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On the Approximation of the Generalized-K
Distribution by a Gamma Distribution for
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Abstract—In wireless channels, multipath fading and shadow-
ing occur simultaneously leading to the phenomenon referred to
as composite fading. The use of the Nakagami probability density
function (PDF) to model multipath fading and the Gamma
PDF to model shadowing has led to the generalized-𝐾 model
for composite fading. However, further derivations using the
generalized-𝐾 PDF are quite involved due to the computational
and analytical difficulties associated with the arising special
functions. In this paper, the approximation of the generalized-
𝐾 PDF by a Gamma PDF using the moment matching method
is explored. Subsequently, an adjustable form of the expressions
obtained by matching the first two positive moments, to overcome
the arising numerical and/or analytical limitations of higher
order moment matching, is proposed. The optimal values of the
adjustment factor for different integer and non-integer values
of the multipath fading and shadowing parameters are given.
Moreover, the approach introduced in this paper can be used
to well-approximate the distribution of the sum of independent
generalized-𝐾 random variables by a Gamma distribution; the
need for such results arises in various emerging distributed
communication technologies and systems such as coordinated
multipoint transmission and reception schemes including dis-
tributed antenna systems and cooperative relay networks.

Index Terms—Composite fading, Gamma distribution,
generalized-𝐾 distribution, moment matching, positive and
negative moments, lower and upper tails, network MIMO,
distributed antenna systems, radar and sonar.

I. INTRODUCTION

MODELING composite fading channels is essential for
the analysis of several wireless communication prob-

lems including interference analysis in cellular systems and
performance analysis of network MIMO, distributed antenna
systems, and cooperative relay networks. The small-scale
multipath fading is often modeled using Rayleigh, Rician, or
Nakagami distribution. The latter one is versatile enough to
encompass the Rayleigh distribution as a special case and to
approximate the Rician distribution. The large-scale fading
(shadowing) is often modeled using a lognormal distribu-
tion (refer to [1] and the references therein). However, the
lognormal-based composite fading models [2, 3] do not lead
to closed-form expressions for the received signal power dis-
tribution which hampers further analytical derivations. As an
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alternative, it has been proposed to use the Gamma distribution
to model large-scale fading where it has been observed that the
Gamma distribution fits the experimental data, and it closely
approximates the lognormal distribution [4-7].

The use of the Gamma distribution to model shadowing and
the Nakagami distribution to model the small-scale random
variations of the received signal envelope, has led to a closed-
form expression of the composite fading probability density
function (PDF) known as the Gamma-Gamma (generalized-
𝐾) PDF. The Gamma-Gamma model was introduced to model
scattering in radar [8] and reverberation in sonar [9] and has
recently generated interest in wireless communications as well
[10-13]. However, further derivations using that model have
shown to be analytically difficult or computationally involved
due to the arising special functions.

In this paper, the approximation of the generalized-𝐾
distribution by a Gamma distribution through matching both
positive and negative moments is explored. The obtained
results have shown that matching the higher order moments
leads to a good approximation, up to a certain level of accu-
racy, in both the upper and lower tail regions, and may lead
to lower and upper bounds on the approximated cumulative
distribution function (CDF). However, such a matching has
two main limitations: (i) it results in involved expressions that
are difficult to handle and complicated to draw insights from;
(ii) negative moments may not exist for small values of the
multipath fading and shadowing parameters. Subsequently, an
adjusted form of the expressions obtained by matching the first
two positive moments is introduced to closely approximate
the generalized-𝐾 composite fading PDF by the simple and
tractable Gamma PDF. This region-wise approximation yields
sufficient accuracy for a broad range of integer and non-integer
values of the multipath fading and shadowing parameters.
Moreover, the introduced method can be used to approximate
the PDF of the sum of independent generalized-𝐾 random
variables (RVs) in the lower and upper tail regions. Finally,
since the approximating Gamma model allows the use of the
closed-form expressions developed in literature for Nakagami
fading channels [14-15], some performance analysis applica-
tions, out of many, are stated.

II. THE COMPOSITE FADING MODEL AND RELATED

WORK

When the random variation of the envelope of the received
signal, due to small-scale multipath fading, is modeled by the
Nakagami distribution [16], the PDF of the received power 𝛾,
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conditioned on the average local power Ω, takes the form of
a Gamma distribution:
𝑝𝛾/Ω(𝑥) =

1

Γ(𝑚𝑚)

(𝑚𝑚

Ω

)𝑚𝑚

𝑥𝑚𝑚−1 exp
(
−𝑚𝑚𝑥

Ω

)
, 𝑥 > 0,𝑚𝑚 ≥ 0.5,

(1)

where Γ(⋅) is the Gamma function and 𝑚𝑚 is the Nakagami
multipath fading parameter.

