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Spatial Con�guration of Agile Wireless Networks
with Drone-BSs and User-in-the-loop
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Abstract�Agile networking can reduce over-engineering, costs,
and energy waste. Towards that end, it is vital to exploit all
degrees of freedom of wireless networks ef�ciently, so that
service quality is not sacri�ced. In order to reap the bene�ts of
�exible networking, we propose a spatial network con�guration
scheme (SNC), which can result in ef�cient networking; both
from the perspective of network capacity, and pro�tability. First,
SNC utilizes the drone-base-stations (drone-BSs) to con�gure
access points. Drone-BSs are shifting paradigms of heterogeneous
wireless networks by providing radically �exible deployment
opportunities. On the other hand, their limited endurance and
potential high cost increase the importance of utilizing drone-
BSs ef�ciently. Therefore, secondly, user mobility is exploited via
user-in-the-loop (UIL), which aims at in�uencing users’ mobility
by offering incentives. The proposed uncoordinated SNC is a
computationally ef�cient method, yet, it may be insuf�cient to
exploit the synergy between drone-BSs and UIL. Hence, we
propose joint SNC, which increases the performance gain along
with the computational cost. Finally, semi-joint SNC combines
bene�ts of joint SNC, with computational ef�ciency. Numerical
results show that semi-joint SNC is two orders of magnitude
times faster than joint SNC, and more than 15% pro�t can be
obtained compared to conventional systems.

Index Terms�Unmanned aerial vehicle, user-in-the-loop, agile
network, drone-BS.

I. I NTRODUCTION

EVer-increasing wireless demand is expected to grow in
different dimensions due to extremely varying require-

ments of potential applications, from very low latency to very
high data rate to very high energy ef�ciency. From tactile
internet to internet of things, the future of wireless services
is as exciting as challenging. Hence, densi�cation of wireless
networks seems to be inevitable [1]. On the other hand,
leaning to gross over-engineering comes at a high cost of not
only CAPEX and OPEX1, but also environmental footprint.
Therefore, �exible and agile wireless networking solutions,
which can help reduce over-engineering without compro-
mising quality, gained importance. Among these solutions,
unmanned aerial vehicles, also known as drones, equipped
with some functionalities of terrestrial base stations (drone-
BSs) recently attracted a signi�cant amount of attention [2].

While drone-BSs add a degree of freedom to the deploy-
ment of wireless networks, another emerging research area
is to exploit mobility of users. In the user-in-the-loop (UIL)

This work was supported in part by Huawei Canada Co., Ltd., and in part by
the Natural Sciences and Engineering Council of Canada’s (NSERC) Strategic
Partnership Grants for Projects (SPG-P) program.

The authors are with the Department of Systems and Computer Engineering,
Carleton University, Ottawa, Ontario, Canada (e-mail:firembor, amr.elkeyi,
halimg@sce.carleton.ca).

1Capital expenses (CAPEX) and operational expenses (OPEX).

paradigm, the network operator tries to in�uence the mobility
of users by offering them incentives [3]. UIL schemes can
be adjusted based on the target bene�t of the network, be
it energy ef�ciency or increasing revenue, which makes UIL
another radically �exible networking technique.

In this paper, we investigate the synergy between the de-
ployment of drone-BSs and designing the incentives for UIL
schemes to improve ef�ciency and increase pro�tability of
wireless networks. Cell association, traf�c management, and
load balancing can be thought of as related research areas.
The difference between the previous schemes and this one
is the following: Traditionally, the base station (BS) is �xed
and the locations of users are random. In our case, the base
station is mobile with a varying coverage area, and mobility of
the users isin�uenceabletowards the bene�t of the network.
Hence,spatial network con�guration (SNC)can be performed.

