
Abstract

In this paper, we outline two practical Artificial
Intelligence (AI) systems that we have developed
for use in network monitoring and fault diagnosis.
Based on this experience, we discuss the factors
that were important to the success of these systems,
and highlight our direction for future research in
this field.

Introduction

This paper is divided into two parts. In the first part, we
outline two applications where we have used AI tech-
niques to solve practical problems in telecommunications
network management. In particular, we focus on the tasks
of performance monitoring and fault diagnosis. Based on
this experience, we then highlight the key factors that
affected the success of AI techniques for these tasks. In the
second part of the paper, we describe the direction of our
ongoing research in this area, which reflects our expecta-
tions of what will be required to develop these kinds of
systems for future applications.

Lessons from two practical applications

Although there are many different functions involved in
network management, three functions that are commonly
associated with AI techniques are (1) performance moni-
toring, (2) fault diagnosis, and (3) network control and
reconfiguration. These three functions form a natural hier-
archy. At the lowest level, we detect abnormalities in the
performance of our network. At the next level, we need to
diagnose the cause of these abnormalities. At the highest
level, having identified the root cause of the problem, we
can then devise a suitable course of action to address the
problem.

Each level involves some degree of expert analysis or
problem-solving, and is thus a candidate for the applica-
tion of AI techniques. However, we have found that in
order to gain acceptance of AI systems by users, it is
important to take an incremental approach by introducing

this new technology into the lower levels first. Let us
examine two practical applications that demonstrate this
approach.

Monitoring and diagnosis

Our first application was designed to automate the tasks of
performance monitoring and fault diagnosis of transmis-
sion equipment for a special purpose telephone network.
Before the system was introduced, highly experienced
staff were responsible for analysing on a daily basis large
volumes of low-level performance statistics, such as traffic
overflow and transmission quality. From these statistics,
they would detect abnormalities, diagnose the cause of the
problem, and develop a plan to rectify the problem. How-
ever, the sheer volume of data available (up to 3 MBytes
each day) made it impossible for the experts to check
every aspect of the network. Consequently, it was sug-
gested that AI techniques be used to help reduce the work-
load.

Although AI could have been applied to each of the
three levels in this application, it soon became clear that
there were greater savings to be made in automating the
lower-level, data intensive tasks of monitoring and prelim-
inary fault diagnosis. This would then free the experts to
concentrate on the more complex tasks of diagnosing
more subtle faults and developing strategies to remedy the
faults.

The architecture of our system is shown in Figure 1.
The first requirement was to build a stable platform that
could store the different types of data that would be ana-
lysed by the system. Of all the data collected each day,
only a small proportion is likely to indicate a network
fault. As a result, we developed a connectionist data filter
that could quickly detect abnormalities in large volumes of
raw data. This filter was designed to be easily customised
by the experts, so they could verify and refine the knowl-
edge used by its simple method of reasoning. This
approach enabled the experts to gain confidence in the sys-
tem using data with which they were familiar.

Once the knowledge in the data filter had stabilised, we
were then able to introduce a rule-based expert system to
perform more detailed diagnosis based on the output of the
data filter. Whereas the data filter was designed to analyse
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each network element in isolation, the diagnosis expert
system can correlate abnormalities between several net-
work elements. This enabled us to isolate sympathetic
responses in network elements that are attached to a faulty
element.

As the knowledge base of the expert system was
refined, the experts gained sufficient confidence in the sys-
tem to migrate from using the output of the filter to that of
the expert system. This meant that they could concentrate
on how to fix faults, rather than detecting and diagnosing
faults. A more detailed description of this system appears
in (de Beler et al. 1994).

Event correlation

Our second application is designed to correlate and priori-
tise events from a backbone data network. It is built on an
existing platform that collects, stores and displays events
from different layers of the data network. Examples of
events include the status of front-end processors, point-to-
point links, and X.25 virtual circuits. Several thousand
events such as these may be generated each day.

