

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom

Amr El-Keyi and Halim Yanikomeroglu

- Introduction
- Full-duplex system
- Cooperative system
- Cooperative full-duplex system
- DoF Comparison and Conclusion

Introduction

Cellular Full-duplex Transmission

Advantages:

- Increases throughput and system capacity.
- Allows more flexible usage of the spectrum.
- Reduces the delay in the feedback of control information, channel state information and acknowledgment messages.

Challenges

- Self-interference; over 100 dB suppression is required.
- Inter-user interference; careful design of efficient interference management techniques is required.

Introduction

Implementation of full-duplex transceivers

Shared antenna

Separate antenna

Same antenna used both for transmission and reception

Shared- and separate -antenna full-duplex transceivers*

* A. Sabharwal, P. Schniter, Dongning Guo, D.W. Bliss, S. Rangarajan, and R. Wichman, "In-band full-duplex wireless: Challenges and opportunities," IEEE JSAC, vol. 32, pp. 1637-1652, September 2014.

Related work

- In [1], single-cell system with full-duplex shared antenna BS and multiple half-duplex UEs, the DoF of the system are doubled.
- In [2], single-cell system with full-duplex separate antenna BS (M_T,M_R) and multiple half-duplex UEs achieves higher DoF than a half-duplex system employing max(M_T,M_R) antennas.

[1] S.H. Chae and S.H. Lim, "Degrees of freedom of cellular networks: Gain from full-duplex operation at a base station," in IEEE Global Communications Conference (GLOBECOM), Austin, TX, December 2014, pp. 4048–4053.

[2] K. Kim, S. Jeon, and D.K. Kim, "The feasibility of interference alignment for full-duplex MIMO cellular networks," IEEE Communications Letters, vol. 19, no. 9, pp. 1500–1503, September 2015.

For a given number of antennas at each node, what is the DoF gain that can be achieved by full-duplex operation in cellular systems, e.g., a two-cell system?

Full-Duplex System

Canada's Capital University

System Model

- Two-cell system
- Each BS uses orthogonal resources to communicate with its attached UEs.
- Each BS has *M* full-duplex separate antennas.
- Each UE has *N* full-duplex separate antennas.
- Perfect self-interference cancellation at each node.
- No interference between the BSs
- Inter-cell and inter-UE interference

Total Degrees of Freedom

- The total DoF of a network is defined as $D = \lim_{\text{SNR} \to \infty} \frac{C(\text{SNR})}{\log(1 + \text{SNR})}$
- The DoF represents the rate of growth of network capacity with the logarithm of the signal-to-noise ratio.
- In most networks, the DoF represents the number of interference-free streams that can be transmitted in the network.
- The optimal antenna allocation (M_T, M_R, N_T, N_R) is chosen to maximize the total DoF by solving

$$D = \max_{\substack{M_T, M_R, N_T, N_R \\ \text{subject to}}} \lim_{\substack{\text{SNR} \to \infty}} \frac{C(\text{SNR}, M_T, M_R, N_T, N_R)}{\log(\text{SNR})}$$
$$M_T + M_R = M$$
$$N_T + N_R = N$$

Equivalent System Model

 d_f : DoF of downlink d_r : DoF of uplink $D=2 d_f+2 d_r$

 Separating the transmit and receive sections of each transceiver: Equivalent system:

4-user partly-connected IC

Encoder

$$oldsymbol{x}_{\scriptscriptstyle P_i}(n) = \mathcal{E}_{\scriptscriptstyle P_i}ig(W_{Q_i,P_i},\mathbf{y}_{\scriptscriptstyle P_i}^{n-1}ig)$$

Decoder

$$\hat{W}_{Q_i,P_i} = \mathcal{D}_{\scriptscriptstyle Q_i}ig(W_{P_i,Q_i},\mathbf{y}_{\scriptscriptstyle Q_i}^Lig)$$

Full-Duplex System

Bounding the DoF of the system

Eliminating inter-UE inference:

