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Abstract—The goal of this paper is to determine the data
routes, subchannel schedules, and power allocations that max-
imize a weighted-sum rate of the data communicated over a
generic OFDMA wireless network in which the nodes are capable
of simultaneously transmitting, receiving and relaying data. Two
instances are considered. In the first instance, subchannels are
allowed to be time-shared by multiple links, whereas in the
second instance, each subchannel is exclusively used by one
of the links. Using a change of variables, the first problem
is transformed into a convex form. In contrast, the second
problem is not amenable to such a transformation and results
in a complex mixed integer optimization problem. To develop
insight into this problem, we utilize the first instance to obtain
efficiently computable lower and upper bounds on the weighted-
sum rate that can be achieved in the absence of time-sharing.
Another lower bound is obtained by enforcing the scheduling
constraints through additional power constraints and a monomial
approximation technique to formulate the design problem as
a geometric program. Numerical investigations show that the
obtained rates are higher when time-sharing is allowed, and that
the lower bounds on rates in the absence of time-sharing are
relatively tight.

Index Terms—Cross-layer design, geometric programming,
monomial approximation, time-sharing, self-concordance.

I. INTRODUCTION

FUTURE wireless networks are expected to provide ubiq-
uitous high data rate coverage. Meeting this expectation

will bank on versatile wireless nodes that can adapt to varying
channel conditions and dynamic network topologies, and that
can perform multiple tasks simultaneously. For instance, for
networks with both fixed and terminal relays, the nodes are
expected to be capable of sending, receiving and relaying data
to other nodes [1]. As such, future communication networks
are expected to be less structured and more responsive to
instantaneous demands. The dynamic nature of these networks
give rise to a generic ad hoc topology which encompasses
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various communication network structures, including current
cellular ones and sensor networks.

To facilitate the implementation of future wireless networks,
these networks are likely to rely on orthogonal frequency
division multiple access (OFDMA) for accessing the wire-
less medium. In addition to its practicality and resilience
to multiuser interference and frequency-selective fading [2],
OFDMA offers an effective means for sharing the frequency
band between multiple terminals, depending on their channel
conditions [3]. Despite its advantages, using OFDMA in
wireless networks requires relatively accurate synchronization,
which can be established centrally as in the designs that will
be developed hereinafter.

Another feature of future wireless networks is that the
resources available for their operation are likely to be rather
scarce. Such resources include the available frequency spec-
trum and the, typically low, power of the batteries to be
used by the wireless terminals. Given the scarcity of available
resources, accommodating high data rate services imposes
stringent constraints on the way the communication resources
are exploited. To properly exploit these resources, the routes
taken by each data stream must be carefully selected, the
subchannels used for transmissions must be properly sched-
uled, and the powers allocated to these transmissions must be
judiciously determined. In particular, although the design of
isolated system functionalities, e.g., routing and power allo-
cation, simplifies the design of the communication network,
these functionalities are interrelated and considering them
conjointly results in more effective utilization of the available
resources. A practical impediment is the computational burden
incurred by the joint consideration of these functionalities.
This is especially true for networks with a large number
of wireless terminals with various capabilities. Hence, it is
desirable to develop joint designs that are, not only close to
being optimal, but also efficiently computable.

Efficient utilization of radio resources solicits the use of
optimization-based techniques for designing the network. For
instance, a technique based on Geometric Programming (GP)
is employed in [4] to provide a suboptimal solution for
power allocation in systems where the frequency band can
be reused by multiple nodes. Another technique is the so-
called successive polyblock approximation [5]. This tech-
nique provides the optimal power allocations for wireless
networks with frequency reuse and multiple antenna nodes.
For OFDMA systems with single antenna nodes, polynomial-
time algorithms were developed for obtaining optimal power
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allocations in uplink [6] and downlink [7] scenarios, and for
obtaining optimal binary schedules in downlink scenarios [8].

Further network performance improvements can be effected
through joint consideration of multiple functionalities. For
instance, jointly optimal subchannel scheduling and power
allocation were obtained in [9] and [10] for OFDMA networks
in which the subchannels can be time-shared among multiple
nodes. When time-sharing is not allowed, an optimization
problem is formulated in [11], and a heuristic inspired by
the corresponding Karush-Kuhn-Tucker (KKT) conditions is
developed therein to obtain jointly optimal schedules and
power allocations. Elaborations on this heuristic, and anal-
ysis of its complexity and optimality aspects are provided
in [12]. When the nodes are restricted to use preassigned
orthogonal subchannels, the joint optimization of data routes
and power allocations can be cast in an efficiently solvable
convex form [13]. However, when the subchannels used by
the nodes are not restricted to be orthogonal and the rates
are chosen from a discrete set, a technique called nonlinear
column generation is used in [14] to obtain optimal data routes
and power allocations. To exploit the broadcast feature of the
wireless medium, a locally optimal solution for data routes
and power allocation is obtained in [15]. Therein, the nodes
use superposition coding for transmission and the design is
performed using the GP framework. An improvement on the
design in [15] is proposed in [16] by allowing the nodes to
reduce interference using a successive cancellation technique.
Additional performance gains in OFDMA networks have been
sought by incorporating more functionalities in the joint design
of the network, e.g., [17], [18]. In [17], a heuristic algorithm is
used for performing, possibly suboptimal, routing, scheduling
and power allocation for networks in which each node has a
prescribed role, either a source, a destination or a relay, and
each subchannel is exclusively used by at most one node. A
survey on recent cross-layer designs can be found in [18].

In this paper, we consider joint routing, scheduling and
power allocation (JRSPA) in a generic OFDMA-based network
in which each subchannel is scheduled to be used exclusively
by one node at any given time instant. Such scheduling
facilitates the design of the network and ensures that the
transmissions of the nodes do not interfere with each other.
Scenarios in which a channel is used simultaneously by
multiple nodes have been considered in [19] and [20]. For
the networks considered herein, the design problem is solved
by a central entity that has access to the channel gains and
that provides the nodes with the signalling parameters.

Two instances of networks are considered. In the first
instance, the subchannels are time-shared over multiple links,
as in the Long Term Evolution (LTE) systems framework [21],
whereas in the second instance time-sharing is not allowed,
and each subchannel is exclusively assigned to one link
throughout the signalling interval, as in current cellular net-
works [3]. When time-sharing is allowed, the scheduling
variables assume continuous values, and the design problem
in this case is referred to as “continuous JRSPA”. By changing
the design variables, this problem is cast in a convex form that
can be solved efficiently to yield the set of all the rates that
can be reliably communicated over a given OFDMA-based
wireless network, and the data routes, subchannel schedules

and power allocations that achieve them. In contrast, when
time-sharing is not allowed, the scheduling variables assume
binary values, and result in a complex mixed integer opti-
mization problem [3], which we refer to as “binary JRSPA”.
To alleviate the difficulty that arises in the latter case, we

develop bounds on the rates that can be achieved in the
binary scheduling case. To do so, we first note that, because
continuous scheduling is a relaxation of binary scheduling,
the weighted-sum rates it achieves constitute an upper bound
on the weighted-sum rates achieved by its binary counterpart.
To develop lower bounds, we observe that normalizing and
rounding the (optimal) continuous schedules obtained in the
case of continuous scheduling yields, potentially suboptimal,
binary schedules. With these schedules fixed, the JRSPA
design problem is shown to be convex and is used to obtain
the first lower bound. To develop another lower bound, the
restriction of the schedules to be binary is captured by im-
posing a set of constraints on the power allocations. Although
the resulting formulation is non-convex, by manipulating it,
the JRSPA design problem is cast in a form that is amenable
to an efficient GP-based approximation technique [22]. This
technique yields locally optimal routes and power allocations,
which are subsequently used to recover the binary schedules.
Numerical results show that networks that utilize time-sharing
can achieve significantly higher rates than networks in which
time-sharing is not allowed, and that the advantage of time-
sharing becomes more pronounced as the network size in-
creases. When time-sharing is not allowed, numerical results
suggest that the gap between the lower bounds and the true
maximum is usually small, specially at low signal-to-noise-
ratios (SNRs).

