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Optimal Tradeoff between Sum-Rate Efficiency and

Jain’s Fairness Index in Resource Allocation
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Abstract—The focus of this paper is on studying the tradeoff
between the sum efficiency and Jain’s fairness index in general
resource allocation problems. Such problems are frequently
encountered in wireless communication systems with M users.
Among the commonly-used methods to approach these problems
is the one based on the α-fair policy. Analyzing this policy, it is
shown that, except for the case of M = 2 users, this policy does
not necessarily achieve the optimal Efficiency-Jain tradeoff (EJT).
In particular, it is shown that, when the number of users M > 2,
the gap between the efficiency achieved by the α-fair policy and
that achieved by the optimal EJT policy can be unbounded, for
the same Jain’s index. Finding the optimal EJT corresponds to
solving potentially difficult non-convex optimization problems.
To alleviate this difficulty, we derive sufficient conditions, which
are shown to be sharp and naturally satisfied in various radio
resource allocation problems. These conditions provide us with a
means for identifying cases in which finding the optimal EJT
and the rate vectors that achieve it can be reformulated as
convex optimization problems. The new formulations are used to
devise computationally-efficient resource schedulers that enable
the optimal EJT to be achieved for both quasi-static and ergodic
time-varying communication scenarios. Analytical findings are
confirmed by numerical examples.

I. INTRODUCTION

The resources available for wireless communication systems

are usually scarce and shared among multiple users. The

way in which these resources are allocated determines the

efficiency of the system and the benefits received by its users.

Since the service provider is interested in maximizing the

system efficiency and the users are interested in maximizing

their own benefits, the allocation of resources is typically

encountered by conflicting goals. For instance, favouring a

certain class of users may increase the system efficiency, but

would result in the dissatisfaction of other classes of users.

In contrast, providing equal benefits to all users may result in

higher fairness, but will potentially result in low efficiency. To

control the emphasis placed on various goals, the provider uses

a tradeoff policy, which, unless properly chosen, can result in

wasteful allocation of resources. In particular, a suboptimal

tradeoff policy can be less efficient and, at the same time, less

fair to the users [1]–[3].

The benefits received by the users in the downlink of

a wireless communication system can be measured by the

rates at which data is delivered to these users. These rates
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are controlled by appropriate allocation of radio resources at

the transmitter. For instance, the transmitter may allocate its

resources in such a way that maximizes the sum of the rates

delivered to the users. This allocation favours users that are

geographically closer to the transmitter, but “starves” farther

users, and although more efficient from the system perspective,

such an allocation is unfair to the users at less advantageous

locations [4], [5]. A fairer allocation is one in which the

minimum rate received by the users is maximized [1], [3],

[6]. However, this allocation can result in unacceptable system

efficiency, i.e., low sum-rate. Hence, it is desirable to find an

optimal tradeoff policy whereby the system provider allocates

its resources in such a way that no other allocation provides

a strictly higher efficiency and at the same time be fairer to

the users. The focus of this paper is to develop a technique

for obtaining an efficiency-fairness tradeoff that is optimal in

a specific sense and to derive sufficient conditions, which,

when satisfied by the set of feasible benefits, lead to efficiently

computable optimal tradeoff and benefit vectors.

The applications that we will consider herein are derived

from practical radio resource scheduling problems that arise

in wireless communication systems operating over quasi-static

and ergodic time-varying channels. However, our analysis

applies to a broader class of frameworks, including social and

economics ones [2], [7], [8].

To study the tradeoff between efficiency and fairness we

note that efficiency is usually defined depending on the par-

ticular resource allocation problem considered. For instance, in

the case of wireless networks considered herein, efficiency is

measured by the sum-rate delivered to the users of the network.

In contrast, several definitions are used to quantify fairness.

In [2], axioms that include continuity and homogeneity, and

subsequent features, are provided to obtain a general class of

plausible fairness measures. Among the members of that class

are the entropy-based index [2] and Jain’s fairness index [9].

In addition to the axioms and the features provided in [2],

we identify two more features that commend the use of Jain’s

index as a fairness measure.

• Conformity to standard fairness benchmarks: A fairness

measure with this feature can be related to easily conceiv-

able benchmarks. For instance, a Jain’s index of p/100
can be regarded as the fairness index of an equivalent

resource allocation in which p% of the users receive equal

non-zero benefits and the remaining (100− p)% receive

zero benefits [9]. The relations between other metrics and

standard benchmarks are not readily available.

