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Abstract—In this paper, we consider coordinated downlink
transmission in a cellular system wherein each base station (BS)
has multiple geographically dispersed antenna ports. Each port
uses a fixed transmit power and the goal of the BSs is to
collectively determine the subset of ports and the corresponding
beam steering coefficients that maximize the minimum signal-
to-interference-plus-noise ratio observed by the user terminals.
This problem is NP-hard. To circumvent this difficulty, a two-
stage polynomial-complexity technique that relies on semidefinite
relaxation and Gaussian randomization is developed. It is shown
that, for the considered scenarios, the port state vectors and
beam steering coefficients generated by the proposed technique
yield a performance comparable to that yielded by exhaustive
search, but with a significantly less computational complexity. It
is also shown that the proposed technique results in significant
power savings when compared with other transmission strategies
proposed in the literature.

Index Terms—Distributed antenna systems, remote radio
heads, multi-cell coordination, port selection, beam steering
optimization, semidefinite relaxation, Gaussian randomization.

I. INTRODUCTION

W IRELESS communication systems employing multiple
antennas can achieve higher data rates and better

coverage than their single antenna counterparts. However, the
potential coverage gains of using multiple antennas are not
realized for systems in which the antennas are co-located.
For instance, in such systems, user terminals (UTs) that are
far from the base station (BS) are likely to receive highly
attenuated signals. This drawback can be overcome by dis-
persing the BS antennas over the coverage area [1] and using
a coordinated multi-point (CoMP) transmission strategy to
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maximize the signal-to-interference-plus-noise ratios (SINRs)
of the UTs.

In this paper, we consider the downlink of a multi-cell
distributed antenna system. A set of antenna ports (or remote
radio heads (RRHs) [2]) is available in each cell. As is
customary in orthogonal transmission schemes, e.g., orthogo-
nal frequency division multiple access (OFDMA), inter-user
interference is mitigated by assigning each frequency-time
resource block (RB) to at most one UT. To improve design
efficiency and facilitate system-wide implementation of the
distributed antenna system, the transmit power used by the
ports is assumed to be fixed. Because the wireless medium
is shared, the transmissions of the ports in each cell interfere
with those of the ports using the same RB in other cells.

Despite the envisioned benefits of using multiple antenna
ports [3], [4], poor selection of these ports and their an-
tenna weights can yield low SINRs, resulting in undesirable
performance. This has been demonstrated in [5] for cellular
distributed antenna systems with no coordination among the
BSs. In [6], a system with no BS coordination, similar to the
one in [5], is considered. For this system the weights of the
antenna ports are chosen to match the phases of the channel
coefficients and either a single-port or an all-port transmission
strategy is selected.

In contrast with both [5] and [6], in this work we consider a
cluster of cells in which the BSs organize their transmissions
in a coordinated manner. Since coordination among multiple
cells is a generalization of coordination within a single cell, the
CoMP system considered herein subsumes those considered
in [5] and [6], and offers a greater number of degrees of design
freedom. Unlike [6], in which the transmission strategies are
selected and fixed prior to choosing the antenna weights,
herein we consider the joint optimization of the ports to
be used for transmission and their corresponding weights,
which we refer to as beam steering coefficients. The joint
optimization of these parameters allows further exploitation of
the coordination among the BSs to enable the UTs to achieve
higher SINRs. However, this problem can be shown to be NP-
hard [7], [8], which implies that finding the global optimal
solution is computationally prohibitive for many practical
systems. To circumvent this difficulty, we propose a novel
polynomial-complexity two-stage approach that will be shown
to yield close-to-optimal solutions efficiently.

In the first stage of this approach, the beam steering
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coefficients are chosen to match the phases of the complex
channel gains between the ports and their intended UTs. This
choice was shown in [6] to maximize the SINR under a
constant interference power assumption. Although interfer-
ence power is generally not constant, herein we select the
beam steering coefficients as in [6] to facilitate developing a
strategy for port selection. Unfortunately, for any fixed beam
steering coefficients, including the ones proposed in [6], the
problem of determining the set of ports that maximizes the
minimum SINR of the UTs is an NP-hard binary-constrained
optimization problem. To tackle this problem, we use the
semidefinite relaxation (SDR) technique [9] to relax the binary
constraints. Noting that the relaxed problem possesses a quasi-
linear structure, we solve it using a series of convex feasibility
problems with polynomial complexity. Gaussian randomiza-
tion is then used to efficiently obtain close-to-optimal sets of
port states [10]. Our simulations show that the performance of
the proposed technique approaches that of the optimal set of
port states for the given set of beam steering coefficients with
a relatively small number of random Gaussian vectors. It is
also shown that this technique outperforms the single-port and
all-port transmission strategies considered in [6], and provides
significant power savings.

In the second stage, candidate port state vectors generated
in the first stage are considered. For each such vector, we
consider the problem of determining the beam steering co-
efficients that maximize the minimum SINR. Unfortunately,
this problem is non-convex, and in fact, a variant of it was
shown in [8] to be NP-hard. Similar to the first stage, SDR-
based Gaussian randomization provides a candidate technique
for efficiently generating close-to-optimal solutions for the
optimization problem in the second stage. A technique similar
to that used in the second stage was used in [8], [11], [12] for
solving beamforming problems with total power constraints.
Using this technique for each candidate port state vector, we
obtain beam steering coefficients that yield significantly better
performance than those used in the first stage.

