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Abstract— This paper considers channel-unaware two-way
relay networks in which two single-antenna nodes exchange
information via multiple non-regenerative relays, each with mul-
tiple antennas. A novel self-interference cancellation scheme for
distributed differential space-time signalling is developed. Despite
the absence of channel-state information, this scheme enables
self-interference to be completely eliminated, thereby maximizing
the signal-to-interference-plus-noise-ratio of the nodes. First,
we obtain a lower bound on the pairwise error probabil-
ity (PEP) under residual self-interference and we show that this
bound approaches a non-zero constant at high signal-to-noise
ratios (SNRs), indicating a zero diversity order and an asymptotic
error floor. Second, we derive a necessary and sufficient condition
for the proposed scheme to eliminate self-interference perfectly.
Proper operation of this scheme requires the relays to have an
even number of active antennas and for relays with odd number
of active antennas, such a scheme does not exist. Third, we show
that, when self-interference is cancelled perfectly, the error floor
vanishes and an upper bound on the PEP approaches zero at
high SNRs. In this case, it is shown that the diversity gain is
equal to the number of relays and is independent of the number
of antennas per relay. Finally, it is shown that the coding gain
increases with increasing the number of antennas per relay and
converges to a constant as the number of relay antennas becomes
large.

Index Terms— Differential MIMO coding, two-way relay net-
works, half-duplex, amplify-and-forward, self-interference can-
cellation.

I. INTRODUCTION

THE presence of multiple relays in wireless networks
enables reliable communication of high data rates in

many practical situations, notably those in which the channel
between the source and destination is not line-of-sight with
potentially deep fades [1]. One approach for the effective
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utilization of multiple relays is to use distributed space-
time (DST) codes [2], [3], whereby the relays organize their
transmissions concurrently and autonomously so that the sig-
nals observed by the receiver possess a structure that facilitates
reliable detection and efficient spectral utilization.

When the receiver has access to perfect channel-state infor-
mation (CSI), the transmitter can use standard channel-aware
signalling schemes [4], [5]. However, for the receiver to
acquire such a CSI, the transmitter sends a prescribed set of
training symbols, which are used by the receiver to estimate
the channel. In some systems, transmitting training symbols
and estimating the channel are not desirable. In those cases,
it might be more attractive to use channel-unaware signalling
schemes, i.e., schemes that do not require the receiver to have
access to CSI.

A popular channel-unaware signalling scheme is the
differential one. This scheme is suitable for signalling over
continuously fading channels, which usually arise in mobile
communications. In this scheme, the transmitter encodes infor-
mation in the transition between the transmitted signal vectors,
rather than in the vectors themselves [6]. Combining differ-
ential signalling with DST yields a differential DST (DDST)
scheme that is suitable for channel-unaware relay networks [7].

Relay networks feature multiple relays, which operate either
in a full-duplex mode, wherein each relay transmits and
receives in the same frequency and time slots, or in a half-
duplex mode, wherein transmission and reception occur either
at different time slots or on different frequencies. Full-duplex
relaying suffers from self-interference levels that are difficult
to eliminate in practice. This renders half-duplex relaying
more amenable to practical implementation. Relays operating
in the half-duplex mode can be used to construct either
one- or two-way relay networks [8], [9]. We will refer to the
former as OWRNs and to the latter as TWRNs. In OWRNs,
four phases are required for any two nodes to exchange their
messages. Two phases are used for transmission from the first
node to the second one and the remaining two phases are
used for transmission in the reverse direction. Unfortunately,
this transmission scheme renders OWRNs rather wasteful of
the spectral resources available for communication. In con-
trast with OWRNs, in TWRNs, for two nodes to exchange
information, they both send their messages to the relays
simultaneously in the first phase. The relays process their
received signals and in the second phase the relays broadcast
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a combination of these signals to both nodes [10]. Hence, it can
be seen that TWRNs halves the number of phases required by
OWRNs to perform the same task. However, this advantage
of TWRNs comes at the cost of additional processing at the
nodes and/or the relays.

The fact that in TWRNs the two nodes send their signals to
the relays on the same physical channel results in interference
at the relays in the first communication phase, which upon
broadcasting in the second phase, results in self-interference.
Unless properly accounted for, self-interference can result in
severe deterioration in the system performance, especially
at high signal-to-noise ratios (SNRs). The effect of self-
interference depends on the way in which the relays process
their received signals. For ease of practical implementation,
we will focus on the amplify-and-forward (AF) scheme,
wherein the relays linearly process their received signals
without attempting to regenerate the original messages. Other
relaying schemes include the decode-and-forward (DF) and the
compress-and-forward ones [1]. However, these schemes are
significantly more computationally demanding and therefore
less attractive than AF to implement in practice. To achieve
desirable performance at high SNRs, it is necessary that
the signalling scheme ensures that self-interfering signals
are eliminated at the respective receivers. The difficulty of
performing this task depends on CSI availability: when CSI
is available, eliminating self-interference is straightforward,
but when CSI is not available, eliminating self-interference
constitutes a challenging problem, which will be addressed
hereinafter.

Channel-unaware differential signalling in TWRNs has been
considered in [11]–[13] for AF relays and in [13] and [14]
for DF ones. The focus of the schemes in [11]–[13] was
on TWRNs with one relay, which renders them not readily
extensible nor amenable to space-time signalling and the
diversity gains they provide. The case of TWRNs with multiple
relays was considered in [14]. Therein a differential signalling
scheme for DF relays with one antenna was devised. This
scheme does not work for the multiple-antenna AF relays
considered herein. In [15] a DDST signalling scheme [7] for
systems with multiple single-antenna AF relays was devel-
oped. In this scheme, two-way communication is preceded by
a one-way initialization procedure in which reference vectors
are transmitted during the first four phases. In subsequent two-
way communication, receivers perform differential detection
depending on previous symbol decisions. This results in error
propagation and deterioration in performance. Another class of
signalling schemes for TWRNs with single-antenna AF relays
was considered in [16]. In this class, DDST signalling is com-
bined with blind channel estimation. The estimated channel is
subsequently used by the nodes in the second communication
phase to cancel the component of the received signal that arises
from the signals they transmitted in the first phase. Because of
blind estimation, the approach in [16] is prone to estimation
errors and processing delays, cf. Section VII.

In this paper we consider a channel-unaware TWRN with
two single-antenna nodes which communicate using differ-
ential signalling. In this TWRN, each AF half-duplex relay
has multiple antennas [17]–[19]. For such TWRNs, we will

develop a novel self-interference cancellation scheme for
DDST signalling in which each relay performs linear process-
ing on its received signals jointly in space and time. This
is in contrast with currently available processing strategies,
which consider linear processing in time only. The novel
scheme enables self-interference to be cancelled perfectly
despite the fact that CSI is available neither at the nodes nor
at the relays. In contrast, previously proposed self-interference
cancellation schemes, e.g., the one proposed in [16], rely
on channel estimation approaches. These approaches result
in non-negligible residual interference, which subsequently
inflicts serious degradation on the system performance.
To show that, we derive a lower bound on the pairwise error
probability (PEP) in the presence of residual self-interference
and we show that this bound approaches a non-zero constant
at high SNRs, i.e., the diversity gain is asymptotically equal
to zero and an error floor occurs. Herein, we will show that
such degradation can vanish by space-time processing of the
relay received signals. In particular, it will be shown that a
special design for the space processing matrix will cancel
self-interference perfectly and will subsequently maximize the
signal-to-interference-plus-noise-ratio (SINR) observed by the
nodes. Our analysis shows that perfect cancellation is not
possible if any relay were to have an odd number of active
antennas. To capture the effect of perfect cancellation on the
system performance, we derive an upper bound on the PEP.
This bound shows that, first, at high SNRs, the proposed
scheme achieves a diversity gain equal to the number of
relays, but is independent of the number of relay antennas.
Second, this scheme achieves a coding gain that increases
with the number of relay antennas. Finally, we show that
the system performance converges with the number of relay
antennas, suggesting that increasing the number of relays is
more beneficial than increasing the number of antennas per
relay. In summary:

• we propose a novel relaying scheme for DDST signalling
in which the relays process their received signals in space
and time, rather than in time only, as in currently available
work;

• we derive a lower bound on the PEP to show that any
non-zero residual self-interference results in an error floor
and zero diversity order;

• we design a signalling methodology that enables the
relays to cancel self-interference perfectly without invok-
ing CSI estimation, provided that each relay has an even
number of active antennas (such a scheme is not feasible
if the number of antennas is odd); and

• we derive an upper bound on the PEP yielded by the
proposed scheme and we show that the diversity gain
is equal to the number of relays, and is independent
of the (even) number of relay antennas. In contrast,
the coding gain increases with the number of antennas
per relay and converges to a constant when the number
of relay antennas goes to infinity.

The paper is organized as follows. Section II, presents the
system model and the DDST signalling scheme. In Section III,
we propose a novel space-time relaying scheme. The effect
of self-interference on the system performance is analyzed
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Fig. 1. Block diagram of a TWRN.

in Section IV. Conditions for ensuring perfect self-interference
cancellation are derived in Section V. Section VI analyses
the system performance when self-interference is cancelled
perfectly. Section VII provides simulation results. Section VIII
summarizes the key differences between our scheme and
the one in [16] and Section IX concludes the paper. For
convenience, proofs are relegated to the appendix.

Notations: we use bold upper and lower case letters to
denote matrices and column vectors, respectively. The real and
imaginary parts are denoted by �(·) and �(·), respectively.
The conjugate, transpose, Hermitian, trace and determinant of
a matrix A are denoted by A, AT , A†, Tr(A) and |A|, respec-
tively. The direct sum of matrices Ai is denoted by

⊕
i Ai .

