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Asymptotic BER Analysis of Threshold Digital
Relaying Schemes in Cooperative Wireless Systems

Furuzan Atay Onat, Yijia Fan, Halim Yanikomeroglu, and John S. Thompson

Abstract—Threshold relaying is an effective technique to
achieve cooperative diversity in uncoded cooperative wireless
networks, which suffer from error propagation due to detection
errors at the relays. This paper analyzes the asymptotic end-to-
end (e2e) bit error rate (BER) of threshold digital relaying. A
three node network with a source, destination and relay and with
links experiencing independent Rayleigh fading is considered. It
is shown that, as the average link signal-to-noise ratios (SNR) are
increased simultaneously, the optimal threshold that minimizes
the e2e BER increases as log(SNR). The resulting e2e BER
decreases as log(SNR)/SNR2. Moreover, any threshold of the
form log(c SNR), where c is a positive constant, achieves the same
order of e2e BER as the one achieved by the optimal threshold
and provides dual diversity. A value of c that performs very close
to the optimal threshold is also proposed.

Index Terms—Cooperative diversity relaying, threshold maxi-
mum ratio combining, diversity order, selective digital relaying,
SNR based selective relaying, multihop communication.

I. INTRODUCTION

COOPERATIVE relaying can improve the e2e perfor-
mance in wireless networks by creating independent

paths from a source to its destination. The destination can
combine signals from these independent paths using tradi-
tional combining methods such as Maximal Ratio Combining
(MRC). Several relaying protocols to achieve cooperative
diversity are proposed in [1]–[3]. According to the signal pro-
cessing performed by the relay, cooperative relaying protocols
can be classified into two categories: analog and digital. In
analog relaying, the relay amplifies the noisy signal without
detection. In digital relaying, the relay first detects and then
remodulates the signal. The focus of the present paper is
digital relaying.

Consider a source-destination pair and a single digital relay.
If the detection at the relay is error-free, the destination is
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provided with two diversity branches: one from the relay and
the other from the source. By combining these branches, the
error probability at the destination is reduced significantly.
However, retransmitting erroneous symbols from the relay
causes the post-combining SNR at the destination to be very
small and a symbol error at the destination becomes very
likely. This latter event is usually called error propagation.
If the relay retransmits all the symbols regardless of the
reliability of its detection, i.e., simple digital relaying, the e2e
diversity order is only one [4]. Hence, error propagation limits
the e2e performance of digital relaying.

There are different ways to mitigate error propagation. In
systems with embedded error detection codes, the relay can
transmit only if no errors are detected. In this case, the relay
can also correct some of the symbol errors by decoding and
re-encoding the received data block. However, some coding
schemes such as LDPC and turbo coding increases both
the relay processing and delay. Moreover, in heterogeneous
networks including devices with a wide range of capabilities,
it might be preferable to use relaying schemes that are trans-
parent to coding. When error detection is either unavailable or
inefficient, an alternate approach is to use the instantaneous
SNR of the source-relay link as an indication of the reliability
of the relay detection. If the source-relay SNR is larger than a
threshold, the probability of an error at the relay is small and
hence the relay retransmits the signal. Otherwise, the relay
remains silent. These kind of schemes are called Threshold
Digital Relaying (TDR) [5]–[8].

In [6] Herhold et al. proposed a TDR scheme, where the
threshold is selected jointly with the power fraction used by
the relay and the source. They determine these parameters
through numerical optimization. The BER of TDR schemes in
a network with multi-antenna relays using a similar threshold
function was studied by Adinoyi and Yanikomeroglu in [5].
In [7] the optimal threshold functions that minimize e2e BER
have been derived analytically. It is shown that if the threshold
is selected properly, TDR can improve the BER performance
significantly compared to the simple relaying, where the relay
always forwards the received data. In [8] this analysis has
been extended to different levels of link SNR knowledge at the
relay. In [9] Ponnaluri and Wilson considered a system with
two parallel relays and equal gain combining at the destination.
They showed that a threshold of the form cSNRε/2 achieves
diversity order of d = 3 − ε, where ε > 0. With this
threshold, despite the asymptotic diversity gain, the e2e BER
performance does not improve significantly in the practical
ranges of link SNRs, especially for low ε values.

Wang et al. proposed a new digital relaying scheme, called
Link Adaptive Relaying (LAR), that aims to reduce error
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propagation by adapting the relay transmit power to the link
SNRs, rather than transmitting with full power all the time
[10], [11]. This idea is a generalization of TDR if the relay
can control its power continuously and reduces to TDR if
the relay can only perform on-off power control. In [10], the
authors show that with their proposed power control scheme
continuous version of LAR achieves full diversity while the
on-off version of LAR has no diversity gain. In the present
paper we prove that this result is not due to the limitation of
on-off power control, but due to the specific threshold used in
[10]. An optimal choice of threshold still achieves diversity
order 2.

Another line of research for improving the e2e BER of
digital cooperative relaying focused on the enhancements that
can be applied at the destination [12], [13]. Chen and Laneman
derived the maximum-likelihood (ML) receiver and a piece-
wise linear receiver approaching the performance of the ML,
that consider the possibility of symbol errors at the source-
relay link [12]. In particular, the destination receiver makes
use of the average BER at each relay during the first hop,
which is sent to the destination by the relay. The authors show
that the diversity order achieved by these receivers in digital
relaying systems is bounded by (M + 1)/2 ≤ d ≤ M/2 + 1
for M even and is equal to d = (M + 1)/2 for M odd,
where M − 1 is the number of relays. They also prove that
for a single relay network with non-coherent detection, the e2e
BER of their system decreases as log(SNR)/SNR2. In [13],
a novel combining scheme to be employed at the destination
is proposed. This scheme, which is called Cooperative MRC
(C-MRC), exploits the instantaneous BER at source-relay
links. The C-MRC achieves full diversity in uncoded digital
relaying systems. However, it requires the relays to send their
instantaneous BERs to the destination.