A. Related Works

Bene�ting from agility of low-altitude drone-BS in provid-
ing on-demand capacity for wireless networks can make them
the next frontier of heterogeneous wireless networks [2]. In
most of the studies in the literature, which will be discussed
shortly, either the altitude or the horizontal location of drone-
BSs are assumed to be pre-determined, which makes the
problem very similar to small-cell placement problems. In
contrast, the approach in this paper is based on 3D place-
ment of a drone-BS, i.e., jointly determining altitude and
horizontal location of a drone-BS. This problem is introduced
and ef�ciently solved in [4]. Then, a multi-objective 3D
placement problem considering multi-tenancy, energy ef�-
ciency, caching and congestion release is formulated in [2],
and caching is investigated futher in [5]. Multi-tier drone-
BS placement is investigated to show potential gains in
spectral ef�ciency, throughput, latency and coverage in [6],
and a drone-BS network formation algorithm is developed
in [7] drone by considering 3D placement. Spectrum sharing
between single-tier and multi-tier drone-BSs is investigated to
determine optimal density of drone-BSs in [8] by assuming
pre-determined horizontal locations for drone-BSs. Terrestrial
users are clustered to determine placement of drone-BSs in the
horizontal domain in [9]. In [10], assuming a �xed coverage
area for drone-BSs, a polynomial-time algorithm is developed
to provide maximum coverage to a �nite area with minimum
number of drone-BSs. In [11], optimum hovering positions of
drone-BSs with antenna arrays are determined to minimize
interference and maximize SNR. The proposed method is
validated by exhaustive search, and provides computational
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ef�ciency and higher capacity performance by combining
linear zero-force beamforming with transmit beamforming.
Improving resilience of wireless networks is investigated
in [12]�[15]. Downlink coverage analysis is conducted for
a single drone-BS in [14], and for a 3D drone-BS network
in [16]. Although studies discussed so far consider hovering
drone-BSs, an energy ef�cient trajectory is determined for
point-to-point communications between a �xed-altitude drone-
BS and terrestrial users in [17], and for drone-BSs with a
�xed coverage area and altitude in [18]. Other studies worth
noting investigate the issues of releasing congestion, power
allocation for drone-BSs, drone-BS placement via stochastic
geometry-based network planning, association problem in C-
RAN with drone-BSs, network performance analysis, drone-
BSs as moving edge infrastructures, and development of
placement and trajectory optimization algorithms from various
aspects [19]�[31]. Finally, in [32], effects of mobile access
points on business models are discussed. So far, only mobility
of drone-BSs are exploited, however, in this study, we also
exploit the mobility of the users by UIL.

B. User Involvement in Network Operation
User involvement is utilized as a method to improve system

performance, with respect to user’s perception or via user
cooperation, for the purpose of application adaption, accurate
crowd-sensing, improved cybersecurity and so on [?], [3],
[33]�[68]. Nunes et al. provide a survey in [47] where they
argue that cyber-physical systems can bene�t signi�cantly
from considering human element as a part of the system,
instead of treating it as an uncontrollable external component.
In fact, once the target bene�ts of networks are determined,
main components of many systems with user involvement can
be summarized as follows.

� Role of the user: The cooperative role of the user is the
�rst building block of systems with user involvement. In
general, the user may take actions, be passive, or systems
with hybrid user roles are also possible [47].

� Incentive design: According to the role of the user,
incentives are designed. A good incentive design should
be persuasive enough to convince users to cooperate with
the network operator2, and at the same time should max-
imize network’s target bene�ts (e.g., green and pro�table
wireless network provisioning).

Target bene�t of the network determines the role and tasks
of the users to be involved. Different roles can result in
different system designs. Users can have a passive role, e.g., in
many crowd-sensing applications such as [37], [39]�[41] users
only provide their data. For instance, incentives are offered to
users to improve crowd-sensing data quality in [37]. In [64],
user perception is utilized to �ne-tune QoS, which in turn
provides energy savings. The study in [33] is an example
of a hybrid system, where users can have both passive and
active roles. For instance, in [33], users either only watch
or choose to share advertisements to obtain incentives. The

2The �network operator� is used here in a broader sense, such that it may be
an actual network operator, e.g., AT&T, Turkcell, Bell, or a person operating
an application using the existing network, e.g., Foursquare, WhatsApp.

target bene�t in this study is to turn users into agents to
distribute advertisement content, while developing sponsored
data plans to create a win-win situation. Alternatively, users
may be more actively involved by taking an action affecting
the system performance, e.g., in case of UIL, the user may
move to a position with better SINR [3], or in [34]�[36]
users share their resources with other users to support network
operator’s services. In [34], licensed users trade under utilized
spectrum resources with unlicensed users to improve spectrum
utilization ef�ciency. In [35] and [36], users provide access
points to improve connectivity of wireless networks. In the
UIL method applied in [3], [51], [63], [69], [70], users receive
monetary or non-monetary incentives (e.g., discount on service
fees, improved service quality, reducing environmental impact
of communications) so that the network operation can become
more ef�cient, e.g., in terms of energy expenditure, wireless
resource usage etc., and increase number of served users via
demand shaping[3]. For instance, users can receive incentives
to delay their demand, or move to a better position where
providing wireless services is more ef�cient. Hence, the users’
demand can be shaped spatiotemporally. Note that the users
can choose to comply with the offers or not, and making
persuasive and pro�table offers is key for the success of UIL
systems.

Incentive design has been puzzling researchers as a multi-
disciplinary issue with complex factors. Many incentive meth-
ods have been developed, where they can be broadly catego-
rized as follows [38].

