
 

1

 

An Artificial Intelligence Approach to Network Fault Management

 

‡

Denise W. Gürer, Irfan Khan, Richard Ogier

 

SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 USA

 

phone: (415)859-5911 fax: (415)859-4812 email: {gurer, khan, ogier}@erg.sri.com

 

Renee Keffer

 

Sprint, 9300 Metcalf, Overland Park, KS 66212 USA

 

phone: (913) 967-5342 email: renee.j.keffer@sprint.sprint.com 

 

Abstract

 

Traditionally, network management activities, such as fault management, have been performed with direct human involvement. 
However, these activities are becoming more demanding and data intensive, due to the heterogeneous nature and increasing size 
of networks today. For these reasons, it is becoming necessary to automate network management activities. Artificial 
intelligence technologies can play an important role in the problem solving and reasoning techniques that are employed in fault 
management. Expert systems have been successfully applied to some types of fault management. However, these systems are 
not flexible enough for today’s evolving network needs. We propose a hybrid AI solution that employs both neural networks 
and case-based reasoning techniques for the fault management of heterogeneous distributed information networks. 

 

Overview of Fault Management Activities

 

Today’s high speed, heterogeneous networks represent a complex and data intensive environment that requires different 
solutions from the traditional methods performed by human operators. Automation of network management activities can 
benefit from the use of artificial intelligence (AI) technologies, including fault management, performance analysis, and traffic 
management. Here we focus on fault management, where the goal is to proactively diagnose the cause of abnormal network 
behavior and to propose, and if possible, take corrective actions. First an overview of fault management activities and 
responsibilities is given. Then follows a discussion on how AI technologies may be used to automate the fault management 
process, in particular neural networks (NNs) and case-based reasoning (CBR). The following discussion assumes a 
telecommunications synchronous optical network (SONET) with asynchronous transfer mode (ATM) switching. However, the 
same model can be applied to any heterogeneous distributed information network. 

Essentially, network faults can be classified into hardware and software faults, which cause elements to produce incorrect 
outputs, which in turn can cause overall failure effects in the network such as congestion (Wang, 1989). Examples of hardware 
faults are failures of an element due to a failing or a weakness in their logical design, or elements malfunctioning due to simple 
wear and tear or through external forces such as accidents, acts of nature, being mishandled, or improperly installed. Examples 
of software faults include failure of elements due to incorrect or incomplete design of their software, erratic behavior of 
elements or the network due to software bugs (e.g., incorrect packet header processing), and slow or faulty service by the 
network due to incorrect information (e.g., incorrect routing tables).

The flow of fault management, shown in Figure 1, can be described as follows; (1) collect alarms, (2) maintain customer 
satisfaction through immediate action, (3) filter and correlate the alarms, (4) diagnose faults through analysis and testing, (5) 
determine a plan for correction, display correction options to users, and implement the correction plan, (6) verify the fault is 
eliminated, (7) record data and determine the effectiveness of the current fault management function. 

The first step in fault management is to collect monitoring and performance alarms. Typically alarms are produced by 
either managed network elements (e.g., ATM switches, customer premise equipment) or by a statistical analysis of the network 
that monitors trends and threshold crossings. Alarms can be classified into two categories, physical and logical, where physical 
alarms are hard errors (e.g., a link is down), typically reported through an element manager, and logical alarms are statistical 
errors (e.g., performance degradation due to congestion).

Once the alarms have been reported and collected, adequate service must be maintained through immediate action. This 
action serves as a temporary stop gap while the fault diagnosis process proceeds, in order to ensure the customer does not 
experience a loss or decrease in service. An example may be routing traffic in an opposite direction in the case of a SONET ring 
break, or in the case of a malfunctioning switch, rerouting around the problem area.

‡This research was partly supported by Sprint Corporation and partly by internal funding at SRI International. The opinions expressed in this 
publication do not necessarily reflect a position or policy of Sprint.