The schemes proposed in [12] and [13] place the computing
burden on the destination while keeping the relays relatively
simple. TDR, however, simplifies the destination process by
making the relay smarter. The destination performs MRC only
(if the relay retransmits) and it does not require any additional
channel state information. Unlike [13], TDR exploits the in-
stantaneous source-relay SNR at the relay, where it is available
without additional signaling, rather than at the destination.

In this paper, we study the asymptotic e2e BER of the
TDR in relation to the optimal threshold. After describing the
system model in Section II, we summarize the prior results
on the optimal threshold and the performance of the TDR
in Section III. Section IV is dedicated to the analysis of the
asymptotic BER of the optimal TDR in the high SNR regime.
In this section we prove that the e2e BER of the optimal TDR
decreases as log(SNR)/SNR2. Hence, the diversity order of
the optimal TDR is 2. Then, in Section V, we show that any
threshold that increases as γt = log(c SNR) can also achieve
the same asymptotic performance as the optimal TDR. We
also propose a value of c that results in a BER very close to
the BER of the optimal threshold. In Section VI, we verify
our results and compare the performance of the optimal TDR
to several similar schemes proposed in the literature. Finally,
Section VII summarizes the findings of the paper.

S

γsr γrd

γsd D

R

Fig. 1. Three node network.

II. SYSTEM MODEL

This paper studies a simple network as shown in Fig 1,
where a single relay R is used to assist the communication
from a source node S to the destination node D. A two phase
digital relaying protocol is considered. In the first phase S
transmits a data block while R and D listens, and in the
second phase R either retransmits the data or remains silent.
If R chooses to remain silent, the second phase is idle. At the
cost of increased complexity, R can send a short message to S
about its decision and in the second phase S can retransmit the
same data. Since we assume slow fading as explained below,
the retransmission by S does not provide any diversity gain.
When R remains silent, the second phase can also be used by
other nodes in the network to increase network throughput.
However, in high SNR regime this gain is not significant
either; as we will show in Section IV, in optimal TDR the
probability that R remains silent goes to zero as SNR goes to
infinity. That is, almost all the data blocks will be retransmitted
by the relay.

Our system does not rely on any kind of coding and can
process the data symbol by symbol as well. For simplicity, we
assume that all the links use BPSK modulation. All the links
experience independent Rayleigh fading. The instantaneous
received SNR per bit for a link from node i to node j
is denoted by γij and is given by γij = X2

ij σ2
ij , where

X2
ij is an exponential random variable with unit mean and

σ2
ij is the average SNR. We represent the average SNR

as σ2
ij = λij SNR, where SNR is a reference signal-to-

noise ratio, and λij is a scaling factor with respect to the
reference SNR representing non-identical distance dependent
loss and shadowing for different links. Link SNRs vary in
time following independent block fading: γij is assumed to
be constant for two blocks, precluding retransmit diversity,
and a new independent realization is used for the next two
blocks. The scalars Xij , and thus γij , are independent from
link to link.

The instantaneous received SNR per bit for S-R, R-D, and
S-D links are denoted by γsr, γrd, and γsd, respectively. Their
average values are denoted by σ2

sr , σ2
rd, and σ2

sd. An error
event in the point-to-point link between node i and node j
is represented by Eij . The error event that occurs after the
destination combines the incorrectly regenerated relay signal
and the source signal is referred to as error propagation and
is denoted by Eprop. We use the term cooperative error for
the event that an error occurs after the destination combines
the correctly regenerated relay signal and the source signal,
and denote this event by Ecoop.
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We assume that R has {γsr, σ
2
rd, σ

2
sd} available in order to

make relaying decisions. The relaying decisions are made by
comparing the instantaneous S-R SNR γsr to a threshold γt,
i.e., R transmits only when γsr > γt. There are several ways
of calculating the threshold γt considered in the literature. Our
work focuses on the performance with the optimal threshold
value that minimizes e2e BER, which has been derived in [8].
We denote this threshold by γ∗

t and we refer to the TDR using
γ∗

t as the optimal TDR. We note that the optimal threshold
can also be calculated for the case where the relay has the
instantaneous R-D and S-D SNRs, γrd, γsd. This additional
information can improve e2e BER. However, the diversity
order cannot be improved any further as the current model
achieves full diversity.

III. PERFORMANCE OF TDR AND THE OPTIMAL

THRESHOLD

In this section, for completeness, we summarize the results
from [8] on the optimal threshold and its BER performance
for the model described in Section II.