In comparison with [9], in this paper we incorporate routing
jointly with scheduling and power allocation in the design
framework, and provide a GP-based lower bound for the
case with no time-sharing, which is not considered in [9].
In comparison with [4], we consider joint routing, scheduling
and power allocations, whereas in [4] only power allocation
is considered. In particular, in [4] no relaying or any of the
associated routing and scheduling constraints are considered.
Furthermore, in this paper we provide a complexity analysis
for all considered schemes and also equivalent self-concordant
formulations to bound the number of Newton iterations re-
quired for solving the optimization problems that underlie our
cross-layer designs.

The paper is organized as follows. In Section II, we provide
the network flow and communication models. In Section III,
we provide mathematical characterization of the constraints
that should be satisfied by the design variables, and subse-
quently a preliminary version of the JRSPA design problem is
formulated. The case of continuous scheduling is considered
in Section IV, and a convex formulation that yields the jointly
optimal data routes, subchannel schedules and power alloca-
tions is provided. The case of binary scheduling is considered
in Section V, and formulations for obtaining lower bounds
on the weighted-sum rates that can be achieved in this case
are developed. The computational complexity of the proposed
designs are examined in Section VI. Section VII provides
numerical examples and Section VIII concludes the paper.
GP definitions, analyses pertaining thereto and equivalent self-
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Fig. 1: Network schematic with N = 3, L = 6, K = 4 and
D = 1.

concordant formulations are provided in the appendices.

II. SYSTEM MODEL

We consider a generic OFDMA-based wireless network
of N nodes and L directed links. Each node is assumed
to have one transmit and one receive antenna, and a power
budget, Pn, n ∈ N � {1, 2, · · · , N}. In addition, each
node is assumed to be capable of simultaneously transmitting,
receiving and relaying data to other nodes using the decode-
and-forward scheme. It will be shown hereinafter that this
assumption encompasses cases in which some nodes are
constrained to performing a subset of these tasks. For practical
considerations, the relaying nodes are assumed to operate
in the half duplex mode, whereby each node uses distinct
physical channels for transmission and reception.

The available OFDMA frequency spectrum, W0, is divided
into K narrowband subchannels, each of bandwidth W = W0

K .
The K subchannels are assumed to remain essentially constant
during the entire signalling interval. The set of all destination
nodes is denoted by D � {1, 2, · · · , D}, and the set of all
links is denoted by L � {1, . . . , L}, where L = N(N − 1).
The sets of incoming and outgoing links of node n ∈ N are
denoted by I(n) and O(n), respectively. Each link � ∈ L is
composed of K subchannels, each with a complex coefficient,
h�k, k ∈ K � {1 · · · ,K}. This network can be represented by
a directed graph with N vertices and LK edges, which are
weighted by the subchannel gains, {|h�k|2}. An instance of
such a network with N = 3 nodes, L = 6 directed links and
K = 4 subchannels is depicted in Figure 1. The connectivity
of the graph can be characterized by the incidence matrix,
A = [an�], where an� = 1 if � ∈ O(n), an� = −1 if � ∈ I(n)
and an� = 0 otherwise [13].

To maximize the network utility, the routes taken by each
data stream, the schedules needed for assigning subchannels
to links, and the power and the rates assigned to each trans-
mission must be judiciously determined. These decisions have
traditionally been considered separately albeit significantly
higher gains can be achieved when these decisions are made

jointly. This task will be the focus of the following sections:
In Section III we will provide an optimization framework for
the joint design and in Sections IV and V this framework will
be used to obtain bounds on the maximum weighted-sum rate
that can be supported by the network.

III. THE OPTIMIZATION FRAMEWORK

In this section we will provide the design objective and
a characterization of the constraints that must be satisfied
by feasible data routes, subchannel schedules and power
allocations.

A. System Objective

Let s(d)n be the rate of the data stream injected into node
n ∈ N and intended for destination d ∈ D, and let w(d)

n

be the non-negative weight assigned to s
(d)
n . Our objective

is to maximize the weighted-sum of the rates injected into
the network, i.e., max

∑
d∈D

∑
n∈N ,n�=dw

(d)
n s

(d)
n , for some

given {w(d)
n } satisfying 1

D(N−1)

∑
d∈D

∑
n∈N\{d}w

(d)
n = 1.

A particular weight assignment is when all rates are assigned
the same weight, i.e., w(d)

n = 1, for all n ∈ N and d ∈ D.
From a practical perspective, assigning weights to injected

rates provides a convenient means for controlling the quality
of service (QoS) offered to various network destinations; a
higher weight implies a higher priority to the corresponding
rate. Such weights are typically assigned a priori, but can
be adapted to meet variations in the QoS requirements [10].
Another advantage of considering weighted-sum rates is that
varying the weights over the unit simplex enables us to eval-
uate the region of all injected rates that can be communicated
over the network during a signalling interval. To see the utility
of assigning weights to rates rather than destinations, we
note that, since there are multiple sources, a destination may
wish to assign different priorities to different sources. Hence,
assigning weights to rates is more general than assigning them
to destinations.

B. System Constraints

To ensure realizability of the prospective design, data routes
must satisfy network layer constraints, whereas subchannel
schedules and power allocations must satisfy medium access
control (MAC) layer constraints. The constraints from both
network and MAC layers are coupled by the capacity of each
wireless link, which imposes a physical layer constraint. These
constraints, their implications, and their interdependence will
be elucidated in this section.

1) Routing Constraints: Characterizing the data routes be-
tween various source-destination pairs can be effected through
the data flows on all subchannels of each link. The flows
are distinguished by the intended destination. In particular,
let x(d)�k be the data flow intended for destination d ∈ D on
subchannel k ∈ K of link � ∈ L. The flows, {x(d)�k }, and
the injected rates, {s(d)n }, are related by the flow conservation
law, which must be satisfied at each node in the network.
This law stipulates that the sum of all flows intended for
each destination d ∈ D at each node must be equal to
zero [13]. This guarantees the existence of continuous routes
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between sources and destinations. Hence, to obtain the routes
that enable the maximum weighted-sum rate to be achieved,
we will include {x(d)�k } in the cross-layer design framework.
Using the incidence matrix defined in Section II to distinguish
between incoming and outgoing links, it can be seen that
{x(d)�k } and {s(d)n } must satisfy the following constraints:∑
�∈L

∑
k∈K

anlx
(d)
�k = s(d)n , ∀n ∈ N , ∀d ∈ D, n �= d. (1)

Successive application of the flow conservation law yields that
the total data rate received by any destination node d ∈ D is
given by s

(d)
d = −∑

n∈N\{d} s
(d)
n , where \ is the set minus

operation. The fact that s(d)d is a negative quantity implies that
this rate “leaves” the network.

