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Abstract—Typically, forward error correction codes are de-
signed based on the minimization of the error rate for a given
code rate. However, for applications that incorporates hybrid
automatic repeat request (HARQ) protocol, the throughput is
a more important performance metric than the error rate.
Polar codes, a new class of error correction codes with simple
rate matching and low complexity decoders, can be optimized
efficiently for maximization of the throughput. In this paper, we
first introduce a method to design throughput-maximizing polar
codes for successive cancellation decoding (SCD). Furthermore,
since the optimized codes for SCD are not optimal for SC list
decoders (SCLD), we propose a rate matching algorithm to find
the best rate for the SCLD decoders while using the polar codes
optimized for SCD. The resulting codes provide throughput close
to capacity with low decoding complexity when used with Type-I
HARQ.

I. INTRODUCTION

Typically, the design objective of binary error correction
codes for the additive white Gaussian noise (AWGN) channel
is to minimize the error rate, for a given code rate and signal-
to-noise ratio (SNR). This method of design has been widely
used for convolutional codes [1], parallel concatenated (turbo)
codes [2], low density parity check codes (LDPC) [3] and
polar codes [4], [5].

However, for many practical applications, the throughput
is a much more relevant performance metric than error rate,
where throughput is defined as the average rate of successful
message delivery and indicates how close the performance of
a system is to the channel capacity. Designing throughput-
optimal codes typically involves an exhaustive search over
a set of code rates and employs simulation to estimate the
throughput. However, as demonstrated in this paper this pro-
cess can be greatly simplified for polar codes.

Hybrid automatic repeat request (HARQ), as an efficient
error correction scheme, has been employed widely in com-
munication systems including 4G wireless networks [6]. This
scheme is expected to play a central role in 5G wireless
networks as well, especially in use cases which require ultra-
reliable communications. One of the ultimate measures to
determine the quality of HARQ schemes is the throughput.
Therefore, explicitly considering the throughput when design-
ing the elements of HARQ schemes is of importance. The
time-varying nature of the wireless channel requires the use
of adaptive modulation and coding (AMC) schemes to achieve
high throughput. Typically, when designing the AMC scheme
for HARQ, an error correction code corresponding to the
highest throughput for each SNR is chosen from a small set of

available codes [7]. However, if the code can be designed with
the objective of maximizing the throughput, the performance
can substantially be improved.

When designing polar codes to minimize the frame error
rate (FER), a set of frozen bit-channels must be chosen.
The same procedure should be applied when designing polar
codes based on the throughput, but the optimal set of frozen
bits to maximize the throughput are chosen. The particular
advantage of polar codes that facilitates their optimization
for maximizing the throughput is this straightforward design
method in comparison to most other modern codes. These
polar codes are particularly useful for Type-I HARQ where for
the retransmission of a failed codeword, the whole codeword
should be retransmitted and incremental redundancy is not
employed.

In this paper a simple method for designing polar codes
is proposed that is based on maximizing the throughput,
instead of the well-studied objective of minimizing the FER.
These codes are designed for Type-I HARQ, with successive
cancellation decoders (SCD). The throughout of the designed
codes is compared with the powerful turbo codes employed in
LTE-A [8]. In addition, since polar codes optimized for SCD
are suboptimal for SC list decoding (SCLD), a rate matching
algorithm is proposed to find the code rate corresponding to
the maximum throughput for SCLD when used with polar
codes designed for SCD. The rest of the paper is organized as
follows: The system model is described in Section II, the polar
encoder and decoder are reviewed in Section III, the polar
code design based on the throughput for SCD is introduced
in Section IV. Finally, numerical results are provided in
Section V, and conclusions are presented in Section VI.

