User-Aware Cell Switch-Off Algorithms

Ibrahim Aydin, Halim Yanikomeroglu, Ümit Aygölü Istanbul Technical University, Istanbul, Turkey

27 August 2015

IWCMC 2015, Dubrovnik, Croatia

Outline

- Introduction / motivation
- Basics of CSO
- Literature
- Contribution
- Performance evaluation
- Conclusion

Introduction / motivation (1)

- Green communication has become a hot research area:
 - Environmental awareness
 - Increased cost of energy
 - Battery life issue of mobile devices
- Forward 5G
 - Higher data rates
 - More BSs
 - More mobile devices

Introduction / motivation (2)

- BSs are the main energy consumers
 - 50% to 80% of the energy consumption in cellular networks takes place in the BSs
- The power consumption, which is independent from transmission, dominates the total consumption
 - BSs consume at zero load about 60-80% of the energy consumption at full load
- Significant imbalance of the BS traffic loads
 - 10% of the BSs carry about 50-60% of the aggregate traffic load.

Cell switch-off (CSO)

CSO applied cellular network

Basics of CSO

- Two main approaches in the CSO concept:
 - Deterministic approach where the CSO is performed according to the instantaneous traffic information
 - Statistical approach where the statistical behavior of traffic is used to execute the CSO algorithms
- According to management of CSO procedure:
 - Centralized algorithms: excessive signaling overhead but better performance.
 - Distributed algorithms: less signaling overhead but some performance loss

Literature

Literature about CSO

- Decrease the power consumption of the whole network
- Switch-off BSs as much as possible without any QoS degradation
- Just the downlink side is considered
- Power consumption of the UTs is not investigated
 - Switching off BSs for downlink energy efficiency may result in an uplink energy inefficiency

Contribution

We propose a heuristic CSO algorithm

- Achieves energy and cost reduction
 - Switch-off BSs as much as possible
- Battery lives of UTs less affected
 - Takes into account the power consumption of UTs while determining switching-off BSs.
- Downlink and uplink sides considered
- We call the proposed algorithm as the useraware CSO algorithm.

System model

- Homogeneous network
- UTs are uniformly distributed
- Full buffer traffic model
- Deterministic approach
 - We take a snapshot of the network at a certain time to determine which BSs will be closed.
- No interference management
 - A worse case scenario
 - Average interference is considered
- Constant rate requirement for DL and UL

Power control (1)

- Power control for DL and UL
- Optimum solutions are not simple
 - Exhaustive iterative algorithms
- Optimization problem for DL:

 $\begin{array}{ll}\text{minimize} & P_m^D\\ \text{subject to} & B_m^D \leq B_{BS} \end{array}$

- Non-convex problem
 - Analyzing KKT conditions give a suboptimum result
 - The results are better than some simple methods, i.e. Equal power allocation, uniform power allocation over BW

Power control (2)

Algorithm 1 Power Allocation Algorithm

Input: Received signal powers of UTs of BS m**Output:** $B_{m,i}^D, P_{m,i}^D \quad \forall i \in S_m$

1: $k \leftarrow 1$

2: Loop

- 3: Select the UT with the minimum received power.
- 4: Allocate k subchannel for this UT, then find λ using (6).
- 5: Determine the allocated bandwidths for all the UTs from (6) by using the obtained λ .
- 6: Determine the allocated powers for all the UTs according to (2).
- 7: Check the summation of allocated bandwidths $(B_m^D = \sum_{i \in S_m} B_{m,i}^D)$.

8: **if**
$$(B_m^D < B_{BS})$$
 then

9:
$$k \leftarrow k+1$$

- 10: else
- 11: Change the current bandwidth and power allocation with the bandwidth and power allocation of the previous loop.
- 12: Allocate the free bandwidth $(B_{BS} B_m^D)$ to the UT which has minimum received power and find the allocated power for this UT according to (2).
- 13: break Loop
- 14: **end**
- 15: End Loop

User-aware CSO algorithm

- Collect the information about network
- Perform resource allocation
- Sort the BSs
 - Sorting criterion: the increment of the sum power of UTs when a BS is switched off
- Switch-off BSs one by one
- Terminate when no BS can be switched-off without violating QoS constraint
 - A certain rate of UTs is allowed to be outage (2%)

Algorithm 2 User-Aware CSO Algorithm

System parameters

Total bandwidth of a BS (B_{BS})	5 MHz
BS maximum transmission power (P_{BS})	5 W
UT max. transmission power (P_{\max}^U)	250 mW
Path loss model	$30 + 36.7 \log(d) + X_{\sigma}$
Standard deviation of X_{σ} (σ)	8 dB
UT downlink data rate (R_{dl})	500 kbps
UT uplink data rate (R_{ul})	300 kbps
Thermal noise (N_0)	-174 dBm/Hz
Noise figure (N_f)	10 dB
Inter BS distance	500 m
Min. distance between a UT and a BS	10 m
Number of BSs (M)	25
Number of UTs	50, 125, 200
Max. outage probability (total)	2%
α and β in (1)	3.1 W and 53 W

Performance evaluation (1)

Performance evaluation (2)

16

Performance evaluation (4)

18

Conclusion

- We proposed a user-aware CSO algorithm where the power consumption of UTs are minimally impacted by switching off BSs
- The user-aware CSO algorithm is a heuristic and simple algorithm
- The user-aware CSO algorithm achieves up to around 40% less power consumption of UTs in comparison to the improved cell-zooming algorithm
- This study shows that to investigate the power consumption of UTs is crucial for CSO algorithms.

Thank You