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Abstract—The objective of this work is to determine a close-
to-optimal user-to-base station (BS) association that maximizes
the number of users served by the downlink of a heterogeneous
network (HetNet). Such an association must not only ensure
that the number of accommodated users is maximized but
also that the network resources are efficiently utilized and the
users’ quality of service (QoS) demands are met. In its simplest
form, the optimization problem that underlies this association
is combinatorial NP-hard and the difficulty of solving it is
aggravated in HetNets by the disparity of transmit powers and
BS computational capabilities. To find close-to-optimal user-to-BS
associations, we develop a two-phase method based on semidef-
inite relaxation (SDR) with randomization, which is a powerful
method for solving a class of combinatorial problems. Unlike the
majority of other polynomial complexity techniques, SDR has a
provable approximation accuracy. Numerical examples show that,
in comparison with other user-to-BS association approaches, the
one proposed herein enables more efficient utilization of resources
and a significantly higher number of users to be accommodated.

Index Terms—Heterogeneous cellular networks, Gaussian ran-
domization, convex optimization.

I. INTRODUCTION

Despite the ostensible ubiquity of conventional homogeneous
cellular networks, their inherent limitations render them inca-
pable of supporting the users’ increasing demand for reliable
communication of higher data rates. Such limitations include
inefficient utilization of spectral resources, poor coverage and
excessive power consumption [1]. To mitigate these limitations,
cellular networks have evolved to include low-power pico and
femto base stations (BSs). Incorporating such BSs to assist
homogeneous conventional macro ones gives rise to the so-
called heterogeneous networks (HetNets). These networks offer
significant advantages over their conventional counterparts. For
instance, HetNets are capable of: making efficient utilization
of the spectrum available for communication [1]; reducing the
overall network power consumption [2]; eliminating coverage
holes; and, with proper user-to-BS association, accommodating
more users in the system as will be shown herein. Despite
the advantages of HetNets, the disparate transmit powers and
computational capabilities of the underlying BSs render fair and
resource-efficient user-to-BS association a serious challenge [3].

This work is supported in part by Huawei Canada Co., Ltd., in part by the
Ontario Ministry of Economic Development and Innovation’s ORF-RE (Ontario
Research Fund - Research Excellence) program, and in part by a Discovery
Grant of the Natural Sciences and Engineering Research Council (NSERC) of
Canada.

To overcome user-to-BS association challenges in HetNets,
several considerations must be taken into account: 1) the
channel conditions between the users and the BSs; 2) the
load condition of each BS; and 3) the quality-of-service (QoS)
demanded by each user. A conventional approach to associating
users to BSs is the one in which each user is associated to
the BS with the maximum signal-to-interference-plus-noise
ratio (max-SINR). This approach is relatively simple, but can
lead to highly imbalanced loading of the BSs and does not
guarantee users’ QoS. Furthermore, the max-SINR approach
does not account for disparities in the transmit powers and BS
computational capabilities. Another approach for user-to-BS
association is the one based on range expansion (RE) [4]. In
that approach, the traffic from macro BSs is offloaded to low-
power BSs by adding a positive bias to the measured SINRs of
low-power BSs. An advantage of this approach is that it does
not depend on the relative location of users and BSs. However,
a major weakness of it is the lack of theoretical guidance for
choosing the biasing factor. Algorithms for determining user-
to-BS associations by finding approximate solutions to relaxed
network utility maximization problems using dual pricing
methods were proposed in [5] and [6] for the case when the
number of users in the system is fixed. Those methods do not
account for the QoS requirements and the associations that they
yield are not necessarily binary. The latter feature implies that
the number of BSs serving a particular user can be practically
infeasible. In this paper, we consider the association of users to
BSs in the downlink of a generic HetNet. Such an association
must not only ensure that the number of accommodated users
in the network is maximized but also that the network resources
are efficiently utilized and the users’ QoS demands are met.
In its simplest form, this problem is combinatorial NP-hard
and the difficulty of solving it in HetNets is aggravated
by the disparity of transmit powers and BS computational
capabilities; finding the optimal solution even for relatively
small homogeneous systems is computationally prohibitive. To
find close-to-optimal user-to-BS associations, we propose a
method based on SDR with randomization, which is a powerful
method for solving a class of combinatorial problems [7]. In
the first phase of this method, a convex formulation is used
to generate a covariance matrix and an upper bound on the
maximum number of users that can be accommodated in a
network with controlled resource consumption and ensured QoS.
In the second phase, the covariance matrix obtained in the first
phase is used to generate a population of random candidates of



the solution. The candidate that yields the highest objective is
used for associating users to BSs. Unlike other techniques with
polynomial complexity, SDR with randomization has a provable
approximation accuracy. Numerical results suggest that, in
comparison with other user-to-BS association approaches, SDR
with randomization enables the system to accommodate a
significantly higher number of satisfied users.