• Accommodating more users: A good fairness measure

enables more users with specific benefit requirements to
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be accommodated in the system. The superiority of Jain’s

index in that respect will be illustrated by numerical

comparisons hereinafter.

A common approach to trading off efficiency with fair-

ness in wireless networks, is to allocate the resources in a

way that maximizes the sum-rate efficiency while ensuring

that the minimum rates achieved by the users exceed some

prescribed bounds, e.g., [3], [8]. Varying these bounds over

the set of feasible rates provides a means for controlling

fairness [3]. Another approach is to allocate the resources

in a way that maximizes a parametric utility, whereby one,

or multiple, parameters are used to control the emphasis on

efficiency and fairness. A commonly used policy is the α-

fair one (also known as the α-fair utility) [1], wherein various

settings of a parameter α yield allocations that achieve popular

efficiency-fairness tradeoffs. For instance, setting α = 0 yields

maximum efficiency, setting α = 1 yields proportionally fair

allocations [10], and setting α =∞ yields allocations that are

fair in the max-min sense [1]. Motivations for using the α-fair

policy are provided in [2]. Generally speaking, increasing α
results in allocations that are fairer [2] in a sense that does

not necessarily conform to Jain’s index, as will be shown

hereinafter. Other parametric utilities for trading off efficiency

and fairness are considered in [11] and [12], and a comparison

between multiple tradeoff criteria is provided in [13].

Compared with other measures, Jain’s index provides a

fairness criterion that takes into consideration all the users

of the system, not only those users that are assigned minimal

resources [9]. Maximizing Jain’s index without wasting valu-

able resources requires optimal tradeoff between efficiency and

this index. A question that arises is whether maximizing the

well-studied α-fair policy yields such an optimal tradeoff. To

address this question, we begin in this paper by showing that

α-fair allocations are not guaranteed to achieve the optimal

Efficiency-Jain tradeoff (EJT) except for the case of M = 2
users. To overcome this drawback, we develop a generic

technique for obtaining optimal EJT allocations. Unfortu-

nately, this technique involves solving potentially difficult non-

convex optimization problems. To alleviate this difficulty, we

derive sufficient conditions, which are shown to be sharp

and naturally satisfied in various radio resource allocation

problems. These conditions provide us with a means for

identifying cases in which finding the optimal EJT and the

rate vectors that achieve it can be reformulated as convex op-

timization problems. The new formulations are used to devise

computationally-efficient resource schedulers that enable the

optimal EJT to be achieved for both quasi-static and ergodic

time-varying communication scenarios.

Numerical results are provided for confirming our theoreti-

cal findings and for demonstrating the advantage of the optimal

tradeoff provided by our technique over the α-fair one.

Notation: Bold-face and regular-face fonts will be used

to denote vectors and scalars, respectively. The set of length-

M vectors with non-negative real entries will be denoted by

R
M
+ and the length-M all-one and all-zero vectors will be

denoted by 1M and 0M , respectively. The symbols � and �
will be used to denote element-wise inequalities, and (·)T will

be used to denote the transpose. The Euclidean norm will be

denoted by ‖ · ‖.

II. PRELIMINARIES

Let x ∈ C ⊆ R
M
+ be a vector of non-negative real entries

{xm}Mm=1, where xm is the benefit received by user m and

C is the set of feasible benefit vectors. Generally, the benefits

{xm}Mm=1 and the set C depend on the application and the

resources allocated to each user [9, Sec. 5]. For example, in

the downlink of wireless communications, xm can be the rate

of user m resulting from a particular allocation of the radio

resources, and C is the set of all achievable rates. In this paper,

the efficiency, η(x), of a resource allocation is defined by the

sum of benefits (i.e., η(x) =
∑M

m=1 xm), and its fairness is

given by the Jain’s index defined below.

Definition 1 (Jain’s Index). For x ∈ R
M
+ , Jain’s fairness index

J : RM
+ → R+ is given by [9]

J(x) =
(

M
∑

m=1

xm

)2/

M

M
∑

m=1

x2
m. (1)

�

This definition shows that J(x) is continuous and lies in
[

1
M
, 1
]

. In this interval, J = 1
M

corresponds to the least fair

allocation in which only one user receives a non-zero benefit,

and J = 1 corresponds to the fairest allocation in which all

users receive the same benefit.

