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Abstract—In this paper, the generalization of the decode-and-
forward (DF) and compress-and-forward (CF) relaying schemes
is studied for the case in which Gaussian codebooks are used for
signalling over scalar Gaussian memoryless channels. Three SNR
regions are identified wherein the generalized DF-CF scheme
reduces to either the DF or the CF scheme. In addition, it is
shown that there is an SNR region in which the generalized
DF-CF scheme can be more advantageous than both schemes.

I. INTRODUCTION

A relay channel refers to a cooperative communication

system in which one or more intermediate nodes, known

as relays, assist the communication between the source and

the destination [1], [2]. Data transmitted by the source is

received by both the relay and the destination. The relay

does not have its own message and its output depends either

deterministically or stochastically on its observed signal. The

destination receives a noisy combination of the source and

relay signals and processes this combination to decode the

intended message.

Despite the envisioned advantages of cooperative commu-

nications, the capacity of relay channels, including scalar

ones with one relay, remains an open problem, and only

partial results are available. Among the various cooperation

techniques are the decode-and-forward (DF) and compress-

and-forward (CF) techniques [3]. In DF, the relay decodes its

observed signal and generates auxiliary information that assists

the decoding of the transmitted codeword at the destination.

In contrast, in the CF scheme the relay does not decode its

observed signal, but compresses it to generate the auxiliary

information that facilitates decoding at the destination [3].

In [3] the DF scheme was shown to achieve the capacity of

the so-called degraded relay channel in which the signal ob-

served by the destination is a physically degraded [2] version

of that observed by the relay. However, in the case of general

relay channels that are not degraded, the DF scheme is not

necessarily capacity achieving and in many scenarios higher

rates can be attained using the CF technique [4]. To explore

relaying methodologies that have the potential of achieving

higher rates, a generalization that subsumes both DF and CF

as special cases was proposed in [3]. In this generalization,

the relay combines partial decoding and compression of its

received signal to generate the auxiliary information.

An upper bound on the capacity of relay channels is given

by the cut-set bound [2]. In [5] this bound and lower bounds
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derived from CF and the generalization of the DF and CF

schemes [3, Theorem 7] have been considered for static

channel gains. The application of these schemes have also

been extended to Rayleigh fading scalar channels in [4] and to

multiple antenna channels in [6]. The DF and CF schemes have

also been used in more general multi-terminal networks with

multiple sources, relays and destinations [7], [8]. In particular,

in [7] the network performance has been investigated for

Gaussian and Rayleigh fading channels when some source-

relay pairs use DF relaying and the remaining pairs use CF

relaying. In [8] the DF scheme was shown to achieve the

capacity, not only of degraded single relay networks, but also

that of more general degraded networks with multiple relays.

The generalization of the DF and CF schemes encompasses

both strategies, and thus, in principle, offers the potential

of achieving higher rates than either scheme. Despite being

available for more than thirty years, to the best of the authors’

knowledge, particular scenarios in which the potential advan-

tages of this generalization are realized have not been studied.

Hence, a fundamental question that this paper attempts to an-

swer is whether such scenarios exist. To address this question,

we particularize this generalization to Gaussian channels with

one relay and analyze the maximum rate it can achieve with

Gaussian codebooks in three distinct SNR regions.

Prior to submitting this paper, we became aware of an in-

dependent investigation of the generalized DF-CF scheme for

Gaussian channels [9]. In that investigation, it was concluded

that the generalization does not provide rates higher than DF

and CF. However, it appears that certain steps in the analysis

in [9] are based on the implicit restriction of the distribution

of the codebooks used in the generalized DF-CF scheme to

be the same as that of the corresponding codebooks used in

the CF scheme.

In contrast with [9], we consider the case in which the

generalization of the DF and CF schemes uses independently-

parametrized Gaussian codebooks. We identify signal-to-noise

(SNR) regions of the source-destination, source-relay and

relay-destination links in which the generalization reduces to

either DF or CF. In addition, we identify SNR regions in which

the generalization can achieve higher rates. In Section IV,

an instance of the SNRs and the parameters at which the

generalization is more beneficial than both DF and CF is

provided. Although the gain offered by the generalization

appears to be small, this does not preclude the possibility that

higher gains can be achieved in other scenarios; e.g., when the

codebooks and/or the channel models are different.