II. SYSTEM MODEL

We consider the downlink of the static two-tier HetNet shown
in Figure 1 [5]. In such a HetNet, tier-1 consists of one or
more macro BSs and tier-2 consists of one or more pico BSs.
The set of BSs is denoted by B = {1, · · · , NB} and the set of
users is denoted by U = {1, · · · , NU}. All BSs are assumed to

Fig. 1. A two-tier HetNet; macro BS transmits higher power than pico BS.

have full buffers and to have fixed transmit powers throughout
the signalling interval. Using gij to denote the channel gain
between the i-th BS and the j-th user, Pi to denote the transmit
power of the i-th BS and σN to denote the variance of the
additive Gaussian noise, the received SINR observed by the
j-th user from the i-th BS can be expressed as

γij =
Pigij∑

k∈B, k 6=i

Pkgkj + σN
, i ∈ B, j ∈ U. (1)

The corresponding rate at which the i-th BS can reliably
communicate with the j-th user per unit bandwidth is

ηij = log2 (1 + γij) [bits/s/Hz]. (2)

For practical considerations, many communication standards,
including the current Long Term Evolution (LTE) one, impose
a restriction on the smallest number of time-frequency resource
blocks (RBs) that can be assigned to any user [8]. The number
of RBs that must be assigned to a user depends on its QoS
demand; higher QoS requirement implies a higher number of
allocated RBs. To see that, let Qj be the data rate in bits/s
required by the j-th user, j = 1, . . . , NU , and let W be the
bandwidth of each RB. Using this notation, the minimum
number of RBs that must be allocated by the i-th BS to meet
the demand of the j-th user is given by

bij =

⌈
Qj

Wηij

⌉
, (3)

where d·e is the ceiling function. From this expression, it can
be seen that bij is directly proportional to the QoS required
by the j-th user and inversely proportional to the maximum
per unit bandwidth rate that can be achieved on the ij-th link.

III. OPTIMIZATION PROBLEM FORMULATION

Using the characterization in Section II, we now develop
an optimization framework for maximizing the number of
users accommodated by the network while ensuring efficient
utilization of the available resources. Towards that end, we
begin by defining the binary association variables xij ∈ {0, 1}
such that xij = 1 if the j-th user is served by the i-th BS and
xij = 0 otherwise, i = 1, . . . , NB , j = 1, . . . , NU .

Using this notation, the total number of resources used by
the i-th BS can be expressed as

∑
j∈U bijxij and the total

number of resources used in the network can be expressed
as
∑

i∈B
∑

j∈U bijxij . To meet the constraints of the macro
and pico BSs, a practically feasible design must ensure that
the total number of resources used by the i-th BS does not
exceed a given threshold ti, i.e.,

∑
j∈U bijxij ≤ ti, i =

1, . . . , NB . From a practical perspective, it is also desirable
for each user to be served by at most one BS. This is because,
otherwise, coordination among multiple BSs is necessary, which
is usually cumbersome in practice. The requirement that each
user is served by at most one BS can be expressed as the
constraint

∑
i∈B xij ≤ 1, j = 1, . . . , NU . When this constraint

is enforced, the total number of users in the system can be
expressed as

∑
i∈B

∑
j∈U xij . Note that a user ĵ ∈ U that is

not served by any BS will result in xiĵ = 0 for every i ∈ B.
To maximize the number of users while ensuring

efficient utilization of resources we consider a linear
combination of these two quantities. In particular, let
ρ ∈ [0, 1] be given, and let the objective be to maximize
ρ
∑

i∈B
∑

j∈U xij − (1 − ρ)
∑

i∈B
∑

j∈U bijxij . Increasing
ρ from 0 to 1 shifts the emphasis of the optimization from
minimizing the number of resources used in the network
to maximizing the number of users accommodated therein.
As such, ρ parametrizes a family of objectives, each with a
corresponding number of users and a number of expended
resources. To determine the optimal value of ρ, we follow a
reasoning similar to the one in [9]. Doing so, it can be shown
that any value of ρ ∈

( ∑
i∈B ti

1+
∑

i∈B ti
, 1
)

ensures maximizing the
number of accommodated users and simultaneously minimizing
the number of expended resources.