A. The e2e BER of TDR as a Function of γt

The average e2e BER for a TDR protocol using threshold
γt can be expressed using the law of total probability:

BERTDR
e2e (γt) = P{γsr > γt}

[
P{Esr|γsr > γt}P{Eprop}

+ (1 − P{Esr|γsr > γt})P{Ecoop}
]

+ P{γsr ≤ γt}P{Esd}. (1)

Next, we derive the terms in (1) as functions of average link
SNRs. If the SNR of the S-R link γsr is below γt, the protocol
falls back to direct transmission and has error probability equal
to [14]

P{Esd} =
1
2

(
1 −

√
σ2

sd

1 + σ2
sd

)
. (2)

Since γsr is an exponential random variable with mean σ2
sr =

λsrSNR, the probability that γsr ≤ γt is equal to

P{γsr ≤ γt} = 1 − exp(−γt/σ2
sr). (3)

If γsr > γt, the probability of bit error at the S-R link
decreases, but it remains nonzero regardless of the value of γt.
The probability of bit error at the S-R link given that γsr > γt

is equal to

P{Esr|γsr > γt} =
∫

1
2

erfc(
√

γsr) pγsr|γsr>γt
(γsr)dγsr,

(4)

where erfc denotes the complementary error function. The
term pγsr|γsr>γt

is the conditional pdf of γsr and is given
by

pγsr|γsr>γt
(γsr) = exp(γt/σ2

sr)
1

σ2
sr

exp(−γsr/σ2
sr)

for γsr > γt. Hence, the term P{Esr|γsr > γt} can be
represented by

P{Esr|γsr > γt} =
exp(γt/σ2

sr)
2σ2

sr

∫ ∞

γt

erfc(
√

γsr)

× exp(−γsr/σ2
sr) dγsr , (5)

which can be calculated using integration by parts [6]:

P{Esr|γsr > γt} =
1
2
erfc(

√
γt) − 1

2
eγt/σ2

sr

√
σ2

sr

1 + σ2
sr

×erfc

(√
γt(1 +

1
σ2

sr

)

)
. (6)

When γsr > γt and there is no bit error on the S-R link,
then the probability of bit error at D after MRC is equal to
[14, pp. 846-847]

P{Ecoop} =

{
1
2 (1 − srd)

2 (1 + 1
2srd

)
, σ2

rd = σ2
sd;

1
2

[
1 − σ2

sdssd−σ2
rdsrd

σ2
sd−σ2

rd

]
, σ2

rd �= σ2
sd.

(7)

In (7) srd and ssd are defined as

srd =

√
σ2

rd

1 + σ2
rd

and ssd =

√
σ2

sd

1 + σ2
sd

.

The probability of error propagation approaches to λrd

λsd+λrd

as the link SNRs increases. (See Appendix A for the proof.)
As observed in [8], this limit is also a very good approximation
for P{Eprop} in the practical ranges of σ2

rd, σ2
sd. Hence, we

use

P{Eprop} ≈ λrd

λsd + λrd
=

σ2
rd

σ2
sd + σ2

rd

(8)

for all the calculations in the rest of this paper.
The average e2e BER for a given threshold value can be

calculated analytically by substituting (2), (3), and (6)-(8) into
equation (1).

B. The Optimal Threshold γ∗
t

The threshold value γ∗
t that minimizes the average e2e BER

given in (1) is derived in [8]:

γ∗
t =

{ (
erfc−1(2δ)

)2
, δ < 0.5;

0, otherwise,
(9)

where δ is equal to

δ =
P{Esd} − P{Ecoop}

P{Eprop} − P{Ecoop} . (10)

By substituting (2), (7), and (8) into (10), δ is obtained as

δ(σ2
rd, σ

2
sd) ≈

1
2 (1 − ssd) − 1

2

[
1 − σ2

sdssd−σ2
rdsrd

σ2
sd−σ2

rd

]
σ2

rd

σ2
rd+σ2

sd
− 1

2

[
1 − σ2

sdssd−σ2
rdsrd

σ2
sd−σ2

rd

] . (11)

IV. ASYMPTOTIC PERFORMANCE OF OPTIMAL TDR

In order to study the high SNR behavior of e2e BER,
following an approach similar to the one in [15], we fix the
parameters λsr , λrd, and λsd, and analyze the e2e BER as
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SNR → ∞. Diversity order is a useful measure in quantifying
the diversity benefit of any scheme in high SNR regime [15].
We adopt the following definition of diversity order given in
[15]1:

d = − lim
SNR→∞

log(BER)
log(SNR)

. (12)

We also use the following asymptotic notation:
Definition 1: Let f(x) and g(x) be two positive func-

tions defined on real numbers. We say f(x) = O(g(x)), if
lim supx→∞

f(x)
g(x) < ∞.

Definition 2: Two functions f(x) and g(x) are called
asymptotically equivalent, f(x) ∼ g(x), if limx→∞

f(x)
g(x) = 1.

In rest of this section, we first show that the optimal
threshold function γ∗

t given in (9) increases logarithmically
with SNR (Lemma 1). Then, using this result, we prove that if
the relay sets its threshold to γ∗

t , the probability that it remains
silent decreases as log(SNR)/SNR and the probability that
the relay has a detection error decreases at least as fast as
1/SNR2 (Lemmas 2 and 3). Finally, we use all these results
to show that the asymptotic e2e BER of the optimal TDR
decreases as log(SNR)/SNR2 and the optimal TDR achieves
diversity order 2 (Proposition 1).

We note that the BER of TDR is greater by a factor of
log(SNR) than the BER of a traditional diversity system,
where BER decreases as 1/SNR2 at large SNR. Since the
diversity order represents the relation of the BER and SNR
up to an exponential factor, the diversity order of TDR is
still 2. Hence, we conclude that it is possible to achieve
maximum diversity order in a single relay network using
threshold relaying with the optimal threshold selection.