Recently, it has been shown in [10]–[12] that the generalized

DF-CF scheme might yield higher rates when decoding tech-
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niques other than that proposed in [3, Theorem 7] are utilized.

When those techniques are employed and the codebooks are

restricted to be Gaussian, the maximum achievable rate of the

corresponding mixed DF-CF sceheme in various SNR regions

can be analyzed using the approach provided herein.

II. GENERALIZATION OF DF AND CF FOR GENERAL

GAUSSIAN RELAY CHANNELS

We consider the relay channel in [3]. The Gaussian version

of this channel is depicted in Figure 1, wherein X1 and X2

denote the transmitted signal of the source and the relay,

respectively, and Y1 and Y denote the observed signals at the

relay and the destination, respectively. For this channel, we

will study the maximum rate provided by the generalized DF-

CF relaying scheme developed in [3, Theorem 7] when the

codebooks are restricted to be Gaussian.

To begin with, in this section the rate expressions obtained

in [3] for general discrete memoryless channels will be par-

ticularized to general scalar power-constrained memoryless

Gaussian channels when Gaussian codebooks are used for

signalling. We begin by providing a descriptive overview of

this generalization for general discrete memoryless channels.

We will use Xi to denote the codebook containing the length-

n codewords, {xi,k}, i = 1, 2. The auxiliary codebooks that

will be used for generating X1 and X2 are defined similarly.

A. The general discrete memoryless channel

Codebook generation: Two auxiliary codebooks U and

V are available at both the source and the relay. Each v ∈ V
corresponds to a partition of U and a partition of X2. Each

u ∈ U corresponds to a partition of the codebook X1. At the

relay, an estimation codebook Ŷ1 is generated with partitions

corresponding to each (u, x2) pair, where x2 ∈ X2, and U , X1

and X2 are the unions of their respective partitions.

Encoding: We will use superscripts to denote the block

index. At the i-th block, the source and the relay determine v(i)

to be the auxiliary codeword that corresponds to the index of

the partition of u(i−1) used in the (i−1)-th block. The source
wishes to send the message w(i), which can be expressed as

a pair (w(i)′, w(i)′′). Knowing v(i), the source chooses the

particular u(i)(v(i)) to encode w(i)′ and chooses x
(i)
1 (u(i)|v(i))

to encode w(i)′′. At each block, the relay assists the destination

by sending information about the previous block. At the i-

th block, the relay knows u(i−2) and x
(i−1)
2 . The relay uses

u(i−2) to determine v(i−1), and upon receiving y
(i−1)
1 , it uses

v(i−1) to determine u(i−1). Knowing the pair (u(i−1), x
(i−1)
2 ),

the relay determines the corresponding partition of Ŷ1, which

is given by the index of (u(i−1), x
(i−1)
2 ). The relay then

chooses ŷ
(i−1)
1 in this partition that is jointly typical with its

received signal y
(i−1)
1 . The index of ŷ

(i−1)
1 in the partition

defined by (u(i−1), x
(i−1)
2 ) yields the index of x

(i)
2 .

Decoding: The destination uses joint typicality to succes-

sively decode the components of the transmitted codewords

and subsequently the message w(i) = (w(i)′, w(i)′′). At the
i-th block, the destination observes y(i) and uses it to decode
v(i) and subsequently x

(i)
2 . Using (v(i), v(i−1), y(i−1)), the

destination decodes u(i−1) and thus obtains w(i−1)′. The des-

tination uses the quintuple (v(i−1), u(i−1), x
(i−1)
2 , x

(i)
2 , y(i−1))

to determine ŷ
(i−1)
1 , from which w(i−1)′′ is recovered.