The variation of the average local power, due to shadowing,
is usually modeled by the lognormal distribution [3]. However,
the analytically better tractable Gamma distribution has also
shown a good fit to data obtained through propagation mea-
surements [5, 6], besides it can approximate the lognormal
distribution for the relevant range of shadowing severity in
wireless channels [5, 7]:

𝑝Ω(𝑦) =

1

Γ(𝑚𝑠)

(
𝑚𝑠

Ω0

)𝑚𝑠

𝑦𝑚𝑠−1 exp

(
−𝑚𝑠

Ω0
𝑦

)
, 𝑦 > 0,𝑚𝑠 > 0.

(2)

In (2), 𝑚𝑠 is the shadowing parameter and Ω0 is the mean of
the received local power. Similar to the multipath parameter
𝑚𝑚, the severity of shadowing is inversely proportional to
𝑚𝑠 so that small values of 𝑚𝑠 indicate severe shadowing
conditions. In [5, 7], using the moment matching method
between the Gamma PDF in (2) and the lognormal PDF, it
was shown that 𝑚𝑠 = 1

𝑒(𝜎𝑠/8.686)2−1
where 𝜎𝑠 denotes the

standard deviation in the lognormal shadowing model.
Using (1) and (2), the PDF of 𝛾 can be derived as [8-10]1

𝑝𝛾(𝑥) =
2

Γ(𝑚𝑠)Γ(𝑚𝑚)
𝑏𝑚𝑠+𝑚𝑚𝑥(

𝑚𝑠+𝑚𝑚
2 )−1

×𝐾𝑚𝑠−𝑚𝑚(2𝑏
√
𝑥), 𝑥 > 0,𝑚𝑚 ≥ 0.5,𝑚𝑠 > 0,

(3)

where 𝐾𝑚𝑠−𝑚𝑚(⋅) is the modified Bessel function of the
second kind and order (𝑚𝑠 − 𝑚𝑚) and 𝑏 =

√
𝑚𝑚𝑚𝑠

Ω0
. The

PDF in (3) appeared first in [8] where the instantaneous power
is assumed to follow a Gamma distribution whose mean is
also assumed to have a Gamma distribution. The PDF in
(3) is known as the generalized-𝐾 model2 and the McDaniel
model in wireless and sonar literature, respectively ([10] and
references therein).

The CDF of 𝛾, was derived in [13] as

𝑃 (𝛾) = 𝜋csc(𝜋𝛼)

[
(𝑏2𝛾)𝑚𝑚

1𝐹2(𝑚𝑚; 1− 𝛼, 1 +𝑚𝑚; 𝑏2𝛾)

Γ(𝑚𝑠)Γ(1− 𝛼)Γ(𝑚𝑚 + 1)

− (𝑏2𝛾)𝑚𝑠
1𝐹2(𝑚𝑠; 1 + 𝛼, 1 +𝑚𝑠; 𝑏

2𝛾)

Γ(𝑚𝑚)Γ(1 + 𝛼)Γ(𝑚𝑠 + 1)

]
,

(4)

where 𝛼 = 𝑚𝑠 − 𝑚𝑚 and 𝑝𝐹𝑞 is the generalized hypergeo-
metric function for integer 𝑝 and 𝑞 [20].

However, as pointed out in [9], the computation of such a
CDF expression which contains the hyper-geometric function

1In fact, the distribution of the product of M independent Gamma RVs,
where the generalized-𝐾 PDF corresponds to the case where M=2, was
derived in [17]. Moreover, the generalized-𝐾 distribution belongs to the (Fox)
𝐻-function distributions family [18].

2It should be highlighted here that in literature, the notion “generalized-𝐾"
was used to denote another similar distribution [19].

term is not straightforward due to the associated numerical
instabilities that will require the use of approximations and
asymptotic expansions or the numerical inversion of the char-
acteristic function. Moreover, further derivations using the
characteristic function approach, such as the PDF of the sum
of 𝑁 generalized-𝐾 RVs, are quite involved even for the
independent and identically distributed (i.i.d.) case due to the
difficulties associated with the Whittaker function [21].

III. APPROXIMATION USING THE MOMENT MATCHING

METHOD

An alternative approach, to avoid the analytical difficulties,
is to consider approximating the PDF in (3) by a more tractable
PDF using the moment matching method. We propose using
the Gamma distribution due to the following reasons: (i)
Gamma distribution is a Type-III Pearson distribution which
is widely used in fitting distributions for positive RVs by
matching the first and second moments [18], and (ii) since
the PDF in (3) corresponds to the product of two Gamma
RVs, one of the corresponding Gamma PDFs will dominate
for large values of 𝑚𝑚 or 𝑚𝑠 [7].

