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CoV-Based Metrics for Quantifying the Regularity of Hard-Core Point
Processes for Modeling Base Station Locations
Faraj Lagum, Sebastian S. Szyszkowicz, and Halim Yanikomeroglu

Abstract—Base station locations in wireless networks can be
modeled via repulsive random point processes with an amount
of regularity that is tunable between that of a triangular lattice
and that of a homogeneous Poisson point process. However, it is
currently difficult to quantify this regularity, or compare different
repulsive point processes. In this letter, we examine three regular-
ity metrics based on the coefficient of variation (CoV) of geometric
properties of point processes and identify the CoV of the nearest
neighbour distance as the most sensitive metric. We also compare
three hard-core point processes in terms of their regularity range
and the density of the generated points.

Index Terms—Stochastic geometry, hard-core point process,
repulsive point process, regularity, second-order statistics.

I. INTRODUCTION

R ECENT years have seen an increasing interest in point
processes (a subset of stochastic geometry) for more

realistic modeling of base station (BS) locations in wireless
networks. Traditionally, the triangular lattice (hexagonal cells)
is used to model the spatial structure of the BSs, and, more
recently, the homogeneous Poisson point process (PPP) is also
proposed because of its simplicity and analytic tractability
[1]–[5]. Both of these models are conceptually simple and can
be characterized by a single parameter: the density. However,
they are less accurate models and represent two extremes,
while the real deployment of the BS locations falls somewhere
in between [1]–[4]. Indeed, modeling BS locations using a
triangular lattice gives over-optimistic network performance
results, while modeling BS locations using the PPP gives the
most pessimistic performance estimate [1].

Repulsive point processes (RPPs) have additional parameters
apart from their density that can be tuned, with a resulting
variation in the amount of regularity. Notably, hard-core point
processes are characterized by the hard-core distance, which is
the closest distance that two points of that process can ever be
to each other. RPPs can also be of the soft-core variety, where
points can appear arbitrarily close to each other with a certain
probability. Having extra parameters increases the complexity
of the models but provides control over of the amount of
regularity.

In this letter, we examine three hard-core processes already
proposed in wireless literature to model BS locations [6]–[10].
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Other RPPs used in the literature include determinantal point
process models [11], [12], and the family of Gibbs point pro-
cesses [2], [4]. RPPs are also useful for modeling HetNets [3]
and wireless sensor networks [13].

Motivation: Due to the dependence of the network per-
formance on the BS locations [2], the amount of regularity
of the spatial structure of BSs is an important characteristic
of wireless cellular networks. Motivated by the lack of an
adequate scalar metric to describe the spatial structure of these
BSs, we propose using the coefficient of variation (CoV) of
particular geometric properties as scalar metrics to quantify
the regularity [5]. These scalar metrics are useful as network
performance indicators as shown in Section V-B. Functional
summary characteristics such as the nearest neighbour dis-
tribution function, the empty space function, and the Ripley
K-function are widely used in the literature [2], [4], [11], [12]
as metrics to capture the spatial structure of wireless networks.
However, these metrics are functions, and therefore we still
need to quantify the difference between them. Qualitative
terms such as less (or more) repulsive [7], [10], [12], [13] are
also used in the literature to compare the amount of regularity
of RPPs. Therefore, finding a precise and meaningful scalar
metric to quantify the regularity is a necessity [13].

Contributions: We evaluate these CoV-based metrics for
three common hard-core point processes in wireless literature.
These point processes have only two tuning parameters: the
density and the hard-core distance. This letter’s contributions
are as follows: (i) We evaluate the use of three CoV-based met-
rics for quantifying the amount of regularity, (ii) we show that
the CoV-based metrics are capable of measuring the amount
of regularity of RPPs and that the CoV of the nearest neigh-
bor distance is the most sensitive metric among them, and
(iii) we compare the hard-core point processes as models for
BS locations in terms of the achievable range of regularity.

The rest of this letter is organized as follows: In Section II,
three hard-core point processes are introduced. In Section III,
three CoV-based metrics are presented. In Section IV, the CoV-
based metrics are evaluated for quantifying the regularity of
simulated realizations of the hard-core point processes. Finally,
we compare one CoV-based metric with function-based metrics
in Section V, before drawing conclusions in Section VI.

II. HARD-CORE POINT PROCESSES

A hard-core point processes X is a RPP where two points are
strictly prohibited from being closer than a predefined hard-core
distance r >0 apart [6], [7], [14].

In this section, we describe three hard-core point processes.
In general, generation of these three hard-core point processes
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begins with generating a PPP, and then removing points that
violate the hard-core condition. Different ways of removing
points lead to different RPPs with different densities.