This document was created with FrameMaker 4.0.2



 

2

 

After customer satisfaction is ensured, the next step is to filter and correlate the alarms. Alarm filtering is a process that 
analyzes the multitude of alarms received and eliminates the redundant alarms (e.g., multiple occurrences of the same alarm),. 
Alarm correlation is the interpretation of multiple alarms such that new conceptual meanings can be assigned to the alarms, 
creating derived alarms. Faults are identified by analyzing the filtered and correlated alarms and by requesting tests and status 
updates from the element managers, which provide additional information for diagnosis.

Once a fault has been diagnosed, corrective procedures may be undertaken by the network to eliminate the cause of the 
fault. The fault management system’s role in correction is to develop a plan or series of actions, and to initiate this plan with 
other functions within the network. As much of the correction as possible is performed automatically without human 
intervention, although at times it is necessary for a technician to physically go to a site to replace a part, or for a programmer to 
debug some software. The correction must be verified through testing requests sent to the element managers, where if the fault 
does not disappear, more data is analyzed and the diagnostic process is repeated. 

Another step in fault management is to collect data about the effectiveness of the fault management process in order to 
monitor damage perpetrated by faults and the costs of repair. As outlined in (Byrne, 1994), questions regarding how often faults 
are occurring and how many faults are affecting service should be normalized to account for network size and number of 
customers. Other questions regarding length of service interrupts, number of times a fault is correctly identified, and number of 
hours to repair, should be normalized according to the number of relevant faults detected. These statistics can be used to analyze 
the performance of the fault management system and can be used in other network management activities such as capacity 
planning in determining current and projected costs for the maintenance of the network. In addition, a finer grained analysis of 
the types of faults can shed some light on the reliability of different types of equipment.

 

  FILTER and CORRELATE
             ALARMS
(Neural Networks or Bayesian 

   DIAGNOSE FAULTS
(Case-based Reasoning or 

        Belief Networks)

     Expert Systems)

DEVELOP and IMPLEMENT
    CORRECTIVE PLAN
  (Case-based Reasoning, 
   Intelligent Planning, or 
        Expert Systems)

VERIFY FAULT  IS 
 ELIMINATED

 Fault not
Eliminated

 

PHYSICAL
 ALARMS

LOGICAL
ALARMS

 

Figure 1: 

 

The fault management process and possible AI technologies.

 

NETWORK

 

COLLECT ALARMS
TAKE ACTION to 

ENSURE 
CUSTOMER

SATISFICATION

 Fault is
Eliminated

RECORD EVENTS and
      ANALYZE FAULT
      MANAGEMENT
     PERFORMANCE



 

3

 

AI Applications for Fault management

 

The more complex processes of fault management include alarm filtering and correlation, fault identification, and 
correction. Many of these functions involve analysis, correlation, pattern recognition, clustering or categorization, problem 
solving, planning, and interpreting data from a knowledge base that contains descriptions of network elements and topology. 
Artificial intelligence technologies are ideal for these types of functionalities.

Currently, most systems employing AI technologies for fault diagnosis are expert or production rule systems (Corn et al., 
1988; Joseph et al., 1989; Wright, Zielinski & Horton, 1988; Yamahira, Kiriha & Sakata, 1989). Many of these systems are well 
developed; however, they have their limitations. Generally speaking:

• Expert Systems (ESs) cannot handle new and changing data. Rules are brittle and not robust when faced with 
unforeseen situations (e.g., a new combination of alarms due to changing network topology). 

• They cannot learn from experience (i.e., they cannot use analogy to reason from past experiences or remember 
past successes and failures in the context of a current problem). The rules that are incorporated at development 
time cannot easily adapt as the network evolves.

• They do not scale well to large dynamic real world domains. It is difficult, especially for technicians or 
operators not familiar with AI, to add new rules without a comprehensive understanding of what the current 
rule base is and how a new rule may impact the rule base.

• They require extensive maintenance when the domain knowledge changes; new rules have to be added and old 
rules adapted or deleted. 

• They are not good at handling probability or uncertainty. Fuzzy logic can be employed to create fuzzy rules. 
However, fuzzy expert systems still have the problems discussed above.

• They have difficulty in analyzing large amounts of uncorrelated, ambiguous and incomplete data. The domain 
must be well understood and thought out. This is not entirely possible in domains such as fault management. 