Assuming that ρ lies within the aforementioned interval, the
downlink user-to-BS association can be formulated as:

max
xij

ρ
∑
i∈B

∑
j∈U

xij − (1− ρ)
∑
i∈B

∑
j∈U

bijxij (4a)∑
j∈Ui

bijxij ≤ ti, i ∈ B, (4b)∑
i∈Bj

xij ≤ 1, j ∈ U, (4c)

xij ∈ {0, 1} , i ∈ B, j ∈ Ui. (4d)



From (4), it can be readily verified that, apart from the
binary constraint in (4d), this formulation constitutes a convex
linear optimization problem. However, the binary constraint
makes this problem an instance of a non-convex mixed integer
linear program (MILP). In fact, this problem is known as
generalized assignment problem [10], which can be solved
using various techniques, including those that use the branch-
and-bound approach and variations thereof. Unfortunately, the
complexity of these algorithms grows exponentially with the
number of variables and as such their applicability in the
current scenario is questionable. To alleviate this difficulty,
herein we consider utilizing an alternate technique for dealing
with this class of problems, viz., the one based on semidefinite
relaxation with randomization [7].

IV. USER ASSOCIATION VIA SEMIDEFINITE RELAXATION

Being an instance of the generalized assignment problem,
the optimization of user-to-BS associations can be readily
seen to be NP-hard. Hence, solving this problem optimally
is computationally infeasible for all, but a relatively small
class of HetNets with a limited number of users and BSs. To
obtain resource-efficient user-to-BS associations, we propose
to use the SDR technique with randomization. Unlike the
techniques based on the branch-and-bound approach, SDR
with randomization has polynomial complexity, which renders
it suitable for solving large user-to-BS association problems
that may arise in practice. In comparison with other polynomial
complexity algorithms, SDR with randomization has provable
approximation accuracy [11]. A somewhat similar technique for
generating user-to-BS associations was developed in [12] in a
different context. In particular, herein we consider maximizing
the number of users served by a generic HetNet with an
arbitrary number of macro and pico BSs per cell under QoS
constraints, whereas in [12] the HetNet is restricted to have
one macro and one pico BS per cell and the design objective
is to maximize the total sum rate irrespective of the QoSs
demanded by the users.

To cast (4) in a form that is more amenable to the
optimization technique employed hereinafter, we will express
the objective and the constraints using vector notation. Towards
that end, let X ∈ RNB×NU and B ∈ RNB×NU be the
matrices whose ij-th entries are xij and bij , respectively. Let
Di ∈ RNB×NU be the all-zero matrix except its i-th column
is equal to the i-th column of B, i = 1, . . . , NB , and let
Ej ∈ RNB×NU be the all-zero matrix except its j-th row is
all ones, j = 1, . . . , Nu. Using vec(·) to denote the operator
that stacks the columns of a matrix on top of each other, we
make the following definitions: x , vec(X), b , vec(B),
di , vec(Di) and ej , vec(Ej). Using this notation the
problem in (4) can be expressed in the following form:

max
x

ρ1Tx− (1− ρ)bTx, (5a)

subject to dT
i x ≤ ti, i ∈ B, (5b)

eT
j x ≤ 1, j ∈ U, (5c)

x ∈ {0, 1}NBNU , (5d)

where 1 ∈ RNUNB is the all-one vector. To cast this problem
in the standard form for SDR, the optimization variables must
be antipodal rather than binary. Hence, we introduce the vector
β = 2x− 1, which implies that β ∈ {−1, 1}NBNU , and

x =
1

2
(β + 1). (6)

Using (6), the formulation in (5) can be cast as:

max
x

ρ

2
1T (β + 1)− (1− ρ)

2
bT (β + 1), (7a)

subject to
1

2
dT
i (β + 1) ≤ ti, i ∈ B, (7b)

1

2
eT
j (β + 1) ≤ 1, j ∈ U, (7c)

β ∈ {−1, 1}NBNU . (7d)

To use the SDR technique, the problem in (7) is expressed
in a form in which the optimization variables are constrained to
be in the cone of symmetric positive semidefinite matrices [7].
To do so, we define the following vectors in RNBNU+1,
b̂ , [bT bT1]T , d̂i , [dT

i dT
i 1]T , i = 1, . . . , NB ,

êj , [eT
j eT

j 1]T , j = 1, . . . , NU , 1̂ , [1T 1T1]T , β̂ ,
[β 1]T and ĉ , [0T

NBNU
1]T , where 0NBNU

is the all-zero
NBNU × 1 vector. We also define the symmetric matrices
Φ ∈ RNBNU×NBNU and Ψ ∈ RNBNU+1×NBNU+1 to be

Φ , ββT and Ψ = β̂β̂
T

; in particular, Ψ =

[
Φ β

βT 1

]
.