A. Matérn Hard-Core Process of Type I (MHC-I)

The MHC-I is generated as follows: From a PPP � with den-
sity λP, simultaneously remove all points that are closer than r
from each other. The density of the MHC-I is λ = λPe−λPπr2

[7], and its normalization by λP is

λ

λP
= e−π r̃2

, (1)

where r̃ = r
√

λP is the normalized hard-core distance.

B. Matérn Hard-Core Process of Type II (MHC-II)

The MHC-II is generated by following three steps: First,
generate a PPP � with density λP. Second, associate a mark
Ui which is an independent uniform random variable on [0,1]
to each point xi ∈ �. Then, simultaneously remove all points
that have higher marks than their neighbours within a distance

r . The density of the MHC-II is λ = 1−e−λPπr2

πr2 [7], and its
normalized density is

λ

λP
= 1 − e−λPπr2

−λPπr2
= 1 − e−π r̃2

π r̃2
. (2)

C. Simple Sequential Inhibition (SSI)

Given the required density of points λP in a domain, candi-
date points are generated sequentially using a PPP. Points are
discarded if they are within a distance r from any previously
accepted point. The process terminates when the required den-
sity is attained or when adding more point becomes impossible
[7], [15]. The density of the accepted points is λ. We are not
aware of any closed-form expression for the SSI density, but
we find a good fit:

λ

λP
= min

{
1, 0.61 · r̃−1.79

}
. (3)

The density ratios as a function of r̃ for MHC-I, MHC-II, and
SSI, given by (1)–(3), are shown in Fig. 1.

III. COV-BASED METRICS

In statistics, the CoV of a random quantity is defined as the
ratio of its standard deviation to its mean. The CoVs of three
geometric properties have been introduced in [5] to measure
the clustering of mobile user locations. We propose using these
metrics to measure the amount of regularity of the BS locations.
Each metric is normalized by a constant factor so that the CoV
of the PPP is always 1.

A. CoV of the Areas of Voronoi Tessellation Cells

Considering the areas of the cells of the Voronoi tessellation
[7] of a set of points, the CoV-based metric is

CV = 1

kV
· σV

μV
, kV ∼= 0.529, (4)

Fig. 1. The density ratio of MHC-I, MHC-II, and SSI as a function of r̃ .

where μV is the mean and σV is the standard deviation of the
Voronoi cell areas, and kV is a normalization factor [5].

B. CoV of the Lengths of Delaunay Triangulation Edges

Taking the edges of the Delaunay triangulation [7] of a set of
points, the CoV-based metric is

CD = 1

kD
· σD

μD
, kD ∼= 0.492, (5)

where μD is the mean and σD is the standard deviation of the
Delaunay edge lengths, and kD is a normalization factor [5].

C. CoV of the Distances to the Nearest Neighbour

Taking the distance from every point to its nearest neighbour
[16], the CoV-based metric is

CN = 1

kN
· σN

μN
, kN =

√
4 − π

π
∼= 0.5227, (6)

where μN is the mean and σN is the standard deviation of the
nearest neighbour distances; and kN is a normalization factor
derived1 from [16].

The CoV-based metrics take the value of 0 for a triangular
lattice and 1 for a PPP. Values between 0 and 1 are found for
RPPs, as will be seen in the next section, while values above
1 are found for processes with clustering [5]. Practical models
for the BS locations should have a CoV between 0 and 1. The
metrics CV, CD, and CN are unit-less quantities and are invari-
ant under scaling of the measured point process, and can thus
be adjusted independently of its density λ.

The three geometric properties are also meaningful in the
context of BS locations: the Voronoi tessellation represents
the cell area associated with each BS under the assumption the
users always connect to the nearest BS [14], while the Delaunay
triangulation connects each BS to its strongest interfering BSs,
and the nearest neighbour characterizes the dominating inter-
fering BS and has been of interest in measuring the regularity
of RPPs [13].

1In [5], the value for kN is erroneously given as 0.653.
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Fig. 2. The CoV of the areas of the Voronoi tessellation cells as a function of
the normalized hard-core distance for hard-core point processes.

Fig. 3. The CoV of the lengths of the Delaunay triangulation edges as a
function of the normalized hard-core distance for hard-core point processes.

IV. EVALUATION OF COV-BASED METRICS FOR

HARD-CORE POINT PROCESSES

We generate spatial patterns of BS locations using the point
processes defined in Section II and measure their amount of
regularity using the metrics defined in Section III.

The density λ is fixed to be 100 points in a 1 km2 square
domain. r̃ is swept over a wide range to change the regularity
of the RPP, which is captured using the CoV-based metrics. For
each RPP and metric combination, a Monte-Carlo simulation is
performed with 1000 realizations. The ensemble mean of the
CoV-based metrics of the resulting points as a function of r̃ is
shown in Figs. 2, 3, and 4.