Using the above codebook construction and the encoding-

decoding procedure, it was shown in Theorem 7 in [3] that

the following rate is achievable:

R = sup
{

min
{

I(X1;Y, Ŷ1|X2, U) + I(U ;Y1|X2, V ),

I(X1, X2;Y )− I(Ŷ1;Y1|X2, X1, U, Y )
}

}

, (1a)

subject to the constraint

I(Ŷ1;Y1|Y,X2, U) ≤ I(X2;Y |V ), (1b)

where the supremum is taken over the probability

mass functions of the form p(u, v, x1, x2, y, y1, ŷ1) =
p(v)p(u|v)p(x1|u)p(x2|v)p(y, y1|x1, x2)p(ŷ1|x2, y1, u).

B. The scalar Gaussian memoryless channel

In this section we will particularize the construction of the

previous section to the case depicted in Figure 1 wherein the

codebooks and the channels are Gaussian. The gain of the

source-destination link is normalized, and the gains of the

source-relay and the relay-destination links are denoted by a
and b, respectively. The received signal at the relay, Y1, and

Source

Relay

Destination
Y+

+

Y1

X1

X2

Z1 ∼ N (0, N)

Z ∼ N (0, N)a b

1

Fig. 1. Relay Channel.

the destination, Y , can be expressed as

Y1 = aX1 + Z1, (2)

Y = X1 + bX2 + Z. (3)

The additive Gaussian noise at the relay is denoted by

Z1 ∼ N (0, N) and that at the destination is denoted by

Z ∼ N (0, N). The transmit power at the source and relay

are denoted by P1 and P2, respectively. We also define the

following SNRs: γ0,
P1

N
, γ1,

a2P1

N
, and γ2,

b2P2

N
.

To construct the codebooks described in the previous sec-

tion, we define the following power partitions {αi}2i=0 to be

used at the source, and {βj}1j=0 to be used at the relay,

where αi, βj ≥ 0, i = 0, 1, 2, j = 0, 1,
∑2

i=0 αi = 1, and
∑1

j=0 βj = 1. For Gaussian codebooks, we have V ∼N (0, 1),

and we define V1 =
√
α0P1V , and V2 =

√
β0P2V . Consider

the construction of the auxiliary codebook U described in

Section II-A. From this construction, a codeword u ∈ U can

be expressed as the superposition of a codeword v1 ∈ V1,

containing the partition information and another codeword that

contains incremental information, which we denote by x11 ∈
X11. The codebooksX1, X2 can be constructed similarly using
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incremental codebooks X12 and X22, respectively. For the

estimation codebook, Ŷ1, the partition information is contained

in the superposition of the X2 and U , and the incremental

information can be expressed in terms of another Gaussian

codebook. However, since Ŷ1 represents an estimation of Y1, it

will be convenient to use the approach in [5] and [7] to express

the incremental information as the superposition of Y1 and a

statistically independent estimation noise Z ′. In particular,

U = V1 +X11, X1 = U +X12, (4a)

X2 = V2 +X22, Ŷ1 = Y1 +X2 + U + Z ′, (4b)

where Z ′∼N (0, N ′). With the construction in Section II-A,

V,X11 and X22 are mutually statistically independent, and

U and X12 are statistically independent; X1 and X2 are

correlated through V . The source uses the power fraction α0P1

to transmit V1, the power fraction α1P1 to transmit X11 and

the power fraction α2P1 to transmit X12. The relay uses the

power fraction β0P2 to transmit V2 and the power fraction

β1P2 to transmit X22.

III. APPLICATION OF THE GENERALIZED DF-CF SCHEME

TO GAUSSIAN CHANNELS: ACHIEVABLE RATE

EXPRESSIONS AND ANALYSIS

Using the construction of the Gaussian codebooks with the

SNRs and power partitions in the previous section, we have:

Proposition 1: Restricting the codebooks of the generalized

DF-CF scheme to be Gaussian, the following rate is achievable

for scalar Gaussian memoryless channels.