The 𝑛𝑡ℎ moment of the generalized-K distribution can be
derived as [13]

𝐸[𝛾𝑛] = 𝜇𝑛 =
Γ(𝑚𝑚 + 𝑛)Γ(𝑚𝑠 + 𝑛)

Γ(𝑚𝑚)Γ(𝑚𝑠)

(
Ω0

𝑚𝑚𝑚𝑠

)𝑛

, (5)

where 𝐸[⋅] denotes the statistical expectation.
Denoting 𝑍 ∼ 𝒢(𝑘, 𝜃) as a Gamma distributed RV with a

shape parameter 𝑘 and a scale parameter 𝜃, the PDF of 𝑍 is
given as [22]

𝑝𝑍(𝑥) =
𝜃−𝑘

Γ(𝑘)
𝑥𝑘−1 exp(−𝑥/𝜃), 𝑥 > 0. (6)

Furthermore, the 𝑛𝑡ℎ moment of the Gamma distribution
can be expressed as [22]

𝐸[𝑧𝑛] = 𝜇(𝒢)
𝑛 =

Γ(𝑘 + 𝑛)𝜃𝑛

Γ(𝑘)
. (7)

Now, using the expressions in (5) and (7), the first, second,
and third moments of the generalized-𝐾 distribution and the
approximating Gamma distribution can be matched as

𝑘𝜃 = Ω0, (8)

𝜃2𝑘(𝑘 + 1) = 𝐾1Ω
2
0, (9)

𝜃3𝑘(𝑘 + 1)(𝑘 + 2) = 𝐾2𝐾1Ω
3
0. (10)

On the other hand, the negative moments, as defined in
[23], of the generalized-𝐾 PDF and the Gamma PDF can be
expressed using the expressions in (5) and (7) as

𝜃(𝑘 − 1) = 𝐾−1Ω0, 𝑘 > 1,𝑚𝑚 > 1,𝑚𝑠 > 1, (11)

𝜃2(𝑘 − 2)(𝑘 − 1) = 𝐾−1𝐾−2Ω
2
0, 𝑘 > 2,𝑚𝑚 > 2,𝑚𝑠 > 2,

(12)
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where

𝐾1 = (𝑚𝑚+1)(𝑚𝑠+1)
𝑚𝑚𝑚𝑠

= 1 + 1
𝑚𝑚

+ 1
𝑚𝑠

+ 1
𝑚𝑚𝑚𝑠

, (13a)

𝐾2 = (𝑚𝑚+2)(𝑚𝑠+2)
𝑚𝑚𝑚𝑠

= 1 + 2
𝑚𝑚

+ 2
𝑚𝑠

+ 4
𝑚𝑚𝑚𝑠

, (13b)

𝐾−1 = (𝑚𝑚−1)(𝑚𝑠−1)
𝑚𝑚𝑚𝑠

= 1− 1
𝑚𝑚

− 1
𝑚𝑠

+ 1
𝑚𝑚𝑚𝑠

, (13c)

𝐾−2 = (𝑚𝑚−2)(𝑚𝑠−2)
𝑚𝑚𝑚𝑠

= 1− 2
𝑚𝑚

− 2
𝑚𝑠

+ 4
𝑚𝑚𝑚𝑠

. (13d)

Matching different pairs of moments will result in the scale
and shape parameters for the approximating Gamma PDF as
shown in Table I. In Table I, 𝜃𝑖,𝑗 and 𝑘𝑖,𝑗 denote the scale and
shape parameters of the approximating Gamma PDF obtained
by matching the 𝑖𝑡ℎ and the 𝑗𝑡ℎ moments, respectively.

Now, examining the expressions of the approximating
Gamma PDF parameters given in Table I, the following may
be stated:

∙ The scale parameter of the approximating Gamma PDF
obtained by matching the positive moments is larger than
the one obtained by matching the negative moments.
For example, it can be easily seen that 𝜃1,2 = 𝜃1,−1 +

2
𝑚𝑚𝑚𝑠

Ω0. Since the negative moments characterize a
distribution at the origin [23] (the lower tail for a positive
RV) and the positive moments characterize a distribution
at the upper tail, we may conclude that the generalized-
K PDF (CDF) can be approximated by a Gamma dis-
tribution whose scale and shape parameters depend on
the region of the PDF (CDF) of interest. Such a region-
wise (piece-wise) approximation was used in [24] to
well-approximate the sum of lognormal RVs by a single
lognormal RV.

∙ Matching moments for 𝑛≥2 will lead to involved expres-
sions as seen in Table I. Moreover, not including the first
positive moment in the moments matched results in an
approximating Gamma PDF that does not have the same
mean as the approximated generalized-𝐾 PDF (i.e., the
generalized-𝐾 PDF and the approximating Gamma PDF
have different average power values).

∙ Matching negative moments may not be possible for
small values of 𝑚𝑚 and/or 𝑚𝑠 as indicated in (11), (12)
and subsequent expressions in Table I.

∙ The scale and shape parameters of the approximating
Gamma distribution are dependent on the fading pa-
rameters in the sense that as 𝑚𝑚 and/or 𝑚𝑠 increase,
the difference between the predicted scale parameters
decreases and hence the difference between the approxi-
mating PDFs (CDFs) becomes small. So, for small values
of 𝑚𝑚 and/or 𝑚𝑠 (while 𝑚𝑚,𝑚𝑠 > 2), the difference
between the two approximating Gamma CDFs might be
large enough to bound the approximated CDF in the
lower tail region as seen in Fig. 1. On the other hand,
matching the lower order moments for large values of
𝑚𝑚 and/or 𝑚𝑠 does not result in a good approximation
as seen in Figs. 2 and 3 since the approximating CDFs
are too close to each other.