II. SYSTEM MODEL

The communication system includes a single user trans-
mitter and receiver that use a Type-I HARQ error control
protocol. At the transmitter, a cyclic redundancy check (CRC)
sequence of length LCRC is added to data of length K ′ bits
and each K = K ′+LCRC bits of the CRC and data are coded
using a polar code of length N and code rate R = K/N .
Each codeword is modulated using BPSK and transmitted
through an AWGN channel with a noise variance of N0/2
per dimension. At the receiver, after decoding the received
codeword, the correctness of CRC is checked to verify the
message. In case of receiving a wrong message, retransmission
of the entire codeword is requested by sending a repeat request
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(NACK) to the transmitter. The system uses AMC employing
codes of different rate for each SNR.

III. POLAR CODES

In this section, we briefly review the encoding and decoding
of polar codes. The general discrete-input memoryless channel
(DMC) can be written as W :C→Y where C and Y denote
input and output alphabets, respectively and the probability
that given c ∈ C, y ∈ Y is observed can be denoted by W (y|c).
The N independent uses of W results in channel WN that can
be expressed as

WN (y | c) =

N∏
i=1

W (yi | ci). (1)

Arikan in [4] introduces the polar transformation as a
method of linearly transforming N independent uses of the
channel to N correlated uses denoted by W ′:U→Y . By
recursive applying the polar transformation on the binary
DMC input, some of the resulting correlated bit-channels
are improved and others are degraded. Ideally, for very long
codes, the capacity of some bit-channels become one and
therefore are used for transmission of information and the
capacity of the rest of them become zero and are not used
for transmission. For a code of length N = 2n, the first set is
called the information set, denoted by A with cardinality K,
and the second set is called the frozen set denoted by AC with
cardinality N−K.

A. Encoding
The polar encoder generates the codeword c from the

message word u = [u1, u2, ..., uN ] according to c = uGN

where the K information bits are placed in the elements of u
corresponding to the information set, and the elements of u
corresponding to the frozen set are set to zero. The generator
matrix, GN , is defined based on the binary polarization kernel
[4]

F2 =

[
1 0
1 1

]
(2)

as GN = F⊗n2 , where F⊗n2 is the n-th Kronecker power of F2

defined as F⊗n2 = F2⊗F⊗(n−1)2 . The use of the Kronecker
power facilitates constructing the polar encoder since the
structure is repeated regularly.

B. SC Decoding
Proposed in [4], SCD benefits from low complexity which

is beneficial in many applications. By applying the polar
transform, the transition probabilities of the resulting bit-
channels, given the code-bit channel output y and decoded
bits u1:i−1

1, can be computed as [5]

Wi(y,u1:i−1 | ui) =

1

2N−1

∑
ui+1:N∈{0,1}N−i

WN
(
y | (u1:i−1, ui,ui+1:N )GN

)
.

(3)

1Throughout this paper, the subscript of u is used to represent the set of
indices that define the subset of the elements of u.

λ8,1

û1
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û5

λ3,1

û6
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Fig. 1. Polar decoder structure.

Denoting the decoder output vector as û, the output log-
likelihood ratios (LLRs), given y, ûAC = uAC and u1:i−1,
are

λi,n+1 = ln
Wi(y, û1:i−1 | 0)

Wi(y, û1:i−1 | 1)
. (4)

The final SCD decision rule is the hard decision on λi,n+1.
Therefore, the SCD works based on successive decoding of
elements of û. Fig. 1 illustrates the structure of the SCD which
is also known as the polar code graph. Each node of this
graph is represented by (i, j), where i ∈ {1, .., N} and j ∈
{1, ..., n + 1} are row and column indices of the graph. The
nodes of graph can be partitioned as Type I and Type II based
on their indices as

type(i, j) =

{
I b i−1

2n+1−j c (mod 2) ≡ 0

II b i−1
2n+1−j c (mod 2) ≡ 1

. (5)

The SCD employs soft-hard update decision rules to esti-
mate the message word. As shown in Fig. 1, the decoder first
starts by computing the input LLRs as λi,1 = ln Wi(y|0)

Wi(y|1) . For
the intermediate nodes (2 < j < n+ 1), the LLR update rule
of the decoder can be given as