The paper is organized as follows. The system model and
problem formulation are described in Section II. In Section III,
the problem of finding close-to-optimal candidate port state
vectors is formulated for given beam steering coefficients.
For each candidate vector, the problem of optimizing the
beam steering coefficients is considered in Section IV. In
Section V, the techniques developed in Sections III and IV
are used to develop the two-stage approach, which generates
an approximate solution to the original problem in Section II.
The computational complexity of the proposed techniques is
analyzed in Section VI. In Section VII, simulation results are
provided, and Section VIII concludes the paper.

Notation: Scalars are denoted by regular-face lower-case
letters, and column vectors and matrices are denoted by lower-
case and upper-case bold-face letters, respectively. The super-
scripts (·)T , (·)H , and (·)∗ denote the transpose, Hermitian
transpose, and complex conjugate operators, respectively, and
Tr(·), |·|, and ‖·‖2 denote the trace, the absolute value, and the
2-norm operators, respectively. The operator diag(·) denotes a
vector containing the diagonal entries of the matrix argument.
The notation W 1 � W 2 is used to indicate that the matrix
W 1 −W 2 is positive semidefinite (PSD). The operator E{·}

denotes expectation, and N (·) and CN (·) denote the real and
complex Gaussian distributions, respectively. The real part of
a complex argument is denoted by �{·}. The q-th entry of any
vector x ∈ C

N is denoted by [x]q . For two square matrices
A ∈ CM×M and B ∈ CN×N , we use A ⊕ B to denote

the block diagonal matrix

[
A 0
0 B

]
, where 0 is the all-zero

matrix with conforming dimensions.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a multi-cell distributed antenna system consisting
of a cluster of M cells which use the same set of RBs.
The BS in each cell is connected to L distributed single-
antenna ports with high-speed communication links; e.g.,
optical fibre. The transmissions of the BSs in the cluster are
coordinated by a central network entity, which is assumed
to have reliable knowledge of the channel gains between
the LM ports in the cluster and each UT in the M cells.
Although having accurate channel knowledge increases the
computational and communication burden on the network, the
extent of this burden depends on the value of M , which is
a design parameter that trades off implementation complexity
for performance.

In the system considered herein, each UT is assumed to
have one antenna and, as in OFDMA-based systems, at most
one UT is assigned the same RB in each cell. The UTs are
assumed to be served by the ports in their respective cells.
Although it is possible to relax this assumption and allow
the UTs close to the cell periphery to be served by ports in
neighbouring cells, such a relaxation complicates the design
and will not be considered herein.

Consider a specific RB, wherein a single UT is served in
each cell. Let α�m ∈ {0, 1} be the binary coefficient repre-
senting the on-off state of the �-th port in the m-th cell on this
RB, and let w�m and P�m denote the corresponding complex
beam steering coefficient and the fixed transmit power of this
port, respectively, for � = 1, . . . , L and m = 1, . . . ,M .

The received signal of the UT in the m-th cell is given by

ym =

L∑
�=1

α�m

√
P�mh�mmw�mxm+

M∑
n=1,n�=m

L∑
�=1

α�n

√
P�nh�nmw�nxn + nm, ∀m, (1)

where h�nm is the complex-valued channel gain between
the �-th port of the n-th cell and the UT in the m-th cell,
and xm is the normalized data symbol of the UT satisfying
E{xmxn} = δmn, where δmn is equal to 1 when m = n,
and zero otherwise. The additive white noise of the UT in the
m-th cell is represented by nm∼CN (0, σ2).

Let α and w be the vectors containing the LM port
states and beam steering coefficients, {α�m} and {w�m},
respectively. The SINR of the UT in the m-th cell can be
expressed as

SINRm(α,w) =∣∣∑L
�=1 α�m

√
P�mh�mmw�m

∣∣2
σ2 +

∑M
n=1,n�=m

∣∣∑L
�=1 α�n

√
P�nh�nmw�n

∣∣2 , ∀m. (2)
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In current cellular systems, a significant fraction of UTs,
including those near the cell periphery, suffer from poor
network coverage. This drawback can be effectively mitigated
by proper coordination of geographically dispersed antenna
ports. To facilitate system-wide implementation, it is desirable
for the antenna ports to operate at fixed power levels. This
helps to reduce the cost of building the antenna ports and to
improve the operational efficiency of their power amplifiers.
Motivated by these considerations, in the forthcoming analy-
sis, we will restrict our attention to the practical case of fixed
antenna port powers. In this case, coordinated transmission
can be achieved by selecting the active antenna ports and their
beam steering coefficients that maximize the SINR of the UT
with the least favourable channel conditions. Although it is
possible to consider other objectives, including those that yield
Pareto optimal port state and beam steering coefficient vectors,
finding a good approximation of these vectors appears to be
complicated.

The port state and beam steering coefficient vectors that
maximize the minimum SINR in (2) can be obtained by
solving the following optimization problem:

max
α,w

min
m

SINRm(α,w), (3a)

subject to α ∈ {0, 1}LM , (3b)∣∣[w]q
∣∣ = 1, q = 1, . . . , LM. (3c)

The constraint in (3b) ensures that the state of each port is
either off, implying that no power is allocated to this port,
or on, implying that the port operates at full power. The
constraints in (3c) ensure that the entries of w lie on the unit
circle. Hence, varying these entries will steer the direction of
the beams radiated by the antenna ports without changing their
power. Neither the objective nor the constraints of this problem
are convex and hence, this problem is difficult to solve jointly
for α and w. For the objective, it can be shown that the
SINR of the m-th UT is a rational function of biquadratic
terms in α and w. For the constraints, it can be shown that,
for any given α, finding the optimal beam steering coefficient
vector, w, satisfying (3c) is NP-hard [8]. In a complementary
fashion, for any given w, finding the optimal port state vector,
α, satisfying (3b) is also NP-hard [7]. Despite their inherent
difficulty, we will show that each of these problems can be cast
in a form amenable to techniques that efficiently yield close-
to-optimal solutions. To exploit this observation, we will seek
an approximate two-stage algorithm for the problem in (3).
The stages of this algorithm are described in Sections III
and IV below.