A. Asymptotic Behavior of γ∗
t , P{γsr ≤ γ∗

t }, and P{Esr|γsr >
γ∗

t }
The results on the asymptotic behavior of γ∗

t , P{γsr ≤
γ∗

t }, and P{Esr|γsr > γ∗
t } are given in Lemmas 1, 2, and 3,

respectively. See the Appendix for the proofs.
Lemma 1 (Asymptotic behavior of γ∗

t ): The optimal thres-
hold γ∗

t , given in (9), is upper and lower-bounded by two
log functions for sufficiently large SNR. That is, there exist
c1, c2 > 0 such that

c1 log(SNR) < γ∗
t (SNR) < c2 log(SNR), as SNR → ∞.

(13)

Lemma 2 (Asymptotic behavior of P{γsr ≤ γ∗
t }): For suf-

ficiently large SNR, P{γsr ≤ γ∗
t } can be upper and lower

bounded as follows. There exists c′1, c
′
2 > 0 such that

c′1
log(SNR)

SNR
< P{γsr < γ∗

t } < c′2
log(SNR)

SNR
, as SNR → ∞.

(14)

Lemma 3 (Asymptotic behavior of P{Esr|γsr > γ∗
t }): If

the relay uses the optimal threshold γ∗
t , then P{Esr|γsr > γ∗

t }
can be upper bounded as follows. There exists a c > 0 such
that

P{Esr|γsr > γ∗
t } < c

1
SNR2 , as SNR → ∞. (15)

1Throughout this paper all the logarithms are in the natural base.

B. Asymptotic e2e BER and Diversity Order of the Optimal
TDR

Proposition 1: The e2e BER of TDR, given in
(1), using the threshold γ∗

t satisfies BERTDR
e2e (γ∗

t ) =
O(log(SNR)/SNR2) and hence achieves the maximum
diversity order of 2.

Proof: Let us denote the first term of (1) as P1 and the
second term as P2.

P1 = P{γsr > γ∗
t }
[
P{Esr|γsr > γ∗

t }P{Eprop} + P{Ecoop}

−P{Esr|γsr > γ∗
t }P{Ecoop}

]
,

P2 = P{γsr ≤ γ∗
t }P{Esd}.

In P1, the term P{γsr > γ∗
t } = exp(−γt/(λsrSNR)) goes

to 1 as SNR → ∞. Since P{Eprop} ∼ λrd/(λsd + λrd)
(from (35) in Appendix A) and P{Ecoop} ∼ 3

16λrdλsd

1
SNR2 ,

the decay rate of P1 is equal to the minimum of the rates of
P{Esr|γsr > γ∗

t } and P{Ecoop}. From Lemma 3, P{Esr|γsr >
γ∗

t } = O(1/SNR2). Hence, P1 = O(1/SNR2).
Since P{Esd} ∼ 1

4λsd

1
SNR and P{γsr ≤ γ∗

t }
= O(log(SNR)/SNR) (from Lemma 2), P2 =
O(log(SNR)/SNR2). The e2e BER of the optimal TDR
satisfies

BERTDR
e2e (γ∗

t ) = P1 + P2 = O(1/SNR2) + O(log(SNR)/SNR2)

= O(log(SNR)/SNR2). (16)

Thus, BERTDR
e2e (γ∗

t ) is limited by the second term P2, which
corresponds to the event that the SNR of the S-R link is below
threshold.

The diversity order of the optimal TDR is equal to

dTDR = − lim
SNR→∞

log(log(SNR)/SNR2)
log(SNR)

= − lim
SNR→∞

log(log(SNR))
log(SNR2)

+ lim
SNR→∞

log(SNR2)
log(SNR)

= 2,

since the term log(log(SNR))
log(SNR) → 0 as SNR → ∞.

We note that the non-selective cooperative relaying protocol
of [12] also achieves BER of log(SNR)/SNR2 using a piece-
wise linear detector at the destination and assuming non-
coherent demodulation at the relay and the destination.

V. AN APPROXIMATION TO THE OPTIMAL THRESHOLD

The result given in Lemma 1 suggests that the threshold
must increase logarithmically with SNR. In this section, we
first prove that thresholds of the form γt = log(cSNR),
achieves full diversity. Then, we propose a value for the
constant c based on the derivations in Section IV.

Proposition 2: The e2e BER of TDR, given in (1), us-
ing a threshold γt = log(cSNR) satisfies BERTDR

e2e (γt) =
O(log(SNR)/SNR2) and achieves the maximum diversity
order of 2 for any real constant c > 0.
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Proof: Substituting γt = c log(SNR) and σ2
sr = λsrSNR

into (3), we obtain

P{γsr ≤ γt} = 1 − exp(−(log(cSNR))/λsrSNR)

= 1 −
(

1
cSNR

) 1
λsr SNR

∼ 1
λsr

log(SNR)
SNR

,

(17)

where the last part is obtained from (41) given in the Ap-
pendix. Hence, the second term in (1), P2 = P{γsr ≤
γt}P{Esd} = O(log(SNR)/SNR2). As in the proof of Propo-
sition 1, the order of the first term P1 is determined by the
term P{Esr|γsr > γt}, i.e., O(P1) = O(P{Esr |γsr > γt}).
From (43) in the Appendix, for any threshold we have

P{Esr|γsr > γt} <
1

2λsrSNR
erfc(

√
γt) <

1
2λsrSNR

e−γt ,

where the last inequality follows from the following well-
known upper bound for erfc [16]2:

erfc(z) < e−z2
. (18)

By substituting γt = log(cSNR), we obtain

P{Esr|γsr > γt} <
1

2λsrc

1
SNR2 . (19)

Hence, P{Esr|γsr > γt} = O(1/SNR2) and P1 =
O(1/SNR2). Then, BERTDR

e2e (log(cSNR)) = P1 + P2 =
O(log(SNR)/SNR2) and the diversity order of TDR with
γt = log(cSNR) is equal to 2.