These drawbacks argue for the use of different AI technologies that can overcome the above mentioned difficulties, either 
alone or as an enhancement of ESs. Probabilistic methods such as neural networks (NNs) or Bayesian belief networks (BBNs) 
are appropriate for correlation, while symbolic methods such as case-based reasoning (CBR) or expert systems are appropriate 
for fault identification. In many cases it is beneficial to use these technologies in cooperation with each other.

Another area of fault management where AI technologies can have a positive impact, is fault correction. CBR systems, 
ESs, or intelligent planning systems can develop plans or courses of action that will correct a fault that has been identified and 
verified. The application of these methods and the reasoning behind using them are discussed in the following sections.

 

Fault diagnosis

 

With today’s large and dynamic networks, it is necessary for a fault management system to be able to adjust to changes 
that occur within the network elements and topology. Thus a NN should be trained or a BBN built to filter, correlate, and identify 
general categories of faults. However, in order to identify the exact location of a fault, a procedure is necessary where 
appropriate tests are requested and the results analyzed to further pinpoint a fault’s location. This procedure involves a series of 
decisions based on human expertise, and therefore cannot be implemented by a NN or BBN alone. Therefore, it is appropriate 
to train a NN or construct a BBN to correlate alarms and recognize basic fault patterns, and to use symbolic processing such as 
CBR to further analyze the data, run tests, and pinpoint the exact identity and location of the fault.

A hybrid AI system is ideal due to the diverse nature of the fault management task. Rather than performing the whole task 
with one technique that is not ideal for all aspects, a couple of techniques are used as appropriate. Thus, the strengths of each 
technique are emphasized while the weaknesses are overcome by the other. A drawback to using a hybrid AI system is 
knowledge acquisition must be performed twice and in very different ways. For example, a neural network must be trained with 
large amounts of input/output data pairs and a CBR system must be seeded with initial cases drawn from experts and/or other 
symbolic data sources. This adds time to the development process and requires two types of knowledge. However, we believe 
the advantages of using a hybrid system in fault management outweigh the costs through the gain of robustness and accuracy.

The following discussion outlines the use of AI technologies as a solution to fault diagnosis where diagnosis has been 
split into a two step process: alarm filtering and correlation, and fault identification. First the fault management system receives 
an enormous number of alarms that need to be filtered and correlated into manageable categories. Second, the categorized 
alarms are further analyzed and tests are initiated on network elements in order to identify the fault that is the cause of the 
alarms. 



 

4

 

Alarm Filtering and Correlation

 

Alarm filtering can be thought of as four processes: compression, count, suppression, and generalization (Jakobson & 
Weissman, 1993). Compression is the reduction of multiple occurrences of the same alarm into a single alarm; count is the 
substitution of a specified number of occurrences of similar alarms or alarm categories with a new alarm; suppression is 
inhibiting a low-priority alarm in the presence of a higher-priority alarm, and generalization is referring to an alarm by its 
superclass where the superclasses are determined by domain experts. These four processes are well defined and can thus be 
achieved through the use of rules or the application of ESs.

In addition to filtering, the alarms need to be correlated. Correlating alarms is a difficult task due to their inherent 
ambiguity. Even with large detailed amounts of data, there can still exist a significant amount of uncertainties and/or 
inconsistencies. In many cases, there is more than one plausible explanation for the underlying cause of a group of alarms. For 
instance, the non-occurrence of a remote event may cause a device waiting for that event, to time-out, with several possible 
causes for this lack of response: the device could be faulty, the response could be delayed due to congestion, or the local device’s 
timer could be faulty. The production of incomplete data due to crash-recovery cycles, is another problem area for correlating 
alarms. Some network elements may have built-in mechanisms to reset themselves when a local fault tolerance level has been 
reached. This can cause the destruction of important evidence needed to diagnose faults, and can indicate that all is well when 
the failure condition still exists, causing a crash-recovery cycle.