It is worth noting that the formulation in (3) assumes
that accurate channel gains are available at the coordinating
network entity. As such, this formulation yields an upper
bound on the performance that can be achieved when these
gains are not accurately known.

III. COORDINATED MULTI-CELL PORT SELECTION

In this section, we will seek to select the set of ports that
maximizes the minimum SINR observed by all UTs when the
beam steering coefficients are given.

Let w0 be the vector of the beam steering coefficients. In [6]
it was shown that, when the interference power is fixed, the w0

that maximizes the SINR is the one in which the entries are
chosen to match the phases of the channel between the ports
and their intended UTs; that is, using q to denote (m−1)L+�,
the q-th entry of w0 can be expressed as

[w0]q � e−j∠h�mm . (4)

From (2) it can be seen that the interference depends on
the choice of w0, and hence the aforementioned assumption
of fixed interference does not necessarily hold. In other words,
the choice of w0 in (4) is not necessarily optimal. In fact, the
optimal beam steering coefficient of any given port can be
shown to depend on the channel gains between all the active
ports and the UTs. However, this dependence complicates the
search for the optimal port state and beam steering coefficient
vectors. One way to facilitate this search, is to select the
initial beam steering coefficient vector as in (4); that is,
independently of the port state vector.

To make the SINR expression in (2) amenable to the
optimization technique employed hereinafter, we will cast this
expression using vector notation. In particular, using w = w0

in (2),

SINRm(α,w0) =
αTCmα

σ2 +αTDmα
∀m, (5)

where Cm ∈ RLM×LM and Dm ∈ RLM×LM are block-
diagonal matrices defined as

Cm = ⊕m−1
n=1 0L ⊕Bm,m ⊕M

n=m+1 0L, and (6)

Dm = ⊕m−1
n=1 Bn,m ⊕ 0L ⊕M

n=m+1 Bn,m, (7)

where ⊕ is the direct sum operation defined in the Notation
paragraph of the Introduction (see also [13, Sec. 0.9.2]), 0L

is an L×L all-zero matrix, and the �1�2-th entry of Bn,m ∈
RL×L is

[Bn,m]�1�2 =
√
P�1nP�2n�

{
h�1nmh∗

�2nmw�1nw
∗
�2n

}
,

�1, �2 = 1, . . . , L, n,m = 1, . . . ,M. (8)

Defining the length-L vector bn,m �[
h1nmw1n

√
P1n · · · hLnmwLn

√
PLn

]
, it can be verified

that Bn,m = �{bn,mbHn,m}. Hence, it can be seen that
Bn,m is PSD, and rank(Bm,m) = 1, and rank(Bn,m) = 2
for n 
= m. Subsequently, Cm and Dm are PSD and their
ranks are 1 and 2(M − 1), respectively for all m. Using this
notation, the problem corresponding to (3) for selecting the
SINR maximizing set of ports with the given w0 can be cast
as

max
α

min
m

αTCmα

σ2 +αTDmα
, (9a)

subject to α ∈ {0, 1}LM . (9b)

This is a binary-constrained problem, which can be shown to
be NP-hard [7]. To find a close-to-optimal solution for this
problem, we introduce the vector β = 2α − 1 and use the
SDR technique; see e.g., [9]. Using the definition of β, it can
be seen that β ∈ {−1, 1}LM , and

α = (β + 1)/2. (10)

Substituting from (10) in (9), the non-homogeneous quadratic
terms in the numerator and denominator of the resulting
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SINR expression in the objective function can be expressed
as [βT 1]Em[βT 1]T , and [βT 1]Fm[βT 1]T , respec-
tively, where

Em �
[

Cm Cm1
1TCm 1TCm1

]
, and (11)

Fm �
[

Dm Dm1
1TDm 1TDm1+ 4σ2

]
. (12)

Using this notation, and letting Φ = ββT , the transformed
problem can be cast as

max
Φ,β

min
m

Tr

(
Em

[
Φ β

βT 1

])

Tr

(
Fm

[
Φ β

βT 1

]) , (13a)

subject to Φ− ββT = 0, diag(Φ) = 1. (13b)

In this formulation, the binary constraint β ∈ {−1, 1}LM

is replaced with the equivalent constraint diag(Φ) = 1. To
see the equivalence, note that when Φ = ββT , the diagonal
entries of Φ will be equal to β2

�m = 1, ∀ �,m, which is
satisfied if and only if β ∈ {−1, 1}LM .