In order to obtain an approximation for γ∗
t , which is denoted

by γ∗,approx
t , we use the upper bound given in (18) and

the asymptotic expression given in (36) in the Appendix as
approximations for erfc and δ, respectively:

erfc(z) ≈ e−z2
and δ ≈ 1

4
1

SNR
λrdλsd

λrd + λsd
=

1
4

σ2
rdσ

2
sd

σ2
rd + σ2

sd

.

Then, γ∗,approx
t is given by

γ∗,approx
t =

{
− log

(
1
2

(
1

σ2
rd

+ 1
σ2

sd

))
, 1

2

(
1

σ2
rd

+ 1
σ2

sd

)
< 1;

0, otherwise.

We note that for sufficiently large SNR, the condition
1
2

(
1

σ2
rd

+ 1
σ2

sd

)
< 1 is satisfied and γ∗,approx

t is equal to

γ∗,approx
t = − log

(
1
2

(
1

σ2
rd

+
1

σ2
sd

))

= log

(
2
(

1
λrd

+
1

λsd

)−1

SNR

)
. (20)

We observe that γ∗,approx
t = log(cSNR), where c =

2
(

1
λrd

+ 1
λsd

)−1

is greater than zero. Hence, invok-

ing Proposition 2, we conclude that with γ∗,approx
t ,

BERTDR
e2e (γ∗,approx

t ) = O(log(SNR)/SNR2) and the diver-
sity order is equal to 2. In (20), we notice that γ∗,approx

t is
equal to the logarithm of the harmonic mean of σ2

sd and σ2
rd.

2There are tighter upper bounds for erfc, but this bound is sufficient for
our purpose.

VI. RESULTS

In this section, we compare the average BER of the optimal
TDR to several schemes which are described below. As the
two schemes that are simpler than TDR, we consider direct
transmission and simple digital relaying. In simple digital
relaying the relay always retransmits in the second phase. The
average BER of this scheme is equal to

BERsimple
e2e = P{Esr}P{Eprop} + (1 − P{Esr})P{Ecoop},

(21)

which can be calculated analytically by substituting (2), (7),
and (8) into (21).

The genie-aided relaying and receive diversity schemes are
also considered as performance upper bounds. The genie-aided
relaying is based on the hypothetical assumption that the relay
has perfect error detection for each symbol. Hence, in phase 2
the relay retransmits only those symbols received correctly in
phase 1. The e2e BER of the genie-aided digital relaying is
equal to

BERgenie
e2e = P{Esr}P{Esd} + (1 − P{Esr})P{Ecoop}, (22)

which can be calculated by substituting (2) and (7) into (22).
The second upper bound, receive diversity, is obtained by
assuming that the S-R link is error-free, i.e., BERRx2

e2e =
P{Ecoop}, where P{Ecoop} is given in (7).

Finally, we compare the BER of the optimal TDR to
other similar schemes proposed in the literature. The Link
Adaptive Relaying (LAR) proposed in [10] aims to reduce
error propagation by adapting the relay transmit power to the
link SNRs rather than transmitting with full power Pfull all
the time. If R is able to adapt its transmit power continuously,
[10] proposes a scheme where R transmits with α × Pfull,

where the scaling factor α = min(γsr,σ2
rd)

σ2
rd

. We call this
scheme as LAR-cont. If R can perform only on-off power
adaptation, then it can be seen that LAR simplifies to TDR
with threshold function γt,LAR = σ2

rd. We call this scheme
as LAR-on/off. For all threshold based relaying schemes, the
e2e BER can be calculated analytically by plugging in the
appropriate threshold value as γt in (1). We resort to Monte
Carlo simulations to obtain the e2e BER of LAR-cont only.

In Fig. 2 we plot the average BER as a function of SNR
in a symmetric network where λsr = λsd = λrd = 0 dB.
The on-off version of LAR has poor performance; its BER
is larger than even the BER of the simple relaying. Since
γt,LAR increases linearly with SNR, from (40) we observe
that P{γsr ≤ γt,LAR} will be a constant independent of SNR.
Then, in the e2e BER expression given in (1) the second term,
P{γsr ≤ γt,LAR}×P{Esd}, decreases only as fast as the BER
of the S-D link. Hence, the diversity order of on-off LAR is 1,
which has also been reported in [10]. This argument applies to
any TDR scheme that uses a threshold increasing linearly with
the SNR. The continuous version of LAR, which is shown to
achieve full diversity in [10], performs better than all TDR
schemes including the optimal TDR. However, the gap with
the optimal TDR is very small. Fig. 3 shows the BER of all the
schemes for an asymmetric network, where the direct link is
weaker than the S-R and R-D links, a typical scenario where R
is located on the line segment between S and D. Relative link
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Fig. 2. The e2e BERs for different schemes as a function of SNR in a
symmetric network, where λsr = λrd = λsd = 0 dB.
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Fig. 3. The threshold values and e2e BERs for different schemes as a
function of SNR in a nonsymmetric network, where λsr = λrd = 0 dB and
λsd = −12 dB.