λi,j =

{
λi,j−1 � λi+,j−1 type I
λi,j−1 + (1− 2v̂i−,j)λi−,j−1 type II

, (6)

where i± = i ± 2n+1−j and v̂i,j is a hard estimate of
vi,j and the boxplus operator is defined as λ1 � λ2 =
2 tanh−1

(
tanh(λ1

2 ) tanh(λ2

2 )
)
. The LLRs are calculated and

passed from left to right through the decoder graph till v̂1,n+1

is estimated. Then, it starts to pass the hard estimates recur-
sively from right to left to compute the rest of intermediate
nodes LLR. To estimate v̂i,j the polar encoding structure is
imitated.



IV. POLAR CODE DESIGN METHOD

Typically, for the AWGN channel, polar codes are designed
to minimize the FER for a given code rate, R = K/N , at a
given SNR. That is, the K elements of the information set
are chosen in an attempt to provide as low a FER as possible.
Alternatively, for a given SNR and a target FER, one can
choose the information set to be as large as possible (thereby
maximizing the code rate), while ensuring the target FER is
not exceeded. However, for systems employing HARQ, neither
the FER nor the code rate are of primary importance.

For ARQ systems, messages are transmitted indefinitely
until they are correctly received. As such, the more relevant
metric is the throughput (also referred to as the “goodput”),

η =
K − LCRC

N
(1− FER), (7)

which is the rate at which information is correctly received
(in information bits per channel use). Using this new criteria,
codes that are quite different from those that maximize the
code rate or minimize the FER can be generated. In rest of this
section, first we explain the design method for SCD. Then we
adapt the codes designed for the SCD to the SCLD, introduced
in [9], by using a rate matching algorithm.

A. Code Design for SCD

To design polar codes, the positions of the information bits
(the information set) must be determined. Determining the
information set by using Monte Carlo simulation, proposed
by Arikan in [4], is one of the methods of polar code
design which benefits from high flexibility for adapting to a
variety of practical channels. In the simulation-based design
method, as described in [10], the transmission of a large
number of message words is simulated and SCD decodes bits
subsequently from the first to the last. Then, the number of
the first error events2 for each bit-channel is measured. The
number of transmitted codewords for achieving the sufficient
statistic can be decreased if, after recording each first error
event, the corresponding bit is corrected to prevent propagating
that error and the next bit-channels are examined subsequently.
When the polar code is designed for a predetermined rate
R at a specific SNR, the best information set is chosen to
minimize the FER by finding the K message bit positions
with the lowest frequency of the first error event3.

By recording the position of each first error event for each
simulated codeword, it is easy to evaluate the FER for any
information set. Any simulated codeword with at least one
first error event in positions specified by that information set
would also have been decoded incorrectly by a real decoder for
the polar code defined by that information set. Thus the FER
for a given information set can be approximated by dividing
the number of incorrectly decoded codewords by the number
of simulated codewords.

2For each codeword, the first error event defined as the first erroneous
output bit. This error doesn’t include the propagated error and just represents
the error of the bit-channel.

3The frequency of the first error event is the number of the first error events
for each bit-channel divided by the total number of simulated codewords.

More formally, suppose we simulate NSIM codewords of
length N at a given SNR. Let εi,k = 1 if a first error
event occurred in the kth bit-channel during the ith simulated
codeword transmission, and εi,k = 0 otherwise. 4 For a given
hypothetical information set, A, the ith simulated codeword
would have been decoded incorrectly if Σk∈Aεi,k > 0. Let
δi = 1 if Σk∈Aεi,k > 0 out of the NSIM simulated codewords,
the number of codewords that would have been incorrectly
decodes is ΣNSIM

i=1 δi.
Using this method, it is straightforward to design polar

codes to maximize the throughput. Once the simulation of
a sufficiently large number of codewords has completed (typ-
ically NSIM = 10000 codewords is sufficient) at the desired
SNR and the position of the first error events has been recorded
(εi,k), the information set of the minimum FER polar codes
for every code rate from

(
1+LCRC

)
/N to N/N is determined

(i.e. ∀K ∈ {1+LCRC, ..., N}) and the corresponding FER
is approximated. Then the code rate that maximizes the
throughput, (7), is determined, and the associated information
set is used to define the optimal polar code at that SNR.