A. Positive semidefinite relaxation

The first constraint in (13b) imposes a non-convex rank-1
constraint and results in the NP-hardness of (13). To obtain
a close-to-optimal solution, we consider a relaxed version
of (13) in which the first equality constraint in (13b) is
replaced with the generalized matrix inequality

X − xxT � 0, (14)

where X and x are the optimization variables corresponding
to Φ and β in the original problem, respectively. Neither the
constraint in (14) nor the objective of the relaxed problem is
convex. To cast it in a more convenient form, we introduce
an auxiliary variable, t, that lower-bounds the objective. Note
that X − xxT is the Schur complement [14] of the matrix

Ψ =

[
X x
xT 1

]
, (15)

and is PSD if and only if Ψ is PSD. Using this observation,
the constraint in (14) will be cast as a convex linear matrix
inequality. Now, the relaxed problem can be rewritten as

max
t,Ψ

t, (16a)

subject to t ≤ Tr(EmΨ)

Tr(FmΨ)
, ∀m, (16b)

Ψ � 0, (16c)

diag(Ψ) = 1. (16d)

The problem in (16) is still non-convex in (t,Ψ) because
each of the inequality constraints in (16b) involves products of
the form tΨ. Fortunately, however, it can be seen that these
constraints are quasi-linear in (t,Ψ). This is because both
the superlevel and the sublevel sets corresponding to a fixed
t are convex. Despite this quasi-linearity, solving (16) may
still be difficult because both Em and Fm are rank-deficient,
for every m. Hence, it may happen that both Tr (EmΨ) and

Tr (FmΨ) vanish simultaneously, resulting in the right hand
side of (16b) assuming an indeterminate quantity. To show
that such an occurrence is not possible, it suffices to show
that Tr

(
FmΨ

)
is strictly greater than zero. In particular, we

have the following result:
Lemma 1: For the matrix Fm defined in (12) and the

matrix Ψ defined in (15),

Tr
(
FmΨ

)
> 0, ∀m.

Proof: See Appendix A.
Expressing the constraints in (16b) in the form Tr

(
(tFm−

Em)Ψ
) ≤ 0, ∀m, Lemma 1 can now be invoked to show

that for any Ψ with the structure in (15) the left hand side
of this inequality is monotonically increasing in t. Using this
observation, the optimal value of t, t�, can be obtained by
solving a sequence of convex feasibility problems, each of
the form

find Ψ with the structure in (15), (17a)

subject to Tr
(
(t0Fm −Em)Ψ

) ≤ 0, ∀m, (17b)

Ψ � 0, (17c)

diag(Ψ) = 1. (17d)

For each instance of this problem, the value of t0 is fixed
and represents the minimum SINR observed by the UTs. This
SINR is upper bounded by

tmax = min
m=1,...,M

(1TCm1)/σ2, (18)

which corresponds to a situation in which there is no interfer-
ence and all ports are active. Hence, it can be seen that the
optimal t0 must lie in [0, tmax].

Using an argument analogous to the one in [15, Section
4.2.5], it can be seen that if, for a particular value of t0, (17)
is feasible then t0 ≤ t�. Conversely, if for this value of t0, (17)
is infeasible then t0 > t�. Hence, the optimal value of t0 must
lie on the boundary of the feasible set of (16) and can be found
using a bisection search.

Note that, being bilinear in t and Ψ, the problem in (16)
is amenable to generic optimization techniques, including
the Alternate Convex Search [16]. However, guarantees for
convergence and for reaching the global optimal solution using
this method are generally not available. In contrast, exploiting
the quasi-linearity of (16), the approach proposed herein is
guaranteed to converge to the global optimal solution with
polynomial complexity as shown in Section VI.

B. Randomization for coordinated port selection

Let X� and x� denote the optimal solution of (16) corre-
sponding to t = t� obtained by the bisection search. To obtain
a candidate solution of the optimization problem in (13),
we will use the Gaussian randomization technique, which
is known to yield a close-to-optimal solution for NP-hard
optimization problems with a similar underlying structure; see
e.g., [10].

To apply this technique to our current problem, a set of J
random vectors V = {v(j)}Jj=1, where v(j) ∈ R

LM×1 for all
j, is generated from the Gaussian distribution N (x�,X� −
x�x�T ). For sufficiently large J , the vectors in V provide an
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approximate solution to the following stochastic optimization
problem:

max
X�=E{vvT }
x�=E{v}

t, (19a)

subject to E
{
[vT 1]

(
tFm −Em

)
[vT 1]T

}
≤ 0, ∀m,

(19b)

E{[v]2r} = 1, r = 1, . . . , LM. (19c)

Since X� −x�x�T � 0, it can be seen that this optimization
problem is equivalent to the one in (16). Hence, the set of
vectors in V solves the problem in (16) on average [9].

Our goal now is to use the vectors in V to extract candidate
solutions to the problem in (13). To do so, each realization
of v(j) ∈ V is quantized. In particular, for each v(j) ∈ V , a

candidate binary solution β̃
(j)

is obtained as follows:

β̃
(j)

= sgn(v(j) − x�), j = 1, . . . , J, (20)

where sgn(·) is the element-wise signum function. Using (10),
the corresponding candidate solutions of (9) are obtained and
the one yielding the largest objective is chosen; i.e.,

α� = arg max
j=1,...,J

min
m=1,...,M

SINRm(α̃(j),w0). (21)

In Section VII, it will be shown that when the beam steering
coefficients are fixed, the above SDR technique with Gaussian
randomization provides a close-to-optimal solution of the port
selection problem with a relatively small J .

IV. COORDINATED BEAM STEERING OPTIMIZATION

In the previous section, we considered the problem of select-
ing the antenna ports that maximize the minimum SINR when
the beam steering coefficients are fixed. We now consider the
complementary problem in which the port state vectors are
fixed and the beam steering coefficients are to be optimized.

Let α0 be a given port state vector. Analogous to the
approach used in Section III, we will use vector notation to
express the SINR in a convenient form that facilitates the
optimization of the beam steering coefficients.