In many cases, depending on C, there is an inherent tradeoff

between η(x) and J(x). Hence, to ensure efficient utilization

of resources, we seek the optimal tradeoff, which is defined

next.

Definition 2 (Optimal Efficiency-Jain tradeoff (EJT)). An

optimal EJT is one that results in a benefit vector x⋆ such

that no x 6= x⋆, x ∈ C that satisfies either: 1) η(x) > η(x⋆)
and at the same time J(x) ≥ J(x⋆), or 2) η(x) ≥ η(x⋆) and

at the same time J(x) > J(x⋆). �

This definition is closely related to Pareto optimality defined

for optimization problems with multiple objectives [14]. With

efficiency and Jain’s index as objectives, a Pareto optimal

point is one at which efficiency cannot be increased without

decreasing Jain’s index and likewise, Jain’s index cannot be

increased without decreasing efficiency. As such, a point that

is optimal from the EJT perspective, as per Definition 2, is

equivalent to Pareto optimality in efficiency and Jain’s index.

However, a point that is Pareto optimal from an Efficiency-Jain

perspective is not necessarily Pareto optimal if the multiple

objectives are taken to be the users’ benefits themselves, rather

than the efficiency and Jain’s index that these benefits achieve.

Definition 2 will be used in the next section to determine

whether the α-fair tradeoff policy achieves the optimal EJT.

III. DOES α-FAIR POLICY ACHIEVE THE OPTIMAL

EFFICIENCY-JAIN TRADEOFF?

Given an α ∈ [0,∞), the benefit vector x⋆
α generated by

the α-fair tradeoff policy maximizes the α-fair utility [1], i.e.,

x⋆
α = argmax

x∈C
Uα(x), (2)
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where

Uα(x) =















M
∑

m=1
log xm, α = 1,

1
1−α

M
∑

m=1
x1−α
m , α ≥ 0, α 6= 1.

(3)

The α-fair policy thus described was considered in [2]. It

was shown therein that, for α 6= 1, x⋆
α generated by (2) is the

same as that generated by

x⋆
α = argmax

x∈C

(
∣

∣

∣

α

1− α

∣

∣

∣
L
(

Hα(x)
)

+ L
(

η(x)
)

)

, (4)

where

Hα(x) = sgn(1− α) α

√

√

√

√

M
∑

m=1

( xm

η(x)

)1−α

, (5)

and L(·) , sgn(·) log(| · |). This equivalent formulation of the

α-fair policy provides insight into the role of α. In particular,

it can be seen that L(·) is monotonically increasing and that,

for any α 6= 1, Hα(x) provides a homogeneous fairness

measure [2]. Hence, it can be seen that increasing α places

more emphasis on fairness at the expense of efficiency.

Using the above observations, it was argued in [2] that solv-

ing (4) yields a benefit vector that achieves the optimal tradeoff

between Hα(x) and η(x). Although this explanation offers a

better understanding, it presents the fairness component of the

α-fair policy as being parameterized by α. Hence, according

to this explanation, varying α not only controls the emphasis

placed on fairness, but also changes the fairness measure itself.

A question that arises is whether the α-fair policy achieves

the optimal efficiency-fairness tradeoff in practical resource

allocation scenarios wherein the fairness measure does not

depend on extrinsic parameters like α.

To address this question, in this section we will investigate

the relationship between the α-fair policy and the optimal EJT.

We begin by studying the case of M = 2 users. The main

result in this case is stated in the following proposition:

Proposition 1. Let C be an arbitrary set, possibly discrete,

and let M = 2. For any α ∈ (0,∞), the α-fair benefit vector

x⋆
α generated by (2) achieves the optimal EJT.

Proof: See Appendix A.

Proposition 1 shows that for an arbitrary set C and M = 2,

the α-fair policy yields tradeoffs that are optimal from Jain’s

index perspective. However, this result does not necessarily

carry over to cases with M > 2 users. To show this, we

constructed counter examples for M = 3 and M = 4. The

case of M = 4 yields deeper insight and will be explained in

more detail.

Example 1. Let C contain two benefit vectors, i.e., C = {x,y},
where x = [8, 8, 90, 90] and y = [7, 14, 27, 86].

