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Abstract—In this paper, we consider a coordinated multi-point
transmission (CoMP) scheme used in a cellular system where
antenna ports are distributed throughout the cell, insteadof using
a single base station. Two schemes are considered; either ports
can be switched on and off (Binary Power Management, BPM)
or their transmission power can be adjusted (Continuous Power
Management, CPM). The goal is to maximize the minimum signal
to interference plus noise ratio (SINR) in the network for both
schemes.

The first problem is NP-hard and the second one is multi-
modal. We propose to use particle swarm optimization (PSO) as
a solver for both problems. It is demonstrated that the proposed
PSO based algorithms can efficiently solve both problems. Fur-
thermore, through simulations, it is shown that for the sametotal
transmit power per port, CPM outperforms BPM.

Index Terms - Distributed antenna systems, CoMP, port selec-
tion, radio resource management, particle swarm optimization.

I. I NTRODUCTION

The ever increasing user demand from wireless communi-
cation systems in terms of both data rate and also coverage
has been the underlying motivation of the search for advanced
technologies. Traditional interference avoidance techniques
which reuse frequency and time resource blocks to mitigate in-
terference, utilize spectrum inefficiently and can be inadequate
to meet the demand for higher data rates. SINR degradation
due to signal attenuation and interference from other cells
for cell edge users can be considered as a coverage issue.
Furthermore, using transmit power efficiently is importantdue
to both system performance and environmental aspects.

It appears that all these issues cannot be simultaneously
addressed and solved by the techniques which have been
used in the last decades. Future developments will tend to
be based on cooperative transmission rather than interference
avoidance, leading to coordinated multi-point transmission
and reception (CoMP) [1]. CoMP is a promising technique
for communication networks, especially in heterogeneous net-
works (HetNets) [2], due to the deployment of low power
nodes, i.e., pico-, femto-cells and remote radio heads. CoMP
offers self-optimization and self-configuration functionality for
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network operators and the direction of the future evolutionof
LTE-A seems to be guided by CoMP.

In this paper, a downlink CoMP scenario is considered,
and ports (remote radio heads in LTE-A terminology) are
utilized to form a distributed antenna system. It is assumed
that inter-user interference in a cell is eliminated by assigning
the resource blocks (RBs) to the users of the cell in an
orthogonal fashion, i.e., in each cell only one user equipment
(UE) is allowed to use a specific RB. On the other hand,
the transmission of the ports using the same RB in different
cells can interfere each other. To simplify the formulationand
demonstration, transmission over a single RB is consideredin
this paper.

Authors in [3] investigate a similar scenario. The objective
of the problem in [3] is to maximize the minimum SINR
among all users by decreasing the best port settings. They
handle this problem by setting the ports either on or off, i.e.,
a port can either transmit at a fixed power or it is switched off.
We call this scheme as Binary Power Management (BPM). The
problem is NP-hard [5] and need to be relaxed before it can
be solved by an optimization tool, e.g., CVX [7]. Semidefinite
relaxation (SDR) is a good way to tackle NP-hard problems
[6], but it gives suboptimum results and can become not
promising for more complex problems.

In this paper, we allow ports to transmit at a power level in
the interval[0, Pmax] rather than{0, Pmax} as in [3]. We call
this scheme as Continuous Power Management (CPM). It can
be shown that although the search space is continuous, the cost
function is multi-modal, i.e., there can be many local optimum
solutions besides the global one. Therefore it is importantto
find the global optimum solution giving the best setup.

In order to obtain the optimum solution, we offer to use
particle swarm optimization (PSO) which is an evolutionary
optimization method first proposed in [8]. The most important
feature of PSO is, it distributes the particles (i.e., possible
solutions) throughout the search space and performs a global
search. As in many other evolutionary optimization algorithms,
PSO also does not suffer from getting stuck at a local optimum,
if it is set up correctly.

If the peak power constraint for a port is considered, it is
demonstrated that the solution to both the BPM and CPM



Fig. 1: A seven cell distributed antenna system with seven
ports per cell.

problems can be classified into two parts; a noise dominant
region, and an interference-limited region. For a small network
of two cells, these regions are apparent. However as the
network size, i.e., number of cells in the network increases, the
solution gets interference-limited for physically meaningful
scenarios. Through simulations it is shown that CPM out-
performs BPM for both a small and also a relatively large
network, especially in the interference-limited region.

The paper is organized as follows; Section II describes the
system model. Particle swarm optimization is introduced in
Section III. Complexity analysis and simulation results are
examined in Section IV and Section V. Section VI concludes
the paper.