II. SYSTEM MODEL

We consider a channel-unaware half-duplex TWRN with
two single-antenna nodes and N AF relays as shown
in Figure 1. The n-th relay has Mn antennas which are used
for both transmission and reception, n = 1, . . . , N . The
vector channel between node 1 and the n-th relay is denoted
by f n ∈ CMn and the corresponding channel for node 2 is
denoted by gn ∈ CMn . The m-th entry of f n and the corre-
sponding entry of gn represent the channel between node 1 and
node 2, and the m-th antenna of relay n, respectively, m =
1, . . . , Mn , n = 1, . . . , N . The channels are assumed to be
block Rayleigh fading and hence the entries of the channel
vectors { f n} and {gn} are Gaussian distributed with zero mean
and unit variance, i.e., E{ f n f †

n} = E{gn g†
n} = I Mn .

In the considered channel-unaware TWRN, neither the
nodes nor the relays have access to CSI prior to detection.
In this scenario, a convenient means for communication is
the one offered by DDST. This scheme was used in [16] in
channel-unaware signalling for the case when the relays have
one antenna each. Unfortunately, the scheme proposed in [16]
does not eliminate self-interference completely, resulting in a
zero diversity gain, as will be shown below. To overcome this
drawback, we herein use DDST, but with multiple antennas
at each relay. For this scenario we will develop a signalling
scheme that achieves a high-SNR diversity gain equal to the
number of relays. The new relaying scheme is based on a novel
approach for eliminating self-interference perfectly at the
multiple-antenna AF relays. Each relay linearly processes its

received signal matrix containing the components transmitted
from both nodes in the first phase and generates a new matrix,
which is subsequently broadcast to the nodes in the second
phase. The linear combinations at the relays are organized
in such a way that the signal received at each of the two
destination nodes appears as if it were generated by a particular
space-time code.

We will consider two classes of DST codes involving linear
and sesquilinear1 combinations of the transmitted symbols.
Instances of the first class include real orthogonal codes [4],
whereas instances of the second class include the Alamouti
and the S P(2) codes [7]. Detection for both classes is similar
but transmission is slightly different as we elaborate below.

In both the linear and sesquilinear classes, the nodes orga-
nize their transmissions in L blocks of N symbols, each
denoted by the N × 1 vector, s(�)

i , i = 1, 2, � = 1, . . . , L − 1.
More precisely, similar to [7], in the �-th block, each node
differentially encodes its message as follows

s(�)
i = U(�)

i s(�−1)
i , i = 1, 2, � = 1, . . . , L − 1, (1)

where U(�)
i is a unitary N × N matrix to which the message of

node i in the �-th block is mapped, and s(0)
i is an arbitrary ini-

tialization vector, which is not required to be known a priori.

The vectors {s(�)
i } are normalized so that E{s(�)

i s(�)†

i } = I N ,
i = 1, 2, � = 1, . . . , L − 1.

A. First Transmission Phase

In the first TWRN transmission phase, the nodes transmit
their messages to the two-way relays. The particular structure
of the signals emitted by the nodes depends on the class of
signalling, linear or sesquilinear. We will discuss these classes
separately.

1) The Class of Linearly-Structured Codes: In this class,
node i transmits the �-th block s(�)

i , i = 1, 2, during N
symbol durations. Hence, the received signal of the n-th relay,
is given by

R(�)
n = √

P1s(�)
1 f T

n +√
P2s(�)

2 gT
n + V (�)

n ,

n = 1, . . . , N, � = 1, . . . , L − 1, (2)

where the m-th column of R(�)
n ∈ CN×Mn , denoted by r(�)

nm ,
is the N × 1 received vector at the m-th antenna of the
n-th relay, Pi is the average power of node i , i = 1, 2, and
V (�)

n ∈ CN×Mn is the noise matrix observed during the �-th
block at the n-th relay. Throughout, the entries of V (�)

n are
assumed to be Gaussian with zero mean and unit variance,
whence E{Tr

(
V (�)†

n V (�)
n
)} = N Mn .

2) The Class of Sesquilinearly-Structured Codes: In this
class, node i transmits the �-th block s(�)

i followed by its
complex conjugate, s(�)

i , i = 1, 2. As we elaborate below,
this step is necessary because otherwise, the relay, being non-
regenerative, would not be able to eliminate self-interference
perfectly without CSI. In this case, nodes consume 2N sym-
bol durations for transmitting the same information and the

1Sesquilinear combinations refer to those combinations that are linear in
the symbols and their complex conjugates.
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received signal of the n-th relay, R(�)
n , is given by

R(�)
n = √

P1[s(�)T

1 , s(�)T

1 ]T f T
n +√

P2[s(�)T

2 , s(�)T

2 ]T gT
n

+V (�)
n , n = 1, . . . , N, � = 1, . . . , L − 1, (3)

where the definitions of R(�)
n , {Pi } and V (�)

n are the same as
in the previous case, with the exception that R(�)

n ∈ C2N×Mn

and V (�)
n ∈ C2N×Mn , whence E{Tr

(
V (�)†

n V (�)
n
)} = 2N Mn .

B. Linear Processing at the Relays and the Second
Transmission Phase

The relays, being non-regenerative, process their received
signals without attempting to recover the signals transmitted
from the nodes in the first phase. We will consider the
case in which the relays perform linear processing on these
signals. This approach was considered in [2], [7], [10], [16],
[20], and [21], but processing in these references is performed
in the time domain. Unlike the aforementioned references,
herein we consider a general approach in which processing is
performed jointly over space and time, as will be elaborated
below.

Let the linear transformation at the n-th relay be denoted
by Tn : R(�)

n �→ T (�)
n , i.e., Tn maps the received matrix of the

n-th relay during the �-th block to the matrix T (�)
n ∈ CN×Mn .

Our objective is to identify and analyze appropriate choices
for Tn for both classes of codes.

Upon receiving the entire matrix R(�)
n at the end of the �-th

block, the n-th relay generates and broadcasts T (�)
n to the two

nodes. The received signals of these nodes can be expressed as:

y(�)
1 =

N∑

n=1

T (�)
n f n + z(�)

1 , y(�)
2 =

N∑

n=1

T (�)
n gn + z(�)

2 , (4)

where z(�)
i are the N × 1 noise vectors at the i -th node during

the �-th received block.
The precise definition of {T (�)

n } will be given in the next
section. For now, however, we note that, because of linear
processing at the relays, each of the matrices {T (�)

n } contains
two components (cf. Figure 1): the first corresponds to the
desired signal of node i which is transmitted by the other
node, and the second corresponds to the self-interference
generated by node i ’s own transmission in the first phase,
i = 1, 2. In the next section, we will show that self-
interference heavily impacts the system performance and
unless perfectly cancelled, it will cause the high-SNR diver-
sity gain to be zero. To alleviate this drawback, we will develop
a signalling strategy that ensures achieving a diversity gain
equal to the number of relays.

III. JOINT RELAY PROCESSING IN SPACE AND TIME

In the original DDST signalling, processing at the n-th relay,
Tn , is performed in the time domain only even when the relays
have multiple antennas [2]. We will show that this signalling
strategy will prevent self-interference from being perfectly
cancelled. In particular, we will show that, if the number
of active antennas at any relay is odd, temporal processing
alone does not suffice to cancel self-interference perfectly.

To alleviate this drawback, in this section, we develop a novel
signalling approach for performing linear processing at the
relays jointly in space and time. In particular, we define Tn to
be the linear transformation that maps R(�)

n to Tn
(�) via

T (�)
n = βn Cn R(�)

n Xn, Xn ∈ C
Mn×Mn , n = 1, . . . , N. (5)

To ensure that the average transmission power of relay n is
equal to a given power budget, Prn , the scalars {βn} must

satisfy βn =
√

N Prn

E

{
Tr
(

Cn R(�)
n Xn X†

n R(�)†
n C†

n

)} . The matrices {Xn}

in (5) are used for processing in the space domain and the
matrices {Cn} are used for processing in the time domain.
To ensure that the relay power constraints are satisfied,
we have

Tr(Cn C†
n) = N. (6)

The structure of {Cn} is different for linear and sesquilinear
codes. In particular,

Cn =
{

An, for linear codes, n = 1, . . . , N,[
An Bn

]
, for sesquilinear codes, n =1, . . . , N.

(7)

The choice of An, Bn ∈ CN×N depends on the space-time
code used in the network, see e.g., [7]. For example, for the
2 ×2 linear real-orthogonal DST code, A1 = I2 and A2 = J ,
where

J =
[

0 −1
1 0

]

, (8)

and, for the 2 × 2 sesquilinear Alamouti DST code, A1 = I2,
B1 = 0, A2 = 0 and B2 = J .

The matrices {An}N
n=1, {Bn}N

n=1 and {Xn}N
n=1 must satisfy

the power constraints. In addition, since the channels { f n}
and {gn} in (2)–(4) are isotropically distributed (i.d.) and CSI
is not available, maintaining the channels to be i.d. requires
these matrices to be unitary. Otherwise, the power distrib-
ution across the relay antennas will be nonuniform, which
compromises performance if high power is allocated to weak
channels [2], [7], [21]–[23].

In addition to unitarity, {An}, {Bn} and {Xn} must satisfy
other constraints. In particular, for the receivers to use the
signal received in the (� − 1)-th block to detect the signal
received in the �-th block, the matrices {An} and {Bn}, must
commute with {U(�)

i } in (1) [7], i.e.,

U (�)
i An = AnU(�)

i , and U(�)
i Bn = BnU

(�)
i ,

i = 1, 2, n = 1, . . . , N, � = 1, . . . , L − 1. (9)

These relationships will be assumed to hold throughout. As for
{Xn}, in Section V, we will derive additional conditions to
ensure that these matrices can effect perfect elimination of
self-interference despite the absence of CSI at the receivers.

