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Abstract – This paper derives bounds on the diversity-

multiplexing tradeoff of wireless relay networks with arbitrary 

link connectivity between cooperating terminals. The derived 

bounds are applicable when there are single and multiple 

antennas per terminal. Two classes of relaying method are 

analyzed, those requiring all cooperating terminals to correctly 

decode the transmitted signal in order for the destination to 

correctly decode (comprehensive decoding), and those requiring 

only a subset of cooperating terminals to correctly decode the 

transmitted signal in order for the destination to correctly 

decode (destination decoding). It is shown that the diversity-

multiplexing tradeoff of comprehensive decoding is constrained 

by the minimum number and arrangement of incident inter-

terminal antenna links across all receiving terminals in the 

network, and that the diversity-multiplexing tradeoff of 

destination decoding is constrained by the minimum number 

and arrangement of incident inter-terminal antenna links across 

all cut sets in the network. Results for the complexity of the 

involved minimization algorithms are provided. 

Index Terms – cooperative diversity, cooperative relaying, 

diversity-multiplexing tradeoff, relay networks, spatial diversity 

I. INTRODUCTION 

The spatial redundancy introduced by the presence of 

multiple antennas in wireless relay networks can in theory be 

used either to increase the diversity gain for a particular data 

rate or to increase the multiplexing gain (data rate) for a 

particular diversity gain. The concept of diversity-

multiplexing tradeoff that was introduced in [11] formalizes 

this fundamental tradeoff between diversity and multiplexing 

gain. This paper derives bounds on the diversity-multiplexing 

tradeoff of wireless relay networks with any number of relay 

terminals and any possible combination of links between 

cooperating terminals, and extends the previously presented 

maximum diversity order results of [3]. 

Two classes of relaying method are considered, those 

requiring all cooperating terminals to correctly decode the 

transmitted information signal in order for the destination to 

correctly decode (comprehensive decoding), and those 

requiring only a subset of cooperating terminals to correctly 

decode the transmitted information signal in order for the 

destination terminal to correctly decode (destination 

decoding). For the destination decoding class, individual 

relays may attempt to decode the information signal before 

retransmission, but the key point is that only a subset are 

required to do so correctly in order for the destination to 

correctly decode. 

The comprehensive decoding class includes decoded 

relaying with error propagation, also known as fixed decode-

and-forward (DF) relaying. The destination decoding class 

includes decoded relaying without error propagation, also 

known as adaptive or selective decode-and-forward (DF) 

relaying, and amplified relaying, also known as amplify-and-

forward (AF) relaying. From the perspective of diversity 

order, this classification of comprehensive decoding versus 

destination decoding is more fundamental than that of 

decode-and-forward versus amplify-and-forward relaying. As 

noted in many existing publications such as [2], [3], [4], [7], 

and [8], the maximum achievable diversity order of wireless 

relay networks is not dependent on the physical layer relaying 

method (amplified or decoded), but instead on the criteria for 

retransmission at each relay and the presence of error 

propagation. The approach taken in this paper of deriving 

sometimes looser diversity-multiplexing tradeoff bounds for 

the most general wireless relay networks with multiple 

antennas is different than that of [10], where tighter diversity-

multiplexing tradeoff bounds are derived, but only for 

specific simpler sub-problems of the most general wireless 

relay networks. 

II. SYSTEM MODEL 

The system model considered in this paper for a single user 

transmission in a wireless relay network involves a source 

terminal, a destination terminal, and a variable number of 

intermediate relay terminals. Let RT  denote the set of all 

receiving terminals participating in a particular wireless relay 

network, let RS  denote the complete set of distinct cut sets 

associated with the corresponding directed network graph, 

and let RL  denote the complete set of inter-terminal antenna 

links associated with the corresponding directed network 

graph. Also, let iA  denote the set of antennas at terminal iT , 

and let )(iPT  denote the set of previous terminals that transmit 

a signal received by terminal iT . Finally, let iL  denote the set 

of inter-terminal antenna links associated with a particular cut 

set iS , and let )(iINT  and )(iOUTT  respectively denote the sets 

of terminals on the input and output sides of cut set iS  that 

are associated with at least one of the inter-terminal antenna 

links in the corresponding set iL . Fig. 1 shows an example 

network, annotated with this terminology. 