II. SYSTEM MODEL

Consider the scenario depicted in Figure 1, where there are
M cells, and each cell containsL distributed single-antenna
ports connected to each other via high speed communication
links, givingM ×L ports in total. All ports in a cell transmit
the same signal simultaneously. It is assumed that the transmit
power of each port can be adjusted independently.

The same RB can be used throughout the network, however
at most one user is allowed to access the same RB within a
cell. A user can communicate with the ports in its dedicated
cell, whereas the signals from other cells are considered as
interference. Resource management throughout the networkis
conducted by a central network entity.

Let xm be the information signal for the user in them-
th cell, whereE {xmxn} = δmn and δmn = 1 when m =
n, and zero otherwise. The complex-valued coefficientshlnm

represent the channel gain between thel-th port of then-th
cell and the UE in them-th cell for l = 1, ..., L and m =
1, ...,M . The zero mean circularly symmetric additive white
Gaussian noise with varianceσ2

n for the UE in them-th cell
is denoted bynm. Each port has its own peak power value
given byPlm (which can be taken asPmax network-wide for
simplicity) and the transmit power for thel-th port in them-th
cell is controlled by the power coefficientsαlm ∈ {0, 1} for
BPM, andαlm ∈ [0, 1] for CPM. Furthermore, letwlm be the
complex beamsteering coefficient for thel-th port in them-th
cell. Then the received signal of the UE in them-th cell can
be written as

ym =
L
∑

l=1

αlm

√
Plmhlmmwlmxm+

M
∑

n=1,n6=m

L
∑

l=1

αln

√
Plnhlnmwlnxn + nm, ∀m.

(1)
The expression in the first line provides the signal intendedto
the user in them-th cell whereas the second line contains the
interference from the other cells and also noise.

Eventually, the corresponding SINR for the UE in them-th
cell can be expressed as

SINRm(α,w) =
|∑L

l=1
αlm

√
Plmhlmmwlm|2

σ2
n+

∑
M
n=1,n 6=m|∑L

l=1
αln

√
Plnhlnmwln|2 , ∀m (2)

where the vectorsα and w respectively represent the set
of coefficients for the power coefficientsαlm and the beam
steering coefficientswlm.

Transmission strategy is based on maximizing the minimum
SINR over all users. This scenario can be formulated as
an optimization problem with port power coefficients and
beamsteering coefficients as the optimization variables

max
α,w

min
m

SINRm (α,w)

s.t. α ∈ {0, 1}LM

for binary power management, and

max
α,w

min
m

SINRm (α,w)

s.t. α ∈ [0, 1]LM

for continuous power management. Both problems are non-
convex and it can be difficult to solve on the search space
(α,w) as the number of cells increase.

Since a port utilizes a single antenna, its beam steering
coefficient is composed of a complex-valued scalar. In order
to simplify the above optimization problem, it is assumed that
beam steering coefficients are chosen to match the phases of
the channel between the ports and their intended UEs

wlm , e−j∠hlmm ∀l,m. (3)

Although under this assumption the solution becomes subopti-
mal, it has been shown that this approach maximizes the SINR
when the interference power is assumed to be fixed [4].



In the new formulation, the problem is reduced to port
selection for BPM and adjusting the power levels of the ports
for CPM, i.e.,

max
α

min
m

SINRm(α),

s.t. α ∈ {0, 1}LM , for BPM (4a)

max
α

min
m

SINRm(α),

s.t. α ∈ [0, 1]LM , for CPM. (4b)

Clearly, problem (4a) is a non-linear binary-integer pro-
gramming problem and problem (4b) can be shown to have a
multi-modal cost surface. By using conventional optimization
algorithms, i.e., convex optimization, the first problem can
only be solved by using integer-relaxation which will possibly
yield a suboptimal solution. Furthermore, since the second
problem is multi-modal, a conventional solver may get stuckat
a local optimum solution. In order to overcome these problems
we propose to use Particle Swarm Optimization (PSO) as a
solver.

III. PARTICLE SWARM OPTIMIZATION

PSO [8] is a stochastic evolutionary optimization algorithm
which mimics the behavior of swarms (e.g., bees). Some of
the prominent features of PSO are ease of implementation,
low computational complexity, and ability to find the global
solution in a multimodel problem. These features makes PSO
a good candidate to solve the problems at hand.