The throughput vs. the code rate for polar codes with length
4096 at SNRs of -2, 0 and 2 is shown in Fig. 2. The throughput
initially grows linearly with the code rate until the rate gets
sufficiently high, when the effects of the FER start to dominate
in (7), after which point the throughput drops dramatically.
The existence of an optimal rate to maximize the throughput
is clear.
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Fig. 2. Throughput vs. the code rate for SCD with N = 4096 bits at different
SNRs.

B. Rate Matching Algorithm for SCLD

For decoding of each output bit with SCD, the information
of other previously decoded bits and the future frozen bits
are not used. To overcome these shortcomings, the SCLD
records a list containing different possible decoded message
words and keeps only L most likely ones after each steps

4Let Ck = Σ
NSIM
i=1 εi,k be the total number of first error events in the kth

bit-channel. The information set, A, of the minimum-FER code of rate K/N
contains the values of k with the K smallest values of Ck .



[9]. A CRC sequence is usually added to message bits when
SCLD is used, to increase the probability of finding the most
likely message word. Throughout this paper for SCLD, only
one CRC sequence is used for both list decoding and ARQ.
Typically, the codes designed for SCD are used for SCLD as
well since the SCL core decoder is SCD. However, these codes
are suboptimal for SCLD.

When throughput-maximizing codes optimized for SCD are
used with SCLD, the FER is lower than the FER of SCD. Even
though, this slightly improves the throughput, it is not highly
effective on the term (1−FER) in (7). However, since R is
numerically more dominant in (7) when the FER is small, it
can be increased more significantly to improve the throughput.
Therefore, we introduce a rate matching algorithm for SCLD.
The algorithm employs the golden section search method
[11] to find the code rate corresponding to the maximum
throughput.

As explained in [11], the golden search method iteratively
measures the objective function at different points and updates
the answer range interval [a, b] until this interval is narrowed
down around the final value of the decision variable. Here, the
objective function is the actual throughput of SCLD measured
using simulation and the decision variable is the message word
length. The proposed algorithm is fast, e.g., for N = 16384 it
finds the optimum rate in around 15 iterations, corresponding
to 16 evaluations of the objective function. For initialization of
the algorithm, we use a = KSCD and b = min(a+N/10, N)
where KSCD is the length of the message word of the code
optimized for the SCD.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide the performance of the code
design algorithms described in Sections IV-A and IV-B, re-
spectively. The system described in Section II is used for all
simulations and the CRC sequence is CRC-16-CCITT. Since
the AMC is employed, nine different polar codes are designed
for measured SNRs with a spacing of 2 dB over the interval
[−6, 10] dB.

In Fig. 3, the throughput of SC-decoded polar codes with
different lengths changing from 4096 bits to 1048576 bits are
shown. At 0 dB, the polar codes of lengths 1048576 and 4096
achieve 94.8% and 80% of the capacity, respectively.

The throughput of SC- and SCL-decoded polar codes of
length 4096 is shown in Fig. 4 in comparison to BPSK capac-
ity. The SCLD list size is 32 for all curves. The lowermost
black curve shows the throughput of the polar code designed
using SCD and decoded with SCD that achieves the throughput
of 80% of the capacity at 0 dB. The second black curve is
the throughput of the code designed for SCD and decoded
using SCLD which achieves 82.5% of the capacity at 0 dB.
The topmost curve under the capacity shows the performance
of the code designed for SCD and rate matched for SCLD
using Algorithm 1 which achieves the 89.3% of the capacity
at 0 dB. Therefore, the use of SCLD for decoding of codes
designed for SCD doesn’t change the throughput substantially
in comparison to SCD. However, employing Algorithm 1 for