This defined set notation is used in variable subscripts of 

the form 
iTx  to denote specific terminals, groups of 

terminals, or cut sets. Notation of the form 
iTx  is abbreviated 

to ix  for simplicity of exposition. The cardinality of a set X  

is denoted by X . Furthermore, it is assumed that all relays 

operate in half-duplex mode and that a network with N  

transmitters in general requires NK ≤≤2  orthogonal 

channels, resulting in a rate factor of K1 . The system model 



 

does not imply any particular method by which the set of 

relay terminals, or set of active links between the pairs of 

terminals, are chosen. 

In general, is not possible to directly determine the 

diversity-multiplexing tradeoff of wireless networks with 

arbitrary link connectivity between cooperating terminals 

from the high SNR probability of outage and maximum 

diversity order results presented in [3]. This is due to the fact 

that the terminals (for comprehensive decoding), or cut sets 

(for destination decoding), that limit the maximum achievable 

diversity order may not necessarily be the same terminals, or 

cut sets, that limit the maximum achievable multiplexing 

gain. The key difference is that although the maximum 

achievable diversity order depends on the number of 

independent fading realizations that can be combined, the 

maximum achievable multiplexing gain instead depends on 

the number of degrees of freedom in the channel. The 

terminal, or cut set, with the minimum number of 

independent fading realizations is not necessarily the 

terminal, or cut set, with the minimum number of degrees of 

freedom across all terminals, or cut sets, in the network. 

Instead, the method used in this paper to bound the 

diversity-multiplexing tradeoff of wireless relay networks 

with arbitrary link connectivity between cooperating 

terminals applies the main result of [11] where it is shown 

that the diversity-multiplexing tradeoff curve of a multiple-

input multiple-output (MIMO) channel with m  transmit 

antennas, n  receive antennas, and independent identically 

distributed Rayleigh fading between each pair of antennas is 

given by the piecewise linear function connecting the points 

{ }nmrrdr ,min,...,1,0)),(,( = , where ))(()( rnrmrd −−= , 

)(rd  is the diversity order, and r  is the multiplexing gain. 

We note that although this result was generated for MIMO 

channels, it is equivalent to the MISO/SIMO diversity-

multiplexing tradeoff curve of )1()( rmnrd −=  for the 

relevant range 1,0=r . The method of bounding and 

minimization across cut sets used in this paper is similar to 

that applied independently in [9] and [10]. Different from [1], 

for practicality the model is constrained to non-overlapping 

symbol periods. 

III. NETWORKS WITH COMPREHENSIVE DECODING 

For networks with comprehensive decoding the diversity-

multiplexing tradeoff curve can be upper bounded by 

performing a minimization across the diversity-multiplexing 

tradeoff curves of all terminals in the network. Applying the 

main result of [11], the diversity-multiplexing tradeoff curve 

of the channel at terminal iT  (between terminal iT  and all 

immediately preceding terminals )(iPT ) is given by the 

piecewise linear function connecting the points 
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This result can be applied across all terminals in the 

network, such that for networks with comprehensive 

decoding the diversity-multiplexing tradeoff curve is upper 

bounded by the piecewise linear function connecting the 

points KAAKrrdr i
TT

k
TT

iPk
Ri

/,minmin,...,/1,0)),(,(
)( 



















= ∑
∈∈

, 

where 

 








−−≤ ∑
∈∈

))((min)(
)(

KrAKrArd i
TT

k
TT

iPk
Ri

. (2) 

From the diversity-multiplexing tradeoff curve it can be 

seen that the maximum achievable diversity order is given by 
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the minimum number of incident inter-terminal antenna links 

across all terminals, and the maximum achievable 

multiplexing gain is given by 
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the minimum number of transmit or receive antennas for the 

incident multiple antenna channels across all terminals, 

divided by the number of orthogonal channels required to 

operate the given transmission scheme. 

These results indicate that the diversity-multiplexing 

tradeoff of comprehensive decoding is constrained by the 

minimum number and arrangement of incident inter-terminal 

antenna links across all receiving terminals in the network. 

Fig. 2 shows an example network, indicating those terminals 

with more than one antenna and annotated with the 

achievable diversity order of each terminal. Fig. 3 shows an 

example network, indicating those terminals with more than 

one antenna and annotated with the achievable multiplexing 

gain (not including the rate factor K1 ) of each terminal. 