Injected rates, {s(d)n }n�=d, and data flows, {x(d)�k }, must be
non-negative. Hence,

x
(d)
�k ≥ 0, ∀� ∈ L, ∀k ∈ K, ∀d ∈ D, (2)

s(d)n ≥ 0, ∀n ∈ N , ∀d ∈ D, n �= d. (3)

For mathematical tractability, the source nodes will be as-
sumed to have an infinite backlog, and thus they always have
data ready for transmission [18].

2) Scheduling Constraints: To characterize the constraints
that must be satisfied by subchannel schedules, let c�k be a
variable that determines the fraction of time during which
link � ∈ L is scheduled to use subchannel k ∈ K. When time-
sharing is allowed, {c�k} assume continuous values, whereas
when time-sharing is not allowed, {c�k} assume binary values.
Hence, with time-sharing,

c�k ∈ [0, 1], ∀� ∈ L, ∀k ∈ K, (4)

and without time-sharing,

c�k ∈ {0, 1}, ∀� ∈ L, ∀k ∈ K. (5)

In the considered OFDMA structure, interference is avoided
by restricting each subchannel to be used at most once across
the entire network [23]. Hence, with (4) or (5) satisfied,
depending on whether time-sharing is allowed or not, this
requirement can be expressed as∑

�∈L
c�k ≤ 1, ∀k ∈ K. (6)

3) Power Allocation Constraints: To determine the con-
straints that must be satisfied by any feasible power allocation,
let p�k denote the power allocated to subchannel k ∈ K of
link � ∈ L. The elements of {p�k} must satisfy

p�k ≥ 0, ∀� ∈ L, ∀k ∈ K. (7)

In a practical network, each node n ∈ N has a power budget,
Pn, which bounds the total power allocated by each node on
outgoing links and subchannels. This constraint can be written
as ∑

k∈K

∑
�∈O(n)

c�kp�k ≤ Pn, ∀n ∈ N . (8)

In writing (8), we have used the fact that only the subchannels
scheduled to outgoing links contribute to the power consumed
by every node.

4) Capacity Constraints: The data routes, subchannel
schedules and power allocations are coupled by the maximum
rate that can be reliably communicated on the subchannels
of each link, i.e., subchannel capacities. In other words, the
aggregate flow on each subchannel k ∈ K, of each link � ∈ L,∑D

d=1 x
(d)
�k , must not exceed the capacity of this subchannel.

Assuming that the nodes use Gaussian signaling, the capacity
of subchannel k ∈ K of link � ∈ L can be expressed as
W log2

(
1 + p�k|h�k|2

WN0

)
, where N0 is the spectral density of

the additive white Gaussian noise at destination nodes. When
the k-th subchannel is used on the �-th link for a fraction c�k of
the signalling interval, the aggregate flow on this subchannel
must not exceed Wc�k log2

(
1 + p�k|h�k|2

WN0

)
, that is,

∑
d∈D

x
(d)
�k ≤Wc�k log2

(
1+

p�k|h�k|2
WN0

)
, ∀� ∈ L, ∀k ∈ K. (9)

The following remark exposes the generality of the consid-
ered model.

Remark 1 (Special Configurations).

• Prohibiting a node from being a source can be accom-
plished by setting its injected rate to zero, and prohibiting
a node from being a destination can be accomplished by
excluding its index from D.

• Restricting a node to be a source can be accomplished
by setting all the subchannel gains of incoming links to
zero. Likewise, restricting a node to be a destination can
be accomplished by setting all the subchannel gains of
outgoing links to zero.

IV. THE CASE OF CONTINUOUS JRSPA: OPTIMAL DESIGN

In this section we consider the case when subchannels can
be time-shared among multiple links. This case corresponds
to the situation in which {c�k} satisfy the constraints in (4).
Combining the objective in Section III-A with the the con-
straints in (1)–(4) and (6)–(9), the JRSPA design problem can
be cast as the following optimization problem:

max
{s(d)n },{x(d)

�k },{c�k},{p�k}

∑
d

∑
n,n�=d

w(d)
n s(d)n (10a)

subject to∑
�∈L

∑
k∈K

an�x
(d)
�k = s(d)n , ∀n ∈ N , ∀d ∈ D, n �= d, (10b)

x
(d)
�k ≥ 0, ∀� ∈ L, ∀k ∈ K, ∀d ∈ D, (10c)

s(d)n ≥ 0, ∀n ∈ N , ∀d ∈ D, n �= d, (10d)∑
d∈D

x
(d)
�k ≤Wc�k log2

(
1 +

p�k|h�k|2
WN0

)
,

∀� ∈ L, ∀k ∈ K, (10e)

c�k ∈ [0, 1], ∀� ∈ L, ∀k ∈ K, (10f)

p�k ≥ 0, ∀� ∈ L, ∀k ∈ K, (10g)∑
�∈L

c�k ≤ 1, ∀k ∈ K, (10h)

∑
k∈K

∑
�∈O(n)

c�kp�k ≤ Pn, ∀n ∈ N . (10i)
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The objective and the constraints in this formulation are linear,
except the constraints in (10e) and (10i). For the constraint
in (10e), the left hand side (LHS) is linear. However, as can be
readily verified by direct computation of the Hessian matrix,
the right hand side (RHS) of (10e) is not jointly concave in
(c�k, p�k). For the constraint in (10i), the RHS is linear, but
the LHS is not jointly convex in c�k and p�k, as can be verified
by direct computation of the Hessian matrix.

The non-convexity of (10e) and (10i) renders the JRSPA
design in (10) difficult to solve. This difficulty can be circum-
vented by using the following change of variables. Let

y�k = c�kp�k, ∀� ∈ L, ∀k ∈ K. (11)

Since {c�k} are nonnegative, it can be seen that this change of
variables yields a one-to-one mapping from {y�k} to {p�k};
when c�k = 0, p�k can be set to zero without loss of optimality.
A similar change of variables was used in [9] in a different
optimization framework. Using {y�k} instead of {p�k}, the

RHS of (10e) can be expressed as Wc�k log2

(
1 + y�k|h�k|2

c�kWN0

)
.

We now recall the following result from [24]. Let g(u) be
a function and f(t, u) be its perspective: f(t, u) � tg

(
u
t

)
.

Then g(u) is concave in u if and only if f(t, u) is concave

in (t, u). Now, Wc�k log2

(
1 + y�k|h�k|2

c�kWN0

)
is the perspective

of W log2

(
1 + y�k|h�k|2

WN0

)
. Since this function is concave in

y�k, we conclude that Wc�k log2

(
1+ y�k|h�k|2

c�kWN0

)
is concave in

(c�k, y�k).
Using this observation and the change of variables in (11),

the JRSPA problem can be cast in the following convex form:

max
{s(d)n },{x(d)

�k },{c�k},{y�k}

∑
d

∑
n,n�=d

w(d)
n s(d)n (12a)

subject to∑
�∈L

∑
k∈K

an�x
(d)
�k = s(d)n , ∀n ∈ N , ∀d ∈ D, n �= d, (12b)

x
(d)
�k ≥ 0, ∀� ∈ L, ∀k ∈ K, ∀d ∈ D, (12c)

s(d)n ≥ 0, ∀n ∈ N , ∀d ∈ D, n �= d, (12d)∑
d∈D

x
(d)
�k ≤Wc�k log2

(
1 +

y�k|h�k|2
c�kWN0

)
,

∀� ∈ L, ∀k ∈ K, (12e)

c�k ≥ 0, y�k ≥ 0, ∀� ∈ L, ∀k ∈ K, (12f)∑
�∈L

c�k ≤ 1, ∀k ∈ K, (12g)

∑
k∈K

∑
�∈O(n)

y�k ≤ Pn, ∀n ∈ N . (12h)

From this formulation it can be seen that the objective is
linear and all, but (12e), are linear constraints. However, we
have shown that (12e) is also convex. Hence, we conclude
that (12) is a convex optimization problem which can be
solved efficiently. Being strictly feasible, it can be seen that
the global optimal solution of this problem can be found in
polynomial time [24].