SNRs are selected as λsr = λrd = 0 dB and λsd = −12 dB.
Unlike the symmetric case, here the optimal TDR outperforms
continuous LAR by a very small margin. We note that the α
value used in [10] for the continuous LAR is not optimized.
Otherwise, it would always outperform the optimal TDR.

Fig. 4 and Fig. 5 show the variation of the optimal threshold
and its approximation as a function of SNR, for the two sets of
λ values used in Fig. 2 and Fig. 3. Although there is an offset
between the optimal threshold and the approximation, the two
curves are almost parallel to each other. As seen in Fig. 2 and
Fig. 3, the BER of the approximate threshold γ∗,approx

t is very
close to the BER of the optimal threshold.
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Fig. 5. The threshold values as a function of SNR in a nonsymmetric
network, where λrd = 0 dB and λsd = −12 dB.

VII. CONCLUSIONS

In this paper, we studied the asymptotic BER of threshold
digital relaying in cooperative wireless networks. We showed
that in a network with a single relay and independent Rayleigh
fading links, in order to minimize e2e BER, the threshold used
by the relay should increase logarithmically with the average
link SNR. It is proven that this optimal threshold achieves
dual diversity. We also showed that any threshold of the form
log(c SNR), where c > 0 is a constant, achieves the same
diversity order. Moreover, we derived a value for c that results
in a BER very close to the BER of the optimal TDR. The
generalization of the problem to multiple relays remains as a
future work topic.

Authorized licensed use limited to: Carleton University. Downloaded on December 24, 2008 at 10:05 from IEEE Xplore.  Restrictions apply.



4944 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 12, DECEMBER 2008

APPENDIX

A. Asymptotic Behavior of the Probability of Error Propaga-
tion

In this section we derive upper and lower bounds for
P{Eprop} and, invoking the Pinching Theorem, we prove that
limSNR→∞ P{Eprop} = λrd/(λrd + λsd). The probability of
error propagation is given by [8]

P{Eprop} =
1
2

Eγrd,γsd
[erfc (g(γsd, γrd))]

=
1
2

Eγrd

[
Eγsd|γrd

[erfc (g(γsd, γrd))]
]

=
1
2

∫ ∞

0

1
σ2

rd

e−γrd/σ2
rd

×
∫ ∞

0

erfc (g(γsd, γrd))
1

σ2
sd

e−γsd/σ2
sddγsd dγrd,

(23)

where
g(γsd, γrd) =

γsd − γrd√
γsd + γrd

.

Let us denote the upper and lower bounds for P{Eprop}, as pl

and pu, and the upper and lower bounds for the inner integral
in (23), i.e. Eγsd|γrd

[erfc (g(γsd, γrd))], as fl and fu. Let μg

and μh be the geometric and harmonic means of two positive
numbers, where μg(x, y) =

√
xy and μh(x, y) = 2xy/(x+y).

The square of g(γsd, γrd) can be expressed as

g2(γsd, γrd) = γsd + γrd − 2μh(γsd, γrd).

When g(γsd, γrd) ≥ 0, i.e., γsd ≥ γrd, making use of the fact
that μh(x, y) ≤ μg(x, y) we reach the following inequality

g2(γsd, γrd) ≥ γsd + γrd − 2
√

γsdγrd = (
√

γsd −√
γrd)2

⇒ g(γsd, γrd) ≥ √
γsd −√

γrd, γsd ≥ γrd.(24)

For the region where g(γsd, γrd) < 0, i.e., γsd < γrd, due to
the fact that mh(x, y) ≥ min(x, y), we have

g2(γsd, γrd) ≤ γsd + γrd − 2 min(γsd, γrd) ⇒
g(γsd, γrd) ≥ −√

γrd − γsd, γsd < γrd. (25)

From (24) and (25), Eγsd|γrd
[erfc (g(γsd, γrd))] can be

bounded as follows:

Eγsd|γrd
[erfc (g(γsd, γrd))]

=
∫ ∞

0

erfc(g(γsd, γrd))
1

σ2
sd

e−γsd/σ2
sddγsd ≤ fu(γrd, σ

2
sd),

where

fu(γrd, σ
2
sd) �

∫ γrd

0

erfc
(−√

γrd − γsd

) 1
σ2

sd

e−γsd/σ2
sddγsd

+
∫ ∞

γrd

erfc (
√

γsd −√
γrd)

1
σ2

sd

e−γsd/σ2
sddγsd.

(26)

Following a similar approach, we also derive a lower bound
for Eγsd|γrd

[erfc (g(γsd, γrd))]. It can be easily verified that

g(γsd, γrd) ≤ √
γsd −√

γrd, γsd ≤ γrd, and

g(γsd, γrd) ≤ √
γsd − γrd, γsd > γrd.

Thus, fl(γrd, σ
2
sd) ≤ Eγsd|γrd

[erfc (g(γsd, γrd))], where

fl(γrd, σ
2
sd) �

∫ γrd

0

erfc (
√

γsd −√
γrd)

1
σ2

sd

e−γsd/σ2
sddγsd

+
∫ ∞

γrd

erfc
(√

γsd − γrd

) 1
σ2

sd

e−γsd/σ2
sddγsd.

(27)

Next, we introduce two integrals, which we derive using
integration by parts, to be used to calculate fu and fl.