IV. NETWORKS WITH DESTINATION DECODING 

For networks with destination decoding the diversity-

multiplexing tradeoff curve can be upper bounded by 

performing a minimization across the diversity-multiplexing 

tradeoff curves of all cut sets in the network. Applying the 

main result of [11], the diversity-multiplexing tradeoff curve 

of the channel at cut set iS  (across all the inter-terminal 

antenna links associated with cut set iS ) is upper bounded by 

the piecewise linear function connecting the points 
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where the upper bound results from the fact that the sets of 

terminals on the input and output sides of cut set iS , )(iINT  

and )(iOUTT  respectively, are not necessarily fully connected. 

For example, in the network shown in Fig. 4, for the cut set 

4S  where terminals ST , 1RT , 2RT , and 3RT  belong to )4(INT  

and terminals 4RT , 5RT , and DT  belong to )4(OUTT , although 



 

terminal 3RT  is directly connected to terminals 4RT  and DT , it 

is not directly connected to terminal 5RT . This reduction in 

connectivity in comparison to a fully connected MIMO 

channel between the sets of terminals on the input and output 

sides of cut set 4S  means that the diversity-multiplexing 

tradeoff of that corresponding fully connected MIMO 

channel is an upper bound on the actual diversity-

multiplexing tradeoff of the channel at cut set 4S . In general, 

the diversity-multiplexing tradeoff of the channel at cut set 

iS  is upper bounded by the diversity-multiplexing tradeoff of 

the corresponding fully connected MIMO channel involving 

the same sets of terminals on the input and output sides of cut 

set iS . This upper bound is tight when the sets of terminals 

on the input and output sides of cut set iS  are fully 

connected. 

For networks with destination decoding the diversity-

multiplexing tradeoff is therefore upper bounded by the 

piecewise linear function connecting the points 
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This upper bound is tight when the sets of terminals on the 

input and output sides of all cut sets are fully connected. 

From the diversity-multiplexing tradeoff curve it can be 

seen that the maximum achievable diversity order is upper 

bounded by 
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the minimum number of inter-terminal antenna links across 

all cut sets when the sets of terminals on the input and output 

sides of all cut sets are fully connected, and the maximum 

achievable multiplexing gain is upper bounded by 

 KAAr
iOUTliINk

Ri TT
l

TT
k

SS
/,min

)()(

max









≤ ∑∑
∈∈∈

, (8) 

the minimum number of transmit or receive antennas for the 

incident multiple antenna channels across all cut sets, divided 

by the number of orthogonal channels required to operate the 

given transmission scheme. 

We now consider a refinement that provides a more precise 

result than the upper bound of (5). As noted in [5] and [11], 

the diversity-multiplexing tradeoff of a MIMO channel 

degrades when the channel matrix is rank deficient. It is 

shown in [5] that the diversity-multiplexing tradeoff curve of 

a rank deficient MIMO channel with m  transmit antennas, n  

receive antennas, and independent identically distributed 

Rayleigh fading between each pair of antennas is given by the 

piecewise linear function connecting the points 

κ,...,1,0)),(,( =rrdr , where },min{ nm≤κ  is the rank of the 

MIMO channel matrix and ))(()( rrnmrd −−−+= κκ . 

Since the fact that the sets of terminals on the input and 

output sides of cut set iS  are not fully connected may result 

in the corresponding MIMO channel being rank deficient, the 

diversity-multiplexing tradeoff curve of the channel at cut set 

iS  is given by the piecewise linear function connecting the 

points KKrrdr i /,...,/1,0)),(,( κ= , where 
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ki AAκ  is the rank of the 

corresponding MIMO channel matrix at cut set iS . From this 

diversity-multiplexing tradeoff curve it can be seen that the 

maximum achievable diversity order at cut set iS  is given by 
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However, it was previously indicated in [3] that the 

maximum achievable diversity order at cut set iS  is 

iLd =max , so it is clear that 
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Therefore, the diversity-multiplexing tradeoff curve at cut set 

iS  can be rewritten as 

 