The PSO algorithm is initialized with a population of
random candidate solutions,xi, namely particles. PSO finds
optimal regions of complex search spaces through the in-
teraction of individuals in the population of these particles.
Each particle is initially assigned a randomized velocity,vi,
and is iteratively moved through the problem space. It is
attracted towards the location of the best fitness achieved so
far by the particle itself,pi, and by the location of the best
fitness achieved so far across the whole population,g [9]. The
parameters,cl, cg - called acceleration coefficients - control
the behavior and efficacy of the algorithm and are chosen
heuristically. The variablesrl and rg are random positive
numbers, drawn from a uniform distribution. The pseudocode
of the algorithm is given below:

Initialize population
Repeat
for i=1 to population size

pick random numbers, rl, rg ∼ U(0, 1)
for d=1 to dimension size

update particle′s velocity:
vi,d ←− wvi,d + clrl(pi,d − xi,d) + cgrg(gd − xi,d)

update particle′s position:xi ←− xi + vi

if f(xi) > f(pi)
update particle′s best known position:pi ←− xi

if f(pi) > f(g)
update the population best known position:g ←− pi

Until stopping criterion is satisfied

In our optimization problems, we use binary PSO [10] for
binary power management whereas traditional PSO is used for
continuous power management. We use 60 swarms and 1000
swarms for population size in two-cell cluster and seven-cell
cluster, respectively. We take the inertia coefficient asw = 1,
and acceleration coefficients ascl = 0.85 andcg = 2.

IV. COMPLEXITY ANALYSIS

In this Section, complexity of the proposed methods will be
analyzed. In the case of binary power management, exhaustive
search is done by searching all possible port states and has
a computational complexityO(2LM ), hence for largeL and
M this method is inefficient. By considering the algorithm in
Section III, particle swarm optimization has a computational
complexity in the order ofO(SLMN) whereS, L, M and
N denote the population size, number of ports in each cell,
number of cells and number of iterations done until stopping
criterion is satisfied, respectively.

For the stopping criterion, in CPM, iterations continue
until all SINR values are contained in a neighbourhood of
∓ 0.05 dB, whereas in BPM, iterations continue until no
change in the particle positions is observed for 20 consecutive
iterations. However, it should be noted that the complexity
of BPM is higher than CPM since the number of iterations
and computational complexity of the update equation in BPM
is higher. When there is one swarm, update equation has 6
multiplications in CPM whereas there are 7 multiplications
and 1 exponentiation (comes from the sigmoud function in
probabilistic update equation [10]) in BPM, which increases
computational complexity.

For the case of two-cell network, it is found that the average
number of iterations for BPM and CPM are 53 and 21,
respectively, whereas for the seven-cell cluster, the average
number of iterations for BPM and CPM are 97 and 27,
respectively.

V. PERFORMANCEEVALUATION

We analyze the performance of the proposed method for
a network ofM hexagonal cells andL = 7 ports per cell
through Monte Carlo simulations. One of the ports is located
at the center of the cell, and others are located uniformly at
a distance of2/3 of the circumradius (rc) from the center, in
order to increase the coverage of the cell. Ports can either be
set off, or they can transmit at a fixed power level ofPmax

for BPM, or they can transmit at an adjustable power level in
the interval[0, Pmax] for the CPM.

For the simulations we consider a single RB throughout the
network. As it is stated above, at most one UE can use this RB
in a cell, thereforeM UEs are considered network-wide, and
these UEs are located randomly in each cell for each channel
realization.

For the port-to-UE link, a Rayleigh fading channel with
log-normal shadowing and path loss components as in [11]
are considered. The complex channel gains arehlnm =
√

ρ(dlnm)slnmh
′

lnm, whereρ(·) is the path loss function given
below,dlnm is the distance between thel-th port of then-th



cell and the user in them-th cell, slmn represents log-normal
shadowing with 0 dB mean and 8 dB standard deviation, and
h

′

lnm denotes the fading effect and has a complex Gaussian
distribution with zero mean and unit variance. For the suburban
scenario described in [11], the distance between base stations
is 1299 m, and the noise power is -114 dBm. The path loss
function considered here is

ρ(dlnm) = 10−(1.866+4.032 log
10

(dlnm)) (5)

where carrier frequency is taken as 2 GHz, antenna ports are
at a height of 15 m, and each UE is assumed to have 1.5 m
elevation.

In order to assess the optimality of the proposed algorithm
based on PSO, we first consider a two-cell sub-urban macro-
cell scenario. One UE is randomly dropped in each cell.
Each cell hasL = 7 ports. Minimum SINR in the cluster
is maximized by the PSO based algorithm for both binary and
continuous power management scenarios given respectivelyby
the problems (4a) and (4b). For comparison purposes, exhaus-
tive search is also performed for binary power management,
which searches the best result out of214 port state vectors.
The results depicted in Fig.s 2 and 3 are averaged over 300
realizations.