The complex process of correlation can be thought of as substituting a set of alarms that match a predefined pattern with 
a new alarm. As described above, this process involves ambiguous, incomplete, and inconsistent data and can be thought of as 
a pattern recognition problem. Thus a probabilistic AI technology such as NNs or BBNs are appropriate for alarm correlation 
since they can analyze patterns of common behavior over circuits, and/or can handle ambiguity, and incomplete data.

 

Neural Networks for Alarm Correlation

 

Feedforward neural networks have already been proven effective in medical diagnosis, target tracking from multiple 
sensors, and image/data compression. It is therefore plausible that NNs would be effective for the similar problem of alarm 
correlation, found in fault diagnosis. In fact, the following properties of multilayer feedforward neural networks make them a 
powerful tool for solving these problems. 

• NNs can recognize conditions similar to previous conditions for which the solution is known (i.e., pattern 
matching). 

• They can approximate any function, given enough neurons, including boolean functions and classifiers. This 
gives NNs great flexibility in being able to be trained for different alarm patterns.

• They can generalize well and learn an approximation of a given function, without requiring a deep 
understanding of the knowledge domain. This is especially important in new technological areas such as ATM 
switch networks.

• They provide a fast and efficient method for analyzing incoming alarms.

• They can handle incomplete, ambiguous, and imperfect data.

In a feedforward neural net, shown in Figure 2, the neurons are arranged into layers, with the outputs of each layer feeding 
into the next layer. This model has a single input layer, a single output layer, and zero, one, or more hidden layers. As the name 
suggests, all connections are in the forward direction where there is no feedback. Feedforward networks are useful because of 
their ability to approximate any function, given enough neurons, and their ability to learn (generalize) from samples of input-
output pairs. Learning is accomplished by adjusting the connection weights in response to input-output pairs, and training can 
be done either off-line, or on-line during actual use. Depending on how the training is done, these NNs can be characterized as 
being trained by supervised methods or by unsupervised methods.

Supervised NNs training data consists of correct input vector/output vector pairs as examples, used to adjust the neural 
net connection weights. An input vector is applied to the NN, the output vector obtained from the NN is compared with the 
correct output vector, and the connection weights are changed to minimize the difference. A well trained neural net can 
successfully generalize what it has learned from the training set (i.e., given an input vector not in the training set, it produces 
the correct output vector most of the time).

In unsupervised training there is no training data based on known input/output pairs. The NN discovers patterns, 
regularities, correlations, or categories in the input data and accounts for them in the output. For example, an unsupervised 
neural net where the variance of the output is minimized could serve as a categorizer which clusters inputs into various groups. 



 

5

 

Unsupervised training is typically faster than supervised training and provides the opportunity to present patterns to operations 
personnel who can identify new output relations. For these reasons unsupervised training is used even in situations where 
supervised training is possible. However, for the domain of alarm correlation, input/output pairs can be easily produced, making 
supervised trained NNs a plausible choice for alarm correlation.

A different neural net approach for alarm correlation (Patton, Chen & Siew, 1994) uses the ability of neural networks to 
predict future behavior of general nonlinear dynamic systems. In this approach, a neural network predicts normal system 
behavior based on past observations and the current state of the system. A residual signal is generated based on a comparison 
between the actual and predicted behavior, and a second neural network is trained to detect and classify the alarms based on 
characteristics of the residual signal. This method can be used to identify basic categories for the alarms.

An additional approach is to cast the pattern recognition problem into an optimization problem, making Hopfield NNs an 
appropriate tool for alarm correlation. This type of NN operates by using gradient methods to find a local minimum of a 
quadratic energy function that represents an optimization problem, and whose coefficients depend on the network’s 
interconnection strengths. Methods such as mean-field annealing, repeated trials with random initial states, and tabu learning 
(Beyer & Ogier, 1990) can be used to find a local minimum that is nearly optimal. For example, in alarm correlation, the 
optimization problem is to identify the hypothesis that best explains the observed data. Goel et al. (1988) propose a neural 
network model based on Hopfield nets for solving a special case of this problem. In this case, the neural net would be designed 
so that states corresponding to the most likely hypotheses have the lowest energy. 