� Non-monetary incentives: When the network operator
provides incentives that are costless to the operator. These
type of incentives heavily depend on the motivation of the
user to volunteer. It is common to use games to increase
motivation of users to participate [39].

� Monetary incentives: When costly incentives are offered
to the users, there is a trade-off between the persua-
siveness of the offer and pro�tability of the operation.
Moreover, even with monetary incentives, not all the users
will comply [71].

The studies on incentive methods either rely on hypothetical
assumptions (e.g., [37], [43], [72], [73]), or �eld studies
(e.g., [48], [49], [71], [74]). Both methods suffer from
reliability, as the statistical assumptions are hard to justify
and many �eld studies are limited to a small group of
participants with similar demographics, e.g., university
students. Moreover, it is hard to generalize the results of a
�eld study for all applications, since the user tasks and roles
may differ. Nevertheless, in [48] effectiveness of monetary
examples are investigated based on an existing �eld study
that has cumbersome requirements for the participants. This
study with 36 participants suggests that if variable amounts
of incentives are offered for similar tasks, the user persuasion
rate to complete the task can be slightly higher than offering
a uniform amount or a hidden amount that is revealed after
completion [48]. A similar study is conducted in [49] with the
purpose of crowd-sensing, i.e., users share their desired data
in exchange with some amount of incentive. Similar to the
study in [48], offering variable incentives resulted more and
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higher-quality data collection from a total of 55 participants.
Note that the amount of incentives offered in these studies
does not depend on the system requirements, rather they are
static. On the other hand, studies such as [65]�[67] consider
dynamic factors to determine incentives, such as availability
of resources, demand towards users’ data, behavior of other
users and so on. In [71], a unique survey is conducted with
100 participants (twice the amount of participants in previous
studies) to understand the behavior of wireless network users
in cooperating with the network operator. Certainly, the study
in [71] is inadequate to draw substantial conclusions on this
complex issue, however, it is at least as comprehensive as
the previous studies, and targeted towards operating wireless
networks, rather than another �eld or purpose. Therefore,
instead of using hypothetical assumptions about the user
behavior, the results in [71] is used for the analysis in this
article.�

C. Contributions and Organization
Ef�ciently combining drone-BSs and UIL in cellular net-

works with the objective of maximizing pro�t while satisfying
QoS requirements is a rather involved design problem. Both
drone-BSs and UIL have their unique challenges [2], [3]. To
the best of our knowledge, this paper presents the �rst system
that considers both the mobility of the users and drone-BSs.
The contributions of the paper can be summarized as follows:

� The gain from UIL for a uniform user distribution is
analysed in Appendix B. Our analysis show that 50%
relative gain can be obtained by incorporating UIL.
Besides providing insights on the pro�tability of UIL,
the analysis can be useful in cases of insuf�cient or
incorrect information on user locations, and/or very high
user mobility.

� When information on user location is available, the op-
timal incentive for an uncovered user at a given ground
distance from the coverage of area of a base station is
obtained in Section II-B.

� A framework for SNC, consisting of 3D placement of a
drone-BS, and incentive design for UIL, is presented. In
Section III, anuncoordinated-SNC method is proposed
to utilize the framework. It is shown that for a user, the
gain from the UIL is strictly affected by user’s proximity
to the location of the drone-BS.

� In order to improve system performance by performing
3D placement with consideration to incentive design
for UIL, a joint-SNC (JSNC) problem is formulated in
Section IV. The proposed JSNC problem is ef�ciently
solvable via interior-point optimization, however, the
computational complexity is very high.

� A reduced-complexity joint-SNC problem,semi-JSNC, is
formulated in Section V. Simulation results show that
semi-JSNC can be more than 10 times faster than JSNC,
while providing similar gain.

� All of the proposed SNC methods with varying com-
putational complexities and accuracies, are shown to
increase the pro�t of the network operator, as well as

the number of served users by the drone-BS without
increasing transmission power.

The article is organized as follows. First, we describe the
system model involving a drone-BS and a spatial UIL scheme
in Section II. Next, in Section III, we discussuncoordinated
SNC(USNC), where �rst the drone-BS is positioned, and then
the UIL incentives are designed. In Section IV, we discuss
joint SNC(JSNC), where the placement and incentive design
is determined simultaneously. Since the resulting problem has
high computational complexity, we introduce a semi-JSNC
method in Section V. Finally, we present simulations and
results in Section VI, and conclude the paper in Section VII.