Define M2 matrices {Qn,m}Mn,m=1 such that the �1�2-th
entry of the nm-th matrix is given by

[Qn,m]�1�2 = α�1nh�1nmh∗
�2nmα�2n

√
P�1nP�2n,

�1, �2 = 1, . . . , L, n,m = 1, . . . ,M. (22)

Furthermore, define block-diagonal matrices Sm ∈ C
LM×LM

and Tm ∈ CLM×LM as

Sm = ⊕m−1
n=1 0⊕Qm,m ⊕M

n=m+1 0, and (23)

Tm = ⊕m−1
n=1 Qn,m ⊕ 0⊕M

n=m+1 Qn,m. (24)

Using an argument analogous to the one used in Section III,
it can be shown that the matrices {Qn,m}Mn,m=1 are PSD and
rank-1, and that the matrices {Sm}Mm=1 and {Tm}Mm=1 are
PSD with ranks 1 and M − 1, respectively.

Using this notation, the SINR of the UT in the m-th cell
can be expressed as

SINRm(α0,w) =
wHSmw

σ2 +wHTmw
, ∀m. (25)

With the port state vector being fixed as α0, the optimiza-
tion in (3) reduces to

max
w

min
m

wHSmw

σ2 +wHTmw
, (26a)

subject to
∣∣[w]q

∣∣ = 1, q = 1, . . . , LM. (26b)

This problem is non-convex, and is known to be NP-hard [8].
To find a close-to-optimal solution, we utilize a variation of
the SDR-based Gaussian randomization technique used in the
first stage.

Similar to the approach used in Section III, in applying the
SDR technique, the optimization problem in (26) is relaxed
by letting Υ = wwH and subsequently dropping the rank-1
constraint on Υ. Let W ∈ CLM×LM be the counterpart of
Υ in the relaxed problem. Using a new variable s to lower
bound the objective in (26a), the relaxed optimization problem
can be expressed as in (16), where t, Em, Fm, and Ψ are
replaced with s, Sm, Tm, and W , respectively. Analogous
to the discussion following (16), this relaxed problem is non-
convex, but can be shown to be quasi-linear. Let s0 denote
the value of s at any iteration of the corresponding bisection
search. We seek the maximum value of s0 for which the
following feasibility problem has a solution.

find W , (27a)

subject to s0σ
2 +Tr

(
(s0Tm − Sm)W

) ≤ 0, ∀m,
(27b)

diag(W ) = 1, (27c)

W � 0. (27d)

It is straightforward to see that this problem is convex and can
be solved efficiently for a given s0. However, to facilitate the
bisection search, it is desirable to upper-bound s0.

Let smax denote the upper bound on the value of s0. A
candidate smax can be obtained by upper bounding the SINR
expression in (25). In particular, since Tm � 0,

SINRm(α0,w) ≤ wHSmw

σ2

≤ ‖w‖22
σ2

‖Sm‖2 (28)

≤ LM

σ2
‖Sm‖2, (29)

where (28) follows from the submultiplicative property of
the 2-norm [14], and (29) follows from the fact that
‖w‖22 ≤ LM . Hence, a candidate value of smax is
minm=1,...,M (LM‖Sm‖2)/σ2.

Let W � denote the solution of the relaxed problem corre-
sponding to the optimal s0 obtained from the bisection search.
The Gaussian randomization technique is then used to generate
an approximate solution of the original problem in (26). To ap-
ply this technique, a set of K random vectors, Z = {z(k)}Kk=1,
is drawn from the Gaussian distribution CN (0,W �). Candi-
date beam steering coefficients, {[w̃(k)]q}LM

q=1, that lie on the
unit circle are obtained by normalizing the entries of each
realization of z(k) ∈ Z; i.e.,

[w̃(k)]q =
[z(k)]q∣∣[z(k)]q

∣∣ , q = 1, . . . , LM. (30)



1866 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 11, NO. 5, MAY 2012

The close-to-optimal solution generated by the Gaussian ran-
domization is the one that yields the largest minimum SINR;
i.e.,

w� = arg max
k=1,...,K

min
m=1,...,M

SINRm(α0, w̃
(k)). (31)

Using an analogous approach to the one in [12], it can be
shown that, for a given α0, the above technique yields a close-
to-optimal solution to the problem in (26).

V. AN APPROXIMATE SOLUTION TO THE JOINT

OPTIMIZATION PROBLEM

In this section, we use the techniques developed in Sec-
tions III and IV to develop a two-stage approach for generating
an efficiently-computable approximate solution to the problem
in (3).

In the first stage, the weights are chosen as in (4), the
matrices {Em,Fm}Mm=1 are constructed, and a set of J port
state vectors are generated using (20) and (10). Out of those J
vectors, the Ĵ ≤ J candidates that yield the largest minimum
SINR are selected. Notice that the close-to-optimal solution
of (9) generated by (21) corresponds to setting Ĵ = 1 and
does not necessarily yield a close-to-optimal solution of the
problem in (3), as we will show later.

In the second stage, each of the Ĵ candidate vectors
generated in the first stage is used to construct the matrices
{Sm,Tm}Mm=1 and the corresponding close-to-optimal beam
steering coefficients are generated using (31). The approximate
solution of (3) is chosen to be the pair of port state vector and
beam steering coefficient vector that yield the largest objective
in (3a).

It will be shown in Section VII that this two-stage approach
with relatively small J and Ĵ yields close-to-optimal solutions
that perform significantly better than the port states selected
in the first stage with the initial beam steering coefficients.