 

Bayesian Belief Networks for Alarm Correlation

 

Bayesian belief networks are another possible choice for alarm correlation due to their ability to handle uncertainty and 
represent cause and effect relationships. A BBN is a representation consisting of nodes representing uncertain variables that are 
connected by arcs that represent cause and effect dependencies among the nodes.The information known about one node (i.e., 
effect node) depends on the information of its predecessor nodes that represent its causes. This relationship is expressed by a 
probability distribution for each effect node, based on the possible values of its predecessor nodes’ variables. Note that an effect 
node can also lead into other nodes, where it then plays the role of a cause node. An important advantage that BBN’s offer is 
the avoidance of building huge joint probability distribution tables that include permutations of all the nodes in the network. 
Rather, only a node’s immediate predecessor’s possible states and their effects on the node are necessary.

Due to BBN’s form of knowledge representation, large amounts of interconnected and causally linked data can be 
represented. Generally speaking:

• BBNs can represent deep knowledge by modeling the functionality of the transmission network in terms of 
cause and effect relationships between element and network behavior and faults. 

• They can provide guidance in diagnosis. Calculations over the same BBN can determine both the precedence 
of alarms and the areas that need further clarification in order to provide a finer grained diagnosis.

 

Hidden 
Layer

Input 
Layer

 

Figure 2: 

 

Model of a feedforward neural network.

 

Output
Neurons



 

6

 

• They can handle noisy, transient, and ambiguous data due to their grounding in probability theory.

• They have a modular, compact, and easy to understand representation, when compared to other probabilistic 
methods.

• They provide a compact and well-defined problem space because they use an exact solution method for any 
combination of evidence or set of faults.

BBNs are appropriate for automated diagnosis because of their deep representations and precise calculations. A concise 
and direct way to represent a system’s diagnostic model is as a BBN constructed from relationships between failure symptoms 
and underlying problems. A BBN represents cause and effect between observable symptoms and the unobserved problems so 
that when a set of symptoms are observed the problems most likely to be the cause can be determined. In practice, the network 
is built from descriptions of the likely effects for a chosen fault. In use as a diagnostic tool, the system reasons from effects back 
to causes. 

The development of a diagnostic BBN requires a deep understanding of the cause and effect relationships in a domain, 
provided by domain experts. This is both an advantage and disadvantage. An advantage is the knowledge is not represented as 
a black box, as are the NNs. Thus, humanly understandable explanations of diagnoses can be given. The disadvantage is the 
realm of ATM-based networks is technologically immature enough that expertise in ATM fault diagnosis may be hard to find 
and to implement. 

 

Fault Identification

 

The filtering and correlation of alarms is the first step of fault diagnosis. The second step involves further analysis and 
identification of the exact cause of the alarms, or the fault. This process is an iterative one where alarm data are analyzed and 
decisions are made whether more data should be gathered, a finer grained analysis should be executed, or problem solving 
should be performed. Gathering more data can consist of sending tests to network elements or requesting network performance 
data. Problem solving requires expert knowledge which consists of domain knowledge (i.e., knowledge about the network 
elements and topology, and typical faults), and meta-knowledge (i.e., knowledge about how to diagnose faults). 

A symbolic AI technology such as ESs or CBR is ideal for achieving this functionality. Due to the limitations of expert 
systems described earlier, and the evolving nature of this process, CBR is the better choice for fault identification. CBR systems 
are more robust than ESs because they 

• can handle new and changing data through their ability to use analogy,

• can learn from experience through the acquisition of new cases, 

• can scale well to large knowledge domains due to the ability of their knowledge representation structures to 
collapse or merge into each other, 

• do not require extensive maintenance, 

• can critique or identify the “goodness” of a proposed solution based on simulations and/or previous cases from 
the case library, 

• can use a method of knowledge acquisition that is less time consuming than expert system rule development. 

Case-based reasoning is based on the premise that situations recur with regularity. Studies of experts and their problem-
solving techniques have found that experts rely quite strongly on applying their previous experiences to the current problem at 
hand. CBR can be thought of as such an expert that applies previous experiences stored as cases in a case library. Thus, the 
problem-solving process becomes one of recalling old experiences and interpreting the new situation in terms of those old 
experiences.