I1(a, b, c; x0, x1) =
∫ x1

x0

erfc
(√

ax + b
)

e−cxdx

=
{
−1

c
erfc(

√
ax + b)e−cx − 1

c

√
a

a + c

×
(
1 − erfc

(√
(a + c)/a

√
ax + b

))
ebc/a

}]x1

x0

, (28)

where x0, x1, c ≥ 0, (a + c)/a ≥ 0, and

I2(a, b, c; x0, x1) =
∫ x1

x0

erfc
(
a
√

x + b
)
e−cxdx

=
{
−1

c
erfc(a

√
x + b)e−cx − a

c
√

a2 + c

×
(
1 − erfc

(√
a2 + c

√
x + ab/

√
a2 + c

))
× exp(−b2 + a2b2/(a2 + c))

}]x1

x0

, (29)

where x0, x1, c ≥ 0. Using erfc(−x) = 2 − erfc(x), (26) is
expressed in terms of I1 and I2. Then, by substituting (28)
and (29) for I1 and I2, we obtain3

fu(γrd, σ
2
sd) = 2

(
1 − e−γrd/σ2

sd

)
− (1/σ2

sd)I1(−1, γrd, 1/σ2
sd, 0, γrd)

+ (1/σ2
sd)I2(1,−√

γrd, 1/σ2
sd, γrd,∞)

= erfc (−√
γrd)

− e−γrd/σ2
sd√

1 − 1/σ2
sd

(
1 − erfc

(√
γrd

√
(1 − 1/σ2

sd)
))

− exp
(−γrd/(1 + σ2

sd)
)√

1 + 1/σ2
sd

erfc

(
√

γrd
1/σ2

sd√
1 + 1/σ2

sd

)
. (30)

Similarly,

fl(γrd, σ
2
sd) =

1√
1 + 1/σ2

sd

[
−e−γrd/σ2

sd − e−γrd/(1+σ2
sd)

×
(

1 − erfc

(√
γrd/

(
σ2

sd

√
1 + 1/σ2

sd

)))
+ (2 − erfc(

√
γrd))

√
1 + 1/σ2

sd

− e−γrd/(1+σ2
sd)

(
1 − erfc

(√
γrd/

√
1 + 1/σ2

sd

))]
.

(31)

Upper and lower bounds for P{Eprop} are found by using (23)

3It is assumed that σ2
sd ≥ 1, which is satisfied when SNR is sufficiently

large.
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and taking the expectation of fu and fl w.r.t. γrd:

fl(γrd, σ
2
sd) ≤ Eγsd|γrd

[erfc (g(γsd, γrd))] ≤ fu(γrd, σ
2
sd) ⇒

1
2

Eγrd
[fl(γrd, σ

2
sd)]︸ ︷︷ ︸

pl(σ2
rd,σ2

sd)

≤ P[Eprop] ≤ 1
2

Eγrd
[fu(γrd, σ

2
sd)]︸ ︷︷ ︸

pu(σ2
rd,σ2

sd)

.

Then we express pl and pu in terms of I2:

pu(σ2
rd, σ

2
sd) =

− σ2
sd

2(σ2
sd + σ2

rd)
1√

1 − 1/σ2
sd︸ ︷︷ ︸

t1

+
I2(−1, 0, 1/σ2

rd, 0,∞)
2σ2

rd︸ ︷︷ ︸
t2

+
I2

(√
1 − 1/σ2

sd, 0, (σ2
rd + σ2

sd)/(σ2
rdσ

2
sd), 0,∞

)
2σ2

rd

√
1 − 1/σ2

sd︸ ︷︷ ︸
t3

−
I2

(
1/(σ2

sd

√
1 + 1/σ2

sd), 0,
1+σ2

sd+σ2
rd

σ2
rd+σ2

rdσ2
sd

, 0,∞
)

2σ2
rd

√
1 + 1/σ2

sd︸ ︷︷ ︸
t4

. (32)

We substitute σ2
sd = λsdSNR and σ2

rd = λrdSNR into (32),
and take its limit as SNR → ∞. Since t1 → (1/2)λsd/(λsd +
λrd), t2 → 1, t3 → 0 and t4 → (1/2)λsd/(λsd + λrd), we
conclude that

lim
SNR→∞

pu =
λrd

λrd + λsd
. (33)

Following the same approach for pl, we obtain

pl(γrd, σ
2
sd) =

1 − 1
2
√

1 + 1/σ2
rd

(
σ2

sd

σ2
sd + σ2

rd

+
2(1 + σ2

sd)
1 + σ2

sd + σ2
rd

)
︸ ︷︷ ︸

s1

+
I2

(
1/(σ2

sd

√
1 + 1/σ2

sd), 0,
1+σ2

sd+σ2
rd

σ2
rd+σ2

rdσ2
sd

, 0,∞
)

2σ2
rd

√
1 + 1/σ2

rd︸ ︷︷ ︸
s2

− 1
2σ2

rd

I2(1, 0, 1/σ2
rd, 0,∞)︸ ︷︷ ︸

s3

+
I2

(
1/
√

1 + 1/σ2
sd, 0,

1+σ2
sd+σ2

rd

σ2
rd+σ2

rdσ2
sd

, 0,∞
)

2σ2
rd

√
1 + 1/σ2

rd︸ ︷︷ ︸
s4

. (34)

Since s1 → (3/2)λsd/(λsd + λrd), s2 → (1/2)λsd/(λsd +
λrd), s3 → 0, and s4 → 0 as SNR → ∞, we conclude that
limSNR→∞ pl = λrd

λrd+λsd
. Using this result combined with

(33), the Pinching Theorem implies that

lim
SNR→∞

pl ≤ lim
SNR→∞

P{Eprop} ≤ lim
SNR→∞

pu

⇒ lim
SNR→∞

P{Eprop} =
λrd

λrd + λsd
. (35)

B. Proof of Lemma 1 – Asymptotic behavior of γ∗
t

It can be easily verified that limSNR→∞
δ(SNR)
1/SNR =

1
4

λsd+λrd

λsdλrd
. Hence, δ(SNR) is asymptotically equivalent to

δ(SNR) ∼ 1
4

λsd + λrd

λsdλrd

1
SNR

. (36)

For large SNR, δ(SNR) < 1/2. Thus, we ignore the second
case in (9) and assume that γ∗

t (SNR) =
(
erfc−1(2δ(SNR))

)2
.