Although it is possible to iterate between the two stages, our
numerical results suggest that this technique provides negli-
gible difference and does not guarantee a better performance.
This is due to the fact that the original problems for optimizing
α and w are non-convex. Hence, using different initial vectors,
including close-to-optimal ones, does not necessarily yield
final vectors that perform better than those obtained using
other sub-optimal initial vectors. Furthermore, the numerical
results in Section VII below show a relatively small gap
between the jointly optimal port state and beam steering
coefficient vectors obtained by exhaustive search and those
obtained by the proposed two-stage approach. This suggests
that iterating between the two stages would yield a marginal
performance gain, but would incur a significant additional
computational cost.

In the next section, we will provide bounds on the compu-
tational complexity of the proposed techniques. In particular,
we will show that each of the techniques that yield close-
to-optimal solutions in Sections III and IV has a polynomial
complexity. Hence, the technique proposed in this section for
obtaining an approximate solution to the joint optimization
problem in (3) also has polynomial complexity.

VI. COMPLEXITY ANALYSIS

A. Computational complexity of the first stage

In the first stage of the approach proposed in the previous
section, the beam steering coefficients are fixed. In this case,
the optimal port state vector could be found by exhaustive
search over all possible vectors. The computational complexity
of this approach is O(

2LM
)
, and hence it is inefficient for

large L and M .
In contrast, the SDR-based Gaussian randomization tech-

nique proposed in Section III involves solving a sequence of
convex problems, each with a PSD constraint; cf. (17). Using
interior point based solvers, e.g., SeDuMi [17], the complexity
of solving problems of this form is O(

(LM)6.5 log(1/ε0)
)
,

where ε0 > 0 is the solution accuracy [18]. However, the
problem in (17) has a particular structure that can exploited
to develop more efficient solving techniques. For instance,
the primal-dual path-following interior-point method devel-
oped in [19] has been particularized in [9] to solve a PSD-
constrained convex optimization problem similar to the one
in (17) with complexity O(

(LM)4.5 log(1/ε0)
)
.

Let ε1 > 0 be the solution accuracy of the bisection
search used in Section III. Since this search is over the
interval [0, tmax] and its convergence rate is exponential, the
number of bisection search iterations is given by log(tmax/ε1),
where tmax is defined in (18). For the Gaussian random-
ization procedure described in Section III-B, the computa-
tional complexity of generating and evaluating the objective
corresponding to the J random samples is O(

(LM)2J
)
.

Now, combining these observations, it can be seen that
the complexity of the proposed port selection technique is
O(

(LM)4.5 log(1/ε0) log(tmax/ε1) + (LM)2J
)
.

B. Computational complexity of the second stage

In the second stage, close-to-optimal beam steering co-
efficients for a given port state vector could be obtained
by discretizing each coefficient using Nb bins. Then, the
coefficients that yield the largest minimum SINR could be
determined by exhaustive search over all possible bin com-
binations. The complexity of such an approach would be
O(

NLM
b

)
, which is computationally inefficient, similar to

the exhaustive search in the port selection problem. In Sec-
tion IV, the SDR-based Gaussian randomization technique is
used to generate close-to-optimal beam steering coefficients.
Using a discussion analogous to the one in Section VI-A,
it can be shown that the complexity of this technique is
O(

(LM)4.5 log(1/ε0) log(smax/ε1) + (LM)2K
)
.

C. Computational complexity of the two-stage approach

Using exhaustive search to solve the joint optimization
problem in (3) with discretized beam steering coefficients
involves a complexity of O(

(2Nb)
LM

)
, which is computa-

tionally prohibitive, even for a relatively small system. For
example, for a two-cell cluster with seven ports in each
cell, and Nb = 100, the exhaustive search involves about
20014 ≈ 1.64× 1032 combinations.

Using the two-stage approach presented in Section V and
the complexity discussions in Sections VI-A and VI-B, it can
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Distributed
Antenna Port
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Fig. 1. A seven-cell distributed antenna system with seven ports per cell.

be seen that the complexity of this technique is bounded by

O
(
(LM)4.5 log(1/ε0)

(
Ĵ log(smax/ε1)

+ log(tmax/ε1)
)
+ (LM)2(KĴ + J)

)
.

The results of this section are summarized in Table I.

VII. PERFORMANCE EVALUATION

In this section, we use Monte Carlo simulation to assess
the performance of the port selection and the beam steering
optimization techniques presented in Sections III and IV,
respectively, and the performance of the two-stage approach
presented in Section V. In the numerical results reported
herein, solutions to the sequence of feasibility problems in (17)
and (27) are obtained using the software package CVX [20]
with an underlying SeDuMi solver [17].

The cellular system used for the simulation consists of M
hexagonal cells, each with circumradius rc. The BS in each
cell is connected to seven ports; i.e., L = 7 [5], [6]. To evenly
cover the geographic area of the cell, six of these ports are
located uniformly at a distance of 2

3rc from the BS at the
center of the cell, while the seventh port is co-located with
the BS. Such a system is illustrated in Fig. 1, where M = 7.
All ports transmit at a fixed power P , i.e., P�n = P , ∀�, n [5].
In each iteration, the UTs are dropped randomly in each cell.