Experiences are contextualized pieces of knowledge that are stored as cases in a case library. An important component of 
any CBR system (as with any knowledge-rich AI system) is deciding what the key attributes of a case are and on which attributes 
the cases will be indexed. Indices are combinations of the cases’ attributes or descriptors and are used to predict which cases 
are useful to the current situation. Typically, the front-end of an application that uses CBR will have a graphical user interface 
(GUI) that allows a user to easily input new cases without requiring any detailed understanding of the underlying CBR engine. 
The cases can be input in a free-form manner (i.e., text) and are automatically indexed into the case library. A key benefit in 
using CBR systems is their ability to learn. One obvious method of learning is to add new cases with their new solutions and 
evaluations to the case library, emulating specialization. Another type of learning occurs because of the ability of CBR systems 
to collapse cases or parts of cases that have similar attributes or problem solutions into a single case, emulating generalization.



 

7

 

CBR problem solving can be depicted as a five-step process, as shown in Figure 3: (1) retrieval, (2) interpretation and 
adaptation, (3) evaluation and repair, (4) implementation, and (5) evaluation and learning. The first step is retrieving cases that 
best match the current situation or case. Thus it is crucial to use an appropriate indexing method, such as decision trees or nearest 
neighbor matching. Once a case is retrieved, it must be interpreted and then adapted. The interpretation process is a simple 
comparison between the retrieved cases and the current case. Adaptation is a complicated, domain-dependent process that uses 
rules to adapt the current case to the problem situation and propose an initial solution, based on the similarities and differences. 
The next step is an evaluation and repair cycle where the proposed solution is evaluated through comparisons to cases with 
similar solutions or through simulation, and the solution is modified accordingly. After the CBR system has found its best 
solution, the solution is implemented and the results are evaluated. The resulting evaluation, solution steps, and problem context 
are entered into a new case, which is then indexed into the case library, allowing the system to learn.

 

A Hybrid AI System for Fault Diagnosis

 

Based on the discussions of the previous sections, a good candidate for a fault diagnosis system is a hybrid system that 
uses both probabilistic and symbolic problem solving AI techniques. Below we discuss a NN/CBR system for fault diagnosis, 
shown in Figure 4. 

Network alarms are fed into an ES that filters the alarms through compression, count, suppression, and generalization. 
The pattern recognizing ability of neural networks can be used for correlating alarms and recognizing alarm patterns. Filtered 
alarms serve as input into a NN, trained to recognize common fault categories. The output consists of the most likely fault types, 
protocol types, and geographic area of the fault. This analysis is then fed into a case-based reasoning system where testing and 
further analysis is performed. The CBR system can make decisions, based on past problem solving experiences, whether to 
gather more data, problem solve, or run the data through the same NN or a different NN that was trained on a finer grained set 
of alarms. 

The first step in developing a NN component for the fault management system is to train the NN. Neural networks learn 
to recognize patterns by generalizing from many examples. Supervised training should be used where many examples of similar 
and different faults are fed into the network with known outcomes. Once the network is trained, it can be integrated with the 
CBR system.g.

 

CURRENT
NETWORK

STATE

 

EVALUATE THROUGH 
COMPARISON TO 
OTHER CASES OR 

SIMULATION

ADAPT TO CURRENT 
SITUATION

RETRIEVE 
BEST MATCHED 

CASES

IMPLEMENT
 SOLUTION IN REAL 

WORLD

EVALUATE RESULTS 
AND ADD TO CASE 

LIBRARY

NEEDS IMPROVEMENT

 

Figure 3:

 

 The case-based reasoning process.



 

8

 

after receiving the filtered and correlated alarms, the CBR system attempts to identify what information would further the 
diagnosis of the fault. The CBR system needs to decide on its own what additional tests need to be made on the network 
elements and what granularity of NN to use to further analyze the data. To achieve this end, the CBR library is searched for the 
cases that most resemble the current situation. Once the cases are found, similarities and differences are discovered and a new 
solution is proposed. This continues in an iterative manner until the fault is identified.