Note: In Figs. 1-3, the complementary cumulative distribution
function (CCDF), and particularly the region corresponding to
𝑃 (𝑋 ≥ 𝑥) ≤ 0.1, is shown for the upper tail region to obtain
more illustrative results.
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Fig. 1. The log-log CDF plots of the generalized-𝐾 and the approximating
Gamma RVs for 𝑚𝑚 = 2.5 and 𝑚𝑠 = 2.5 using the moment matching
method.
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Fig. 2. The log-log CDF plots of the generalized-𝐾 and the approximating
Gamma RVs for 𝑚𝑚 = 7 and 𝑚𝑠 = 4 using the moment matching method.

IV. THE MOMENT MATCHING METHOD WITH

ADJUSTMENT

In order to bypass the limitations explained before on the
use of the moment matching for higher order moments, we
may consider an adjustable form for the scale and shape
parameters of the approximating Gamma PDF obtained by
matching only the first two positive moments since (i) these
expressions, as given in Table I, are simple and valid for all
values of 𝑚𝑚 and 𝑚𝑠, and (ii) the first positive moment is
included in the matching.

First, we may re-write the scale and shape parameters using
Table I as

𝜃1,2 =

[
1

𝑚𝑚
+

1

𝑚𝑠
+

1

𝑚𝑚𝑚𝑠

]
Ω0

= [AF] Ω0, 0 ≤ AF ≤ AF𝑚𝑎𝑥, (14a)

𝑘1,2 =
1

AF
, 0 ≤ AF ≤ AF𝑚𝑎𝑥. (14b)

In the above, the term 1
𝑚𝑚

+ 1
𝑚𝑠

+ 1
𝑚𝑚𝑚𝑠

is the amount
of fading (AF) in the composite fading channel as derived
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TABLE I
EXPRESSIONS OF THE SCALE AND THE SHAPE PARAMETERS OF THE APPROXIMATING GAMMA PDF OBTAINED BY MOMENT MATCHING (FOR 𝐾1 , 𝐾2 ,

𝐾−1 , 𝐾−2 , REFER TO (13A)-(13D))

Matched moments Scale parameter Shape parameter
𝜇1, 𝜇2 𝜃1,2 = (𝐾1 − 1)Ω0, 𝜃1,2 > 0 𝑘1,2 = 1

𝐾1−1
, 𝑘1,2 > 0

𝜇1, 𝜇3 𝜃1,3 =

(
−3+

√
9+8(𝐾1𝐾2−1)

)
Ω0

4
, 𝜃1,3 > 0 𝑘1,3 = 4

−3+
√

9+8(𝐾1𝐾2−1)
, 𝑘1,3 > 0

𝜇2, 𝜇3 𝜃2,3 =
√

𝐾1(
𝑘2
2,3+𝑘2,3

)Ω0, 𝜃2,3 > 0 𝑘2,3 =

(
−𝐾2

2
𝐾1

+4

)
+

√(
𝐾2

2
𝐾1

)2

+8
𝐾2

2
𝐾1

2

(
𝐾2

2
𝐾1

−1

) , 𝑘2,3 > 0

𝜇1, 𝜇−1 𝜃1,−1 = (1 −𝐾−1)Ω0, 𝜃1,−1 > 0 𝑘1,−1 = 1
1−𝐾−1

, 𝑘1,−1 > 1

𝜇1, 𝜇−2 𝜃1,−2 =
(3−

√
9+8(𝐾−1𝐾−2−1))Ω0

4
, 𝜃1,−2 > 0 𝑘1,−2 = 4

3−√
9+8(𝐾−1𝐾−2−1)

, 𝑘1,−2 > 2

𝜇−1, 𝜇−2 𝜃−1,−2 =
(

1
𝑚𝑚

+ 1
𝑚𝑠

− 3
𝑚𝑚𝑚𝑠

)
Ω0, 𝑚𝑚 > 2, 𝑚𝑠 > 2, 𝜃−1,−2 > 0 𝑘−1,−2 =

𝐾−1Ω0

𝜃−1,−2
+ 1, 𝑘−1,−2 > 2
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Fig. 3. The log-log CDF plots of the generalized-𝐾 and the approximating
Gamma RVs for 𝑚𝑚 = 10 and 𝑚𝑠 = 10 using the moment matching
method.

in [12]. The value of AF𝑚𝑎𝑥 is determined by the smallest
physical values of 𝑚𝑚 and 𝑚𝑠 which are non-zero in real
propagation channels; hence AF𝑚𝑎𝑥 is finite.