To proceed with analysis, we use (4), (5) and (9) to express
the N × 1 received signal of node 1 in the following form;
analysis for node 2 follows from symmetry.

y(�)
1 = √

P1 S(�)
1 h1 +√

P2 S(�)
2 h2 + w

(�)
1 , (10)
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where the N × N matrices {S(�)
i } are given by

S(�)
i =

[
C1θ

(�)
i , . . . , C N θ

(�)
i

]
∈ C

N×N ,

i = 1, 2, � = 1, . . . , L − 1, (11)

θ
(�)
i =

⎧
⎨

⎩

s(�)
i , for linear codes, i = 1, 2,
[
s(�)T

i s(�)T

i

]T
for sesquilinear codes, i =1, 2,

(12)

the N × 1 equivalent channel and noise vectors, h1, h2 and
w

(�)
1 are respectively given by

h1 = [β1 f T
1 X1 f 1, . . . , βN f T

N X N f N ]T ,

h2 = [β1 gT
1 X1 f 1, . . . , βN gT

N X N f N ]T , (13)

w
(�)
1 =

N∑

n=1

βn Cn V (�)
n Xn f n + z(�)

1 . (14)

The first term on the right hand side (RHS) of (10)
characterizes the signal transmitted by the same node during
the first phase, that is, this term comprises self-interference.
The second term characterizes the signal transmitted by the
other node (i.e., node 2) during the first phase, and hence,
this term comprises the desired signal. Finally, the third term
characterizes the equivalent noise, which, from (14), contains
contributions from the first and second transmission phases.
Using statistical independence of { f n} and {V (�)

n }, we have
E{w(�)

1 } = 0 and, cf. Appendix A-A,

�w1 = E{w(�)
1 w

(�)†

1 } =
N∑

n=1

β2
n Mn CnC†

n + I N . (15)

Since { f n} are random and unknown and {V (�)
n } are Gaussian

distributed, the distribution of the equivalent noise w
(�)
1

depends on the distribution of { f n} and is generally not
Gaussian. Finding the exact distribution of w(�)

1 is not only
difficult, but might also prohibit drawing insight into the key
elements that govern performance. To alleviate this difficulty,
we will follow the approach in [7] to approximate w(�)

1 by a
Gaussian random vector with zero mean and the covariance
in (15). In fact, using the central limit theorem it can be
verified that the distribution of w(�)

1 approaches the Gaussian
one as Mn grows, ∀n. This approximation will be used
throughout.

IV. SYSTEM PERFORMANCE ANALYSIS IN THE

PRESENCE OF SELF-INTERFERENCE

In this section, we show that self-interference causes both
the SINR and the PEP to converge to finite strictly positive
constants as the signalling power increases. This implies that,
without perfect cancellation of self-interference, the diversity
gain is asymptotically zero. Suppose that the received signal
in (10) includes a fraction, ζ ∈ (0, 1], of the self-interference
component, i.e.,

y(�)
1 = ζ

√
P1 S(�)

1 h1 +√
P2 S(�)

2 h2 + w
(�)
1 . (16)

For ease of exposition, we assume that the power of both nodes
and each relay is a scalar multiple of a constant power, P , i.e.,
P1 = P, P2 = δ0 P, Prn = δn P , where δn > 0, ∀n. Using the

unitarity of Xn along with the expressions in (2), (3) and (6)
yields

βn =
√

δn P

Mn
(
(1 + δ0)P + 1

) . (17)

A. The Effect of Self-Interference on SINR

To illustrate the effect of self-interference on the novel
signalling scheme, we compute the average SINR of node 1.
Analogous computation for node 2 is mutatis mutandis.
Using (11)–(13), in Appendix A-B we show that the average
power of the desired signal in (16) is

E{(S(�)
2 h2)

†(S(�)
2 h2)} = N

N∑

n=1

β2
n Mn . (18)

For the average power of self-interference in (16),
in Appendix A-C we show that

E{(S(�)
1 h1)

†(S(�)
1 h1)} = N

N∑

n=1

β2
nαn, (19)

αn = 2
Mn∑

k=1

|x (n)
kk |2+

Mn∑

k=1

Mn∑

j=k+1

|x (n)
kj +x (n)

j k |2, n = 1, . . . , N,

(20)

and x (n)
lk is the lk-th entry of Xn . Finally, using (15) and (6),

we have

E{w(�)
1

†
w

(�)
1 } = Tr

(
E{w(�)

1 w
(�)
1

†}) = N
N∑

n=1

β2
n Mn + N. (21)

From (18), (19) and (21), the average SINR observed by
node 1 can be readily seen to be

SINR = δ0 P2∑N
n=1 δn

ζ 2 P2
∑N

n=1
αnδn
Mn

+ (1 +∑N
n=0 δn)P + 1

. (22)

Using (22), it can be seen that limP→∞ SINR = δ0
∑N

n=1 δn

ζ 2
∑N

n=1
αnδn
Mn

.

Thus, if self-interference is not perfectly cancelled at any
of the relays, the SINR will converge to a strictly positive
constant.

B. Lower Bound on PEP

To investigate the effect of self-interference on the error
rate of the scheme proposed in Section III, we will derive a
lower bound on the PEP. We will show that, under general
conditions, this bound converges to a strictly positive constant
that does not depend on P , unless self-interference is per-
fectly cancelled. In other words, any self-interference causes
an error floor. Our main result of this section is recorded
in Theorem 1.

Theorem 1: Let h1, h2 and w1 in (10) be zero mean
Gaussian random vectors with average covariance matrices
that are given by �h1 = diag(β2

1α1, . . . , β
2
N αN ), �h2 =

diag
(
β2

1 M1, . . . , β
2
N MN

)
and (15), respectively. Consider the

two distributed space-time codewords S(�)
2,a and S(�)

2,b. Let σ
(a,b)
max
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be the largest eigenvalue of (S(�)
2,a − S(�)

2,b)
†(S(�)

2,a − S(�)
2,b) and

let σ̂max = maxa,b σ
(a,b)
max . In addition, let λmin(θ1) and μ

(n)
min

be the smallest eigenvalues of
∑N

n=1
αnδn
Mn

Cnθ
(�)
1 θ

(�)†

1 C†
n and

Cn C†
n , respectively. Then, the probability of mistaking S(�)

2,a

for S(�)
2,b satisfies:

Pr(S(�)
2,a → S(�)

2,b) ≥ E
θ

(�)
1

{
Q(
√


1)
}
,


1 � 2−1δ0σ̂max
∑N

n=1 δn

ζ 2λmin(θ
(�)
1 )+(1+δ0+∑N

n=1 δnμ
(n)
min)P−1+ P−2

. (23)

Proof: See Appendix B.
First, we note that λmin(θ

(�)
1 ) and μ

(n)
min do not depend

on P . Furthermore, we note that, for both the linear
and sesquilinear cases, Cnθ

(�)
1 is an N-dimensional vector,

n = 1, . . . , N , cf. (7), (12). Hence, if for the proposed
relaying scheme and for some θ (�)

1 , the matrices {Cn}N
n=1 are

such that the vectors {Cnθ
(�)
1 }N

n=1 are linearly independent,

the matrix
∑N

n=1
αnδn
Mn

Cnθ
(�)
1 θ

(�)†

1 C†
n is full rank and λmin(θ

(�)
1 )

is strictly greater than zero. Using (23), it can be seen
that, in that case, the denominator of the argument of the
Gaussian Q(·) function becomes dominated by λmin(θ

(�)
1 )

when the power P is sufficiently large. Since Q(x) > 0, ∀x ,
it follows that the expectation on the RHS of (23) is strictly

greater than zero if there is at least one realization of θ (�)
1

for which λmin(θ
(�)
1 ) > 0. Hence, we have shown that in

the presence of self-interference, the PEP is lower bounded
by a strictly positive constant, which implies an error floor
and a zero diversity gain. In Section VII, this observation
will be confirmed by numerical simulations and in the next
section, we will provide a methodology for eliminating this
interference perfectly without invoking CSI.

V. PERFECT SELF-INTERFERENCE CANCELLATION

We have shown that self-interference causes the SINR and
the PEP to approach strictly positive constants as P → ∞,
thereby implying an error floor and zero diversity gain. Now,
we show that the scheme proposed in Section III enables self-
interference to be cancelled perfectly, which maximizes the
SINR and allows it to go to infinity and the PEP to go to zero
as P → ∞.

Theorem 2: The average SINR for each node is maximized
when the spatial processing matrices in (5) at all the relays,
{Xn}N

n=1, are skew-symmetric.2

Proof: To find {Xn} that maximize the SINR, we note
that those matrices affect the SINR expression through the
nonnegative constants {αn} in the denominator on the RHS
of (22), where {αn}N

n=1 are defined in (20). Hence, the optimal
choice of {Xn} is the one that renders αn = 0, ∀n. From (20),
it can be seen that this condition can be only satisfied when
all the diagonal entries of Xn are zero, i.e., x (n)

kk = 0, and
all the off-diagonal entries satisfy x (n)

kl = −x (n)
lk , that is, this

2Note that cancelling self-interference requires Xn , n = 1, . . . , N , to be
skew-symmetric, rather than skew-Hermitian.

condition is satisfied if and only if Xn = −XT
n , which proves

the theorem.
We have shown that choosing {Xn}N

n=1 to be skew-
symmetric maximizes the SINR for all P . We now show that
this choice eliminates self-interference perfectly. From (19)
we note that the nonnegative constants {αn} in (22) are
in fact due to self-interference. Hence, enforcing {αn}N

n=1
to be zero is, in effect, the same as eliminating self-
interference perfectly. Before discussing other ramifications
of choosing {Xn}N

n=1 to be skew-symmetric, we note that
eliminating self-interference was made possible by the novel
spatial processing proposed in Section III, but could not be
effected by previously proposed techniques which restrict
the relay received signals to be processed in time only.
To elaborate on this observation, we have the following
corollary.

Corollary 1: Setting the spatial processing matrices,
{Xn}N

n=1, to be skew-symmetric yields h1 = 0N , i.e., the
equivalent channel of self-interference is the all-zero N × 1
vector.