R∗
G = max

{αi}2

i=0
,{βj}1

j=0
,γ′

min
{

R1, R2

}

, (5a)

subject to

γ′ ≥ (1 + α2γ0 + α2γ1)(1 + α1γ0 + α2γ0)

(1 + α2γ0)β1γ2
, (5b)

2
∑

i=0

αi = 1,

1
∑

j=0

βj = 1, (5c)

αi ≥ 0, βj ≥ 0, ∀ i, j, (5d)

where

R1 = C
( α2γ1
1 + γ′

+ α2γ0

)

+ C
( α1γ1
1 + α2γ1

)

, (6)

R2 = C
(

γ0 + γ2 + 2
√

α0β0γ0γ2

)

− C
( 1

γ′

)

, (7)

where C(x), 1
2 log2(1 + x), x ≥ 0, and γ′,N ′/N .

Proof: See Appendix A in [13].

Note that when α2 = 0 and β1 = 0, the rate in (5a) reduces
to the maximum achievable rate of the DF scheme; i.e.,

R∗
G

∣

∣

∣α2=0

β1=0

= max
ρ0

min
{

C
(

ρ1γ1
)

, C
(

γ0 + γ2 + 2
√
ρ0γ0γ2

)

}

= R∗
DF , (8)

where
√
ρ0 is the correlation coefficient of X1 and X2 in

the DF scheme, and ρ0 and ρ1 satisfy
∑1

i=0 ρi = 1; cf. [3,
Theorem 1]. For Gaussian channels the maximum rate of

the DF scheme is achieved with Gaussian codebooks [7,

Proposition 2]. Furthermore, when α2 = 1 and β1 = 1, the

rate in (5a) reduces to the maximum achievable rate of the CF

scheme with Gaussian codebook construction, R∗
CF ; that is,

R∗
G

∣

∣

∣α2=1

β1=1

= C
(

γ0 +
γ1γ2

1 + γ0 + γ1 + γ2

)

= R∗
CF . (9)

However, for CF, it is generally not known if Gaussian

codebooks achieve the maximum rate.

In Appendix C-C in [13], we show that the normalized

variance of the Gaussian estimation noise, γ′, that yields the

maximum achievable rate of the CF scheme in (9) is

γ′∗
CF =

1 + γ0 + γ1
γ2

. (10)

We will analyze the achievable rates yielded by the opti-

mization problem in (5) for three distinct cases; viz., γ1 >
γ0(1 + γ2), γ1 ≤ γ0, and γ2 → ∞.

A. The case of γ1 > γ0(1 + γ2)

In this region the gain of the source-relay link is greater

than the gain of the source-destination link; i.e., a > 1 in

Figure 1. In this case, we have the following theorem.

Theorem 1: When the channel gains in Figure 1 satisfy

γ1 > γ0(1+γ2), the generalized DF-CF scheme with Gaussian
codebooks reduces to the DF scheme. In particular,

R∗
G = R∗

DF . (11)

Proof: To prove this theorem, we consider the Karush-

Kuhn-Tucker (KKT) conditions corresponding to an alternate

formulation of (5). Since neither (5) nor the reformulated

problem is convex, the KKT conditions are only necessary

for optimality [14]. To analyze these conditions, we prove in

Appendix D in [13] that, when γ1 > γ0(1 + γ2), the optimal
γ′ must satisfy

γ′ >
γ0

γ1 − γ0
. (12)

Using (12), the KKT system yields two solutions. For the first

solution R∗
G = R2 ≤ R1, and the corresponding γ′ = ∞.

By analyzing the power partitions, {αi}2i=0 and {βj}1j=0, we

show that R1 = 0, which implies that R∗
G = 0. Hence, this

solution does not yield the maximum rate that can be obtained

by the generalized DF-CF scheme, and R∗
G must be given by

the second solution. For this solution

R∗
G = R1 ≤ R2, (13)

and α2 = β1 = 0. However, from (8), this setting for the

power partitions corresponds to the DF relaying scheme, which

implies the statement of the theorem.

The details of the proof are given in Appendix E in [13].

