Impact of the Secondary Network on the Outage Performance of the Primary Service in Spectrum Sharing

Mohammad G. Khoshkholgh, Keivan Navaie Department of ECE Tarbiat Modares University, Tehran, Iran Email: <u>keivan.navaie@ieee.org</u>

Halim Yanikomeroglu Department of SCE Carleton University, Ottawa, Canada Email: <u>halim@sce.carleton.ca</u>

ICC 2010, Cape Town South Africa

Spectrum Allocation Chart

Spectral Efficiency (in practice)

Spectrum Sharing

- Existing spectrum policy has full allocation but poor utilization
- Spectrum sharing proposed to improve spectral efficiency
- Primary service is the licensee
- Secondary service utilizes Opportunistic
 Spectrum Access (OSA)
- Secondary service detects and makes use of the spectrum holes/white spaces
- Interference threshold is defined as a metric to detect spectrum holes/white spaces

Spectrum Sharing: challenges

- To protect the primary service from unacceptable QoS degradation
 - access to the white spaces subject to no/minimum QoS degradation at the primary receiver
 - manage the imposed interference at the primary receiver to satisfy the interference threshold
- To improve the spectral efficiency
 - accommodate as much secondary service users as possible
 - utilize sophisticated power control mechanism
 - utilize accurate spectrum sensing procedure
 - **D**...

Objective and Summary of Results

- To analyze the impacts of the secondary service parameters & the wireless environment on the primary service outage probability
 - a closed form is derived for the primary service outage probability derived based on the transmit power of the secondary service and miss detection probability of the spectrum sensing
 - the maximum secondary service transmitter node density is obtained for a given outage probability constraint of the primary service
 - an upper bound is obtained to the achievable capacity of the primary service

System Model

System Model (cont'd)

- The secondary service transmitters distributed based on a Homogenous Point Process $\Pr\{k SS \text{ in } region R\} = e^{-\lambda_s A} \frac{(\lambda_s A)^k}{k!}$
- where A is area of region R. If the spectrum is idle and the spectrum sensing wrongly recognize the spectrum status as busy, a <u>false alarm</u> is occurred.
- > All secondary service transmitters have identical ROC curves, i.e., equal false alarm, \mathcal{E} , and miss detection probability δ

miss detection is occurred in cases where the spectrum is busy and it is mistakenly recognized as idle

System Model (cont'd)

- The channel is available with probability $p_i = 1 p_b$
- The set of secondary users which experience miss detection

 $\tilde{\Pi} = \left\{ X_i \in \Pi \mid D_i = 1 \text{(miss detection indicator)} \right\}$

with density $\lambda_{s}p_{b}\delta$

- Channel power gain between primary transceiver is exponentially distributed
- Channel power gain among secondary transmitters and the primary receiver are independent exponential random variables

Interference Aggregation

Received interference at the primary receiver in miss detection experiences

$$I_{\varphi} = \sum_{i \in \Pi} S_s \left\| X_i \right\|^{-\alpha} g_{sp,i}$$

 S_s is the secondary service transmission power

 $\|X_i\|^{-\alpha}$ is the distance-dependent path-loss attenuation

 I_{φ} is a power law shot noise process

Goals & Analytical Tool

- Obtaining the primary service outage probability surrounding by a secondary network distributed based on Homogenous Point Process
- Obtain the maximum number of the secondary transmitters per unit area to satisfy the primary service outage probability constraint ξ
- Stochastic Geometry results are utilized for analysis

Primary Service Outage Probability

Primary service SINR

$$SINR_{p} = \frac{S_{p}R^{-\alpha}g_{p}}{W + I_{\varphi}}$$

We show that the Primary service outage probability is

$$P_{out}^{p} = \Pr\left\{SINR_{p} < \gamma_{th}\right\}$$
$$= 1 - \Phi_{W}\left(\mu \frac{\gamma_{th}R^{\alpha}}{S_{p}}\right) e^{-\lambda R^{2}\left(\frac{S_{s}\gamma_{th}}{S_{p}}\right)^{\alpha/2}L(\alpha)}$$

Primary Service Outage Probability: Analysis and Simulations

Maximum Secondary Transmitter Density

 We show that the maximum secondary transmitter density for satisfying the primary service outage probability

$$\lambda_s^* = \left(\frac{S_s \gamma_{th}}{S_p}\right)^{-2/\alpha} \frac{\ln \frac{1}{1-\xi}}{R^2 L \delta p_b}$$

Primary Service Capacity

The primary service capacity by ignoring the effect of AWGN

$$C_{p} = \frac{1}{2} E \log \left(1 + SINR_{p} \right)$$

$$\leq \frac{1}{2} \log \left(1 + \frac{S_{p}}{S_{s}} \left(\lambda LR^{2} \right)^{-\alpha/2} \Gamma \left(\alpha / 2 + 1 \right) \right)$$

Primary Service Capacity: Analysis and Simulations

11/23/2010

Conclusion

- A closed-form expression was derived for the primary service outage probability in Rayleigh fading environment
- The maximum secondary service transmitter density was obtained to satisfying the primary service outage constraint
- The primary service capacity was analyzed and an upper bound was derived

Thanks!

Mohammad G. Khoshkholgh, khoshkholgh@modares.ac.ir

Keivan Navaie <u>keivan.navaie@ieee.org</u>

Halim Yanikomeroglu halim@sce.carleton.ca