Proof: From (10) and (13) it can be seen that the
equivalent channel for the self-interference component is the
vector h1. To prove the statement of the corollary, we use γn to
denote the n-th entry of h1, i.e., γn � f T

n Xn f n . But since γn

is a scalar, we must have γn = γ T
n = f T

n XT
n f n = − f T

n Xn f n ,
which, together with the definition of γn , establishes the claim
of the corollary.

We have shown that {Xn}N
n=1 must be: 1) unitary for

the equivalent channel vectors to be i.d. (cf. Section III),
and 2) skew-symmetric for self-interference to be perfectly
eliminated (cf. Theorem 1 and Corollary 1). Combining these
conditions yields:

Lemma 1: For the matrix Xn ∈ CMn×Mn to be uni-
tary and skew-symmetric, the dimension Mn must be even,
n = 1, . . . , N .

Proof: To prove this lemma, we note that any skew-
symmetric matrix Xn ∈ CMn×Mn satisfies |Xn| =
(−1)Mn |Xn|. This implies that when Mn is odd |Xn| = 0.
However, for Xn to be unitary, the absolute value of |Xn | is
equal to one. Hence, we conclude that Mn must be even in
order to admit a matrix Xn that is both unitary and skew-
symmetric.
Combining this lemma with Corollary 1 yields that the number
of active antennas per relay, must be even to ensure that
the equivalent channels are i.d. and that self-interference is
perfectly eliminated. The following theorem provides the con-
struction that ensures that a square {Xn} with even dimension
is both unitary and skew-symmetric.

Theorem 3: Let the eigendecomposition of the unitary
matrix Xn be given by3 Xn = �n�n�

†
n where �n ∈ C2K×2K ,

is diagonal, and �n ∈ C
2K×2K is unitary, for some integer

K . Then, Xn is skew-symmetric if and only if the diagonal
entries of �n are pairwise antipodal and lie on the unit

circle, i.e., these entries are given by ±ejθ
(n)
k , θ

(n)
k ∈ [0, 2π),

k = 1, . . . , K , and the columns of �n are pairwise conju-

3This decomposition exists because Xn is unitary and hence normal [24].
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gates, i.e., �n is given by �n = [φ(n)
1 ,φ

(n)
1 , . . . ,φ

(n)
K ,φ

(n)
K ].

Furthermore, such a unitary matrix �n can be con-
structed from an arbitrary real orthogonal matrix Qn =
[q(n)

1 , q(n)
2 , . . . , q(n)

2K ] ∈ R
2K×2K using φ

(n)
k = 1√

2
(q(n)

2k−1 +
j q(n)

2k ), k = 1, . . . , K .
Proof: See Appendix C.

The result reported in this theorem renders the construction
of general unitary skew-symmetric spatial processing matrices
straightforward. In the next section we will investigate the
effect of using such matrices on the PEP attained by the
TWRN under consideration.

VI. PERFORMANCE ANALYSIS UNDER PERFECT

SELF-INTERFERENCE CANCELLATION

A. Asymptotically Optimal Channel-Unaware
Symbol Detection

So far, it is shown that choosing {Xn}N
n=1 in (5) to be skew-

symmetric when the number of active antennas at the relays
is even leads to perfect self-interference cancellation. Hence,
the received signal of node 1 in (10) can be expressed as

y(�)
1 = √

P2 S(�)
2 h2 + w

(�)
1 . (24)

Although (24) is valid only when self-interference is cancelled
perfectly, it is sometimes used to approximate the received
signal when self-interference is partially cancelled [15], [16].
This approximation maybe somewhat misleading. Indeed,
Section IV shows that residual self-interference can cause seri-
ous SINR and PEP degradation, and results in zero diversity
and error floor.

To analyze performance when self-interference is cancelled
perfectly, we use (1) and (9) to write Cnθ

(�)
i , the n-th column

of S(�)
i (cf. (11)), as U i Cnθ

(�−l)
i [7], [16]. Hence, we have

S(�)
i =

[
U (�)

i C1θ
(�−1)
i . . . U(�)

i C N θ
(�−1)
i

]
= U (�)

i S(�−1)
i .

Using this in (24), the received signal of node 1 during the
�-th block can be represented as

y(�)
1 = U (�)

2 y(�−1)
1 + w

(�)
1 − U (�)

2 w
(�−1)
1 . (25)

For close to maximum likelihood (ML) detection, the distri-
bution of w(�)

1 is assumed to be Gaussian (cf. Section III),
yielding the following ML detector [7], [16]:

arg min
U2

∥
∥�

− 1
2

w1 (y(�)
1 − U (�)

2 y(�−1)
1 )

∥
∥2

, (26)

where �w1 is given in (15). The detector in (26) is channel-
unaware because it is not a function of f n and gn . An upper
bound on the PEP achieved by this detector is derived next.

B. An Upper Bound on the PEP

The following theorem gives an upper bound on the PEP
when self-interference is cancelled perfectly and the ML
symbol detector (26) is used.

Theorem 4: When {Xn}N
n=1 are unitary skew-symmetric

matrices, the high-power PEP satisfies

Pr(S(�)
2,a → S(�)

2,b) ≤
(

PGc(S(�)
2,a, S(�)

2,b)
)−Gd

, (27)

where Gd , the diversity gain, and Gc, the coding gain, are
respectively given by

Gd = N, (28)

Gc(S(�)
2,a, S(�)

2,b)

= δ0

16
|(S(�)

2,a − S(�)
2,b)

†(S(�)
2,a − S(�)

2,b)|
1
N gc(Mn)−

1
N ,

gc(Mn) �
(
1 + δ0 + N

∑N
n=1 δn

)N

∏N
n=1 δn

Pr(‖ f n‖2 ≤ Mn)

+ (1 + δ0)
N + N N ∑N

n=1(
δn
Mn

)N (N+Mn−1)!
(Mn−1)!

∏N
n=1 δn

× Pr(‖ f n‖2 > Mn). (29)

Proof: See Appendix D.
First, this theorem shows that the diversity gain character-

izes the rate at which the PEP decays with P and that the
coding gain does not involve P . Hence, that slope of PEP, and
subsequently the union bound is determined by N , the number
of relays, and does not depend on the number of antennas at
the relays, {Mn}N

n=1. The reason for which the diversity gain
is independent of the number of antennas at the relays is due
to the fact that the diversity gain is determined by the number
of linear transformations of the transmitted signals received at
the destination. Using (11), it can be seen that, irrespective
of the number of antennas, each relay generates one linear
transformation of the transmitted signal at the destination node,
i.e, one column of the received matrix, leading to a diversity
gain equal to the number of relays. Second, the coding gain
increases with Mn and converges to a constant at Mn → ∞.
To elaborate, we show that gc(Mn + 2) − gc(Mn) is negative
and converges to 0 at Mn → ∞. For ease of exposition,
we assume that all relays and both nodes use the same power,
i.e., {δn}N

n=0 = 1, and that all relays have the same number
of antennas, i.e., Mn = M , ∀n. Using these assumptions
in (29) along with the fact that, for large M , N N+1 (N+M+1)!

(M+2)N (M+1)! ≈
N N+1 (N+M−1)!

M N (M−1)! ≈ N N+1, yields gc(M + 2) − gc(M) = (
(2 +

N2)N −2N − N N+1
)(

Pr(‖ f n‖2 ≤ M +2)−Pr(‖ f n‖2 ≤ M)
)
.

Using the cumulative probability function (CDF) of ‖ f n‖2

in (63) in Appendix D, it can be shown that, for large M ,
Pr(‖ f n‖2 ≤ M +2)−Pr(‖ f n‖2 ≤ M) ↗ 0, i.e., for any large
but finite M , Pr(‖ f n‖2 ≤ M + 2) − Pr(‖ f n‖2 ≤ M) < 0 and
approaches 0 as M → ∞. This confirms that Gc increases
with M and converges to a constant as M → ∞. Since high-
power performance is dominated by the diversity gain [2],
the aforementioned results yield that increasing the number
of relays is more beneficial than increasing the number of
antennas per relay.

Using (27), we obtain the union bound on the average block
error rate (BLER) at high powers. To do so, let Pe(S(�)

2,a) be the

probability that node 2 sends the message S(�)
2,a during the �-th

block and node 1 makes an error in detecting it. A standard
argument asserts that Pe(S(�)

2,a) ≤ ∑ϒ
b=1,b �=a Pr(S(�)

2,a → S(�)
2,b),

where ϒ denotes the cardinality of {S(�)
2 }. For equi-probable

messages, BLER = 1
ϒ

∑ϒ
a=1 Pe(S(�)

2,a) and the bound on
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Pe(S(�)
2,a) and (27) yield

BLER ≤ 1

ϒ
P−Gd

ϒ∑

a=1

ϒ∑

b=1,b �=a

Gc(S(�)
2,a, S(�)

2,b)
−Gd . (30)

Although the union bound is commonly used in the liter-
ature [16], [25], [26], it is generally loose because of the
Chernoff bound on the Q(·) function in the derivation of (27)
and the number of terms in the summation [27]. Finding
a tighter bound seems difficult, and even if such a bound
were to be found, it may not yield insight into the key
elements that govern performance. In contrast, examining the
bound in (30) reveals that the terms in the summation do
not depend on P , which implies that at high P , it will have
approximately the same slope as the actual BLER, but with a
gap that increases with ϒ . This observation will be confirmed
in Section VII.

C. Computational Complexity Analysis

Using (5), it can be seen that the complexity of the proposed
signalling scheme is dominated by the multiplication of Cn ,
R(�)

n and Xn . Hence the number of multiplications in this
scheme is O

(∑N
n=1(N2 Mn + N M2

n )
)
. However, Theorem 4

and the results in Section VII below suggest choosing Mn

to be even and relatively small, e.g., Mn = 4, ∀n. In this
case, the number of multiplications of our scheme is O(4N3 +
16N2). In contrast, the scheme in [16] relies on blind channel
estimation prior to interference cancellation. Hence in that
scheme, processing at the relays, channel estimation and
subsequent self-interference cancellation require O(N3+L N2)
multiplications, where L ≥ 2N . Hence, the asymptotic
computational complexity of both schemes grows cubically
with N , but our scheme is able to cancel self-interference
perfectly.