V. THE CASE OF BINARY JRSPA: EFFICIENTLY

COMPUTABLE BOUNDS

The difference between continuous and binary JRSPA is
induced by the scheduling constraints: In continuous JRSPA,
the scheduling variables can take on any value in the interval
[0, 1], whereas in the binary JRSPA, these variables can
be either 0 or 1. This difference renders solutions of the
continuous JRSPA not necessarily feasible for the binary one.
Having considered the continuous case in Section IV, in this
section we consider the binary case, i.e., the case in which
time-sharing is not allowed. In this case the JRSPA problem
in (10) will be reformulated as

max
{s(d)n },{x(d)

�k },{c�k},{p�k}

∑
d

∑
n,n�=d

w(d)
n s(d)n , (13a)

subject to (10b)–(10e) and (10g)–(10i),

c�k ∈ {0, 1}, ∀� ∈ L, ∀k ∈ K. (13b)

This problem is in the form of mixed integer non-linear
programming and, because of the binary constraints in (13b),
can be shown to be computationally prohibitive, even for
relatively small networks. To avoid solving (13) directly,
we will develop efficiently computable, and relatively tight,
bounds on the weighted-sum rate that it yields.

Before developing these bounds, we note that, for any given
set of subchannel schedules, {c�k}, the optimization problem
in (13) is convex. Hence, its global optimal can be obtained by
solving it for all possible choices of {c�k} and choosing the set
that yields the maximum weighted-sum rate. The complexity
of this approach is exponential in KL, cf. Section VI.

An upper bound on the weighted-sum rate yielded by (13)
can be readily obtained by noting that the formulation in (12)
corresponds to a relaxation of the formulation in (13). Since
the formulation in (12) is convex, it can be seen that, for
a given set of weights, {w(d)

n }, it yields a rate vector that
dominates the one yielded by (13) for the same set of weights.
In other words, (12) yields an outer bound on the set of rates
achieved by (13).

A lower bound on the weighted-sum rate yielded by (13)
can obtained by fixing any feasible set of binary of binary
schedules, {c�k}, that satisfy (12g) and solving the resulting
convex problem. One way to select the binary schedules is by
normalizing and rounding the continuous schedules generated
by the convex formulation in (12).

Another lower bound on the weighted-sum rate yielded
by (13) can obtained by inducing the effect of binary schedules
through a set of constraints on the power allocations. This
approach results in a new formulation that, despite being non-
convex, it shares many of the features of the GP-standard
form, cf. Appendix A-1, and is amenable to the monomial
approximation technique in Appendix A-2. This approach and
the one based on rounding will be described next.

A. The Rounding-Based Approach

In this approach, we consider the continuous subchannel
schedules, ĉ�k ∈ [0, 1], ∀� ∈ L, ∀k ∈ K, obtained from the
convex formulation in (12). To construct a set of, potentially
suboptimal, binary schedules, {c̃�k} from continuous ones,
{ĉ�k}, for every k ∈ K, we set the element of {c̃�k}L�=1

corresponding to the largest element of {ĉ�k}L�=1 to 1 and
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the other elements to 0; i.e.,

c̃�k =

⌊
ĉ�k

max�′∈L ĉ�′k

⌋
, ∀� ∈ L, ∀k ∈ K. (14)

By construction, the elements of {c̃�k} satisfy the schedul-
ing feasibility constraints in (13), i.e., (10h) and (13b), and
can hence be used as if they were the optimal subchannel
schedules. With {c̃�k} fixed, the JRSPA problem in (13) can
be cast in the following convex form:

max
{s(d)n },{x(d)

�k },{p�k}

∑
d∈D

∑
n∈N ,n�=d

w(d)
n s(d)n , (15a)

subject to∑
�∈L

∑
k∈K

an�x
(d)
�k = s(d)n , ∀n ∈ N , ∀d ∈ D, n �= d, (15b)

x
(d)
�k ≥ 0, ∀� ∈ L, ∀k ∈ K, ∀d ∈ D, (15c)

s(d)n ≥ 0, ∀n ∈ N , ∀d ∈ D, n �= d, (15d)
∑
d∈D

x
(d)
�k ≤Wc̃�k log2

(
1 +

p�k|h�k|2
WN0

)
,

∀� ∈ L, ∀k ∈ K, (15e)

p�k ≥ 0, ∀n ∈ N , ∀k ∈ K, (15f)∑
k∈K

∑
�∈O(n)

c̃�kp�k ≤ Pn, ∀n ∈ N . (15g)

Since the schedules {c̃�k} are fixed, the formulation in (15)
can be seen to be convex. Since this formulation is based
on potentially suboptimal schedules, the weighted-sum rate
it generates is a lower bound on the corresponding sum rate
generated by the problem with binary schedules.

B. The GP-Based Approach

We now consider the other lower bound on the weighted-
sum rate achieved by the formulation in (13). We begin by
noting that the scheduling constraints in (13b) and (10h) imply
that subchannel k ∈ K can be used on at most one link.
From (9), it can be seen that, when c�k is equal to zero,
setting p�k = 0 does not incur loss of optimality. Hence, the
constraints in (13b) and (10h) can be enforced by allowing
at most one link to have a strictly positive power on any
subchannel k ∈ K. In other words, the binary scheduling
constraints are equivalent to

p�kp�′k = 0, ∀k ∈ K, ∀�, �′ ∈ L, � �= �′. (16)

Enforcing this constraint yields to at most one ‘active’ link per
subchannel, which makes the recovery of the binary schedules
from the power allocations straightforward.

The replacement of the constraints in (13b) and (10h) with
the ones in (16) does not affect the flow conservation in (10b)
and the non-negativity constraints in (10c), (10d) and (10g).
However, this replacement affects the capacity constraints
in (10e) and the power budget constraints in (10i). Since,
from (16), only one element in {p�k}L�=1 is strictly positive
for any subchannel k ∈ K, the constraints in (10e) can be
expressed as

∑
d∈D

x
(d)
�k ≤W log2

(
1 +

p�k|h�k|2
WN0

)
, ∀� ∈ L, ∀k ∈ K,

(17)

and the constraint in (10i) can be expressed as∑
k∈K

∑
�∈O(n)

p�k ≤ Pn, ∀n ∈ N . (18)

Replacing the constraints in (10e), (13b), (10h) and (10i)
with those in (16)–(18) yields an analogous formulation in
which the binary schedules are accounted for by equivalent
constraints on the power allocations of the links. This formu-
lation can be expressed as

max
{s(d)n },{x(d)

�k },{p�k}

∑
d∈D

∑
n∈N ,n�=d

w(d)
n s(d)n , (19a)

subject to (10b)–(10d), (19b)
∑
d∈D

x
(d)
�k ≤W log2

(
1 +

p�k|h�k|2
WN0

)
,

∀� ∈ L, ∀k ∈ K, (19c)∑
k∈K

∑
�∈O(n)

p�k ≤ Pn, ∀n ∈ N , (19d)

P�k ≥ 0, ∀� ∈ L, ∀k ∈ K, (19e)

p�kp�′k = 0, ∀k ∈ K, ∀�, �′ ∈ L, � �= �′. (19f)

The optimization problem in (19) is nonconvex and there-
fore difficult to solve. However, this problem would have
been easier to solve had it been possible to ignore the ‘1’
in the argument of the log(·) function in (19c), for instance
when p�k|h�k|2

WN0
is sufficiently large [4]. Unfortunately, such an

approximation is not possible in the current context because
the constraints in (19f) imply that, while one link operates at
high SNR, the others must operate at zero SNRs. Indeed, one
of the tasks underlying the formulation in (19) is to determine
which link powers ought to be set to zero, and since this
information is not available a priori one cannot use the high-
SNR approximation methodology in [4].