Theorem 1 indicates that if the channel gain of the source-

relay link is sufficiently large, compared to the other two links,

the generalized DF-CF scheme with Gaussian codebooks does

not yield rates higher than those achieved by the DF scheme.
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B. The case of γ1 ≤ γ0

When γ1 ≤ γ0, the channel gain of the source-relay channel
is less than or equal to that of the source-destination channel,

which corresponds to the case of a ≤ 1 in Figure 1. The main
result of this section is provided in the following theorem.

Theorem 2: When the channel gains in Figure 1 satisfy

γ1 ≤ γ0, the generalized DF-CF scheme with Gaussian code-

books reduces to the corresponding CF scheme. In particular,

R∗
G = R∗

CF . (14)

Proof: To prove this theorem, we use the construction

of the Gaussian codebooks in Section II to derive an upper

bound on R1 in (6) for any scalar Gaussian memoryless relay

channel. In particular, in Appendix F in [13], we show that

R1 ≤ R2 − I(X2, U ;Y ) + I(X2;Y |V ) + I(U ;Y1|X2, V ).

Equality holds when the condition in (1b) holds with equality;

that is, when

I(Ŷ1;Y1|Y,X2, U) = I(X2;Y |V ). (15)

In fact, it was shown in [12] that restricting (1b) to hold with

equality does not incur loss in the achievable rate. Using this

observation it can be seen that constructing the codebooks in

such a way that (15) is satisfied ensures that both R1 in (6)

and R2 in (7) are maximized; i.e., enforcing the constraint

in (1b) to hold with equality is without loss of optimality.

When (15) holds, we have

R1 = R2 − I(X2, U ;Y ) + I(X2;Y |V ) + I(U ;Y1|X2, V ).
(16)

Hence, to proceed with the proof, we invoke the construction

of the Gaussian codebooks in Section II-B into (16). We then

show that when γ1 ≤ γ0,

I(X2, U ;Y )− I(X2;Y |V )− I(U ;Y1|X2, V ) < 0,

which implies that when γ1 ≤ γ0, R1 ≤ R2; that is, in this

SNR region, R1 is the constraining rate.

Hence, to maximize the rate that can be achieved by the

generalization of the DF and CF schemes, it suffices to

maximize the right hand side of (16). Doing so, in Appendix G

in [13], we show that the maximum is achieved if and only if

α2 = 1 and β1 = 1, which, using (9), implies the statement

of the theorem.

Theorem 2 suggests that when the codebooks are Gaussian

and the channel gain of the source-relay link is less than that

of the source-destination link, the generalized DF-CF scheme

does not provide a higher rate than the CF scheme.

C. The case of γ2 → ∞, 0 < γ0, γ1 < ∞
In this section we investigate the case in which the relay-

destination link is perfect; that is, the case in which the gain

of the source-relay channel and the source power are finite,

but b2P2 is infinite, where b is the gain of the relay-destination
link in Figure 1. For this case we have the following result.

Theorem 3: When γ2 → ∞, the generalized DF-CF scheme

with Gaussian codebooks reduces to the corresponding CF

scheme and achieves the capacity of the relay channel; i.e.,

R∗
G = R∗

CF = C, (17)

where C is the capacity of the relay channel.

Proof: To prove this theorem, we show that, for γ2 → ∞,

R1 in (6) is maximized when α2 = β1 = 1. Using (9), we have
that the maximum rate that the generalized scheme can achieve

with these power partitions is equal to the maximum rate that

the CF scheme when the codebooks are Gaussian. To complete

the proof of the first statement of the theorem we show that

these settings yield R2 ≥ R1. To show that the CF scheme

with Gaussian codebooks achieves the channel capacity in this

asymptotic case, we show that R∗
CF attains the cut-set bound

with Gaussian codebooks. Invoking Proposition 2 in [7] yields

the second statement of the theorem.

See Appendix H in [13] for the details of the proof.

The optimality of the CF scheme with Gaussian codebooks

in the asymtptoic case of γ2 → ∞ has also been observed

in [5] using a somewhat different approach.