We consider a standard communication channel model
with quasi-static frequency-flat Rayleigh fading, log-normal
shadowing, and path loss components. As such, each
complex channel gain can be expressed as h�nm =√
ρ(d�nm)s�nmh′

�nm, where ρ(·) is a path loss function,
which depends on the propagation environment [21], and d�nm
is the distance between the �-th port of the n-th cell and the UT
in the m-th cell. Shadowing is represented by s�nm, which is
log-normal distributed with 0 dB mean and standard deviation
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Fig. 2. A comparison between the largest minimum SINR achieved by port
selection with exhaustive search and with the technique proposed in the first
stage for a two-cell cluster in the SMa scenario.

σs in dB, and fading is represented by h′
�nm, which is complex

Gaussian distributed with zero mean and unit variance.
To simulate practical communication scenarios, we have

selected the distance values and the log-normal shadowing and
path loss parameters corresponding to the suburban macro-
cell (SMa) and urban macro-cell (UMa) IMT-Advanced sce-
narios [21, Sections 8.4.2, A-1.3.1]. For the SMa scenario,
the distance between the BSs is 1299 m, and for the UMa
scenario, this distance is 500 m. The corresponding shadowing
standard deviation, σs, is 8 dB and 6 dB, respectively. For both
scenarios, the noise power, σ2, is chosen to be −114 dBm [21],
[22] and the path loss channel model is chosen to be the non-
line-of-sight one in [21]. In this model, setting the carrier
frequency to 2 GHz, the elevation of each antenna port to
15 m, and the elevation of each UT to 1.5 m yields the
following path loss function:

ρ(d�nm) = 101.866+4.032 log10(d�nm).

Example 1: In this example, the SMa scenario is consid-
ered. The largest minimum SINR that is achieved by the port
selection technique in Section III is depicted in Fig. 2 when
the beam steering coefficients are fixed as in (4). This SINR
is compared with the corresponding SINR achieved using
the exhaustive search in Section VI. To facilitate exhaustive
search, in this example we consider the case of a two-
cell cluster (i.e., M = 2), which requires searching over
214 ≈ 1.64× 104 port state vectors. The resulting SINRs are
averaged over 500 independent channel realizations. For each
iteration, the number of the Gaussian samples, J , is chosen to
be 100. From Fig. 2, it can be seen that the performance of
the proposed port selection technique approaches that of the
optimal solution for the entire range of P .

In Fig. 3, the sum rate achieved by the proposed port
selection technique is compared with the maximum achievable
sum rate obtained using exhaustive search over all possible
port state vectors. It can be seen from the figure that the sum
rate achieved by the proposed technique is comparable with
the maximum sum rate, but achieving it requires significantly
less computation; polynomial complexity for the proposed
technique instead of exponential complexity for the exhaustive
search. �

Example 2: In this example, we consider the SMa sce-
nario in a cluster of M = 7 cells. In Fig. 4, the largest
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TABLE I
COMPLEXITY OF THE PROPOSED TECHNIQUES AND THE CORRESPONDING EXHAUSTIVE SEARCH

Technique Complexity

Port selection Exhaustive O(
2LM

)

Proposed O(
(LM)4.5 log( 1

ε0
) log( tmax

ε1
) + (LM)2J

)

Beam steering optimization
Exhaustive O(

NLM
b

)

Proposed O(
(LM)4.5 log( 1

ε0
) log( smax

ε1
) + (LM)2K

)

Port selection and beam steering optimization
Exhaustive O(

(2Nb)
LM

)

Proposed O(
(LM)4.5 log( 1

ε0
)
(
Ĵ log( smax

ε1
) + log( tmax

ε1
)
)
+ (LM)2(KĴ + J)

)
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Fig. 3. A comparison between the largest sum rate achieved by port selection
with exhaustive search and with the technique proposed in the first stage for
a two-cell cluster in the SMa scenario.

minimum SINR achieved by the port selection technique in
Section III is compared with that achieved by other candidate
transmission strategies, namely transmission from a single
port and from all ports in each cell, which were investigated
in [6]. The SINRs are averaged over 5000 independent channel
realizations. For such a system, obtaining the optimal solution
using exhaustive search is computationally prohibitive since
this search involves 249 ≈ 5.63 × 1014 port state vectors.
However, the proposed technique can provide close-to-optimal
solutions in polynomial time as discussed in Section VI. For
each iteration, the port that is chosen in each cell in the case
of single-port transmission is the one with the largest channel
gain to the UT in that cell. For the SDR-based Gaussian
randomization technique used for port selection, the number
of the Gaussian samples, J , is chosen to be 300. It can be seen
from Fig. 4 that the proposed technique achieves significantly
larger minimum SINR than the two baseline transmission
strategies, particularly at higher values of P .

Fig. 5 shows the average number of ports per cell that
are activated by the proposed port selection technique. It can
be observed from the figure that the number of active ports
is relatively high at low values of P and decreases as P
increases. This observation is consistent with the performance
results depicted in Fig. 4, wherein the all-port transmission
strategy outperforms the single-port one when P is low, and
vice versa when P is high. The results in Fig. 5 also indicate
that the proposed port selection technique leads to significant
power savings by deactivating a considerable percentage of
the available ports when P is relatively high. �

Example 3: In Fig. 6, we consider a comparison similar to
the one in Example 2, but for the UMa scenario. Comparing
the results in this figure with the corresponding results in
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Fig. 4. A comparison between the largest minimum SINR achieved by the
port selection technique proposed in the first stage, and that achieved by the
one-port (without coordination) and all-port strategies for a seven-cell cluster
in the SMa scenario.
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Fig. 5. The average number of ports activated per cell by the selection
technique proposed in the first stage of an SMa seven-cell cluster.