The expressions of the scale and shape parameters given by
(14a) and (14b) result in poor approximation in the lower and
upper tail regions since matching only the first and second
moments will result in a good fit only around the mean.
To overcome this limitation, we may consider the following
adjustable form for the expressions in (14a) and (14b):

𝜃′1,2 = [AF − 𝜖]Ω0, 0 ≤ AF ≤ AF𝑚𝑎𝑥, 𝜖0 ≤ 𝜖 ≤ AF, (15a)

𝑘′
1,2 =

1

AF − 𝜖
, 0 ≤ AF ≤ AF𝑚𝑎𝑥, 𝜖0 ≤ 𝜖 ≤ AF. (15b)

Since the AF “added" to the scale parameter of the approx-
imating Gamma PDF should not exceed the original amount
of fading of the approximated PDF (i.e., 𝜖0 ≥ −AF), 𝜖 is
bounded as −AF ≤ 𝜖 ≤ AF. Due to the fact that the relevant
practical range of AF is from zero (for non-fading channels)
to 8 (for severe multipath fading and shadowing conditions
where 𝑚𝑚 = 0.5 and 𝑚𝑠 = 0.5)3, the relevant range of the
adjustment factor 𝜖 becomes −8 ≤ 𝜖 ≤ 8.

3Such small values of 𝑚𝑚 and 𝑚𝑠 may take place in land mobile satellite
channels [26].

The adjustment factor can be computed using a numerical
measure of the difference between the approximated and
the approximating PDFs (CDFs). A common measure is the
absolute value of the difference between the approximated and
the approximating PDFs (CDFs) [22, 25] that is similar to the
well-known Kolmogorov distance between the CDFs of two
continuous distributions. For this purpose, the CDFs rather
than the PDFs are considered since the Gamma PDF goes to
infinity as 𝑥 → 0 for 𝑘 < 1 [22] which causes numerical
instabilities for comparison in the lower tail region.

The plots of the optimal adjustment factor, 𝜖𝑜𝑝, versus the
multipath fading and shadowing parameters are shown in Figs.
4 and 5 for values of 𝑚𝑚 and 𝑚𝑠 ranging from 0.5 to 10.
The plots show that the adjustment factor decreases as either
or both 𝑚𝑚 and 𝑚𝑠 increase. The decrease of the adjustment
factor as both 𝑚𝑚 and 𝑚𝑠 increase is worth noting since it
indicates that the PDF of the product of two Gamma RVs
can be well-approximated, for the main body of the PDF, by
a Gamma PDF by matching the first two positive moments.
This is due to the fact that both PDFs approach the same
limiting PDF (the Dirac delta PDF) as fading diminishes. To
see that, the AF for equal values of the multipath fading and
shadowing parameters can be expressed as AF = 2𝑚+1

𝑚2 , where
𝑚 = 𝑚𝑚 = 𝑚𝑠; clearly the amount of fading is approximately
2/𝑚 for moderate values of 𝑚 and converges to zero for very
large values of 𝑚. However, if a high degree of accuracy is
sought in the lower tail region, then the magnitude of the
adjustment factor increases as seen in Fig. 5. Similar plots can
be obtained for any region of interest and the corresponding
adjustment factor can be tabulated.

V. ON THE APPROXIMATION OF THE PDF OF THE SUM OF

INDEPENDENT GENERALIZED-K RVS

The moment matching method can be used to approximate
the PDF (CDF) of the sum of 𝑁 generalized-𝐾 RVs by a
Gamma PDF (CDF). However, matching the higher order mo-
ments is difficult since deriving or computing these moments
is involved or unfeasible [23, 24]. This motivates again the
use of an adjustable form for the scale and shape parameters
obtained by matching the first two positive moments.

We may start with N=2 where the first and second moments
of the sum of two independent RVs, 𝑧 = 𝑥 + 𝑦, can be
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Fig. 4. The plot of the adjustment factor that minimizes the absolute
value of the difference between the approximated generalized-𝐾 and the
approximating Gamma distributions over the whole CDF.

0
2

4
6

8
10 0

2
4

6
8

10
0

1

2

3

4

5

6

m
sm

m

T
he

 o
pt

im
al

 a
dj

us
tm

en
t f

ac
to

r,
 ε op

Fig. 5. The plot of the adjustment factor that minimizes the absolute value
of the difference between the generalized-𝐾 and the approximating Gamma
distributions in the lower tail of the CDF (< 0.1).

expressed as [22]

𝐸[𝑧] = 𝐸[𝑥] + 𝐸[𝑦], (16a)

and

𝐸
[
𝑧2
]
= 𝐸

[
𝑥2
]
+ 𝐸

[
𝑦2
]
+ 2𝐸[𝑥]𝐸[𝑦]. (16b)

Matching the first and second moments of the sum of two in-
dependent generalized-𝐾 RVs and the approximating Gamma
distribution results in

𝜃𝑠𝑢𝑚 =
𝐾1,𝑥Ω

2
0,𝑥 +𝐾1,𝑦Ω

2
0,𝑦 + 2(Ω0,𝑥Ω0,𝑦)− (Ω0,𝑥 +Ω0,𝑦)

2

(Ω0,𝑥 + Ω0,𝑦)