Algorithm 1 Rate Matching for SCLD
Input: Polar code constructed for SCD
Output: The maximum throughput and the corresponding

code rate for SCLD
Procedures used in the algorithm:
SCLD Throughput(R): Computes the throughput of a code with

rate R based on the simulation and by employing SCLD. Here,
the codes optimized in Section IV-A are used.
Constants:
Golden ratio: ρ = (

√
5− 1)/2

Variables:
a,b,k1,k2: Variables used for the message length.
f(k1), f(k2): Variables used for the throughput values.
Out Rate: Code rate corresponding to maximum throughput
for SCLD.
Max Throughput: Maximum throughput achieved by SCLD.
Initialization:

1: a = KSCD
2: b = min(a+N/10, N)

The body of algorithm:
3: k1 = bρa+ (1− ρ)bc
4: f(k1) =SCLD Throughput(k1/N )
5: k2 = b(1− ρ)a+ ρbc
6: f(k2) = SCLD Throughput(k2/N )
7: while |a− b| ≤ 1 do
8: if f(k1) > f(k2) then
9: b = k2

10: k2 = k1
11: f(k2) = f(k1)
12: k1 = bρa+ (1− ρ)bc
13: f(k1) = SCLD Throughput(k1/N )
14: else
15: a = k1
16: k1 = k2
17: f(k1) = f(k2)
18: k2 = b(1− ρ)a+ ρbc
19: f(k2) = SCLD Throughput(k2/N )
20: end if
21: Out Rate=b/N
22: Max Throughput= SCLD Throughput(b/N )
23: end while
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Fig. 3. Throughput comparison of polar codes of different lengths with SCD.



the rate matching can substantially improve the throughput of
the code used with SCLD.

Fig. 4 furthermore provides a comparison of the throughput-
maximizing polar codes and parallel concatenated (turbo)
codes employed in LTE-A [8]. The BCJR decoder with
5 iterations is employed for decoding of the turbo codes
with codeword lengths of around 4096. The LTE-A turbo
code rate is optimized using Algorithm 1 to maximize the
throughput. The range of message word lengths are limited
to 40:8:512, 528:16:1024, 1056:32:2048 and 2112:64:4200
bits which provides us with 157 different choices for the
code rate. In this case, Algorithm 1 is used to search all
the possible 157 choices for the code rate and selects the
code rate corresponding to the highest throughput. Due to
code rate limitations, the optimization procedure was only
applied in SNR range between -4 and 10 dB. Furthermore,
the turbo code lengths are slightly higher than 4096. It can be
observed that turbo code performance is close to the optimized
polar code with Algorithm 1 at low SNRs. However, as the
SNR increases, the performance of turbo degrades and at high
SNRs, it is even worse than the polar code optimized for SCD.
Note that the complexity of BCJR with 5 iterations is more
than that of SCLD.
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Fig. 4. Throughput comparison of polar codes of length 4096 optimized for
SCD decoded with SCD and SCLD and the rate matched polar code using
Algorithm 1 decoded with SCLD.

Finally, Fig. 5 shows the code rate RSCLD of the rate
matched codes designed using Algorithm 1 plotted against
the code rate of the code optimized for SCD. The curves are
plotted for different code lengths. Interestingly, the change
of RSCLD against RSCD is approximately linear for all code
lengths.

VI. CONCLUSION

In this letter, we proposed a simple method for designing
polar code for SC decoding based on throughput maximization
for Type-I HARQ. The numerical results shows the codes con-
structed using this method perform very close to the capacity.
Furthermore, we proposed an algorithm for matching the rate
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Fig. 5. Comparison of code rate RSCLD found using Algorithm 1 against
RSCD for different code lengths.

of the codes designed for SCD to SCLD. The results indicate
a substantial improvement when the proposed rate matching
algorithm is used to find the optimum rate for SCLD. Due to
the substantial throughput improvement that can be realized
using carefully designed codes, the idea of throughput-based
polar code design should be extended to designing optimal
codes for Type-II HARQ systems in the future.
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