceedings of
the 29 International WSMO Implementation Workshdpnsbruck, Austria, June
2005, pp. 134-144.

[26] K. Verma, K. Sivashanmugam, A. Seth, A. PAMIETEOR-S: A Scalable P2P
Infrastructure of Registries for Semantic Publiatiand Discovery of Web
Services”, Journal of Information Technology and Managemevibl. 6, No. 1,
January 2005, pp. 17-39.

[27] S. Vinoski, “CORBA: Integrating Diverse Appétons Within Distributed
Heterogeneous EnvironmentdEEE Communications Magazingpl. 35, No. 2,
February 1997, pp. 46-55.

[28] “XMethods,” 2005, available from http://www.>ethods.net. (accessed November,

2007).

177

APPENDIX A: DERIVATION OF

TRANSFORMATION COMPLEXITIES

setMaintenance (boolean input, List nodes):
Figure 83 describes the protocol followed when giistem’s maintenance mode is
changed. For each node in the system, the statggted between “maintenance” and

“active” therefore the complexity for a total ofr odes is O(N).

addRTEntries (List locations):
The algorithm in Figure 97 is applied to all tleeations passed to the function.
Since it is applied to all the locationszf\l for each routing table the complexity is

O(Ngr).

deleteEntries (List KeyValueEntries):
Figure 96 is the algorithm used to delete all #mries that are passed through
KeyValueEntriesfrom the node. This is applied to all the key-ealentries Ny to

provide a complexity of O(N,).

publishToCluster (SuperPeer SP, List keyValueEntris):
From the algorithm described in Figure 95, the éupeer publishes all the key-
value entries N, passed, to the entry node. Therefore the complexkithis algorithm is

O(Nkv).

178

getClusters (Network SPNetwork):
Figure 94 shows the algorithm followed when a mekwvants to get a reference to
all the clusters in the network. In this algorithtine network queries all the Super Peers

Nspto provide a complexity of O(¥).

changeNetwork (SPFC , FC):

When the network is changed from an SPFC instdocan FC instance, the
algorithm in Figure 84 is applied. First the algfom gets a list of clusters by using the
getClustersalgorithm. Then the algorithm applies three nedteghs. The first loop is
applied over all the clusters, the second appliest all the nodes in the cluster, and the
third loop applied over all the clusters. Inside third loop, a function call is made to the
addRTEntriesalgorithm. After the nested loops, there is alsotla@r loop applied to all
the Super Peers.

Overall, in a network of Bb Super Peers, iNclusters, I nodes in a cluster, anckN
routing table entries, the complexity of this aitfon is then:

O(Nsp) + [O(Nc)* O(Nci)*O(Nc)* O(Nrr)] + O(Nsp)

Since Nypis equal to N, the complexity reduces to:

O(Nc*)* O(Ngi)* O(Nrr)

N¢ can also be expressed ag NY Nq and Nt can also be expressed ag NNg;
therefore the complexity can be expressed as:

O(Nc*)*O(NT - X Ne)*O(N - No)

Since N is greater thad' N and N;, the overall complexity of the algorithm reduces t

O(NGZ * N72).

179

changeNetwork (SPCHORD, CHORD):

When the network is changed from an SPCHORD igstdo a CHORD instance,
the algorithm in Figure 86 is applied. First thgaalthm gets a list of clusters by using
the getClustersalgorithm. Then the algorithm applies two nestsapk. The first loop is
applied over all the clusters, and the second jdieg over all the nodes in the cluster.
Inside the first loop, two function calls are madage to thegpublishToClustemlgorithm
and the second to thieleteEntriesalgorithm. Inside the second loop that is applcedll
the nodes in the cluster, two consecutive callsveade to the nodes, one to leave and the
other to join a cluster. After the nested loopsgréhis also another loop applied to all the
Super Peers.