II. SYSTEM MODEL

We consider a scenario in which the existing infrastructure
of mobile network operators is temporarily insuf�cient to
respond to the demand in a �nite region,W , containing a
set of users,U. Insuf�ciency of the network may be the
result of overloading, malfunction, or a similar unexpected
situation. We assume that the location of each user in 2-
D horizontal space,(x i ; yi ) 8i 2 U, and quality of service
(QoS) requirement of the users in terms of maximum tolerable
path loss, , are known. A drone-BS is to be utilized to
support the network as shown in Fig. 2 by of�oading as many
users as possible from the network, while satisfying the QoS
requirements and maintaining pro�tability of the network. In
particular, the aim is to position the drone-BS in a 3D location
such that the number of covered users and the bene�t from
UIL can be maximized. While the drone-BS is positioned,
only users whose QoS requirements cannot be satis�ed by
the terrestrial-BS, i.e., unserved users, are considered. Since
these users would not be served otherwise, they handover to
the drone-BS, if they are in the coverage region of drone-BS.
Main factors contributing to handover are better RSSI (due to
line-of-sight and dynamic positioning with respect to users’
locations) and bandwidth availability (due to orthogonality
of resources of the drone-BS) [4], [5], [7], [10], [11], [13],
[16], [19], [75]�[79]. Assume the network incorporates a SNC
scheme, which suggests certain displacements to each user.
Incentives are offered to the users in the extended coverage
area for persuading them to accept suggested movements. In
the proposed SNC scheme, suggested displacement is towards
the coverage area of a drone-BS, where users receive better
service compared to their present location. Since the inter-cell
distance is large in rural areas, which makes UIL of the SNC
scheme less useful, we consider urban environments. Note
that, in this network, both the source (drone-BS), and the sinks
(users), are mobile. Therefore,spatial network con�guration
(SNC) can be performed by determining the following set of
parameters,

1) optimal location of the drone-BS in 3-D space,
(x D ; yD ; hD ),

2) suggested displacement of each useri , � i = [�x i ; �y i ],
and

3) incentives offered to each useri , � i .
The aim is to determine these values such that the ef�ciency
and pro�tability of the network is maximized. Assuming



1536-1276 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2018.2874230, IEEE
Transactions on Wireless Communications

4

Fig. 1. Description of SNC: Users in region1 are covered without additional
cost. Users in region2 are within the extended coverage region, therefore,
they receive an incentive offer to move towards the coverage area. Users in
region 3 cannot be covered even with UIL, and hence do not receive an
offer.

that the drone-BS has orthogonal resources to the existing
infrastructure, details of the channel and UIL models are
discussed in the following sections.

A. Air-to-Ground Channel Model
Air-to-ground channel models differ from terrestrial channel

models, because the altitude of a drone-BS affects the amount
of path loss. The effect of altitude is re�ected in the probability
of having a line-of-sight (LOS) link between a user and a
drone-BS. This probability depends on the altitude of the
drone-BS, the horizontal distance between a user and the
drone-BS, and the type of the deployment environment (rural,
urban etc.) [80]. The studies considering probability of LOS
links for air-to-ground channels are still at their infancy,
however, in a widely used model3, the probability of having
LOS link is given by [80]

P (hD ; r i ) =
1

1 + a exp
�

�b
�

180
� tan� 1

�
hD
r i

�
� a

�� ; (1)

where r i =
p

(x D � x i )2 + (y D � yi )2 is the horizontal
distance between the drone-BS at(x D ; yD ; hD ) and theith
user located at(x i ; yi ), and a and b are parameters of the
environment. Environmental parameters depend on the average
characteristics of urban areas, such as the density and average
height of the buildings [80]. Then, using (1), the path loss
between the drone-BS and thei th user is calculated as

L(h D ; r i ) = 20 log
� q

h2
D + r 2

i

�
+ z1P (hD ; r i ) + z2; (2)

wherez1 and z2 are constants such thatz1 = � LoS � � NLoS,
and z2 = 20 log( 4�f c

c ) + � NLoS, f c is the carrier frequency

3The model is used in the following publications and many others: [?], [8],
[14], [18], [81], [82].

TABLE I
CHANNEL MODEL PARAMETERS OF DIFFERENT ENVIRONMENTS

Environment Parameters (a,b, � LoS, � NLoS)
Suburban (4.88, 0.43, 0.1, 21)

Urban (9.61, 0.16, 1, 20)
Dense Urban (12.08, 0.11, 1.6, 23)

(Hz), c is the speed of light (m/s),� LoS and � NLoS (in dB)
are respectively the losses corresponding to the LoS and non-
LoS connections depending on the environment. Parameters of
four different environments are provided in Table I. Note that,
(1) and (2) state that the path loss of air-to-ground channels
depends on the the location of the drone-BS in 3D space.