Theorem 3 implies that for any finite source-relay channel

gain, if the relay power is sufficiently higher than the source

power, superimposing the DF and the CF schemes with

Gaussian codebooks does not yield additional gain.

Hence, in each of the three regions, when the codebooks

are restricted to be Gaussian, the maximum rate that the

generalized DF-CF scheme can achieve does not exceed that

can be achieved by either the DF or the CF scheme.

IV. NUMERICAL RESULTS

In this section, we will provide numerical results that

show the performance of the generalized DF-CF scheme with

Gaussian codebooks in different SNR regions for the Gaussian

channel depicted in Figure 1. For comparison, the cut-set

bound in [3] is also plotted.
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Fig. 2. Maximum achievable rate of the generalized DF-CF scheme.

To generate the numerical results, we calculated the max-

imum achievable rate of the DF using the expression in (8).

From this expression, it can be shown that the square of the

optimal correlation coefficient, ρ∗0, is either 0, or it results in
equating the minimization arguments. For the CF scheme, the

maximum achievable rate when the codebooks are Gaussian

is given in (9); cf. [13, Appendix C]. Finally, for the gener-

alized DF-CF scheme, we use the KKT necessary optimality
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Fig. 3. A magnified version of Figure 2. Generalization outperforms the DF
and CF schemes.
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Fig. 4. Generalization reduces to the CF scheme as γ2 → ∞.

conditions corresponding to the formulation in (5) to reduce

the search for the optimal power partitions.The cut-set bound

is calculated using the expression in [3, Theorem 4].

In Figures 2 and 3, the SNR of the source-destination and

the relay-destination links are set to be γ0 = 5 dB and γ2 =
5.5 dB, respectively. For this setting, γ0(1 + γ2) = 11.5 dB.

From Figure 2 it can be seen that, in agreement with

Theorem 1, for γ1 > 11.5 dB, R∗
G coincides with the

maximum rate of the DF scheme. Similarly, in agreement with

Theorem 2, for γ1 ≤ 5 dB, R∗
G coincides with the maximum

achievable rate of the CF scheme with Gaussian codebooks.

To further investigate the performance of the generalized

DF-CF scheme with Gaussian codebooks when γ0 < γ1 ≤
γ0(1 + γ2), in Figure 3 we plot a magnified version of the

region in which γ1 ∈ [6.3, 6.6] dB. This figure indicates

that the generalized DF-CF scheme can yield a rate gain

in the region at which the DF and CF schemes yield ap-

proximately the same rate. For instance, at γ1≈6.496377 dB,
R∗

DF = R∗
CF≈1.22486 bits per channel use (bpcu), whereas

R∗
G≈1.22748 bpcu, which is obtained by the following power

partitions: α0 = 0.004, α1≈0.762621, α2 = 1 − α1 − α0,

β0≈0.179, and β1 = 1− β0.
Finally, in Figure 4 we verify Theorem 3 when γ0 = 1 dB

and γ1 = 5 dB. For these SNR settings, the rate achieved by

the DF scheme corresponds to the first term in the argument

of the minimization on the right hand side of (8), and hence,

is independent of γ2. In accordance with Theorem 3, it can be

seen from Figure 4 that as γ2 becomes sufficiently large, the

maximum achievable rate of the generalized DF-CF scheme

coincides with the maximum achievable rate of the CF scheme,

which coincides with the cut-set bound.

V. CONCLUSION

In this paper, we investigated the generalized DF-CF scheme

developed in Theorem 7 in [3] when Gaussian codebooks are

used for signalling over scalar power-constrained Gaussian

memoryless channels. We have shown that the generalization:

• reduces to the CF scheme if the SNR of the source-relay

link is less than that of the source-destination link or if

the SNR of the relay-destination link is sufficiently high;

• reduces to the DF scheme when the SNR of the source-

relay link is sufficiently higher than the SNR of the

source-destination link;

• can be more advantageous than both DF and CF schemes

for intermediate source-relay link SNRs at which the DF

and CF schemes yield approximately the same rates.
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