VII. SIMULATION

In this section, we compare the performance of the scheme
proposed herein with that of the one proposed in [16]
for various DDST codes, including the (linear) 2 × 2 and
4 × 4 real orthogonal codes [4], [7]4 and the (sesquilinear)
Alamouti [7], [28], and S P(2) [7], [29] codes. For all exam-
ples, the skew-symmetric unitary matrices are chosen to be
Xn = ⊕Mn/2

k=1 J (cf. (8)), the entries of { f n}, {gn}, {V (�)
n }

and {z(�)
i } are zero mean Gaussian with unit variance. For

ease of exposition, we will assume that both nodes and all
relays use equal transmit powers, i.e., δ0 = δn = 1, and
equal number of antennas, i.e., Mn = M , n = 1, . . . , N ,
where M is taken to be even, cf. Lemma 1. Without loss
of generality, we will set the initialization vector s(0)

i =
[1 . . . 1]T , i = 1, 2, and for the examples with block fading
channels, we will use the coherence time considered in [16],
i.e., T = 100.

4We were unable to simulate the case with 8 × 8 real orthogonal codes
because the relay matrices {An} and the corresponding unitary differential
coding matrices {U(�)

i } provided in [7] do not satisfy the commuting property
in (9).

Fig. 2. N = 2 relays and 2 × 2 real orthogonal code.

A. Block Error Rate Performance

In this section we compare the BLER performance of the
scheme proposed herein and the one proposed in [16] for
various DDST codes.

Example 1: In this example, we consider a TWRN with
N = 2 relays using the (linear) 2 × 2 real orthogonal code in
[4] and [7]. Using this code, the time domain relay matrices
{Cn} in (7) are C1 = I2 and C2 = J , and the unitary matrices

in (1) are U (�)
i =

[
u(�)

1 −u(�)
2

u(�)
2 u(�)

1

]

, where {u(�)
r } is selected from

the pulse amplitude modulation (PAM) constellation. Note that
these matrices and the corresponding ones in the forthcoming
examples satisfy the commuting property in (9). For this
example, we use the 2-PAM constellation which results in an
overall data rate of 1 bit per channel use (bpcu), i.e., 0.5 bpcu
from node i to node j , i �= j .

For comparison, the BLER performance and the union
bound (U. Bnd. in the figures) in (30) for the proposed DDST
code are depicted in Figure 2 for the cases of M = 2,
4 and 6 antennas per relay. The high-power diversity gain
of the proposed scheme can be deduced from Figure 2 by
numerical evaluation of the gradient of the BLER curves.
Taking the coordinates of two points in the high-power
region of the curve, e.g.,

(
Pa, B L E Ra

)
and

(
Pb, B L E Rb

)
,

the numerically evaluated diversity gain can be expressed as

G̃d = log(B L E Ra)−log(B L E Rb))
log(Pa)−log(Pb) . Performing this computation

for the scenario in Figure 2 yields G̃d = 1.95, which is close
to the diversity gain predicted by (28), namely, Gd = 2. Note,
that as predicted by (28), Gd is determined by the numbers
of relays, N , but not the number of antennas per relay, M ,
provided that M ≥ 2. This is in contrast with the scheme
in [16], whose performance is also depicted in Figure 2. In that
scheme, each relay has one antenna, i.e., M = 1, which
prevents the relays from spatial processing of their received
signals and results in imperfect self-interference cancellation
and zero high-power diversity order, cf. Theorem 1. Further-
more, Figure 2 confirms Theorem 4, which predicts that the
coding gain in (29) increases and converges to a constant as
M increases, cf. zoomed bounds. �

Example 2: The setup for this example resembles the one
for Example 1 except with N = 4 relays. The linearly-
structured DDST code herein is the 4×4 real orthogonal code
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Fig. 3. N = 4 relays and 4 × 4 real orthogonal code.

with the following time relay processing and constellation
matrices [4], [7]: A1 = I4, A2 = ⊕2

k=1 J ,

A3 =

⎡

⎢
⎢
⎣

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎦ , A4 =

⎡

⎢
⎢
⎣

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦,

and U (�)
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u(�)
1 −u(�)

2 −u(�)
3 −u(�)

4

u(�)
2 u(�)

1 u(�)
4 −u(�)

3

u(�)
3 −u(�)

4 u(�)
1 u(�)

2

u(�)
4 u(�)

3 −u(�)
2 u(�)

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

These matrices satisfy the commuting property in (9) and, in
this example, the entries of {U(�)

i }, {u(�)
r }, are chosen from the

2-PAM constellation, yielding an overall rate of 1 bpcu.
The performance of the proposed scheme and the one in [16]

are depicted in Figure 3. From this figure, the numerically
evaluated diversity gain at moderate powers, e.g., P = 25 dB,
is G̃d = 3.59 while the analytically predicted diversity
gain is Gd = 4. This discrepancy is because, in Figure 3,
P is not sufficiently high for the diversity gain to dominate
performance. Figure 3 also shows that the scheme in [16] does
not have a diversity gain and produces an error floor at powers
beyond 25 dB. This figure, also shows that, similar to the case
in Example 1, the coding gain converges to a constant, which
agrees with the analytical results in Section VI-B. �

Example 3: In this example, we consider a TWRN with
N = 2 relays using the (sesquilinear) DDST Alamouti
code [28], [7]. For this code the matrices, {Cn} in (7), are
constructed with A1 = I2, B1 = 0, A2 = 0, and B2 = J ,
and the unitary differential encoding matrices are given by

U (�)
i = 1√

|u(�)
1 |2+|u(�)

2 |2

[
u(�)

1 −u(�)
2

u(�)
2 u(�)

1

]

, where u(�)
1 and u(�)

2 , are

selected from any complex constellation, e.g., phase shift
keying (PSK) and quadrature amplitude modulation (QAM)
ones.

The signalling scheme proposed herein requires 3N time
slots, whereas, the scheme proposed in [16] requires 2N times
slots. Hence, for fair comparison, for the scheme proposed
herein we will choose u(�)

1 and u(�)
2 in U (�)

i from the 8-PSK
constellations and for the one proposed in [16], we will choose
u(�)

1 and u(�)
2 in U (�)

i from the the 4-PSK constellations. These

Fig. 4. N = 2 relays and 2 × 2 Alamouti code.

constellations ensure that both schemes operate at an overall
data rate of 2 bpcu.

The performance of the proposed scheme and the one in [16]
are shown in Figure 4. From this figure, it can be seen the
scheme proposed in [16] exhibits better performance at low
powers. For instance at a BLER of 10−1, the performance
advantage of the scheme in [16] is about 1 dB. However,
at higher powers, the scheme proposed herein significantly
outperforms the one in [16]. In particular, the BLER yielded by
the scheme in [16] flattens out at 6×10−3, whereas the BLER
of our scheme continues to decay with P with a diversity gain
approximately equal to the number of relays, i.e., 2. Similar to
the linear cases considered in Examples 1 and 2, increasing M
leads the coding gain to converge to a constant, as predicted
in Section IV-B. �

Example 4: The setup for this example resembles the one
for Example 3 except with N = 4 relays. In this case the
the sesquilinear code is 4 × 4 S P(2) with the following time
processing and constellation matrices [7], [29]: A1 = I4,
B1 = B4 = 0, A2 = A3 = 0, B2 = ⊕2

k=1 J ,

B3 =

⎡

⎢
⎢
⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ , A4 =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎤

⎥
⎥
⎦,

and U (�)
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u(�)
1 −u(�)

2 −u(�)
3 u(�)

4

u(�)
2 u(�)

1 −u(�)
4 −u(�)

3

u(�)
3 −u(�)

4 u(�)
1 −u(�)

2

u(�)
4 u(�)

3 u(�)
2 u(�)

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

These matrices satisfy the commuting property

in (9) and, u(�)
1 = a(�)

1 a(�)
2 −b(�)

1 b
(�)
2√

2
∏2

k=1

√

|a(�)
k |2+|b(�)

k |2
, u(�)

2 =

− a(�)
1 b

(�)
2 +b

(�)
1 a(�)

2√
2
∏2

k=1

√

|a(�)
k |2+|b(�)

k |2
, u(�)

3 = − a(�)
1 a(�)

2 −b
(�)
1 b

(�)
2√

2
∏2

k=1

√

|a(�)
k |2+|b(�)

k |2
, and

u(�)
4 = a(�)

1 b
(�)
2 +b(�)

1 a(�)
2√

2
∏2

k=1

√

|a(�)
k |2+|b(�)

k |2
, a(�)

k ∈ Fk, b(�)
k ∈ Gk, k = 1, 2,

and Fk and Gk are PSK sets.
To obtain a rate for our scheme that is close to a rate

supported by the scheme in [16], in our scheme, we choose

a(�)
1 and b(�)

1 from the 5-PSK constellation and a(�)
2 and b(�)

2
from the 3-PSK constellation, yielding an overall data rate
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Fig. 5. N = 4 relays and 4 × 4 S P(2) code.

of 1.2925 bpcu. For the scheme in [16], a(�)
1 and b(�)

1 are

chosen from the 2-PSK constellation and a(�)
2 and b(�)

2 are
chosen from the 3-PSK constellations, yielding an overall data
rate of 1.3023 bpcu.