B. User-in-the-loop Model
UIL is a closed loop model with the user as the system to

in�uence for increasing the ef�ciency of wireless networks.
UIL is based on offering incentives to users to persuade them
to take speci�c actions, such as delaying their demand in time,
or changing their location in space. These incentives can be
discounts on the service price, higher data rates, reducing
carbon footprint (green networking), or even penalties for
refusing the change [3]. In that sense, UIL is a hybrid user
involvement method, where both monetary and non-monetary
offers can be provided to users. The UIL method employed
in this article assumes a spatial UIL scheme with monetary
incentives. As a result, although at a cost, potential wastes
of energy and capacity can be prevented, resulting in more
ef�cient networks.

UIL can be used either spatially, where the user moves in
space to obtain better links with the destination (higher spectral
ef�ciency), or temporarily, in which case the user delays the
demand in time. Assuming a drone-BS is opportunistically
utilized for a speci�c time period, and the objective is to
of�oad as many users as possible to the drone-BS during its
utilization, a spatial UIL scheme is considered in this study.

In order to investigate the reaction of the users to various
UIL schemes for data, video and voice services, a detailed
survey is conducted in [71]. For data services, the probability
of a useri accepting the incentive,� i , which is a discount on
the cost of the service for useri , and moving a distance less
than or equal todi =

p
�x 2

i + �y 2
i is given as

Pfuser i moves distance� di g = e �� (� i )di ; (3)

where� (� i ) is thepersuasion parameter.
In [71], � (� ) is calculated based on four different in-

centives, namely,� = 0 :2; 0:4; 0:6; and 0:8, corresponding
to discount amounts of20%; 40%; 60%; and 80%, respec-
tively. These incentive amounts provide the persuasion values,
� (� ) = 0:0244; 0:0164;0:0117; and 0:0082, respectively. A
continuous and tractable function for� (� ) is obtained by
logarithmic curve �tting in our study, such that

� (� ) = k1 ln(� ) + k2; (4)

where k1 = �0:01166 and k2 = 0:005676 for � 2 [0;1],
where0 and1 corresponds to �no incentive� and �free service�
(100%off), respectively. The root mean square error (RMSE)
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of (4) is 8:359� 10�5 for the logarithmic �tting function with
only 2 parameters. Since an RMSE value that is closer to
zero indicates a good �t, this value shows that (4) is highly
likely to provide an accurate prediction. In Fig. 2(a), the
probability of being persuaded in (3) is shown both with the
points from the survey in [71], and the �tting in (4). Also,
Fig. 2(b) shows the continuity and �t of the approximation
from a wider perspective. It is observed that (4) is a proper �t
for the provided values.

Proper selection of UIL system parameters, such as� i and
di , has a key role in the performance of any UIL scheme [3],
[51], [69], [71], [83]. The incentivizeduser movement sug-
gestion may be a function of a variety of elements, including
user type, application type and urgency, the need for UIL, and
so on. It may provide less ossi�ed extension regions, on the
contrary to Fig. 2. For instance, if there is a compliant user
e.g., a student type user, the user may be given an incentive
even when located in region 3. On the other hand, a non-
compliant user, e.g., a business type user, may not receive
incentives even if the user is located in region 2. Note that,
compliance level of a user may change if the application
is highly valuable to the user at that moment, e.g., a video
conference call, or the the application will be running for a
while. By utilizing big data (history) and machine learning
technologies, the incentivized move suggestions can be made
user/context/situation-aware [55]. However, there is not an
existing tractable model to incorporate all these aspects.

As discussed earlier in Section II, the SNC parameters not
only include UIL, but also involves dynamic placement of a
drone-BS. In this case, the model in [71] provides simplicity
and tractability. SNC parameters can either be determined
separately by considering drone-BS and UIL systems in an
uncoordinated fashion, or they can be determined jointly.

III. U NCOORDINATED SPATIAL NETWORK
CONFIGURATION

A system incorporating drone-BSs and UIL requires han-
dling two processes for spatial network coordination:

� 3D placement of a drone-BS, i.e., determining
(x D ; yD ; hD ), and

� Incentive design for user-in-the-loop, i.e., determining� i
anddi for each useri 2 U.

The method of handling these processes in a sequential
manner is termeduncoordinated spatial network coordination
(USNC). In the following sections, both steps will be discussed
in detail.

A. 3D Placement of a Drone-BS
Placement of a drone-BS is different from terrestrial BS

placement because of the following reasons:
1) In addition to choosing the drone-BS’s location in the

horizontal space(x D ; yD ), we need to determine its
altitude,hD , as well.