 $\begin{array}{rcl} 2d_f & \leq & \min\left\{2M_T, 2N_R, \max\left\{M_T, N_R\right\}\right\} \\ 2d_r & \leq & \min\left\{2N_T, 2M_R, \max\left\{N_T, M_R\right\}\right\} \end{array}$

Full-Duplex System

Full-Duplex System

Bounding the DoF of the system

The total DoF can be bounded by solving

$$\max_{d_f, d_r, M_T, N_T} 2d_f + 2d_r$$
subject to $d_f \leq \min \left\{ M_T, N - N_T, \frac{1}{2} \max\{M_T, N - N_T\} \right\}$
 $d_r \leq \min \left\{ N_T, M - M_T, \frac{1}{2} \max\{N_T, M - M_T\} \right\}$
 $d_f + d_r \leq \max\{N_T, N - N_T\}$
 $0 \leq N_T \leq N$
 $0 \leq M_T \leq M.$

A closed-form solution was obtained to the above non-convex problem

$$D_{FD} \leq \begin{cases} \min\left\{2M, \frac{2}{3}M + \frac{2}{3}N, \frac{4}{3}N\right\} & 0 \leq M < \frac{7}{6}N\\ \min\left\{\frac{4}{5}M + \frac{2}{5}N, 2N\right\} & M \geq \frac{7}{6}N \end{cases}$$

Cooperative System

Canada's Capital University

System Model

- Two-cell system
- Each UE is served by both BSs.
- Each BS has *M* antennas.
- Each UE has *N* antennas.
- Uplink and downlink use orthogonal resources

• D= 2df

Results

 System is equivalent to a 2-user MXN MIMO X-Channel whose DoF is given by

$$D_{\rm HD}^{\rm X} = \min\left\{2M, 2N, \frac{4}{3}\max\left\{M, N\right\}\right\}$$

Cooperative Full-Duplex System

System Model

- Two-cell system
- The two BSs communicate with the two UEs
- Each BS has *M* full-duplex separate antennas.
- Each UE has *N* full-duplex separate antennas.
- Perfect self-interference cancellation at each node.
- No interference between the BSs
- Inter-cell and inter-UE interference

Results

 Same technique can be used to obtain an upper bound on the DoF of the system

$$D_{FD}^{X} \leq \begin{cases} \min\left\{2M, \frac{4}{5}(M+N), \frac{3}{2}N\right\} & 0 \leq M < \frac{25}{24}N\\ \min\left\{2N, \frac{12}{11}M + \frac{4}{11}N\right\} & M \geq \frac{25}{24}N \end{cases}$$

DoF Comparison

Canada's Capital University

DoF versus the ratio between the number of antennas at BS and UE

DoF Comparison

- The achievable DoF of the cooperative system is always greater than or equal to the upper bound on the DoF of the full-duplex system.
- At M/N=1.5, the cooperative system yields at least 25% gain in DoF compared to the full-duplex system.
- Adding the full-duplex capability to the cooperative case does not yield significant gain; the maximum DoF gain cannot exceed 12:5% of the DoF of the half-duplex cooperative system

DoF versus the ratio between the number of antennas at BS and UE

Future Work

 d_f

Canada's Capital University

- Macro cell
 - Full duplex
 - BS employs *L* full-duplex separate antennas
 - Perfect self-interference cancellation
- Femto cell
 - Half-duplex (only downlink is operational)
 - *M* antennas at BS
 - BS transmits with low power
- All UEs are half-duplex with N antennas each
- We assume that $L \ge M \ge N$

Uı

 $\land .. \land N$

М

Fig. System Model

What is the optimum antenna allocation at the Macro BS and the DoF?

Future Work

Canada's Capital University

- Full-duplex Macro BS: $d_{\Sigma} = \max\left\{\frac{3N}{2}, \min\left\{2N, L, \frac{M}{2} + N\right\}\right\}$
- Half-duplex system: $d_{\Sigma} = \min\{M, 2N\}$