In Figure 5, we depict the performance of the scheme
proposed herein with the one in [16] along with the union
bound in (30). As in the previous examples, Figure 5 confirms
that the high-power diversity gain of the proposed scheme is
N = 4 and the coding gain converges to a constant with the
increase of the number of relay antennas, M . �

In the previous examples, the performance of the proposed
scheme and the one in [16] were compared when both schemes
used the same DDST code, i.e, the same number of relays.
Since in the proposed scheme each relay uses an even number
of antennas, whereas in the scheme in [16] each relay uses
one antenna, the total number of antennas at the relays is not
equal for the two schemes. Comparing the performance of
these schemes when they use the same total number of relay
antennas can be insightful. Such a comparison is provided in
the next example.

Example 5: In this example, we compare the schemes pro-
posed herein and in [16] when each uses a total of 4 antennas
at the relays for both linear and sesquilinear codes. Since the
proposed scheme uses an even number of antennas and [16]
uses one antenna per relay, we consider two relays with two
antennas each in the proposed scheme and four single-antenna
relays in [16]. For N = 2 relays, the proposed scheme uses
the 2 × 2 real orthogonal and the Alamouti codes for the
linear and sesquilinear codes, respectively. The corresponding
codes for the scheme in [16] when N = 4 relays are the
4 × 4 real orthogonal and the S P(2) codes, respectively. For
fair comparison, in the case of linear codes, we use 2-PAM
constellation for both the 2×2 and 4×4 real orthogonal codes,
resulting in an overall data rate of 1 bpcu. For sesquilinear
codes, we use 4-PSK for the Alamouti code which results in
a data rate of 1.33 bpcu and we use 2-PSK for a(�)

1 and b(�)
1

and 3-PSK for a(�)
2 and b(�)

2 for the S P(2) code which results
in a data rate of 1.29 bpcu. Similar to the previous cases,
Figure 6 confirms that perfect self-interference cancellation
enables the proposed scheme to significantly outperform the
one in [16]. �

In the previous examples, the channels were assumed to be
block fading, whereby the fading coefficients remain constant
throughout the coherence time T . However, in many scenarios,

Fig. 6. Performance comparison when the total number of relay antennas is
equal to 4.

Fig. 7. Jakes’ fading channels with various fd .

the channels undergo continuous temporal variations, which
are usually captured by various statistical models including
the Jakes’ fading one [30]. In this model the correlation
parameters that characterize the channel variations depend on
the mobility of the nodes and/or the relays. To elaborate, let
f [k] be a fading coefficient at time k. Then, in Jakes’ model,
the autocorrelation of this coefficient is E{ f [k] f [k + k0]} =
J0(4πk0 fd ), where J0(·) is the zeroth-order Bessel function
of the first kind, and fd is the maximum normalized Doppler
frequency of the channel.

We now examine the scheme proposed herein and the one
in [16] in Jake’s fading channels.

Example 6: The set up in this example resembles the one
in Example 4 but with Jakes’ fading channels and M = 2
antennas for each of the 4 relays. For simplicity, all channel
coefficients are assumed to have the same fd . The BLER
performance comparison is provided in Figure 7 for fd =
10−5, 10−4 and 2×10−4. From this figure, it can be seen that
at fd = 10−5, the BLER corresponding to scheme proposed
herein continues to decay with P , whereas that corresponding
to the scheme in [16] exhibits an error floor at P = 20 dB. For
instance, at fd = 10−5 and P = 30 dB, the scheme in [16]
yields a BLER of 10−1, whereas our scheme yields a BLER
of 10−6. Increasing fd to 10−4, the scheme proposed herein
and the one in [16] begin to exhibit an error floor at about
P = 35 dB and P = 20 dB, respectively, but the scheme
proposed herein exhibits a significantly lower BLER; 10−4

for our scheme versus 10−1 for the one in [16]. �
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Fig. 8. Effect of distributing antennas over more relays.

B. Effect of Number of Relays and Number
of Antennas per Relay

In Section VI-B we showed that increasing the number of
relays is more beneficial than increasing the number of anten-
nas per relay. Herein, we further investigate this analytical
finding. We consider a total of 8 antennas at the relays and
two different cases. In the first case, we assume that there
are N = 2 relays, each with M = 4 antennas, whereas in
the second case we assume that there are N = 4 relays, each
with M = 2 antennas. The BLERs corresponding to both
cases for linear and sesquilinear codes are shown in Figure 8.
From this figure it can be seen that, for both classes of
codes, the setup with N = 4 relays yields significantly lower
BLERs. For instance, at a BLER of 10−4, the case with N = 4
and sesquilinear codes has an advantage of 7 dB over its
counterpart with N = 2. This figure also shows that the rate of
BLER decay is doubled when the number of relays is increased
from N = 2 to N = 4. This confirms that the diversity
gain depends only on the number of relays as predicted by
Theorem 4.

C. SINR Performance

In this section, we numerically evaluate the average SINR
corresponding to the scheme proposed herein and the one
proposed in [16] when both schemes use Alamouti code with
the setup in Example 3. The simulation results are depicted
in Figure 9. This figure shows that as P increases, the perfect
self-interference cancellation of the scheme proposed herein
causes the SINR to exhibit linear unbounded increase. In con-
trast, imperfect cancellation of self-interference in the scheme
in [16] causes the corresponding SINR to saturate. These
numerical results conform to the analytical SINR expression
in (22). Indeed, this expression predicts that perfect self-
interference cancellation will yield {αn}n=N

n=1 = 0, which
further implies that the number of antennas per relay does not
contribute to the SINR expression as confirmed in Figure 9.

D. Rate Performance

In Section II, we showed that, for sesquilinear codes,
the schemes proposed herein and in [16] consume 3N and 2N
symbol durations, respectively. This difference induces a trade-
off between the transmission rate per block and perfect

Fig. 9. SINR performance.

Fig. 10. Rate performance.

self-interference cancellation.5 Hence, to operate at the same
rate, if the cardinality of the constellation used in [16] is
�, that of the constellation used in the scheme proposed
herein must be �3/2. To explore the trade-off invoked by
this difference, we numerically evaluate the average BLER
versus the transmission rate per block when both schemes use
Alamouti code at P = 5 and P = 30 dB. This comparison
is depicted in Figure 10, which shows that, at P = 5 dB,
the scheme in [16] performs slightly better. This is because,
at low powers, the impact of self-interference is not large and
the BLER is dominated by the constellation size. In contrast,
at P = 30, our proposed scheme exhibits better performance.
This is because at high powers, if self-interference is not
cancelled, its impact dominates the BLER.

VIII. SUMMARY

The differences between the proposed scheme and the one
in [16] are summarized in Table I. The scheme proposed herein
cancels the self-interference perfectly without estimating the
channel whereas the scheme proposed in [16] uses blind
estimates of the channel to cancel self-interference. Under
the assumption that the channel can be perfectly estimated,
the analysis of the scheme in [16] shows that it achieves an
asymptotic diversity gain equal to the number of relays. How-
ever, this assumption is particularly critical because acquiring
accurate estimates require the channel to remain constant for
a long time, which may not be the case in many practical sce-
narios. Theorem 1 herein asserts that imperfect estimation of

5This trade-off does not exist in the case of linear codes, because in that
case both schemes consume 2N symbol durations.
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TABLE I

COMPARISON OF THE SCHEME PROPOSED HEREIN AND [16]

the channel will result in residual self-interference, which will
subsequently result in an error floor and a zero diversity.

IX. CONCLUSION

In this paper we proposed a novel signalling scheme
for TWRNs in which two single-antenna nodes exchange
information via multiple two-way relays, each with multiple
antennas. Neither the relays nor the nodes have access to
CSI. Unlike existing DDST methods, e.g., the scheme in [16],
the novel signalling scheme proposed herein uses joint space-
time processing of the relay received signals to eliminate
self-interference perfectly at both nodes. We showed that
perfect elimination of self-interference requires the space-
domain relay processing matrices to be skew-symmetric and
unitary, thereby implying that the number of active antennas
at each relay must be even. Analyzing the effect of self-
interference on the SINR and the PEP, we showed that, unless
perfectly cancelled, residual self-interference will result in a
zero diversity gain and an asymptotic error floor. Furthermore,
we showed that using the scheme proposed herein enables
a high-power diversity gain equal to the number of relays
to be achieved, irrespective of the number of antennas per
relay. Furthermore, we showed that the coding gain of the
system increases and converges to a constant as the number
of antennas per relay increases.

APPENDIX A
PROOF OF (15), (18) AND (19)

A. Proof of (15)

Using the statistical independence of { f n}N
n=1, {V (�)

n }N
n=1

and z(�)
1 in (14), we write

E{w(�)
1 w

(�)
1

†} = E
{ N∑

n=1

β2
n Cn V (�)

n Xn f n f †
n X†

n V (�)†

n C†
n

}

+ E{z(�)
1 z(�)†

1 }. (31)

Using (31) with the facts that Xn X†
n = I Mn , E{ f n f †

n} =
I Mn and E{V (�)

n V (�)†

n } = Mn I N for linear codes and

E{V (�)
n V (�)†

n } = Mn I2N , for sesquilinear codes, n = 1, . . . , N ,
yields (15).

B. Proof of (18)

To obtain the average received power of the desired signal,
we use (11)–(13) to write

E
{
(S(�)

2 h2)
†(S(�)

2 h2)
}

= E
{ N∑

n=1

N∑

q=1

βnβq f †
n X†

n gnθ
(�)†

2 C†
nCqθ

(�)
2 gT

q Xq f q

}

= E
{ N∑

n=1

β2
n Tr(X†

n gnθ
(�)†

2 C†
n Cnθ

(�)
2 gT

n Xn)
}

= E
{ N∑

n=1

β2
n Tr(θ (�)†

2 C†
nCnθ

(�)
2 ) Tr(X†

n gn gT
n Xn)

}
, (32)

where in (32) we used the fact that for n �= q , θ (�)
2 , f n , f q ,

gn and gq are identically and independently distributed (i.i.d.)

with zero mean, and we replaced the scalar θ (�)†

2 C†
nCnθ

(�)
2 by

its trace, computed expectation over θ (�)
2 and gn , and used (6)

to obtain (18).