Once a fault is identified, the whole problem solving episode should be analyzed. The value of the tests (i.e., useful, not 
useful), the steps taken, any circuitous paths or dead-ends taken, and the success of the analysis should be stored into a new 
case. This information, in addition to contextual information, comprise a new case which is then indexed into the case library. 
In this manner, the fault management system is able to learn from its successes and failures.

 

Fault Correction

 

Another goal of an automated network management system is automated fault correction. This requires some knowledge 
about the network elements and topology, and old and new technologies. Some general technical problems that arise in 
correcting faults as outlined by (Dupuy et al., 1989) are: uncoordinated correction, manual correction, and old technology. 

Uncoordinated correction may cause performance conflicts to occur within a set of network elements, which in turn may 
cause a surge of other control processing in other nodes, leading to congestion and the emergence of other faults. For example, 
if a fiber breaks, uncoordinated restoration actions of the section, path, and line layers may result in none of the layers being 
properly re-established. These restoration actions may also cause congestion within the network. 

A logistics problem of fault correction is manual correction. In many cases, correction involves the resetting of a device. 
If the device is unresponsive to remote communications, it may be required to have someone on site manually correct the device. 
Obviously, this is undesirable for large scale networks. 

Old technology is another technical concern for fault correction. As networks evolve over time, new standards and 
equipment are incorporated and implemented. In many cases, the new and improved devices are not completely compatible with 
the old devices and standards. For example, even though a new type of switch may have the same functionality as its older 

 

Alarms

Diagnosis
Cases

Correction 

Cases

 

NETWORK

EXPERT SYSTEM
(Filtering)

NEURAL NETWORK
(Correlation)

CASE-BASED REASONING
(Fault Identification)

CASE-BASED REASONING
(Correction)

CASE
LIBRARY

 

Request for 
Finer 
Grained 
Correlation

Filtered Alarms

Correlated & Filtered Alarms

Identified Fault
Corrective Actions

Test Results

Test Requests

 

Figure 4:

 

 A hybrid AI system for automated network fault management.



 

9

 

counterpart, it would exhibit improved performance, such as faster recovery abilities in response to a fault. The recovered 
switches would immediately allow a higher traffic throughput, which in turn would put more pressure on the still recovering 
older switches. 

These concerns argue for a symbolic AI technique that can represent the domain knowledge and problem solving 
methods. Some possible choices are hierarchical AI planning, expert systems, or case-based reasoning.

AI planning would be able to handle the complicated logistics of planning and scheduling the correction, especially timing 
corrections so as to avoid uncoordinated recovery and to account for old technology. The main drawback is that today’s current 
planning systems that can be applied to real world domains are still prototypes and are too slow for a real-time solution to fault 
correction. However, in the near future, when planning systems become more optimized and machines are faster, they will prove 
to be a viable option.

Additionally, CBR systems will be able to use previous experiences in formulating a new fault correction strategy. For 
example, when a device is unresponsive to manual correction, similar cases (i.e., previous fault correction solutions) that had 
the same problem can be retrieved from the case library and their solutions analyzed. Drawing analogies from those cases, the 
CBR system could come up with an appropriate solution within the context of the current problem. 

Expert systems are a strong candidate for fault correction, as are CBR systems. For the reasons discussed previously, CBR 
is a better choice. In particular, CBR systems will be able to learn from mistakes. For example, if an uncoordinated recovery 
occurs which leads to congestion, the fault correction steps that led to that congestion will be remembered and noted as a 
negative solution that led to congestion. A rule-based system, on the other hand, would have to be updated and refined by a 
human expert every time a set of rules is found to be inadequate.

The ability to rely on past experience and analogy is also useful when dealing with old technology. Many times, solutions 
to problems involving new technology are analogous to those involving old technology because most likely they have the same 
functionalities, but with different performance. Rules can be used to control the case adaptation process and therefore take 
advantage of the capability to use analogy. For example, the general outline of a fault correction plan for recovering a mixture 
of old and new switches would be the same as for a plan involving only old technology. The differences would come into play 
with timing, because the old switches are slower. Rules can account for this by determining what the various timings are and 
come up with a timing scheme to avoid putting too much pressure on the old switches.