2) The coverage area of a terrestrial BS is known a priori.
However, the coverage area of a drone-BS depends on
its altitude, and is unknown before solving the placement
problem.

3) The mobility of the drone-BS allows it to move wherever
the demand is, rather than terrestrial cells waiting for the
demand to come towards them. As a result, the coverage
region providing the maximum bene�t to the network
should be found.

The �rst item indicates that the placement of the drone-BS
is a 3D problem. In addition, the last two items, which are
determining the size of the coverage area, and identifying the
location of the coverage area must be considered jointly. We
assume that a user is in the coverage region of the drone-BS
if the air-to-ground link satis�es its QoS requirement. Hence,
useri is served by the drone-BS, ifL(h D ; r i ) �  . Using (2),
we can re-write this condition as

h2
D + r 2

i � 10
 �(z 1 P (h D ;r i )+ z 2 )

10 : (5)

Let ui 2 f 0;1g denote a binary variable that indicates whether
user i is served by the drone-BS, or not. Using the variable
ui , which is equal to 1, only if the useri is served by the
drone-BS, and equal to 0 otherwise, the following constraint,

ui (h2
D + r 2

i ) � 10
 �(z 1 P (h D ;r i )+ z 2 )

10 ; (6)

determines whether useri is covered, or not. This constraint
can be further manipulated to

q
h2

D + r 2
i �

q
10

 �(z 1 P (h D ;r i )+ z 2 )
10 + M 1(1 � ui ); (7)

whereM 1 is a constant that is slightly larger than the max-
imum possible value of the distance between a user and the
drone-BS. Observe that whenui = 1, (7) is equivalent to (6).
If ui = 0, sinceM 1 is large enough, this constraint is released.
Now, we can continue by determining the objective function.

Assuming a �xed QoS for all users, the best region to
be served by the drone-BS is identi�ed with the maximum
number of users covered. By using (7), the placement problem
can be written as

maximize
x D ;y D ;h D ;fu i g

X

i2U

ui

s.t.
q

h2
D + r 2

i �
q

10
 �(z 1 P (h D ;r i )+ z 2 )

10 + M 1(1 � ui );

8i = 1; :::; jUj;
x l � xD � xu ;
yl � yD � yu ; (8)
hl � hD � hu ;
ui 2 f 0;1g; 8i = 1; :::; jUj;

wherej � j represents the cardinality of a set, subscripts(�) l and
(�) u denote respectively the minimum and maximum allowed
values forxD , yD , andhD of the drone-BS. Note that there
are quadratic, exponential and binary terms in this problem,
which makes it a mixed integer non-linear problem (MINLP).
We will show that this problem can be solved ef�ciently by
using a combination of the interior-point optimizer of MOSEK
solver and bisection search.

Let R denote the radius of the area to be covered by
the drone-BS. Then, if the useri is covered,r i � R must
be satis�ed, i.e., the served user must be located within the
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(a) (b)

Fig. 2. (a) Probability of a user accepting to move with respect to incentive (percentage of price discount) and distance: Survey data is �t to� (� ) in (4). (b)
3D representation of survey results and� (� ) regarding a user’s probability to move with respect to price discount and distance.

coverage region. Let� denote the ratio of the altitude to the
coverage region, such that

� =
hD

R
: (9)

Then, (7) can be re-organized by using (9)

r i � �(� ) � M 2(1 � ui ); (10)

whereM 2 is a constant similar toM 1, and

�(� ) =

s
10

 �(z 1 P (�)+ z 2 )
10

(1 + � 2)
; (11)

where

P (� ) =
1

1 + a exp (�b (arctan ( � ) � a))
(12)

by (1).

Observation 1. For any QoS requirement, , and for any
operating frequency,f c, if a local maxima, � � , exists in
the function �(� ) de�ned in (11), then it is the only local
maxima of the function for� 2 (0; 1) for the propagation
environments whose parameters are listed in Table I. The� �

yielding � � is the solution of

��

 

ae
� b

�
180tan � 1 (� )

� �a
�

+1

! 2

� k3e
� b

�
180tan � 1 (� )

� � a
�

= 0; (13)

wherek3 = �9 ln (10) abz1.

For an explanation, please refer to Appendix A.