The optimization problem in (19), although nonconvex, is
amenable to GP-based monomial approximation. In order to
use this approximation, we use the exponential function to
map {s(d)n } and {x(d)�k } to {t(d)n } and {r(d)�k }, respectively. In
particular, we have

s(d)n = log2 t
(d)
n , ∀n ∈ N , ∀d ∈ D, n �= d, (20)

x
(d)
�k =W log2 r

(d)
�k , ∀� ∈ L, ∀k ∈ K, ∀d ∈ D. (21)

These are one-to-one mappings which enable the original
variables to be readily recovered from the new ones. Using
the new variables, the objective and the constraints in (19a)–
(19b) can be readily expressed in GP compatible forms; cf.
Appendix A-1. For the constraints in (19f), although the LHSs
are in the form of monomials, they are not compatible with
the GP framework because their RHSs are not equal to 1.
This difficulty can be readily alleviated by replacing (16)
with constraints of the form p�kp�′k ≤ ε, where ε is a small
positive number. This replacement will expand the feasible
region of the considered optimization problem in (19). Now,
using the new variables, the capacity constraints in (19c) can
be expressed as

WN0

∏
d∈D

r
(d)
�k ≤WN0+p�k|h�k|2, ∀� ∈ L, ∀k ∈ K. (22)
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The RHS of each constraint in (22) is not a monomial and
hence, does not conform to the GP framework. To overcome
this difficulty, we invoke the monomial approximation method
described in Appendix A-2. Using this method, the expression
in (29) is used to approximate the RHSs of (22) with monomial
functions near some initial power allocation, {p(0)�k }.

We now consider the remaining constraints. The non-
negativity constraints on the allocated powers in (19e) are
inherently incorporated in the GP framework. Finally, the
constraints in (19d) are compatible with the GP standard form.

Now, assuming that a feasible initial power allocation,
{p(0)�k }, is given, the maximum weighted-sum rate around
{p(0)�k } can be approximated by solving the following GP:

max
{t(d)n },{r(d)�k },{p(k)

n }

∏
d∈D

∏
n∈N ,n�=d

(
t(d)n

)w(d)
n , (23a)

subject to (23b)∏
�∈L

∏
k∈K

(
r
(d)
�k

)Wan� = t(d)n , ∀n ∈ N , ∀d ∈ D, n �= d, (23c)

t(d)n ≥ 1, ∀n ∈ N , ∀d ∈ D, n �= d, (23d)

r
(d)
�k ≥ 1, ∀� ∈ L, ∀k ∈ K, ∀d ∈ D, (23e)

WN0

∏
d∈D

r
(d)
�k ≤ q�k

(
p�k/p

(0)
�k

)θ�k , ∀k ∈ K, ∀� ∈ L, (23f)

∑
k∈K

∑
�∈O(n)

p�k ≤ Pn, ∀n ∈ N , (23g)

p�kp�′k ≤ ε, ∀k ∈ K, ∀�, �′ ∈ L, � �= �′, (23h)

where q�k =WN0+p
(k)
0,n|h(k)nn′ |2, and θ�k =

p
(k)
0,n|h(k)

nn′ |2
q�k

. Using
a standard logarithmic transformation, (23) can be readily
converted to an efficiently solvable convex form [22].

1) Iterative Monomial Approximation: Finding the global
solution for the nonconvex problem in (19) is difficult, whereas
solving the approximated problem in (23) is straightforward.
To exploit this fact, we incorporate the formulation in (23) in
an iterative algorithm. In particular, starting from a feasible
{p(0)�k }, the problem in (23) is transformed into a convex form
and solved using an interior point solver. The output power
allocation resulting from solving this problem is then used
as the initial power allocation in the following iteration. This
technique is referred to as the single condensation method and,
under relatively mild conditions, is guaranteed to converge
to a solution that satisfies the KKT conditions corresponding
to (19) with (19f) replaced with (23h), cf. Appendix B. Since
the problem in (19) with (19f) replaced with (23h) is not
convex, the KKT conditions are only necessary for optimality
and the resulting solution is a lower bound on the achievable
weighted-sum rate on the expanded feasible region. This
implies that, if the initial point for the iterative monomial ap-
proximation technique happens to be appropriately chosen, the
GP approach would yield the optimal design. Unfortunately,
finding such an initial point depends on the network structure
and is generally elusive.

2) Obtaining a Feasible Solution: The solution yielded
by the relaxation in (23h) is projected onto the feasible
region of the original problem in (19). In particular, let {p̂�k}
be the power allocation attained by the iterative monomial
approximation in Section V-B1. Then, the projection of {p̂�k}

onto the feasible region of (19) can expressed as

p̃�k =

⌊
p̂�k

max�′∈L p̂�′k

⌋
max
�′∈L

p̂�′k, ∀� ∈ L, ∀k ∈ K. (24)

We now use {p̃�k}, as if they were the optimal power
allocations, to retrieve the subchannel schedules. In particular,
from (16), it can be seen that, c�k = 0 when p�k = 0
and c�k = 1 when p�k > 0. Now, with {p̃�k} fixed, the
optimal routes can be obtained by solving (19) for {x(d)�k }.
In particular, {x(d)�k } can be obtained by solving the following
linear program:

max
{s(d)n },{x(d)

�k }

∑
d∈D

∑
n∈N\{d}

w(d)
n s(d)n , (25a)

subject to

s(d)n ≥ 0, ∀n ∈ N , ∀d ∈ D, n �= d, (25b)∑
�∈L

∑
k∈K

an�x
(d)
�k = s(d)n , ∀n ∈ N , ∀d ∈ D, n �= d, (25c)

x
(d)
�k ≥ 0, ∀� ∈ L, ∀k ∈ K, ∀d ∈ D,

(25d)∑
d∈D

x
(d)
�k ≤W log2

(
1 +

p̃�k|h�k|2
WN0

)
,

∀� ∈ L, ∀k ∈ K. (25e)

Since this problem uses potentially suboptimal power alloca-
tions, the weighted-sum rates it generates represent a lower
bound on those generated by the original problem in (19).

VI. COMPLEXITY ANALYSIS

In this section we will examine the computational complex-
ity required for solving the problems in (12) and (13) for the
cases of continuous and binary scheduling, respectively, as
well as the computational complexity required for computing
the lower bounds in Sections V-A and V-B.