Our role has been to develop a rule-based expert system
that correlates related network events as they arrive. Based
on these patterns of events, the system maintains a list of
problems that have been detected in the network. In con-
trast with the previous application, which involved off-line
analysis of averaged performance statistics, this applica-
tion involves processing individual event records that
arrive asynchronously in real-time.

At the heart of the system is a set of rules, where each
rule defines a pattern of events that constitute a problem.
Each rule defines a problem in terms of the type and
number of events that must occur, a set of bindings
between the fields of each event, and the maximum life-
time of the problem. When the arrival of an event triggers
a new problem, subsequent events that arrive within the
lifetime of the problem can be added if they match the cor-
responding rule. The system also incorporates heuristics to
handle situations where several rules match the same

event, or the lifetime of a problem expires before all the
necessary events have been seen.

The main benefit of this system is to reduce the volume
of data that the users need to analyse, thus enabling them
to spend more time on tasks that require higher skill levels,
such as diagnosing the cause of the problem, and fixing the
fault. Although there is scope for using AI techniques for
these latter tasks as well, it is important to gain the confi-
dence of the users in this new technology first. By starting
with a task that requires simpler reasoning, it is possible to
develop a knowledge base that the users can quickly learn
to verify and refine themselves. In this way, they develop a
greater degree of ownership of the system. This system
will be trialled in the second quarter of this year.

Key factors

Based on these two applications, we have been able to
identify several key factors that contribute to the success
of AI techniques in this area:

(1) Start with lower level, data intensive functions first,
such as performance monitoring. Functions such as
detailed diagnosis or control require more complex rea-
soning, making them riskier and harder for the experts to
verify and trust.

(2) Gain user acceptance incrementally, by concentrat-
ing on a small set of commonly occurring problem types at
first, rather than trying to analyse everything on the first
attempt. This will reduce development time so that users
can benefit from the system sooner.

(3) Make the system scalable and easily customised by
the users. Often experts find it hard to articulate their
knowledge until they have a practical tool to use.

(4) Target applications that already have a stable plat-
form for data collection and storage. Without this, system
developers are confronted with a “moving target”, and
there is the additional cost of building multiple interfaces
to data that is stored in different formats. It is also difficult
to verify the results of knowledge acquisition because of
the inaccessibility of test data.
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Figure 1: Architecture of the performance monitoring and fault diagnosis expert system



Future Trends

As network managers grow more confident with AI tech-
niques, they are willing to tackle more complex applica-
tions. Networks continue to grow larger and more
complex, thus increasing the volume of data that needs to
be analysed in order to monitor network performance. Fur-
thermore, modern network elements are able to report
more detailed performance data than was previously pos-
sible. As the capacity of data collection platforms also
increases, it will become feasible to access lower-level
alarms and individual call failure records. This will make
it possible to diagnose more subtle problems, and help to
identify faults earlier before their effects become wide-
spread.

However, detailed analysis of large volumes of low-
level data in real-time will push existing AI systems well
beyond their limits. Consequently, there will be a growing
demand in the future for distributed AI (DAI) systems that
can divide the processing requirements between multiple
systems. This approach also has the potential to reduce the
volume of management data that needs to be passed
between sites, as well as reducing the effects of any single
system failing.

While considerable attention has been paid to DAI for
control and reconfiguration (Weihmayer and Tan 1992),
we believe that there are important opportunities in the
areas of monitoring and low-level diagnosis. In this con-
text, the aim is to localise the analysis of detailed monitor-
ing data wherever possible. However, we still need to
exchange information between systems to correlate evi-
dence for suspected problems. If too much information is
exchanged, the advantages of distribution will be lost,
while if too little information is exchanged, it will be diffi-
cult to identify low-level problems. A key issue for
research is to explore this trade-off between efficiency and
accuracy.

Our ongoing research in this area aims to build on our
experience from the applications we described earlier. By
building on existing systems, our aim is to create a migra-
tion path for introducing DAI into practical network appli-
cations. Consequently, we expect that users are likely to be
more responsive to this new technology.
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