We make use of the following inequality given in [17]:√
1 − e−z2 < |erf(z)| <

√
1 − e−2z2 .

By replacing erfc(z) = 1−erf(z), the threshold value is equal
to γ∗

t (SNR) =
(
erf−1(1 − 2δ(SNR))

)2
. Since erf(z) ≥ 0 for

all z ≥ 0, and
√

γ∗
t ≥ 0, we can write√

1 − e−γ∗
t < erf(

√
γ∗

t ) <
√

1 − e−2γ∗
t . (37)

Substituting erf(
√

γ∗
t ) = 1 − 2δ from (9), we obtain

1
2

log
(

1
4δ(1 − δ)

)
< γ∗

t < log
(

1
4δ(1 − δ)

)
. (38)

It can be easily verified that

lim
SNR→∞

log
(

1
4δ(1 − δ)

)
/ log(SNR) = 1. (39)

Thus, there exists constants b1, b2 > 0 such that

b1 log(SNR) < log
(

1
4δ(1 − δ)

)
< b2 log(SNR),

and (13) holds for c1 = b1/2 and c2 = b2, which concludes
the proof.

C. Proof of Lemma 2 – Asymptotic behavior of P{γsr ≤ γ∗
t }

Since γsr has mean σ2
sr = λsrSNR, the probability that

γsr ≤ γt, and hence relay remains silent, is equal to

P{γsr ≤ γt} = 1 − exp
(
− 1

λsr

γt(SNR)
SNR

)
= 1 − (exp(−γt(SNR)))

1
λsr SNR . (40)

By substituting the bounds derived in Lemma 1 into (40), we
obtain

1 − (exp(−c2 log(SNR)))
1

λsr SNR < P{γsr ≤ γ∗
t }

< 1 − (exp(−c1 log(SNR)))
1

λsr SNR ⇒

1 −
(

1

SNR

) c2
λsr SNR

< P{γsr ≤ γ∗
t } < 1 −

(
1

SNR

) c1
λsr SNR

.

We note that

lim
SNR→∞

1 − ( 1
SNR

) c
λsr SNR

log(SNR)/SNR
=

c

λsr
,

and hence,

1 −
(

1
SNR

) c
λsr SNR

∼ c

λsr

log(SNR)
SNR

. (41)

Then, there exist positive constants b′1 and b′2 such that

b′1 c1

λsr

log(SNR)
SNR

< P{γsr ≤ γ∗
t } <

b′2 c2

λsr

log(SNR)
SNR

,
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and (14) is satisfied for c′1 = b′1 c1
λsr

and c′2 = b′2 c2
λsr

.

D. Proof of Lemma 3 – Asymptotic behavior of P{Esr|γsr >
γ∗

t }
Using Craig’s formula given in [18], erfc can be represented

as

erfc(z) =
2
π

∫ π/2

0

exp(−z2/ sin2(θ))dθ.

Substituting this alternate representation into (4) results in

P{Esr|γsr > γt}

=
eγt/σ2

sr

2σ2
sr

∫ ∞

γt

erfc(
√

γsr) exp(−γsr/σ2
sr) dγsr

=
eγt/σ2

sr

πσ2
sr

∫ ∞

γt

exp
(
−γsr

σ2
sr

)∫ π/2

0

exp
(
− γsr

sin2 θ

)
dθ dγsr

=
eγt/σ2

sr

πσ2
sr

∫ π/2

0

∫ ∞

γt

exp
(
−γsr

(
1

sin2 θ
+

1
σ2

sr

))
dγsr dθ

=
1
π

∫ π/2

0

sin2 θ

σ2
sr + sin2 θ

exp(−γt/ sin2 θ)dθ. (42)

Since sin2(θ)
σ2

sr+sin2(θ)
< 1

σ2
sr

for any σ2
sr > 0, P{Esr|γsr > γt} is

upper bounded by

P{Esr|γsr > γt} <
1
π

∫ π/2

0

1
σ2

sr

exp(−γt/ sin2 θ)dθ

=
1

2σ2
sr

erfc(
√

γt). (43)

By substituting γt = γ∗
t , σ2

sr = λsrSNR, and erfc(
√

γ∗
t ) = 2δ

from (9), (43) is simplified to

P{Esr|γsr > γ∗
t } <

1
λsr

δ(SNR)
SNR

. (44)

Since δ(SNR) ∼ 1
4

λsd+λrd

λsdλrd

1
SNR , there exists a constant c′′ >

0 such that δ(SNR) < c′′/SNR for sufficiently large SNR.
Hence, using (44) we obtain

P{Esr|γsr > γt} <
1

λsrSNR
δ(SNR) <

c′′

λsr

1
SNR2 , (45)

and we conclude that (15) holds for c = c′′/λsr.
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