The formulations for the cross-layer designs provided in
Sections IV and V are convex and hence highly-efficient
interior-point methods (IPMs) can be utilized to attain their
global optimal. The philosophy that underlies IPMs is to use
the objective and the inequality constraints to synthesize a
log-barrier function, which is then minimized using Newton’s
method along a central path. The complexity of each Newton
step along this path can be shown to grow with the cube of the
number of constraints, and the number of Newton steps can
be bounded if the log-barrier function possesses the so-called
self-concordance property [25], cf. Appendix C.

Unfortunately, the log-barrier functions corresponding to the
formulations in (12), (15) and (23) are not self-concordant.
Hence, to assess the complexity of solving them, in Ap-
pendix C we introduce auxiliary constraints that do not affect
the solution, but enables us to cast the log-barrier function in
a self-concordant form. Using this approach we arrive at the
following results.

Proposition 1. The complexity of solving (12), (15) and (23)
is of order O(m3.5), where

• for the optimal JRSPA with time-sharing (Continuous
Scheduling),

m = LK(4 +D) +N +K +D(N − 1);
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• for the lower bound on binary JRSPA (Rounding-Based
Approach),

m = LK(3 +D) +N +D(N − 1); and

• for the lower bound on binary JRSPA (GP-Based Ap-
proach),

m = LK(3 +D + (L− 1)/2) +N +D(N − 1).

Using exhaustive search over the binary schedules, the com-
plexity of solving the optimal JRSPA without time-sharing
(cf. (13)) is bounded by

O((L + 1)K(LK(3 +D) +N +D(N − 1))3.5).

Proof: See Appendix C.
Note that the GP-based lower bound is obtained by solving

a sequence of GPs of the form in (23) iteratively; the compu-
tational complexity of each iteration is provided in the third
statement of Proposition 1. Simulation results provided herein
and in [4], [26]–[29] suggest that the GP-based approach
converges within 100 iterations, irrespective of the number
of nodes, N .

Proposition 1 shows that the computational complexity
required for finding the optimal JRSPA design with time-
sharing and the lower bounds on the optimal JRSPA without
time-sharing are polynomial in the number of nodes, N , and
subchannels,K . Hence, the complexities of the optimal design
and the lower bounds are relatively small and comparable. In
particular, the computational complexity of the optimal JRSPA
with time-sharing and the rounding-based lower bound on
the optimal JRSPA without time-sharing grows as K3.5N7,
whereas the corresponding complexity for the GP-based lower
bound grows as K3.5N14. In contrast, the computational
complexity required for finding the optimal JRSPA without
time-sharing is polynomial in N , but exponential in K .

VII. NUMERICAL RESULTS

In this section we provide numerical examples to eval-
uate the performance of the cross-layer design approaches
presented in Sections IV and V for both continuous and
binary scheduling frameworks. We present four examples. In
the first example, we assess the performance of the optimal
JRSPA design with time-sharing and compare it with its
binary rounding-based counterpart. In the second example, we
apply the design techniques of Sections IV and V in a 10-
node LTE-based network. We illustrate the sum rate achieved
by these techniques and the corresponding routes, schedules
and power allocations. In the third example, we consider the
case of binary scheduling in a 4-node network. We compare
the rounding-based and the GP-based lower bounds with the
upper bound, corresponding to continuous scheduling, and the
optimal binary schedules, obtained by exhaustive search. In
the last example, the region of rates achievable by the design
techniques of Sections IV and V is plotted for an exemplary
4-node network. For all examples, the mathematical programs
are solved using the CVX package [30] with underlying
Sedumi [31] and MOSEK [32] solvers.

The nodes of the wireless networks considered in this
section are randomly dropped on a 100× 100 m2 square and
assumed to have identical power budgets, Pn = P, n =

1, · · · , N . In accordance with the IMT-Advanced scenario
[21], the available bandwidth, W0, is set to 20 MHz and
the thermal noise power density is set to -174 dBm/Hz. The
subchannels are assumed to be standard quasi-static frequency-
flat Rayleigh fading with log-normal shadowing and pathloss
components. The gains of these subchannels are given by

|h�k|2 = 10−0.1S�−0.1ρ(�)|h′�k|2, ∀� ∈ L, ∀k ∈ K, (26)

where S� represents the shadowing component, which depends
on the propagation environment urban or otherwise. Using
the non line-of-sight (NLoS) model of indoor hotspot (InH)
scenario in [21], the shadowing component, S�, is assumed
to be Gaussian-distributed in the logarithmic domain with a
mean of 0 dB and a standard deviation of σs = 4 dB. In (26),
ρ(�) represents the pathloss component, which depends on
the length of link �, d�, i.e., the distance between nodes n and
n′. An expression for ρ(�) that conforms to the InH-NLoS
standard model in [21] is ρ(�) = 43.3 log10(d�) + 11.5 +
20 log10(fc) where fc is the carrier frequency in GHz which
is set to fc = 3.4 GHz. The Rayleigh fading component in the
channel model in (26) is captured by |h′�k|2, where h′�k is a
zero mean unit variance complex Gaussian-distributed random
variable.

In implementing the GP-based design, the value of ε
in (23h) is set to 10−4.

Example 1: (Average Performance) In this example, we use
Mont Carlo simulations to assess the average performance of
the optimal JRSPA design with time-sharing in Section IV
and compare it with its binary rounding-based counterpart in
Section V-A and a heuristic algorithm in which the formulation
in (10) is solved with power being equally allocated to
all subchannels. Simulation results are averaged over 100
independent realizations of a network with N = 10 nodes.
Among these nodes, five are set to be source-destination nodes,
i.e., |D| = 5, and the remaining five nodes can only act
as relays. All weights are set equal to one. The number of
directional links is L = 90, and the number of subchannels
available for all links is K = 4.

The sum rates yielded by the optimal JRSPA design with
time-sharing, the rounding-based design and the heuristic algo-
rithm are depicted in Figure 2 for P ranging from 0 to 30 dBm.
From this figure, it can be seen that, both the continuous and
binary designs proposed in Sections IV and V-A, outperform
the heuristic algorithm and as expected, the optimal JRSPA
design with time-sharing yields better performance than its
binary rounding-based counterpart. However, the performance
difference between these designs is relatively small. This
suggests that the average performance of the rounding-based
approach can be close to the optimum binary one, but requires
a significantly less computational effort. �

Example 2: (Performance Evaluation) To illustrate the
routes, schedules and power allocations generated by the
techniques of Sections IV and V, we consider an exemplary
network of N = 10 nodes. Among these nodes, three are set
to be source-destination nodes, i.e., D = {1, 2, 3}, and the
remaining seven nodes can only act as relays. To reduce the
number of optimization variables and avoid over-complicating
the design, we ignore the link between any two nodes with
distance greater than a threshold, dT . For this example, dT is
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Fig. 2: (Example 1) Sum rate generated by optimal, heuristic
and rounding-based JRSPA designs.

set to be half the square root of the total area, that is, for the
considered example dT = 50. This setting results in reducing
the number of directional links available for communication
from L = 90 to L = 42. The number of subchannels is
assumed to be K = 8. Providing all subchannel gains of the
considered network is not possible due to space limitations, but
since these gains are dominated by the pathloss component, in
Figure 3(a) we provide the geographic location of the nodes.
In this figure, the source-destination nodes are the numbered
circles, and the relay nodes are the black circles.

The cross-layer design corresponding to the network under
consideration has 1707 variables of which, 336 are power
variables, 336 are scheduling variables and 1035 are routing
variables.