C. Proof of (19)

To obtain the average received power of the self-interference
component in (10), we use an approach analogous to the one
used in deriving (18) to arrive at

E
{
(S(�)

1 h1)
†(S(�)

1 h1)
} = E

{ N∑

n=1

Nβ2
n f †

n X†
n f n f T

n Xn f n

}
.

(33)

To compute the RHS of (33), we denote the m-th entry
of f n by fnm , and the pq-th entry of Xn by x (n)

pq , m, p,
q = 1, . . . , Mn , n = 1, . . . , N . Using this notation, we write

E
{

f †
n X†

n f n f T
n Xn f n

}

= E
{ Mn∑

m=1

Mn∑

q=1

Mn∑

m0=1

Mn∑

q0=1

fnm fnq f nm0
f nq0

x (n)
mq x (n)

m0q0

}
(34)

= E
{ Mn∑

m=1

| fnm |4|x (n)
mm |2

}
+ E

{ Mn∑

m=1

Mn∑

q=1

| fnm |2| fnq |2|x (n)
mq |2

}
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+ E
{ Mn∑

m=1

Mn∑

q=1

| fnm |2| fnq |2x (n)
mq x (n)

qm

}

+ E
{ Mn∑

m=1

Mn∑

m0=1

f 2
nm f

2
nm0

x (n)
mm x (n)

m0m0

}
(35)

= 2
Mn∑

m=1

|x (n)
mm |2 +

Mn∑

m=1

Mn∑

q=m+1

|x (n)
mq + x (n)

qm |2, (36)

where, to obtain (35), we used that for distinct m, q , m0, q0,
the fading coefficients fnm , fnq , fnm0 , and fnq0 , are i.i.d. zero
mean unit variance complex Gaussian random variables. This
implies that the only terms that are not immediately trivial in
the summations in (34) are: 1) m = q = m0 = q0; 2) m = m0
and q = q0; 3) m = q0 and q = m0; and 4) m = q
and m0 = q0, yielding the four terms of (35), respectively.
To compute the first term of (35), we use

E
{| fnm |4} = E

{�( fnm)4}+ E
{�( fnm)4}

+2 E
{�( fnm)2}E

{�( fnm)2} = 2. (37)

The computation of the second and third terms is immediate.
For the last term we note that

E
{

f 2
nm

} = E
{�( fnm)2}− E

{�( fnm)2}

+2 E
{�( fnm)�( fnk)

} = 0. (38)

Combining (37) and (38) with the fact that E
{| fnm |2} = 1

yields (19).

APPENDIX B
PROOF OF THEOREM 1

To obtain a lower bound on the PEP of mistaking S(�)
2,a for

S(�)
2,b, we write

Pr(S(�)
2,a → S(�)

2,b) = E
θ

(�)
1 ,h2

{
Pr
(
S(�)

2,a → S(�)
2,b|h2, θ

(�)
1

)}
. (39)

Using (16), conditioned on h2 and θ
(�)
1 and the zero mean

Gaussian assumption on h1 and w
(�)
1 , the vector y(�)

1 is
Gaussian distributed with mean

√
P2 S(�)

2 h2 and conditional
covariance matrix

�
y1|h2,θ

(�)
1

= E
{

y(�)
1 y(�)†

1 |h2, θ
(�)
1

}

= ζ 2 P1

N∑

n=1

β2
nαn Cnθ

(�)
1 θ

(�)†

1 C†
n +�w1, (40)

where �w1 is given by (15). Using this covariance and
assuming ML detection, we have

E
θ

(�)
1 ,h2

{
Pr
(
S(�)

2,a → S(�)
2,b|h2, θ

(�)
1

)}

= E
θ

(�)
1 ,h2

{
Q
(√


2

)}

≥ E
θ

(�)
1

{

Q

(√

Eh2

{

2

})}

,


2 � P2

2
h†

2(S(�)
2,a − S(�)

2,b)
†�−1

y1|h2,θ
(�)
1

(S(�)
2,a − S(�)

2,b)h2, (41)

where, in (41), we used that, for x ≥ 0, Q(
√

x) is convex,
whence E

{
Q(

√
x)
} ≥ Q

(√
E{x}) [31]. To obtain a convenient

lower bound that exposes the role of P , we will obtain a bound
on �−1

y1|h2,θ
(�)
1

. Towards that end, we use (17) and (15) in (40)

to write

�
y1|h2,θ

(�)
1

= P2

(1 + δ0)P + 1

(

ζ 2
N∑

n=1

αnδn

Mn
Cnθ

(�)
1 θ

(�)†

1 C†
n

+ 1

P

N∑

n=1

δn CnC†
n + (1 + δ0)P + 1

P2 I N

)

� P2

(1 + δ0)P + 1

(
ζ 2λmin(θ

(�)
1 )

+(1 + δ0 +
N∑

n=1

δnμ
(n)
min

)
P−1 + P−2

)
I N , (42)

where λmin(θ
(�)
1 ) and μ

(n)
min are the smallest eigenvalues of

∑N
n=1

αnδn
Mn

Cnθ
(�)
1 θ

(�)†

1 C†
n and CnC†

n , respectively. Now, let

σ
(a,b)
max be the largest eigenvalue of �(S(�)

2,a, S(�)
2,b) = (S(�)

2,a −
S(�)

2,b)
† (S(�)

2,a − S(�)
2,b) and let σ̂max = maxa,b σ

(a,b)
max . Hence,

we can write �(S(�)
2,a, S(�)

2,b) � σ̂max I N . Substituting from this
bound and (42) into (41) yields

E
θ

(�)
1 ,h2

{
Pr
(
S(�)

2,a → S(�)
2,b|h2, θ

(�)
1

)}

≥ E
θ

(�)
1

{

Q

(√

Eh2

{

3

})}

,


3 �
2−1δ0 P

(
(1 + δ0)P + 1

)
σ̂maxh†

2h2

P2ζ 2λmin(θ
(�)
1 )+ P(1+δ0+∑N

n=1 δnμ
(n)
min)+1

. (43)

Finally, using (43) and computing the expectation over h2,
yields (23).

APPENDIX C
PROOF OF THEOREM 3

In Lemma 1, we showed that, for the matrix Xn to be
simultaneously unitary and skew-symmetric, its dimension
must be even. Hence, in the forthcoming proof we will assume
that Mn = 2K , for some integer K . For such an Xn , we will
denote the eigendecomposition by

Xn = �n�n�
†
n . (44)

In this decomposition, the diagonal matrix �n ∈ C2K×2K

contains the eigenvalues of Xn and the columns of the unitary
matrix �n ∈ C

2K×2K contain the corresponding eigenvectors.
Using (44) we will derive the structure of �n and �n in order
for Xn to be unitary and skew-symmetric.

We will begin by considering �n . We record our results in
the following lemma.

Lemma 2: For the unitary matrix Xn to be skew-symmetric,

its eigenvalues must be in the form ±ejθ
(n)
k , where θ

(n)
k ∈

[0, 2π), k = 1, . . . , K , n = 1, . . . , N .
Proof: To prove this lemma, we note that the k-th

eigenvalue of any unitary matrix, Xn , must be in the form

of ejθ
(n)
k , where θ

(n)
k ∈ [0, 2π). Suppose that (ejθ

(n)
k ,φ

(n)
k ) is
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an eigen pair of Xn , i.e., Xnφ
(n)
k = ejθ

(n)
k φ

(n)
k . Now, we assert

that (e jθ(n)
k ,ψ

(n)
k ) is an eigen pair of XT

n , i.e.,

XT
n ψ

(n)
k = ejθ

(n)
k ψ

(n)
k , (45)

since the transpose operation does not affect the eigenvalues.
Using the fact that Xn is skew-symmetric, i.e., XT

n = −Xn ,

we can rewrite (45) as Xnψ
(n)
k = −ejθ

(n)
k ψ

(n)
k , implying that

(−ejθ
(n)
k ,ψ

(n)
k ) is also the eigen pair of Xn . Hence, the eigen-

values of any unitary skew-symmetric matrix Xn appear in the

form of unit modulus antipodal pairs,
{±ejθ

(n)
k
}K

k=1.
Now we derive the properties of the unitary matrix �n in

order for Xn be unitary and skew-symmetric. We record our
results in the following lemma.

Lemma 3: Let �n = [φ(n)
1 , . . . , φ

(n)
2K ], �n ∈ C2K×2K , be

the unitary matrix containing the eigenvectors of the skew-
symmetric unitary matrix Xn . Then, �n has the following
structure:

�n =
[
φ

(n)
1 , φ

(n)
1 , . . . , φ

(n)
K , φ

(n)
K

]
. (46)

Proof: Let (ejθ
(n)
k ,φ

(n)
k ) and (−ejθ

(n)
k ,φ

(n)
k+1) be eigen pairs

of Xn . Hence, we have

Xnφ
(n)
k = ejθ

(n)
k φ

(n)
k , Xnφ

(n)
k+1 = −ejθ

(n)
k φ

(n)
k+1, ∀k. (47)

Using X†
n = −Xn in the first equality in (47) yields

X†
nφ

(n)
k = −e−jθ

(n)
k φ

(n)
k . That is, (−e−jθ

(n)
k ,φ

(n)
k ) is an eigen

pair of X†
n . On the other hand, taking the Hermitian transpose

of both sides of (44) yields X†
n = �n�

†
n�

†
n , which implies

that (e−jθ
(n)
k ,φ

(n)
k ) is another eigen pair of X†

n , k = 1, . . . , K .

Hence, we have shown that (e−jθ
(n)
k ,φ

(n)
k ) and (−e−jθ

(n)
k ,φ

(n)
k )

are eigen pairs of X†
n , k = 1, . . . , K , which subsequently

implies that (ejθ
(n)
k ,φ

(n)
k ) and (−ejθ

(n)
k ,φ

(n)
k ) are eigen pairs

of Xn , k = 1, . . . , K . Using (47), it can be readily seen that
φ

(n)
k+1 = φ

(n)
k .