The largest feasible set for Problem 8 can be obtained by
substituting�(� ) with � � , which is the only maxima of�(� ).
Since no closed-form expression is available by (13), bisection
search can be used to obtain a numerical value for� � . Then,

substituting�(� ) with � � yields the following mixed integer
quadratically constrained problem (MIQCP)

maximize
x D ;y D ;fu i g

X

i2U

ui

s. t. r i � � � + (1 � ui )M 2; 8i = 1; :::; jUj;
x l � xD � xu ;
yl � yD � yu ; (14)
ui 2 f 0;1g; 8i = 1; :::; jUj:

While R can be derived from the location of the covered user
with maximumr i , hD can be calculated by (9). Hence,hD is
omitted from (14) as a variable. Therefore, both complexity
of calculation, and the number of variables are reduced. Then,
this problem can be solved ef�ciently by using interior-point
optimizer of MOSEK. The above problem formulation yields
the optimal position of the drone-BS. Once the drone-BS is
positioned,di can be calculated for each non-covered user,
and incentives can be designed to increase revenue.

B. Incentive Design for User-in-the-loop

Based on the UIL scheme in Section II-B, the averageunit
pro�t obtained from a user at a distancedi meters from the
coverage region after receiving incentive� i is

�(� i ; di ) = (1 � � i )e�� (� i )di : (15)

Proposition 1. For an uncovered user at a ground distancedi
from the coverage area of the drone-BS, the optimal incentive
that maximizes�(� i ; di ), � �

i , is given by

� �
i =

k1di

k1di � 1
: (16)

Proof. For a givendi , the stationary point of�(� i ; di ), � �
i , can

be evaluated by taking the �rst derivative of (15) and equating
it to zero, which yields (16). The second derivative of (15) is
given by

e� k2 di k1di �
� (k 1 di +1)
i

�
(k1di + 1)� � (k 1 di +1)

i � (k1di � 1)
�

: (17)



1536-1276 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2018.2874230, IEEE
Transactions on Wireless Communications

7

Fig. 3. Unit pro�t vs. incentive for several distances.

It can be shown that (17) is negative for all values ofdi
at � �

i . Hence, �(� i ; di ) is nondecreasing for� i � � �
i , and

nonincreasing for� i � � �
i for all � i 2 (0; 1], which satis�es

the second-order condition for quasiconcavity of�(� i ; di ) in � i
for all values ofdi [84]. Therefore,� �

i is the global maximum
point of (15).

Once the drone-BS is placed as explained in Section III-A,
di can be calculated, and the above analysis can be used to
offer the optimal incentive to each user. In Fig. 3,�(� i ; di ) is
shown for users at several distances. It can be observed that the
users in proximity can become pro�table with small incentive
offers, however, the users that are far from the drone-BS do
not provide much gain. For instance,10:4%discount offer can
provide65% average pro�t for a user that should move10m.
On the other hand, offering53:8%discount can only provide
12:7%average pro�t for a user that should move100m, as the
likelihood of accepting the incentive is very low. Therefore,
it can be critical to position the drone-BS by considering
the persuasion parameter and pro�tability from UIL, which
is discussed next.

IV. JOINT SPATIAL NETWORK CONFIGURATION

Differently from the previous section, ajoint spatial network
con�guration (JSNC) problem is proposed to simultaneously
position the drone-BS in 3D and determine the incentive to
be offered to each user. Hence, mobility of both the drone-BS
and users can be jointly considered as degrees of freedom of
the spatial con�guration of mobile networks.

In order to make UIL an inherent part of the placement
problem, the coverage condition in the �rst constraint of (14)
can be modi�ed as

r i � di � � � + ui (1� M 3); (18)

whereM 3 is a slightly larger value than the maximum possible
value of the right-hand-side (RHS) of (18). In contrast to the
approach in Section III-A, maximizing the number of covered
users does not necessarily mean maximizing pro�t this time,
because additional users come at a cost with UIL. In fact, the

coverage condition in (18) yields three regions in a circular
area,W , as shown in Fig. 4:

1) The circular coverage area of the drone-BS at(x D ; yD )
with radiusR is de�ned as the regionR .

2) The shaded area,D, is where the UIL model is utilized.
It is obtained by excludingR from a concentric circular
area with the radius ofR + du , wheredu is an upper
bound on the distance of a user from the coverage area of
the drone-BS such that the users further thandu meters
do not receive incentive offers.

3) W -(R [ D ) is the region that cannot be served by the
drone-BS even with UIL.

W

du

(xD, yD)

Fig. 4. Coverage area of a drone-BS (R), area where the UIL model is
utilized (D), and a �nite space where users are distributed (W).

Note that, (2) yields a circular coverage area for a drone-
BS, as well as, designing incentives based ondi yields a
circular expansion area by UIL (in Section II-B). Hence, a
homogeneous environment is maintained. Further analysis on
coverage of a drone-BS in a system with UIL andregional
incentive designfor uniformly distributed users can be found
in Appendix B.