=
AF𝑥Ω

2
0,𝑥 + AF𝑦Ω

2
0,𝑦

(Ω0,𝑥 + Ω0,𝑦)
, 𝜃𝑠𝑢𝑚 > 0,

(17a)

and

𝑘𝑠𝑢𝑚 =
(Ω0,𝑥 +Ω0,𝑦)

2

AF𝑥Ω2
0,𝑥 + AF𝑦Ω2

0,𝑦

, 𝑘𝑠𝑢𝑚 > 0, (17b)

where 𝐾1,𝑥 and 𝐾1,𝑦 denote the 𝐾1 parameters (as defined
in (13-a)), Ω0,𝑥 and Ω0,𝑦 denote the values of the mean of
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Fig. 6. The log-log CDF plots for the sum of generalized-𝐾 RVs and the
approximating Gamma RV for 𝑚𝑚 = 2, 𝑚𝑠 = 4 (𝜎𝑠 = 4.2 dB), 𝜖 = 0.2,
and different values of 𝑁 .

the local power, and AF𝑥 and AF𝑦 denote the AF (as given
in (14a)) of the generalized-𝐾 RVs 𝑥 and 𝑦, respectively.

The adjusted forms of (17a) and (17b) can be written as

𝜃′𝑠𝑢𝑚 =
[AF𝑥 − 𝜖𝑥]Ω

2
0,𝑥 + [AF𝑦 − 𝜖𝑦]Ω

2
0,𝑦

(Ω0,𝑥 +Ω0,𝑦)
, 𝜃′𝑠𝑢𝑚 > 0,

(18a)

and

𝑘′
𝑠𝑢𝑚 =

(Ω0,𝑥 +Ω0,𝑦)
2

[AF𝑥 − 𝜖𝑥]Ω2
0,𝑥 + [AF𝑦 − 𝜖𝑦]Ω2

0,𝑦

, 𝑘′
𝑠𝑢𝑚 > 0.

(18b)
In general, the expressions in (18a) and (18b) can be

generalized for the sum of 𝑁 independent generalized-𝐾 RVs
as

𝜃′𝑠𝑢𝑚 =

∑𝑁
𝑖=1[AF𝑖 − 𝜖𝑖]Ω

2
0,𝑖∑𝑁

𝑖=1 Ω0,𝑖

, 𝜃′𝑠𝑢𝑚 > 0, (19a)

and

𝑘′
𝑠𝑢𝑚 =

(∑𝑁
𝑖=1 Ω0,𝑖

)2
∑𝑁

𝑖=1[AF𝑖 − 𝜖𝑖]Ω2
0,𝑖

, 𝑘′
𝑠𝑢𝑚 > 0. (19b)

For the i.i.d. case, the expressions in (19a) and (19b) simplify
to

𝜃′𝑠𝑢𝑚 = (AF − 𝜖)Ω0, 𝜃′𝑠𝑢𝑚 > 0, (20a)

and

𝑘′
𝑠𝑢𝑚 =

𝑁

AF − 𝜖
, 𝑘′

𝑠𝑢𝑚 > 0. (20b)

Similar formulation can be carried out for the sum of corre-
lated generalized-𝐾 RVs.

Three-dimensional plots of the adjustment factor versus the
composite fading parameters 𝑚𝑚 and 𝑚𝑠 can be produced for
different values of 𝑁 . As an example, the plots of the lower
tail of the CDFs for 𝑚𝑚=2, 𝑚𝑠=4, and 𝑁= 1, 2, 3, and 6 are
given in Fig. 6 showing that an adjustment factor of 𝜖 = 0.2
results in almost identical CDFs, in the lower tail region, for
𝑁 = 6. Clearly, larger values of 𝜖 are needed for a more
accurate approximation for 𝑁=1, 2, and 3.
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Remark: Another approach to approximate the PDF of the
sum of independent generalized-𝐾 RVs can be based on the
fact that the lower and upper tails of the PDF of the sum of
independent positive RVs are due to the convolution of the
lower and upper tails of the corresponding individual PDFs,
respectively. So, the results obtained in Section IV can be used
to approximate the PDF of the sum of 𝑁 i.i.d. generalized-
𝐾 RVs by the PDF of the sum of the approximating 𝑁 i.i.d.
Gamma RVs. It is well-known that the sum of 𝑁 i.i.d. Gamma
RVs, with the same shape and scale parameters 𝑘′

1,2 and 𝜃′1,2,
respectively, is another Gamma RV whose shape and scale
parameters are 𝑁𝑘′

1,2 and 𝜃′1,2, respectively; these are the
same as the ones obtained in (20a) and (20b). For the non-
identically distributed case, the existing results in literature
on the distribution of the sum of independent non-identically
distributed Gamma RVs can be utilized [27-28].

VI. APPLICATIONS

The introduced region-wise approximation for the
generalized-𝐾 distribution using the familiar Gamma
distribution can be utilized in the performance analysis of
different communication schemes over composite fading
channels. So, using the closed-form expressions for the
different performance metrics that are already developed for
Nakagami fading channels, we present in this section examples
on the use of the proposed simplifying approximation to
compute some of these metrics.