 

Conclusion

 

This paper has discussed possible AI technologies that allow for the automation of fault management. Due to the large 
amount of alarms to process and their inherent ambiguity and uncertainty, a probabilistic AI technology can be used for 
correlation such as NNs or BBNs. However, additional problem solving methods must be used to further analyze the correlated 
faults, perform tests, and identify the fault. Methods such as ESs and CBR systems are appropriate due to their ability to handle 
knowledge rich domains such as diagnosis. 

A proposed hybrid system, currently under development, was discussed. Alarms are initially filtered through a rule-based 
or expert system and correlated with a neural network. The filtered and correlated alarms are then further analyzed through the 
use of a CBR system that attempts to identify the fault that is the cause of the alarms, based on past cases or problem solving 
experiences. A second CBR system is used to determine a correction plan, which is then executed and the results analyzed and 
stored as a new case. We believe the combination of probabilistic and symbolic AI techniques give the fault management system 
more flexibility and capability for diagnosing faults in today’s and tomorrow’s large heterogeneous networks.

 

Acknowledgments

 

We wish to acknowledge JohnMark Agosta (SRI International) for his input in discussions of the application of Bayesian 
belief networks to network fault management and Diane Lee (SRI International) for her helpful and insightful review of this 
paper.

 

References

 

Beyer, D. & Ogier, R.G. (1990) Tabu learning for neural network optimization. In 

 

Proceedings of the International Joint 
Conference on Neural Networks

 

.

Byrne, C.J. (1994) Fault management. In Aidarous, S. & Plevyak, T. (Eds.) 

 

Telecommunications Network Management into the 
21st Century

 

. New York: IEEE Press.



 

10

 

Corn, P.A., Dube, R., McMichael, A.F., & Tsay, J.L. (1988) An autonomous distributed expert system for switched network 
maintenance

 

.

 

 In 

 

Proceedings of IEEE GLOBECOM’88

 

 (pp. 1530-1537).

Dupuy, A., Schwartz, J., Yemini, Y., Barzilai, G. & Cahana, A. (1989) Network fault management a user’s view. In Meandzija, 
B. & Westcott, J. (Eds.) 

 

Integrated Network Management, I

 

. North Holland: Elsevier Science Publishers B.V.

Goel, A., Ramanaujam, J. & Sadayappan, P. (1988) Towards a neural architecture for abductive reasoning. In 

 

Proceedings of 
the IEEE International Conference on Neural Nets

 

, Vol. I (pp. 681-688).

Jakobson, G. & Weissman, M.D. (1993) Alarm correlation: correlating multiple network alarms improves telecommunications 
network surveillance and fault management. 

 

IEEE Network

 

, 52-59, November.

Joseph, C., Kindrick, J. Muralidhar, K. So, C. & Toth-Fejel, T. (1989) MAP fault management expert system. In Meandzija, B. 
& Westcott, J. (Eds.) 

 

Integrated Network Management, I.

 

 North-Holland: Elsevier Science Publishers B.V.

Patton, R.J., Chen J., & Siew, T.M. (1994) Fault diagnosis in nonlinear dynamic systems via neural networks. In 

 

Proceedings 
of the International Conference on CONTROL

 

, Vol. 2 (pp. 1346-1351).

Wang, Z. (1989) Model of network faults. In Meandzija, B. & Westcott, J. (Eds.) 

 

Integrated Network Management, I

 

. North 
Holland: Elsevier Science Publishers B.V.

Wright, J.R., Zielinski, J.E. & Horton, E.M. (1988) Expert systems development: the ACE system. In Liebowitz, J. (Ed.) 

 

Expert 
System Applications to Telecommunications.

 

 New York: John Wiley & Sons. 

Yamahira, T., Kiriha, Y. & Sakata, S. (1989) Unified fault management scheme for network troubleshooting expert system. In 
Meandzija, B. & Westcott, J. (Eds.) 

 

Integrated Network Management, I.

 

 North-Holland: Elsevier Science Publishers B.V.