Our objective in this example is to maximize the sum rate,
i.e., we set w(d)

n = 1, for n, d ∈ {1, 2, 3}, n �= d. Setting
P = 25 dBm, the optimal JRSPA design in (12) yields a sum
rate of 168 megabits per second (Mbps), the rounding-based
approach in (15) yields a sum rate of 130 Mbps, and the GP-
based approach in (23) yields a sum rate of 123.3 Mbps. The
sequential algorithm used to obtain the GP-based lower bound
is initiated at the power allocation of

√
ε for all � ∈ L, k ∈ K

and converges within 12 iterations.
In Figures 3(b), 3(c) and 3(d), we illustrate the routes

yielded by the optimal design with time-sharing, the rounding-
based binary design and the GP-based binary design, respec-
tively. The thickness of any of the links depicted in these
figures is chosen to be proportional to the aggregate data
rate communicated over that link. Although the sum rates
yielded by these designs, are relatively close to each other, the
structure of their routing, scheduling and power allocations are
different. Therefore, it is fathomable that, for some scenarios,
one of these designs may be preferred over other ones due to
its specific structure.

In Figure 4, we provide a comparison between the sum rates
yielded by the optimal JRSPA design with time-sharing, the
rounding-based design, and the GP-based design for various
node power budgets. From this figure, it can be seen that,
for the considered network, the performance of the GP-based
approach is better than that of the rounding-based one for
values of P lower than 22 dBm and for values of P higher
than 22 dBm, the performance of the rounding-based approach
is better than that of the GP-based one. �

Example 3: (Comparison with the Optimal Binary Solution)
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(b) Routing—Optimal continuous (w. time-sharing)
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(c) Routing—Rounding-based binary (w/o time-sharing)
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(d) Routing—GP-based binary (w/o time-sharing)

Fig. 3: Routing by different designs for the 10-node network
in Example 2.
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Fig. 4: (Example 2) Sum rate generated by optimal, rounding-
based and GP-based JRSPA.
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Fig. 5: Topology of the network considered in Example 3.

Since exhaustive search is computationally infeasible for large
networks, to illustrate the relative tightness of the proposed
bounds, in this example we compare our results with the
optimal binary solution obtained through exhaustive search
for a small network with N = 4 nodes; cf. Figure 5. In this
network, two nodes are set to be source-destination nodes, i.e.,
D = {1, 2} and the remaining two nodes are restricted to be
relays only. The number of links and subchannels are L = 12
and K = 2.

We compare the upper and lower bounds yielded by the
formulations in Sections IV and V, respectively, with the true
maximum sum rate obtained by exhaustive search over all pos-
sible binary schedules, i.e., the sum rate that maximizes (13).
This sum rate is obtained by solving a convex optimization
problem analogous to the one in (15) for each feasible (binary)
schedule. The optimal binary schedule is the one which yields
the highest sum rate.

Our objective in this example is to maximize the sum
rate, i.e., we set w(d)

n = 1, for n, d ∈ {1, 2}, n �= d. The
rates achieved by the aforementioned schemes are plotted in
Figure 6 for P ranging from 10 to 40 dBm. This simulation
suggests that, at low values of P , the GP-based approach
provides a higher sum rate than the rounding-based one.
However, at high values of P , the rounding-based approach
yields a higher sum rate than the GP-based one. This is
because, at low values of P , there are fewer good-quality
links and consequently fewer route alternatives. In that case,
the optimal signalling strategy is likely to rely on routes with
subchannel sharing. On the other hand, at high values of P ,
there are more route alternatives and the chances of having
a better performance without sharing subchannels is higher.
Hence, in that region, the performance of the rounding-based
approach is likely to be superior to the performance of the
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Fig. 6: (Example 3) Sum rate generated by upper and lower
bounds and optimal binary design.

GP-based one. This comes in agreement with the behaviour of
the network considered in the previous example, cf. Figure 4.
Extensive numerical experiments suggest that these behaviours
are intimately related to channel gains and network topologies.
To elaborate on this observation, we note that, for the GP-
based approach, the underlying iterative monomial approxi-
mation technique is known to yield a solution that satisfies the
KKT conditions. This implies that this approach would yield
the optimal design had the initial point been appropriately
chosen. Unfortunately, finding such an initial point depends on
the network structure and is generally elusive. In contrast, the
rounding-based approach does not depend on an initial point.
This is because this approach depends on rounding the solution
of a strictly convex problem. In other words, the rounding-
based approach depends solely on the network structure. �

Example 4: (Achievable Rate Region) In this example, we
provide the rate regions that can be achieved by the design
techniques in Sections IV and V for a network with N = 4
nodes and K = 2 subchannels in which two nodes are source-
destination nodes, i.e., D = {1, 2} and the remaining two
nodes act as relays only. The channel gains in this example
are

[|h�k|2]T=10−8×
[
.004 .118 .001 .001 .251 2.69
.012 .01 .001 .017 .01 1.79

0 .37 0 .001 .39 .057
.006 .341 .006 0 .864 .032

]
. (27)

Applying the cross-layer design techniques in Sections IV
and V for all w

(1)
2 and w

(2)
1 in the unit simplex{

(w
(1)
2 , w

(2)
1 )|w(1)

2 ≥ 0, w
(2)
1 ≥ 0, w

(1)
2 + w

(2)
1 = 1

}
, we

obtain the region of all rate tuples (s
(1)
2 , s

(2)
1 ) that can be

achieved over the considered network. For P = 20 dBm, these
regions are shown in Figure 7. Since the optimal continuous
JRSPA design is derived from a convex formulation involving
the pair (s(1)2 , s

(2)
1 ), it is straightforward to see that the region

of rate tuples (s
(1)
2 , s

(2)
1 ) generated by this design is also

convex for any given network. It can be seen from the figure
that the optimal continuous JRSPA design yields a greater rate
region than the GP-based and the rounding-based approaches.
Also it can be seen that, in comparison with the rounding-
based approach, the GP-based approach yields larger values
of s(2)1 for some values of s(1)2 , whereas, for other values of
s
(1)
2 , it yields smaller values of s(2)1 . �
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Fig. 7: Achievable rate region for the network in Example 4
with the channel gains in (27).

VIII. CONCLUSION

In this paper we considered the joint optimization of
data routes, subchannel schedules and power allocations in a
generic OFDMA-based wireless network with an ad hoc topol-
ogy. Two instances of this problem are considered. In the first
instance, subchannels are allowed to be time-shared by multi-
ple links, whereas in the second instance, each subchannel is
exclusively used by one of the links throughout the signalling
duration. The first problem is transformed into an efficiently
solvable convex form. In contrast, the second problem is not
amenable to such a transformation and results in a complex
mixed integer optimization problem that is difficult to solve.
To alleviate this difficulty, we obtained efficiently computable
upper and lower bounds on the weighted-sum rate that can
be reliably communicated over such a network. Numerical
investigations show that the obtained rates are higher when
time-sharing is allowed, and that the lower bounds on rates in
the absence of time-sharing are relatively tight.

APPENDIX A
THE GP STANDARD FORM AND MONOMIAL

APPROXIMATION

1) The GP Standard Form: A GP optimization problem
can be readily transformed to an efficiently solvable convex
one. To provide the standard form of a GP, let z ∈ R

n be
a vector of positive entries. A monomial in z is defined to
be a function of the form c0

∏
i z

αi

i and a posynomial in z
is defined to be a function of the form

∑
k ck

∏
i z

αik
i , where

ck > 0, {αi} and {αik}, are arbitrary constants, k = 0, 1, . . .,
and i = 1, . . . , n. A standard GP is an optimization problem
of the following form with {fi} being posynomials and {gi}
being monomials [4], [22]:

min
z

f0(z),

subject to fi(z) ≤ 1, i = 1, . . . ,m, (28)

gi(z) = 1, i = 1, . . . , p.