A. Outage Probability
The outage probability corresponds to the probability that

the received signal power falls bellow a specific threshold 𝛾𝑡ℎ
and can be expressed as

𝑃𝑜𝑢𝑡(𝛾𝑡ℎ) = 𝑃𝑟 {𝛾 ≤ 𝛾𝑡ℎ} =

∫ 𝛾𝑡ℎ

0

𝑝𝛾(𝑥)𝑑𝑥. (21)

In [29], an expression of the outage probability, for 𝑁=1,
alternative to the one given in [13] was developed; however,
the result in [29] is valid only for integer values of 𝑚𝑚

whereas the approximation introduced here applies for both
integer and non-integer values of 𝑚𝑚 and 𝑚𝑠 including the
case 𝑚𝑚 < 1. So, the outage probability can be computed by
the simple CDF of the approximating Gamma distribution as

𝑃𝑜𝑢𝑡(𝛾𝑡ℎ) =
𝛾
(
𝑘, 𝛾𝑡ℎ

𝜃

)
Γ (𝑘)

, (22)

where 𝛾 (𝑘, 𝑥) is the incomplete Gamma function defined as
𝛾 (𝑘, 𝑥) =

∫ 𝑥

0
𝑡𝑘−1𝑒−𝑡𝑑𝑡 [20, eq. 8.350.1].

B. Outage Capacity of SIMO Channels
The outage capacity for single-input multiple-output

(SIMO) channels is determined by the probability that the
instantaneous mutual information does not exceed a target rate
𝑅 [30]:

𝑃𝑜𝑢𝑡(𝑅) = 𝑃𝑟

(
log2

[
1 + SNR

𝑁∑
𝑖=1

𝛾𝑖

]
≤ 𝑅

)
, (23)

where 𝛾𝑖 denotes the instantaneous power at the 𝑖𝑡ℎ receive
antenna (out of 𝑁 antennas) and SNR is the signal-to-noise

ratio defined at the input. Using the result in Section V on the
PDF of the sum of 𝑁 independent generalized-𝐾 RVs, the
outage capacity can be computed for different values of 𝑚𝑚

and 𝑚𝑠, and for different SNRs. Re-writing the expression in
(23) as

𝑃𝑜𝑢𝑡(𝑅) = 𝑃

(
𝑁∑
𝑖=1

𝛾𝑖 ≤ 2𝑅 − 1

SNR

)
=

∫ 2𝑅−1
SNR

0

𝑝Σ𝑖𝛾𝑖(𝑥)𝑑𝑥,

(24)
the outage capacity can be computed using the familiar CDF
of the Gamma RV that approximates the CDF of the sum of
the 𝑁 independent generalized-𝐾 RVs.

C. Bit Error Rate (BER)
Another common measure in performance analysis is the

bit error rate (BER) which can be expressed as

𝑃𝑒 =

∫ ∞

0

𝑃𝑒(𝑥)𝑝𝛾(𝑥)𝑑𝑥, (25)

where 𝑃𝑒(𝑥) denotes the BER in an Additive White Gaussian
Noise (AWGN) channel. The BER for different modulation
schemes can be computed using the approximating Gamma
PDF with the appropriate adjustment factor for each SNR
value. So, the adjustment factor has to vary with the operating
SNR for the best match. The BER for differential phase
shift keying (DPSK) signaling is shown in Fig. 7 (see [12]).
The values of the adjustment factor used, at SNR=0, 5, 10,
15, 20, 25, 30 dB are 𝜖= 0.1, 0.21, 0.26, 0.31, 0.33, 0.34,
0.36 (for 𝑚𝑚=1 and 𝑚𝑠=5), 𝜖=0.15, 0.26, 0.35, 0.42, 0.50,
0.53, 0.56 (for 𝑚𝑚=2 and 𝑚𝑠=2), and 𝜖= 0.70, 0.95, 1.10,
1.32, 1.42, 1.5, 1.57 (for 𝑚𝑚=0.8 and 𝑚𝑠=1.2). The values
of the appropriate 𝜖, in all cases, were found to lie in the
range 𝜖𝑜𝑝,1 ≤ 𝜖 ≤ 𝜖𝑜𝑝,0.01 where 𝜖𝑜𝑝,1 and 𝜖𝑜𝑝,0.01 denote
the optimal adjustment parameters corresponding to the
whole CDF and to the lower portion of the CDF (< 0.01),
respectively. These results show that (i) the BER will depend
more and more on the lower tail of the PDF as the SNR
increases [15], (ii) the region-wise approximation is more
needed for cases where the fading and shadowing parameters
are small and close to each other. In general, analytical
expressions of the BER for different transmission/reception
schemes, using the approximate Gamma model, are the same
as the ones obtained for Nakagami fading channels in [14].