We observe that the SSI process has the widest CoV ranges2

and achieves the highest density ratio, making it the most attrac-
tive RPP. Conversely, the MHC-I process is the least desirable
among the investigated RPPs. It has the lowest density ratio,
making it inefficient in generating a given number of points,
and its CoV values fluctuate in a narrow range around 1. We
interpret this behaviour as being caused by the nature of the
MHC-I process itself: Removing all points that violate the hard-
core condition creates large holes in the generated pattern when
the hard-core distance is large, causing some of the remaining
points to cluster, relatively speaking. Since cluster processes

2Indeed, in [10], SSI is observed to be more regular than MHC-II.

Fig. 4. The CoV of the distance to the nearest neighbour as a function of the
normalized hard-core distance for hard-core point processes.

TABLE I
COV-BASED METRICS FLOOR FOR HARD-CORE POINT PROCESSES

were shown [5] to have CoVs greater than 1, this clustering
increases the CoV value of MHC-I.

Our results also show that (i) the amount of regularity of
hard-core point processes is tunable and can be quantified using
CoV-based metrics and (ii) the useful tuning range of these
RPPs is r̃ <1, i.e., where the CoVs are sensitive to changes in r̃ .

The ranges of the CoV-based metrics are summarized in
Table I. The CN metric provides the widest value range, making
it the most sensitive to changes in the amount of regularity of
the RPP.

V. COMPARISON OF CN WITH TWO FUNCTION-BASED

METRICS

In this section, we show the relation between CN and two
function-based metrics, including network performance.

A. Ripley’s K-Function

Ripley’s K-function3 K (r) is defined as the ratio of the mean
number of extra points within distance r from a typical point
(not included in the counting) to the density of the spatial pat-
tern [6], [13]. It can characterize the regularity or clustering of a
point process. The L-function, L(r) = √

K (r)/π , is a normal-
ized form of K (r). While L(r) = r for a PPP, a spatial pattern
with L(r) < r is repulsive.

As shown in Fig. 5, RPPs with the same CN value have sim-
ilar L-function and hard-core distance r , apart from the MHC-I
in the second regime (in which the CoV value increases with r̃ ).
This indicates that matching RPPs using Ripley’s functions is
not always possible as the curves can have very different shapes.

B. Coverage Probability

The coverage probability P(γ ) is the probability that a
typical user achieves a signal-to-interference ratio (SIR) higher

3The K-functions of MHC-I and MHC-II are known in a complicated integral
form [6].
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Fig. 5. Normalized Ripley’s K-function for different RPPs and CN values.

Fig. 6. The coverage probability for different hard-core models with constant
density for different CN values and channel environments.

than a given SIR threshold γ . We compare the downlink
coverage probability where the BSs are deployed according to
hard-core point processes introduced in section II with different
amounts of regularity as measured using CN. The following
assumptions are used to evaluate the coverage probability:
(i) the average density is 100 BSs in 1 km2, (ii) all BSs transmit
the same power. (iii) mobile users are uniformly distributed
over the entire domain and each of them is associated to its
nearest BS, (iv) the frequency reuse factor is 1, (v) all channels
have Rayleigh fading, and (vi) the thermal noise is ignored.
We also assumed two channel models: one with a path loss
exponent of α = 3 and 6 dB lognormal shadowing, and one
with α = 4 and no shadowing. Fig. 6 shows that different RPPs
with the same CN in different channel environments behave
alike regarding coverage probability. This is true even for
MHC-I in the second regime.

CN is an additional factor that affects the network perfor-
mance. A spatial pattern with a low CN value has a better
performance than one with a high CN value. BSs deployed
according to the same density and CN have very similar SIR
performance, regardless of the hard-core process chosen.

VI. CONCLUSION

We proposed three different CoV-based metrics to measure
the amount of regularity of three spatial point processes used in
cellular networks to model the locations of BSs. These metrics

are also applicable to all stationary point processes, in any field
of study. We found that CN is the most sensitive to the regular-
ity of RPPs. Different BS location models with the same density
and CN value have very similar SIR performance. Our results
also show that the MHC-I process is undesirable for modeling
points with regularity, whereas both the MHC-II and SSI pro-
cesses are useful when their normalized hard-core distance is
less than 1, SSI being the best in terms of the range of regularity
and density ratio.

Given real deployments of BS locations, an interesting exten-
sion is to investigate whether the CoV-based metrics could work
as a tool for fitting them to RPP models. Another extension
could include investigating other RPPs as well as other scalar
metrics such as the variance of nearest neighbour distribution
and its noise figure [13].
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