Overall, in a network of N Super Peers, Nclusters, Ny key-value entries, N
nodes in a cluster, andrifbtal nodes, the complexity of this algorithmhert:

O(Nsp) + O(Nc)* [O(Nkv) + O(Nkv) + O(Ni)* O(Log Nr) | + O(Nsp)

Since Nypis equal to N, the complexity reduces to:

O(Nc)* [O(Nkv) + O(Ni)* O(Log Nr) |

N¢i can also be expressed as-IY, N therefore the complexity can be expressed as:
O(Nc)* [O(Nkv) + O(Nr - 3 Nci)* O(Log Nr)]

Since N is greater than N the overall complexity of the algorithm reduces t

O(Nc)* [O(Nkv) + O(Nr)* O(Log Nr) |

This overall complexity can be expressed as:

O(Nc* Nt * Log N7) + O(Nc * Nkv)

180

changeNetwork (FC , SPFC):

When the network is changed from an FC instancartoSPFC instance, the
algorithm in Figure 88 is applied. First the algiom has three consecutive loops over the
number of clusters which is a parameter passechgiuhe call. Then the algorithm
applies two nested loops. The first loop is appbedr all the clusters and the second is
also applied over all the clusters. Inside thet fic®p, a function call is made to the
addRTEntriesalgorithm. Then the algorithm is followed by thmeested loops. The first
loop applied over all the clusters, the secondiegdb all the nodes in the cluster, and
the third applied over all the remaining nodeshe thetwork minus the nodes in the
current cluster.

Overall, in a network of Nclusters, My routing table entries, JNnodes in a cluster,
and N total nodes, the complexity of this algorithmhen:

O(Nc) + O(Nc) + O(Ne) + O(Ne)* [O(Nc) + O(Nr)] + O(Nc)*[O(Nci)* O(NT - Nei) |
N¢i can also be expressed as-IY, N therefore the complexity can be expressed as:
O(Nc®) + O(Nc * Nrr) + O(N)*[O(N - ¥ Nai)* O(N7 - N]

Since N is greater than N the overall complexity of the algorithm reduces t

O(Nc?) + O(Nc * Ngr) + O(No)*O(N+1?)

Since N is greater than dand Nst, the overall complexity of the algorithm reduces t

O(Nc * N79).

changeNetwork (CHORD , SPCHORD):
When the network is changed from an FC instancertoSPFC instance, the

algorithm in Figure 90 is applied. First the algiom has three consecutive loops over the

181

number of clusters which is a parameter passechgiuhe call. Then the algorithm
applies two nested loops. The first loop is appbedr all the clusters and the second is
also applied over all the clusters. Inside thet fic®p, a function call is made to the
addRTEntriexalgorithm. Then the algorithm is followed by twosted loops. The first
loop is applied over all the clusters and the sddoop over all the nodes in the cluster.
In the second loop, two consecutive calls are ntadde nodes, one to leave and the
other to join a cluster. Then the algorithm applkesther loop over all the clusters,
whereby inside this loop another loop is applie@roall the key-value entries in that
cluster followed by a call to theublishToClusteralgorithm and a call to the
deleteEntrieslgorithm.

Overall, in a network of Nclusters, My routing table entries, JNnodes in a cluster,
Nt total nodes, N/ key-value entries in a cluster, and\/Notal key-value entries in the
network, the complexity of this algorithm is then:
O(Nc) + O(Nc) + O(Nc) + O(Ne)* [O(Nc) + O(Ner)] + [O(Nc)*O(Nci)* O(Log Nr)] +
O(Nc)* [O(Nkvi) + O(Nkv) + O(Nkv)]
N¢i can also be expressed as-IY, N therefore the complexity can be expressed as:
O(N®) + O(Ne * Nrr) + [O(N)*O(N+1 - ¥ Ne)* O(Log Nr)] + O(Nc)* [O(Nkwi) +
O(Nkv)]
Since N is greater than Nand Nst, and N is greater than N, the overall complexity
of the algorithm reduces to:

O(NC?) + O(Nc* Nt * Log Ny) + O(Ne * Nkv).

182

changeNetwork (CHORD , FCDHT):

When the network is changed from a CHORD instancan FCDHT instance, the
algorithm in Figure 92 is applied. In this algonthfor each node in the system the
routing table size is modified. Therefore, the ctemjpy of this algorithm for a network

of Nt total nodes is: O(N.

changeNetwork (FCDHT , CHORD):

When the network is changed from an FCDHT instanca CHORD instance, the
algorithm in Figure 93 is applied. In this algonthfor each node in the system the
routing table size is modified. Therefore, the ctemjpy of this algorithm for a network

of Nt total nodes is: O(N.