D. Ergodic Capacity of SIMO Channels
The ergodic capacity of a SIMO channel can be expressed

as [30]

𝐶𝑒𝑟𝑔 = 𝐸∥h∥2 [log2(1 + SNR∥h∥2)]
=
∫∞
0 log2(1 + SNR 𝑥)𝑝∥h∥2(𝑥)𝑑𝑥,

(26)

where ∥ ⋅ ∥ denotes the norm of the single channel vector h.
Now, since the PDF of the sum of 𝑁 independent

generalized-𝐾 RVs is approximated by a Gamma PDF, we
may write

𝐶𝑒𝑟𝑔 =
1

Γ(𝑘)𝜃𝑘

∫ ∞

0

log2(1 + SNR 𝑥) 𝑥𝑘−1 exp
(
−𝑥

𝜃

)
𝑑𝑥.

(27)
Now using the obtained expression of the ergodic capacity for
Nakagami fading channels in [14], the ergodic capacity of a

Authorized licensed use limited to: Carleton University. Downloaded on February 5, 2010 at 15:59 from IEEE Xplore.  Restrictions apply. 



712 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 2, FEBRUARY 2010

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
Exact
Approx

m
m

=0.8, m
s
=1.2

m
m

=2, m
s
=2

m
m

=1, m
s
=5

Fig. 7. The BER for DPSK signaling calculated using the proposed
approximation.

SIMO system over a generalized-𝐾 composite fading channel
can be closely approximated, for integer values of 𝑘, as

𝐶𝑒𝑟𝑔 = log2(𝑒) exp(𝜂)
𝑘−1∑
𝑗=0

Γ(−𝑗, 𝜂)

𝜂−𝑗
, 𝜂 > 0, (28)

where 𝜂 =
𝑘′
𝑠𝑢𝑚

SNR and Γ(𝑎, 𝑥) is the complementary incomplete
Gamma function as defined in [20, eq. 8.350.2].

Similar to the BER measure, the adjustment factor that
results in the best approximation of the ergodic capacity is
dependent on the operating SNR. However, the ergodic ca-
pacity is not as sensitive as the BER to numerical inaccuracy.
The ergodic capacity of a heavily shadowed Rayleigh channel
(𝑚𝑠=1) is shown in Fig. 8 where the loss in capacity, at high
SNR, due to heavy shadowing is 1.66 bits/s/Hz as compared
to 0.83 bits/s/Hz for Rayleigh channels without shadowing
[30]. In Fig. 8, the value of the adjustment factor (for 𝑚𝑠=1)
is chosen, for all SNRs, to be the average of 𝜖𝑜𝑝,1 and 𝜖𝑜𝑝,0.1
(corresponding to the lower one-tenth portion of the CDF); i.e.,
𝜖 = (𝜖𝑜𝑝,1+ 𝜖𝑜𝑝,0.1)/2. For more severe shadowing conditions
with 𝑚𝑠=0.5 (𝜎𝑠=9 dB), the loss increases to 2.6 bits/s/Hz
and is well-predicted by the approximating Gamma PDF using
𝜖=2.1.

In Fig. 9, the ergodic capacity of the generalized-𝐾 channel
model and the approximating Gamma PDF for 𝑚𝑚=2 and
𝑚𝑠=1.0931 (as in [29]) is shown. Again the value of the
adjustment factor, for 𝑁=1, is chosen in the same way as
in Fig. 8 showing that a sufficient accuracy for the ergodic
capacity, as compared to the BER, can be obtained through the
use of a single average value of 𝜖. It can be seen that the use of
the unadjusted values of the scale and shape parameters results
in a very good match for 𝑁=4 since a small adjustment factor
is needed. The obtained ergodic capacity for 𝑁=4 is different
from the one in [29] since the latter does not correspond to
the sum of 𝑁 i.i.d. generalized-𝐾 RVs; it rather corresponds
to the case when the multipath components are i.i.d. but the
shadowing components are identically distributed and fully
correlated.
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Fig. 8. The ergodic capacity plot of a Rayleigh fading channel with and
without shadowing.
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Fig. 9. The ergodic capacity plot of a shadowed Nakagami channel with
𝑚𝑚 = 2 and 𝑚𝑠 = 1.0931 for 𝑁=1 and 𝑁=4.

VII. CONCLUSIONS

In this paper, we propose to approximate the generalized-
𝐾 distribution by the familiar Gamma distribution through
the use of the moment matching method. To avoid involved
expressions when matching the higher order moments and
limiting cases for small multipath fading and shadowing
parameters, an adjusted form of the expressions of the pa-
rameters of the approximating Gamma distribution obtained
by matching the first two positive moments is proposed. The
obtained results show that the introduced adjustment results
in Gamma PDFs that closely approximate the generalized-
𝐾 distribution in both the lower and upper tail regions and
can be further used to approximate the distribution of the
sum of independent generalized-𝐾 RVs in these regions.
This sufficiently accurate region-wise approximation using
the tractable Gamma distribution can significantly simplify
the performance analysis of composite fading channels using
measures such as probability of outage, outage capacity, and
ergodic capacity.
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