2) Monomial Approximation: A monomial approximation
of a differentiable function h(z) ≥ 0 near z(0) is given by its
first order Taylor expansion in the logarithmic domain [22].

Defining βi =
z
(0)
i

h(z(0))
∂h
∂zi

∣∣
z=z(0) , we have

h(z) ≈ h(z(0))

n∏
i=1

( zi

z
(0)
i

)βi

. (29)

This approximation is used to provide a GP approximation of
the cross-layer design problem.

APPENDIX B
CONVERGENCE OF THE SINGLE CONDENSATION METHOD

IN SECTION V-B

In the GP-based approach in Section V-B, the technique in
Appendix A-2 is used to approximate each posynomial on the
RHS of (22) by a monomial. The solution of the GP resulting
from this approximation is then used as an initial point for
the next iteration and so on. The iterates generated by this
sequential algorithm converge to a solution of the KKT system
corresponding to the problem in (19) if the conditions outlined
in [4] and [33] are satisfied. For the affine posynomials on the
RHS of (22), these conditions can be expressed as

1)q�k
(
p�k/p

(0)
�k

)θ�k ≤WN0 + p�k|h�k|2,

2)q�k
(
p�k/p

(0)
�k

)θ�k ∣∣∣
p�k=p

(0)
�k

=WN0 + p�k|h�k|2
∣∣∣
p�k=p

(0)
�k

,

3)
∂
(
q−1
�k

(p
(0)
�k

/p�k)
θ�k

)
∂p�k

∣∣∣
p�k=p∗

�k

= ∂(WN0+p�k|h�k|2)−1

∂p�k

∣∣∣
p�k=p∗

�k

,

where at each iteration q�k = WN0 + p
(0)
�k |h�k|2, θ�k =

p
(0)
�k |h�k|2

q�k
and p∗�k is the power allocation at convergence.

These conditions are known to be satisfied by affine functions
(see e.g., [15]), which guarantees convergence of the single
condensation method.

APPENDIX C
PROOF OF PROPOSITION 1

The proof of Proposition 1 hinges on the assumption that
the log-barrier functions of the problems considered therein
possess the self-concordant property which is defined as
follows:

Definition 1. A function f : R
n → R is said to be self-

concordant if, for all x, v ∈ R
n, s ∈ R such that x+ sv is in

the domain of f and
∣∣∣ ∂3

∂s3 f(x+ sv)
∣∣∣ ≤ 2 ∂2

∂s2 f(x+ sv)3/2. �

A. Proving the First Statement of Proposition 1

To bound the complexity of solving the problem (12),
we begin by noting that its log-barrier function is not self-
concordant. This difficulty can be circumvented by adding the
following auxiliary set of constraints which have no effect on
the actual feasible set or the final solution:

c�k +
y�k|h�k|2
WN0

≥ 0, ∀k ∈ K, � ∈ L. (30)

To construct the log-barrier function, ψ, the sum of the
logarithm of the inequality constraints in (12) and the auxiliary
constraints in (30) is superimposed on the scaled objective
in (12). In particular, using t to denote the non-negative scalar
that multiplies the objective of the log-barrier function of the
IPM, we can write

ψ = φ−
∑
�,k

log

(
c�k log

(
1 +

y�k|h�k|2
WN0c�k

)
−
∑
d

x
(d)
�k

W

)

−
∑
�,k

log
(
c�k +

y�k|h�k|2
WN0

)
, (31)
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φ =− t
∑
n

∑
d

w(d)
n s(d)n −

∑
�,k,d

log(x
(d)
�k )−

∑
n,d

log(s(d)n )

−
∑
�,k

log(c�k)−
∑
�,k

log(y�k)−
∑
k

log
(
1−

∑
�

c�k
)

−
∑
n

log
(
Pn −

∑
�,k

y�k
)
.

The function φ represents the log-barrier function of a
linear optimization problem, which is known to be self-
concordant [24]. It remains to show the self-concordance of
the last two terms of (31). To show this, we add and subtract
2
∑

�,k log c�k to (31). Hence,

ψ = φ− 2 log(c�k)−
∑
�,k

log

(
log

(
1+

y�k|h�k|2
WN0c�k

)
−

∑
d x

(d)
�k

Wc�k

)

− log
(
1 +

y�k|h�k|2
WN0c�k

)
. (32)

Now, the first two terms of (32) are self-concordant. To show
the self-concordance of the last two terms, we note that these
terms can be expressed in the form − log b − log(log b − a),

where a =
∑

d x
(d)
�k

Wc�k
and b = 1 +

y�k|h2
�k|

WN0c�k
. This form is

known to be self-concordant [24], which establishes the fact
that the log-barrier function corresponding to the problem (12)
is self-concordant. We will now use this result to bound the
complexity of the IPM that solves (12).

With the log-barrier function possessing the self-
concordance property, the number of Newton iterations
required to obtain the solution of (12) can be shown
to be proportional to

√
m where m is the number of

inequality constraints. In addition, each Newton step
is known to have a cubic complexity [34]. Hence the
computational complexity of finding the optimal continuous
scheduling-based design in (12) can be bounded by
O((LK(4+D) +N +K +D(N − 1))3.5), which completes
the proof of the first statement of Proposition 1.

B. Proving the Second Statement of Proposition 1

To prove the second statement, we note that the rounding-
based lower bound requires solving (12) followed by solv-
ing (15) with the corresponding fixed rounded schedules.

To bound the complexity of solving (15), we show that
the log-barrier function corresponding to this problem is self-
concordant. To do so, we add the following auxiliary set of
constraints:

1 +
p�k|h2�k|
WN0

≥ 0, ∀� ∈ L, k ∈ K. (33)

Invoking these constraints and arguing along the same lines
as in the proof of the first statement, it can be shown that the
capacity constraints in (15e) can be cast in the self-concordant
form. Using this result the complexity of solving (15) with
IPM can be shown to be bounded by O((LK(3 +D) +N +
D(N − 1))3.5). Details are omitted for brevity.

C. Proving the Third Statement of Proposition 1

Each iteration of the the GP-based approach involves solv-
ing a GP of the form in (23). Such a GP is converted to
a convex problem using a standard exponential change of

variables. Using auxiliary variables to bound the exponentially
transformed variables in (23g), the log-barrier function cor-
responding to (23) can be shown to be self-concordant [24].
Using this result, the complexity of solving the GP in (23) can
be shown to be bounded by O((LK(3 +D + (L − 1)/2) +
N +D(N − 1))3.5). See [24] for more details.

D. Proving the Last Statement of Proposition 1

The optimal solution of (13) can be found by using exhaus-
tive search over all possible binary schedules. Each feasible
schedule, satisfying (10h), corresponds to a situation in which
each subchannel is either not used by any of the L links or
used by one of them. Since there are K subchannels, the
number of possible schedules to search over is (L + 1)K .
For each schedule, a convex optimization problem similar to
the one in (15) is solved using IPM, which implies that the
overall complexity of solving the JRSPA problem in (13) is
bounded by O((L+ 1)K(LK(3 +D) +N +D(N − 1))3.5).
This completes the proof of the last statement of Proposition 1.
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