Fig. 4, it can be seen that, at lower values of P , the achieved
minimum SINRs are higher for the UMa scenario than the
SMa one, and vice versa at higher values of P . This behaviour
can be attributed to the fact that at low values of P , the system
is noise-limited, whereas at high values of P , it is interference-
limited. From the figure, it can also be noticed that when P is
low, the performance of the proposed technique is close to that
of the all-port transmission strategy. This observation suggests
that when the power per port is low, the SINR maximizing
strategy is to use a greater number of ports for transmission
in each cell. This effect is further demonstrated in Fig. 7,
where it can be observed that the number of active ports per
cell approaches L as P decreases. �

Example 4: In this example, the performance of the two-
stage approach proposed in Section V is evaluated for a
system with M = 2 in the SMa scenario, and compared with
a computationally-expensive close-to-optimal joint solution.



AHMAD et al.: COORDINATED PORT SELECTION AND BEAM STEERING OPTIMIZATION IN A MULTI-CELL DISTRIBUTED ANTENNA SYSTEM . . . 1869

TABLE II
CHANNEL GAINS BETWEEN THE PORTS AND THE UTS IN EACH CELL

(×10−6
)

Port # UT in the 1st cell UT in the 2nd cell
1st Cell 2nd Cell 1st Cell 2nd Cell

1 −0.0565 + j0.0801 0.1369− j0.1623 −0.0613 + j0.0329 0.1892 + j0.7350
2 −0.3688 + j0.0382 −0.1055 + j0.0519 0.0379− j0.0114 −1.2478− j13.248
3 1.8197 − j0.7746 0.0181 + j0.0093 0.2241 + j0.0023 −0.5654 + j0.4546
4 −0.2693− j4.1101 −0.1455− j0.0391 −0.1529 − j0.1268 −0.0598 + j0.0116
5 0.0076 − j0.1963 −0.1746− j0.1039 0.0001− j0.0009 0.1900 + j0.0674
6 0.3743 + j0.0490 −1.3740− j0.5114 −0.0079 + j0.0075 0.4124 − j0.5146
7 −0.0459− j0.0178 0.0446− j0.0564 0.0056 + j0.0068 0.3308 + j0.5633
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Fig. 6. A comparison between the largest minimum SINR achieved by the
port selection technique proposed in the first stage, and that achieved by the
one-port (without coordination) and all-port strategies for a seven-cell cluster
in the UMa scenario.
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Fig. 7. The average number of ports activated per cell by the selection
technique proposed in the first stage of a UMa seven-cell cluster.

Due to the complexity of the latter approach, a single channel
realization is simulated. The channel gains for this realization
are provided in Table II.

The close-to-optimal solution is obtained through exhaus-
tive search over all possible port state vectors, and by using the
technique proposed in Section IV to generate close-to-optimal
beam steering coefficients for each vector. For the proposed
two-stage approach, 100 Gaussian samples are generated in
the first and second stages; i.e., J = K = 100.

In Fig. 8, we show the largest minimum SINRs achieved
by the two-stage approach described in Section V with Ĵ = 1,
10, and 100, and by the exhaustive search described above.
For comparison, we also show the largest minimum SINRs
achieved by the techniques in Sections III and IV. From
the figure, it can be seen that the performance of the two-
stage technique approaches that of the close-to-optimal joint
solution as Ĵ increases. Both techniques outperform those
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Fig. 8. A comparison between the largest minimum SINR achieved by
the proposed two-stage approach, exhaustive-search, and the port selection
technique in the first stage. A two-cell cluster in the SMa scenario.

presented in Sections III and IV for the given initial beam
steering coefficients and the port state vector generated in the
first stage, respectively, particularly at higher transmit powers.

The simulation time taken to generate the results reported in
Fig. 8 is approximately 3.3 seconds, whereas the correspond-
ing time for an SMa seven-cell system, not shown herein, is
approximately 16.2 seconds. These values have been obtained
using Matlab-based simulations on a computer with a 3.6 GHz
Intel Core i7 processor. �

VIII. CONCLUSION

In this paper, we considered coordinated downlink trans-
mission in a multi-cell distributed antenna system. A novel
two-stage SDR-based polynomial-complexity technique for
jointly optimizing the port states and the beam steering
coefficients was developed. It was shown that the port state
vector generated by the technique proposed in the first stage
yields comparable performance to the optimal vector, which
is obtained using exponential-complexity exhaustive search.
Additionally, the performance of the two-stage technique was
shown to be comparable with that of a close-to-optimal one,
but with a significantly less computational cost. Finally, it
was shown that, by deactivating selected ports, the two-
stage technique can provide significant power savings without
compromising performance.
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APPENDIX A
PROOF OF LEMMA 1

Using the definitions of Fm and Ψ in (12) and (15),
respectively, we have

Tr
(
FmΨ

)
= Tr

([
Dm Dm1

1TDm 1TDm1+ 4σ2

] [
X x
xT 1

])

= 4σ2 +Tr (DmX + 2xTDm1+ 1TDm1).
(32)

Using (14), the matrix X can be expressed as

X = X0 + xxT , (33)

where X0 � 0. Using this observation in (32), we have

Tr
(
FmΨ

)
= 4σ2 +Tr(DmX0 + xTDmx

+ 2xTDm1+ 1TDm1)

= 4σ2 +Tr (DmX0) + (x+ 1)TDm(x+ 1).

The statement of the lemma follows from noting that X0 and
Dm are PSD for all m, and σ2 > 0.
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