Finally, we define the NBNU +1×NBNU +1 rank-1 matrices
A1 , ĉ1̂T , Ab , ĉb̂T , Adi

, ĉd̂T
i , i = 1, . . . , NB and

Aej , ĉêT
j , j = 1, . . . , NU . Using these definitions, it can

be ready verified that the problem in (7) is equivalent to the
following optimization problem.

max
Ψ

ρ

2
Tr(A1Ψ)− 1− ρ

2
Tr(AbΨ), (8a)

subject to
1

2
Tr(Adi

Ψ) ≤ ti, i ∈ B, (8b)

1

2
Tr(AejΨ) ≤ 1, j ∈ U, (8c)

Ψ � 0, (8d)
diag(Ψ) = 1, (8e)
rank(Ψ) = 1. (8f)

In this formulation, the binary constraint in (7d) is replaced
with the equivalent constraints in (8e) and (8f). The constraint
in (8e) is linear and therefore can be readily incorporated in
the optimization framework. However, the rank-1 constraint
in (8f) is highly non-convex and, in fact, it is this constraint that
captures the NP-hardness of the original problem in (7). Despite
being ostensibly more complex than (7), the formulation in (8)
offers the advantage of being readily amenable to the SDR
technique, which we describe next.

A. SDR with Gaussian Randomization

Our main contribution is to show that maximizing the number
of users in a generic HetNet with a given set of available
resources can be cast in the form in (8). This form is amenable



to the standard SDR with Gaussian randomization approach [7].
For completeness, this approach will be tailored below to
provide an approximate solution of (8).

The main difficulty of solving (8) follows from the non-
convexity of the rank-1 constraint. By dropping this constraint,
the resulting problem can be seen to be linear over the set
of matrices Ψ that lie in the positive semidefinite cone. In
other words, the relaxation induced by dropping the rank-1
constraint yields an efficiently solvable convex optimization
problem in the form of a semidefinite program. This program
forms the basis of the solution approach adopted herein.

Let z, Z and R be the optimization variables of the relaxed
problem corresponding to β, Φ and Ψ in the original problem
in (8), respectively. The convexity of the relaxed version of (8)
implies that its global optimal solution, z∗, Z∗ and R∗, can
be readily obtained. Since the difference between (8) and its
relaxed version is the rank-1 constraint, it can be readily seen
that if the rank of the matrix generated by the relaxed program
is 1, i.e., rank(R∗) = 1, the vector z∗ yielded by solving the
relaxed version of (8) is binary and constitutes the optimal
user-to-BS association. However, the solution of the relaxed
problem is in general not rank-1. In this case, the Gaussian
randomization approach can be used to obtain a desirable
user-to-BS association for the problem in (7).

In the Gaussian randomization approach, a stochastic version
of the relaxation of (8) is conceived. In that version, the vector
z∗ generated by solving the relaxed program is considered
as the mean of a multivariate Gaussian NBNU -dimensional
random vector, and Z∗ and Z∗ − z∗z∗T are considered as
the correlation and covariance matrices of this random vector,
respectively. In particular, let ∆ be a set of J random vector
samples drawn from the Gaussian distribution with mean z∗ and
covariance Z∗ − z∗z∗T , i.e., ∆ = {δj}Jj=1, δj ∼ N (z∗,Z∗ −
z∗z∗T ), j = 1, . . . , J . Let δ̂ = [δT 1]T and ẑ∗ = [z∗T 1]T .
Hence, the vectors in ∆ can be seen to provide an approximate
solution to the following stochastic optimization problem:

max
E
{
δ̂δ̂

T
}
=R∗, E

{
δ̂
}
=ẑ∗

E
{
δ̂
T
(ρ
2
A1 −

1− ρ
2

Ab

)
δ̂
}
, (9a)

subject to E
{
δ̂
T
Adi δ̂

}
≤ ti, i ∈ B, (9b)

E
{
δ̂
T
Aej δ̂

}
≤ 1, j ∈ U. (9c)

E
{
δ̂
2

r

}
= 1, r = 1, . . . , NM. (9d)

Notice that because the matrix R∗ =

[
Z∗ z∗

z∗T 1

]
generated

by the relaxed version of (8) is positive semidefinite, its Schur
complement, Z∗−z∗z∗T , is also positive semidefinite. In other
words, Z∗ − z∗z∗T constitutes a valid covariance matrix of
the random vectors {δj}. This establishes the equivalence
between (9) and the relaxed version of (8).