The pro�t obtained from a useri based on the coverage
region can be written as

�(� i ; di ) :=

8
<

:

1; if (x i ; yi ) 2 R ; (19a)
�(� i ; di ); if (x i ; yi ) 2 D , (19b)
0; o.w. (19c)

where (19a), (19b) and (19c) indicate the users covered in
R , coverage inD, and outage, respectively. Hence, a JSNC
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Fig. 5. Illustration of the triangle method on a portion of�(�; d ).

problem for maximizing pro�t can be formulated as

maximize
x D , yD ,

fu i ; d i ; � i g

X

i2U

�(� i ; di ) (20)

s. t. r i � di � � � + ui (1� M 3); (20a)
8i = 1; :::; jUj;

ui di � du ; 8i = 1; :::; jUj; (20b)
x l � xD � xu ; (20c)
yl � yD � yu ; (20d)
ui 2 f 0;1g; 8i = 1; :::; jUj; (20e)

wheredu represents the upper bound for the amount of dis-
placement. Similarly to (8),M 3 in (20a) releases the condition
of coverage, if the user is too far to be covered. If a user is
persuaded to move towards the coverage region of drone-BS,
(20a) ensures that the user satis�es the condition of coverage
in (18). Note that, the actual displacement of the user isp

(x i � �x i )2 + (y i � �y i )2. However, instead of�x i and
�y i , di indicating the amount of movement is used to decrease
number of variables in the problem. Once the problem is
solved,�x i and�y i can obtained from(x i ; yi ) and(x D ; yD ).
Unfortunately, the problem in (20) is not ef�ciently solvable,
due to (19b), which is a non-linear multivariate function, and
requires further manipulations.

The triangle methodis one of the most popular methods
for piecewise linear approximations of multivariate func-
tions [85]. For �(� i ; di ), the triangle method partitions the
� and d axes intom and n sampling intervals, respectively.
Let f ~� k gm

k=1 and f ~dj gn
j =1 represent incentive and displace-

ment vertices, respectively. In order to approximate a given
�(� i ; di ), the rectangular area with vertices satisfying~� k �
� i � ~� k+1 , and ~dj � di � ~dj +1 is found for k = 1; :::; m
and j = 1; :::; n. As shown in Fig. 5, the rectangular
area can be divided into two triangles,T1 and T2, with
the vertices given byf(~� k ; ~dj ); (~� k ; ~dj +1 ); (~� k+1 ; ~dj +1 )g and
f(~� k ; ~dj ); (~� k+1 ; ~dj ); (~� k+1 ; ~dj +1 )g. Only one of the triangles
contain (� i ; di ). Therefore, theT1 in Fig. 5 is chosen if the

Fig. 6. Piece-wise approximation with 3 and 4 breakpoints, and the resulting
RMSE values, wheredu = 200m.

following is true,

di > ~dj + (� i � ~� k )
~dj +1 � ~dj

~� k+1 � ~� k
; (21)

andT2 is chosen otherwise.
In general, the point to be approximated for each useri

can be anywhere in the search space, and the approximation
points are unknown. Therefore, all the points on the grid must
be considered. A mixed integer linear program (MILP) can be
formulated to approximate�(� i ; di ) :

nX

k=1

mX

j =1

� i;k;j ~� k = � i ; 8i = 1; :::; jUj; (22a)

nX

k=1

mX

j =1

� i;k;j ~dj = di ; 8i = 1; :::; jUj; (22b)

nX

k=1

mX

j =1

� i;k;j �(~� k ; ~dj) = �(� i ; di ); 8i = 1; :::; jUj; (22c)

where� i;k;j indicate continuous variables that are introduced
for each sampling point. In order to choose three indices
corresponding to a triangle,� i;k;j must be a special ordered
set of type 3 (SOS3), which means that only 3 consecutive
elements of the set can be non-zero [86]. Also for a useri ,

nX

k=1

mX

j =1

� i;k;j = 1; (23)

and each� i;k;j 2 [0;1].
For instance, considering Fig. 5,�(� i ; di ) can be approxi-

mated by the following convex combination of the values of
�(�; d) at the vertices of the chosen triangle,

� i;k;j �(~� k ; ~dj ) + � i;k +1 ;j +1 �(~� k+1 ; ~dj+1 ) + � i; k̂; ĵ �(^� ; d̂); (24)

where the vertices of the diagonal,(~� k ; ~dj ) and (~� k+1 ; ~dj +1 )
are common in both triangles,( �̂ ; d̂) indicate the third set
of vertices differentiating theT1 and T2 based on (21), and
� i; k̂; ĵ indicate the weights corresponding to these vertices.


