KrKrAAL

KrAAKrL

KrAA

KrAA

KrKrAArd

iOUTliINk

iOUTliINk

iOUTliINk

iOUTliINk

iOUTliINk

TT
l

TT
ki

TT
l

TT
ki

TT
l

TT
k

ii
TT

l
TT

k

ii
TT

l
TT

k

)(

)()(

)(

)()(

))(()(

)()(

)()(

)()(

)()(

)()(

2

2

−+−=

+−+=

+−

+−+=

−−−+=

∑∑

∑∑

∑∑

∑∑

∑∑

∈∈

∈∈

∈∈

∈∈

∈∈

κκ

κκ

, (12) 

for KKr i /,...,/1,0 κ= . This result can be applied across all 

cut sets in the network, such that for networks with 

destination decoding the diversity-multiplexing tradeoff 

curve is upper bounded by the piecewise linear function 

connecting the points { } KKrrdr i
SS Ri

/min,...,/1,0)),(,( κ
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= , 

where 
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From the diversity-multiplexing tradeoff curve it can be 

seen that the maximum achievable diversity order is given by 

 { }i
SS

Ld
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= minmax , (14) 

the minimum number of inter-terminal antenna links across 

all cut sets, and the maximum achievable multiplexing gain is 

given by 
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the minimum rank of the channel matrix across all cut sets, 

divided by the number of orthogonal channels required to 

operate the given transmission scheme. 

These results indicate that the diversity-multiplexing 

tradeoff of destination decoding is constrained by the 

minimum number and arrangement of incident inter-terminal 

antenna links across all cut sets in the network. Fig. 4 shows 

an example network, indicating those terminals with more 

than one antenna and annotated with the achievable diversity 

order of each cut set that is relevant given the directed 

connectivity. Fig. 5 shows an example network, indicating 

those terminals with more than one antenna and annotated 

with the achievable multiplexing gain (not including the rate 

factor K1 ) of each cut set that is relevant given the directed 

connectivity. 

Comparing the diversity-multiplex tradeoff curves of (5) 

and (9) for networks with destination decoding, it can be seen 

that the rank deficiency of the channel at cut set iS  degrades 

the corresponding diversity-multiplexing tradeoff curve in 

comparison to fully connected MIMO channels (when the 

sets of terminals on the input and output sides of all cut sets 

are fully connected). The diversity order degradation at cut 

set iS  is given by 
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which we note is independent of the rate r . Considering the 

maximum achievable diversity order corresponding to (5) and 

(9), the diversity order degradation at cut set iS  is also given 

by 
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and comparing the results of (7) and (14), the diversity order 

degradation for wireless relay networks with destination 

decoding is given by 

 { }i
SSTT

l
TT

k
SS

LAAd
Ri

iOUTliINk
Ri ∈∈∈∈

−









=∆ ∑∑ minmin
)()(

. (18) 

Considering the maximum achievable multiplexing gain 

corresponding to (5) and (9), the maximum multiplexing gain 

degradation at cut set iS  is given by 
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and comparing the results of (8) and (15), the maximum 

multiplexing gain degradation for wireless relay networks 

with destination decoding is given by 
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V. COMPLEXITY OF MINIMIZATION ALGORITHMS 

In this paper we have repeatedly used results that include a 

minimization of diversity-multiplexing tradeoff across all 

terminals or cut sets in a wireless relay network. It is 

therefore very relevant to consider the algorithmic 

complexity of this minimization process for the parameters 

and relaying method classes of interest. We now consider the 

complexity of the relevant algorithms for minimization across 

all terminals or cut sets in the network. We use the O-notation 

presented in [6], according to the following definition, to 

describe the asymptotic complexity of a function )(nf  with 

respect to n . Let )(nf  and )(ng  be two functions defined 

on some subset of the real numbers. Then ))(()( ngOnf ∈ as 

∞→n  if an only if 0,0 >∃∃ Mn , )()( ngMnf ≤  for 

0nn > . This can be read that )(nf  is of the order of )(ng . 

The number of possible cut sets in a wireless relay network 

with N  terminals is given by 
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where the reason that this is a function of 2−N  instead of 

N  is that the source and destination terminals are always on 

the source and sink sides of all cut sets respectively. 

When performing a minimization of the diversity-

multiplexing tradeoff across all terminals, respectively cut 

sets, in a network there is a first comparison cycle to calculate 

the value of the minimum number of degrees of freedom in 

the channel across all terminals TF , respectively the 

minimum number of degrees of freedom in the channel 

across all cut sets SF , and then a subsequent TF , respectively 

SF , comparison cycles to perform the minimization for each 

integer value of the multiplexing gain TFr ≤ , respectively 

SFr ≤ . The minimum number of degrees of freedom in the 

channel across all terminals in the network is given by 
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and the minimum number of degrees of freedom in the 

channel across all cut sets in the network is given by 
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assuming the corresponding channel matrices are full rank. 