Fig. 2 compares the resulting SINR levels with respect
to the maximum port power limitPmax for both the BPM
and CPM schemes. It can be seen that for lowerPmax

values, both the BPM and CPM results yield almost the same
performance. This is the noise-limited region in which one
does not gain much with power management due to negligible
interference from other cells. As power limit increases, e.g.,
higher than 30 dBm, CPM becomes to outperform BPM, and
after approximatelyPmax = 55 dBm a noise floor effect
is observed limiting the performance of BPM. The region
Pmax & 30 dBm can be considered as the interference limited
region, in which interference from other users dominate the
AWGN in the channel. In this region, rather than just switching
the ports on and off (BPM), adjusting the transmission power
of them (CPM) appears to perform better. As it can be seen
from Fig. 2 atPmax = 40 dBm, the UE with minimum SINR
gains 5 dB by CPM.

From Fig. 2, it should be noted that for the BPM scheme,
PSO performs almost the same as exhaustive search, verifying
the optimality of the PSO algorithm. This is an important
aspect of PSO since PSO can optimize complex problems with
lower computation time. Obtaining to the optimum solution
of the CPM scenario is difficult by evaluating with exhaustive
search, and it is not possible to find the global optimum by
using a conventional optimization algorithm. Therefore we
cannot compare the CPM result with PSO to that of an global
optimizer.

In Fig. 3, the average transmit power per port vs. the maxi-
mum port power limitPmax is compared for both the BPM and
CPM schemes. According to the figure, both schemes perform
similar, and they both require similar total transmit power
per port for the samePmax values. In other words, for the
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Fig. 2: Largest minimum SINR achieved by binary power manage-
ment and continuous power management for a two-cell cluster. Solid,
dashed and dotdashed line represents BPM (port selection),CPM and
BPM (exhaustive search), respectively.

same total transmit power per port levels, CPM yields higher
minimum SINR values as compared to BPM. This result
demonstrates the advantage of using CPM in the interference
limited region. For example, forPmax = 60 dBm, although
CPM requires the same average transmit power per port, it
results in more than 15 dB gain in SINR as compared to BPM.

Similar to Fig. 2, Fig. 3 also demonstrates that PSO per-
forms almost the same as exhaustive search for the BPM
scheme, verifying the optimality of solution of the PSO
algorithm.

When we increase the scale of the problem, the advantage
of CPM over BPM becomes more apparent. In the next set of
simulations we consider a sub-urban macro-cell scenario with
7 cells and 7 ports per cell with the same settings as in the
above study. Fig. 4 depicts that the curve for CPM and BPM
are separated for almost allPmax values. Furthermore, Fig. 5
shows that for allPmax values even though CPM and BPM
require the samePmax level to obtain the same total transmit
power per port, CPM outperforms BPM in terms of the
minimum SINR in the network. Considering a range forPmax

from -10 dBm to 30 dBm as a typical operation condition, one
can deduce that for a typical cellular communications scenario
with moderate number of cells, CPM is more advantageous
than BPM.

VI. CONCLUSION

In this paper, a coordinated multi-cell distributed antenna
system is considered. In order to increase the coverage and
throughput of the network, instead of employing a single base
station in a cell, a number of ports are distributed throughout
the cell which transmit the same signal.

Two transmission schemes are investigated; either the ports
are switched on and off (Binary Power Management, BPM)
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Fig. 3: Average transmit power per port achieved by binary power
management and continuous power management for a two-cell clus-
ter. Solid, dashed and dotdashed line represents BPM (port selection),
CPM and BPM (exhaustive search), respectively.
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Fig. 4: Largest minimum SINR achieved by binary power man-
agement and continuous power management for a seven-cell cluster.
Solid and dashed line represents BPM and CPM, respectively.

with a maximum transmit power limit per port or they are
allowed to transmit with variable power (Continuous Power
Management, CPM). It has been demonstrated that for a
small sized network, CPM outperforms BPM especially in
the interference-limited region, where interference to a user
originates from the ports of other cells. It is also shown that,
for a more complex network with a higher number of cells,
CPM performs better than BPM under practically meaningful
conditions. Proper power management introduces an important
gain to system performance, which can be considered very
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Fig. 5: Average transmit power per port achieved by binary power
management and continuous power management for a seven-cell
cluster. Solid and dashed line represents BPM and CPM, respectively.

promising for next generation networks.
It is observed that the implementation complexity of CPM

when using PSO is lower than that of BPM, making CPM
more advantageous than BPM in both performance and also
complexity aspects.
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