Now, the vectors in ∆ are used to find candidate binary
solutions {β̃

j
}Jj=1 for the problem in (7) by quantizing the

entries of each realization of {δj}Jj=1. In particular,

β̃
j
= sgn(δj), j = 1, . . . , J, (10)

where sgn(·) is the element-wise signum function. Using β̃
j

and (6), we obtain candidate solutions of (5), x̃j . The candidate
that yields the largest objective and satisfies the constraints
in (5) is used for associating the users to the BSs, i.e.,

x∗ = argmax
Fj

x̃j , Fj , {x̃j : x̃j satisfying (5b), (5c)}.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
user-to-BS association method through numerical comparisons
with two popular user-to-BS association algorithms, viz., the
max-SINR algorithm and the RE algorithm [13]. We consider
a two-tier HetNet scenario consisting of one macro and three
pico BSs. The transmit powers of macro and pico BSs are 46
dBm and 35 dBm, respectively. The location of the macro BS is
assumed to be fixed, whereas the locations of the pico BSs and
the users are assumed to be random and uniformly distributed
on a 500 m× 500 m square. For the propagation environment,
shadowing is assumed to have a log-normal distribution with
a standard deviation of σs = 8 dB and the path loss between
the BSs and users is assumed to be L(d) = 34 + 40log(d),
where d is the distance between users and BSs in meters. The
noise power at all receivers is assumed to be -104 dBm. For
all numerical simulations, the results are averaged over 50
independent channel realizations. For practical considerations,
users are allocated integer numbers of RBs; fractional RB
allocation not allowed. The bandwidth of each RB is set to be
180 kHz [8]. The SDR programs are solved using the CVX
package [14] with SDPT3 solver. The number of Gaussian
samples used in the randomization phase is set to be J = 100
for each channel realization.

Example 1

In this example we consider the scenario in which the users
accessing the network, each has a QoS demand of Qj = 500
kilo-bits-per-second (kbps), j ∈ U , and each BS has a total of
ti = 50 available RBs, for i ∈ B. The user-to-BS associations
are generated using the max-SINR, the RE and the proposed
SDR-based algorithms. In Figure 2 the number of users that
could be accommodated in the network is plotted versus the
total number of users who wish to use the network. For the
RE algorithm, the biasing parameter for each BS was set to
be either 5 dB or 10 dB [13].

From this figure, it can be seen that the proposed SDR-
based algorithm outperforms both the max-SNR and the RE
algorithms over the entire range of available network users. This
is especially true when the system experiences high loading
conditions. When the system is lightly loaded, all algorithms
can accommodate a high percentage of the available users,
and when the system is heavily loaded, the available RBs
are exhausted and only a small percentage of users can be
accommodated. For instance, when the total number of users
is 100, the proposed algorithm can accommodate the demands
of about 17% more users than the RE algorithms and about
34% more users than the max-SINR algorithm.
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Fig. 2. Percentage of satisfied users versus the total number of user accessing
the network.

Example 2

In this example we investigate the scenario in which the
total number of users is NU = 100, and each BS has a total
of ti = 50 available RBs, for i ∈ B. Similar to Example 1,
we consider the user-to-BS associations generated using the
max-SINR, the RE and the proposed SDR-based algorithms.
However, in this example, we compare the performance of
these algorithms with the increase in the QoS requirements.
This comparison is depicted in Figure 3.
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Fig. 3. Percentage of satisfied users versus QoS requirements.

From Figure 3, it can be seen that the proposed SDR-based
algorithm performs better than both the max-SINR and the RE
algorithms over the entire range of QoS requirements. However,
its advantage over these algorithms is more pronounced
at high QoS requirements. For instance, when the users’
QoS requirement is 1000 kbps, the proposed algorithm can
accommodate the demands of about 32% more users than the
RE algorithm with the biasing parameter of 5 dB, about 36%

more users than the RE algorithm with the biasing parameter
of 10 dB, and about 29% more users than the max-SINR
algorithm. At low QoSs, all algorithms can accommodate a
large percentage of users, and at high QoSs, the number of
available of RBs becomes the main bottleneck, thereby limiting
the performance of the three algorithms.

VI. CONCLUSION

This paper investigated the problem of associating users to
BSs in a resource-limited downlink scenario of a multi-tier
HetNet. In this scenario, the users may have disparate QoS
demands and the BSs may have disparate powers and disparate
number of available RBs. We proposed a QoS-guaranteed
user-to-BS association algorithm based on SDR and Gaussian
randomization. This algorithm has polynomial complexity
and provable approximation accuracy. In comparison with
currently available techniques, the proposed algorithm enables
the accommodation of more users with less resources.
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