Calculating the complexity of diversity-multiplexing 

tradeoff minimization across all terminals for networks with 

comprehensive decoding is straightforward. The algorithm 

includes )1)(1( +− TFN  comparisons between terminals. The 

complexity of algorithms for minimization of the diversity-

multiplexing tradeoff across all terminals in a network with 

N  terminals is therefore )()1)(1( NOFN T ∈+− . Similarly, 

the baseline complexity of diversity-multiplexing tradeoff 

minimization across all cut sets for networks with destination 



 

decoding is an algorithm that brute-force searches across all 

cut sets. The algorithm includes )1)(12( 2
+−

−

S

N F  

comparisons between cut sets. The complexity of algorithms 

for minimization of the diversity-multiplexing tradeoff across 

all cut sets in a network with N  terminals is therefore upper 

bounded by )2()1)(12( 2 N

S

N OF ∈+−
− . 

The brute-force algorithm of minimization across all cut 

sets in a network is exponential in complexity and therefore 

not very practical for large networks. However, a number of 

more efficient algorithms for determining the maximum flow 

of a directed network graph have been developed and are 

reported in [6]. These can be applied in a more efficient 

manner for the minimization of the diversity-multiplexing 

tradeoff across all cut sets with an intelligent choice of edge 

weights applied to the inter-terminal antenna links. The Ford-

Fulkerson algorithm [6] has a complexity of )( maxdLO R . 

The Edmonds-Karp algorithm [6] has a complexity of 

)(
2

RLNO . The Relabel-to-Front algorithm [6] has a 

complexity of )( 3NO . The theoretically minimum 

complexity algorithm for determining the maximum flow of a 

directed network graph has a complexity of  )( RLNO , but so 

far no practical algorithms has been developed that achieve 

that complexity [6]. In large networks where the number of 

terminals and inter-terminal links is large, the Relabel-to-

Front algorithm will generally have the lowest complexity of 

existing practical algorithms, so a complexity of )( 3NO  for 

minimization across all cut sets in a network with N  

terminals is a reasonable practical baseline. 

VI. CONCLUDING REMARKS 

This paper has derived bounds on the diversity-

multiplexing tradeoff of wireless relay networks with 

arbitrary link connectivity between cooperating terminals. 

When all cooperating terminals must correctly decode in 

order for the destination terminal to correctly decode 

(comprehensive decoding) it is shown that the diversity-

multiplexing tradeoff is constrained by the minimum number 

and arrangement of incident inter-terminal antenna links 

across all receiving terminals in the network. When only a 

subset of cooperating terminals must correctly decode in 

order for the destination terminal to correctly decode 

(destination decoding) it is shown that the diversity-

multiplexing tradeoff is constrained by the minimum number 

and arrangement of associated inter-terminal antenna links 

across all cut sets in the network. 

It is also noted that the terminals (for comprehensive 

decoding), or cut sets (for destination decoding), that limit the 

maximum achievable diversity order may not necessarily be 

the same terminals, or cut sets, that limit the maximum 

achievable multiplexing gain. The terminal, or cut set, with 

the minimum number of independent fading realizations is 

not necessarily the terminal, or cut set, with the minimum 

number of degrees of freedom across all terminals, or cut 

sets, in the network. This means that the method of 

minimization across terminals or cut sets must be performed 

independently for each possible value of the multiplexing 

gain in the diversity-multiplex tradeoff curve. The complexity 

of practical algorithms for minimization of the diversity-

multiplexing tradeoff across all terminals in a network with 

comprehensive decoding and N  terminals is )(NO . The 

complexity of practical algorithms for minimization of the 

diversity-multiplexing tradeoff across all cut sets in a network 

with destination decoding and N  terminals is )( 3NO . 
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Fig. 1. Wireless Relay Network Terminology 
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Fig. 2. Example: Diversity Order with Comprehensive Decoding 
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Fig. 3. Example: Multiplexing Gain with Comprehensive Decoding 
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Fig. 4. Example: Diversity Order with Destination Decoding 
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Fig. 5. Example: Multiplexing Gain with Destination Decoding 