Using the result of Lemma 3, we will obtain an explicit
construction for the eigenvectors matrix �n . In particular,
to ensure that �n is unitary, we must have for any k �= k ′,
k, k ′ = 1, . . . , K ,

‖φ(n)
k ‖2 = 1, φ

(n)†

k φ
(n)
k = 0,

φ
(n)†

k φ
(n)
k′ = 0, φ

(n)†

k φ
(n)
k′ = 0. (48)

To construct �n , we will express φ(n)
k in terms of its real and

imaginary parts, i.e., φ(n)
k = �(φ

(n)
k ) + j�(φ

(n)
k ). Substituting

for φ(n)
k in the the first equality in (48) yields

‖�(φ
(n)
k )‖2 + ‖�(φ

(n)
k )‖2 = 1, k = 1, . . . , K , (49)

and substituting in the second equality in (48) yields

‖�(φ
(n)
k )‖2 = ‖�(φ

(n)
k )‖2, �(φ

(n)
k )T �(φ

(n)
k ) = 0, ∀k. (50)

Combining (49) with the first equality in (50) yields
‖�(φ

(n)
k )‖2 = ‖�(φ

(n)
k )‖2 = 1

2 , k = 1, . . . , K . The second
equality in (50), says that the two vectors �(φ

(n)
k ) and �(φ

(n)
k )

are orthogonal. The third and fourth equalities in (48) yield
that, for every k �= k ′, k, k ′ = 1, . . . , K ,

�(φ
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(n)
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k′ ), (51)

�(φ
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k′ ) = �(φ

(n)
k )T �(φ

(n)
k′ ),

�(φ
(n)
k )T �(φ

(n)
k′ )+�(φ

(n)
k )T �(φ

(n)
k′ ) = 0. (52)

Combining the first equality in (51) with the first equality
in (52) yields that �(φ

(n)
k ) and �(φ

(n)
k′ ) are orthogonal and that

�(φ
(n)
k ) and �(φ

(n)
k′ ) are orthogonal. Furthermore, combining

the second equality in (51) with the second equality in (52)
yields that �(φ

(n)
k ) and �(φ

(n)
k′ ) are orthogonal and that �(φ

(n)
k )

and �(φ
(n)
k′ ) are orthogonal. Hence, the vectors in the set{

�(φ
(n)
k ),�(φ

(n)
k ),�(φ

(n)
k′ ),�(φ

(n)
k′ )
}

are mutually orthogonal

for every k �= k ′, k, k ′ = 1, . . . , K . This implies that to
construct the 2K ×2K complex matrix �n we need a 2K ×2K
real orthogonal matrix Qn =

[
q(n)

1 , q(n)
2 , . . . , q(n)

2K

]
, i.e., a

real matrix with orthonormal columns. Using Qn , the k-th
column of the desired unitary matrix �n in (46) can be
constructed as φ(n)

k = 1√
2

(
q(n)

2k−1 + j q(n)
2k

)
, k = 1, . . . , K ,

which completes the proof of Theorem 3.

APPENDIX D
PROOF OF THEOREM 4

To obtain an upper bound on the PEP of mistaking U (�)
2,a

for U(�)
2,b, we write

Pr(U (�)
2,a → U (�)

2,b) = E f n,gn

{
Pr
(
U (�)

2,a → U (�)
2,b| f n, gn

)}
.

(53)

Using (14), it can be seen that, conditioned on f n
and gn , the noise vector w(�)

1 is zero mean Gaussian dis-
tributed with conditional covariance matrix �w1| f n ,gn

=
∑N

n=1 β2
n‖ f n‖2CnC†

n + I N . Now, using (25), conditioned
on f n and gn and the fact that y(�−1)

1 was received in the
� − 1-th block, the received vector in the �-th block, y(�)

1 ,
is Gaussian distributed with mean U (�)

2 y(�−1)
1 and covariance

matrix � y1| f n,gn
= 2�w1| f n,gn

. Hence, the probability that
the ML detector in (26) mistakes U (�)

2,a for U (�)
2,b is

Pr
(
U (�)

2,a → U (�)
2,b| f n, gn

)

= Q
( 1√

2

∥
∥
∥�

− 1
2

y1| f n ,gn
(U (�)

2,a − U (�)
2,b)y(�−1)

1

∥
∥
∥
)
. (54)

At high P , the noise components in (24) and (25) can
be ignored and we can closely approximate U(�)

2 y(�−1)
1 by√

P2 S(�)
2 h2. Using this in (54) yields

Pr(S(�)
2,a → S(�)

2,b)

= E f n,gn

{

Q
( 1√

2

∥
∥
∥
√

δ0 P�
− 1

2
y1| f n ,gn

(S(�)
2,a − S(�)

2,b)h2

∥
∥
∥
)}

≤ E f n,gn
e
− δ0 P

8 h†
2(S(�)

2,a−S(�)
2,b)†�−1

y1| f n ,gn
(S(�)

2,a−S(�)
2,b)h2, (55)
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where in writing (55), we used the Chernoff bound for the
Q(·) function [2]. To obtain a more convenient upper bound
that reveals the role of P , Mn , and N , we will obtain a bound
on �−1

y1| f n ,gn
. Using the fact that Cn C†

n � Tr(Cn C†
n)I N and

Tr(Cn C†
n) = N , we can write

� y1| f n ,gn
� σy1

I N , (56)

where σy1
= 2

(
P N

(1+δ0)P+1

∑N
n=1

δn
Mn

‖ f n‖2 + 1
)

. Now, we
write h2 = F g in (13), where

F = diag(β1 f T
1 XT

1 , . . . , βN f T
N XT

N ), g = [gT
1 , . . . , gT

N ]T .

(57)

Substituting from (56) and (57) in (55) yields the following
upper bound on the PEP:

Pr(S(�)
2,a → S(�)

2,b) ≤ E f n,gn
e
− δ0 P

8σ y1
g† F†�(S(�)

2,a ,S(�)
2,b)F g

, (58)

where �(S(�)
2,a, S(�)

2,b) is defined in Appendix B. Computing the
expectation over the entries of gn , which are i.i.d. zero-mean
unit-variance complex Gaussian random variables yields [32]

Pr(S(�)
2,a → S(�)

2,b) ≤ E f n

∣
∣
∣I N + δ0 P

8σy1

�(S(�)
2,a, S(�)

2,b)F F†
∣
∣
∣
−1

.

(59)

At high values of P , the unity in the denominator of σy1 can

be ignored, yielding σy1
≈ 2

(
N

(1+δ0)

∑N
n=1

δn
Mn

‖ f n‖2 + 1
)

,

and noting that �(S(�)
2,a, S(�)

2,b) is strictly positive definite,
the identity matrix, I N , can be ignored in (59). Combining
this with the σy1

yields

Pr(S(�)
2,a → S(�)

2,b) ≤
(δ0 P

16

)−N |�(S(�)
2,a, S(�)

2,b)|−1

× E f n
{χ(‖ f n‖2)}, (60)

where χ(‖ f n‖2) = (1+δ0+N
∑N

n=1
δn
Mn

‖ f n‖2)N

∏N
n=1

δn
Mn

‖ f n‖2
. To compute the

expectation, we consider two disjoint intervals: ‖ f n‖2 > Mn

and ‖ f n‖2 ≤ Mn . Using these intervals, the expectation
in (60) is

E f n
{χ(‖ f n‖2)}

= �1 Pr(‖ f n‖2 ≤ Mn) + �2 Pr(‖ f n‖2 > Mn), (61)

�1 = E f n

{
χ(‖ f n‖2)

∣
∣
∣‖ f n‖2 ≤ Mn

}
,

�2 = E f n

{
χ(‖ f n‖2)

∣
∣
∣‖ f n‖2 > Mn

}
. (62)

This choice of intervals simplifies analysis, but does not
necessarily yield the tightest bound. Now, ‖ f n‖2 is a
Chi-square random variable with 2Mn degree of freedom and
its CDF is

Pr(‖ f n‖2 ≤ Mn) = 1 − e−Mn

Mn−1∑

m=0

1

m! Mm
n . (63)

To proceed, we have the following bounds on �1 and �2.
Lemma 4: When ‖ f n‖2 ≤ Mn we have the following upper

bound

�1 ≤
(
1 + δ0 + N

∑N
n=1 δn

)N

∏N
n=1 δn

. (64)

Proof: Since ‖ f n‖2 ≤ Mn , we have

�1 ≤ E f n

{(
1 + δ0 + N

∑N
n=1 δn

)N

∏N
n=1

δn
Mn

‖ f n‖2

}

. (65)

Since Mn is even (cf. Lemma 1), we have Mn ≥ 2. Hence,
the expectation on the RHS of (65) can be readily computed,
thereby yielding the bound in the lemma.

Lemma 5: When ‖ f n‖2 > Mn we have the following upper
bound

�2 ≤ (1 + δ0)
N + N N ∑N

n=1(
δn
Mn

)N (N+Mn−1)!
(Mn−1)!

∏N
n=1 δn

. (66)

Proof: Since ‖ f n‖2 > Mn we have

�2 ≤ E f n

{(1 + δ0 + N
∑N

n=1
δn
Mn

‖ f n‖2
)N

∏N
n=1 δn

}

≤ E f n

{
(1 + δ0)

N + N N ∑N
n=1(

δn
Mn

‖ f n‖2)N

∏N
n=1 δn

}

, (67)

where the first inequality is obtained by using ‖ f n‖2 > Mn in
the denominator of �2 and the second inequality is obtained
by using the Jensen’s inequality. Finally, the expectation on
the RHS of (67) can be readily computed, thereby yielding
the bound in the lemma.

Substituting from (64) and (66) in (60) results in the PEP
upper bound given in (27).
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