For α = 2, maximizing the α-fair utility yields y because

U2(y) > U2(x). However, η(x) = 196, η(y) = 134, J(x) =
0.59 and J(y) = 0.54, that is, η(x) > η(y) and J(x) > J(y),
which implies that x is the optimal EJT benefit vector. This

agrees with intuition since, by inspection, x offers 75% of the

users higher benefits than y. �

Drawing more insight from the above example, we will

show that the efficiency gap between the benefit vectors gener-

ated by the optimal EJT and those generated by the α-fair one

can be unbounded. To show that, let us modify C in the above

example such that C = {x,y, x̂, ŷ}, where x̂ = cx, ŷ = cy,

and c > 1 is some constant. In this case, it can be easily

verified that ŷ is the α-fair benefit vector and x̂ is the optimal

EJT benefit vector. Furthermore, because Jain’s index is invari-

ant under scaling, J(x̂) = J(x) > J(ŷ) = J(y). However,

direct computation reveals that η(x̂)−η(ŷ) = c
(

η(x)−η(y)
)

.

Hence, an unbounded c, results in an unbounded difference

in efficiency between the optimal EJT and the α-fair benefit

vectors. The existence of such c depends, of course, on C. In

fact, it will be shown later that the structure of C is intimately

related to the optimal EJT.

Another insight that can be drawn from the above example

is that the α-fair benefit vector corresponding to α = 0 is

x, which, from Jain’s index perspective, is fairer than the α-

fair benefit vector corresponding to α = 2. This shows that,

although increasing α results in benefit vectors that are fairer

in the senses considered in [1] and [2], it does not necessarily

improve fairness in the Jain’s index sense.

Many applications, including wireless communications

ones, involve the tradeoff between the benefit vectors of more

than two users. Since in these cases, maximizing the α-fair

utility does not necessarily yield benefit vectors that achieve

the optimal EJT (cf. Example 1), in the next section we will

develop a technique for achieving this tradeoff.

IV. THE OPTIMAL EFFICIENCY-JAIN TRADEOFF POLICY

In this section, we develop a generic technique for obtaining

the optimal EJT for an arbitrary set C. To enable practical

implementation of this technique, we identify conditions,

which, when satisfied by the set C, renders the underlying

optimization problems easy to solve. We will then provide

instances in which these conditions are satisfied in practice.

A geometric interpretation that commends the use of Jain’s

index as a fairness measure is then provided. We conclude

this section by providing an alternate formulation that will

prove useful in characterizing and achieving the optimal EJT

in time-varying scenarios.

A. A Technique for Obtaining the Optimal EJT for an Arbi-

trary C

Let σ be a threshold on the minimum efficiency, and let Xσ

be the set of all benefit vectors that yield an efficiency greater

than σ and, at the same time, maximize Jain’s index, that is,

Xσ ,

{

x
∣

∣x = arg max
η(x)≥σ, x∈C

J(x)
}

. (6)

We note that the cardinality of Xσ depends on C. Fur-

thermore, some elements in Xσ may satisfy the condition

η(x) ≥ σ in (6) with a strict inequality. Since we are seeking

the benefit vectors that achieve the optimal EJT, we pick

those vectors in Xσ that maximize η(x). In particular, let x⋆
σ

be one of the benefit vectors that achieve the optimal EJT

corresponding to σ, that is,

x⋆
σ ∈ arg max

x∈Xσ

η(x). (7)
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From (6) and (7), it can be seen that, for the given σ, x⋆
σ

achieves the optimal EJT in Definition 2. Hence, the set of all

EJT-optimal benefit vectors can be obtained by decrementing σ
from σmax = max

x∈C
η(x) to σmin = min

x∈C
η(x) in K + 1 steps,

each of size δ. For each step k, the optimization problems

in (6) and (7) corresponding to σ = σmax − kδ are solved,

k = 0, . . . ,K; a smaller δ results in evaluating more points

and therefore obtaining a smoother EJT curve. This policy is

presented formally in Procedure 1. Inspection of this procedure

Procedure 1 Optimal EJT policy for arbitrary C

Input: Arbitrary set C and step δ > 0
Output: x⋆

σ

1: Initialize σmin = min
x∈C

η(x), σmax = max
x∈C

η(x) and K =

⌊(σmax − σmin)/δ⌋.
2: for k = 0 : K do

3: σ = σmax − kδ
4: Find Xσ in (6).

5: x⋆
σ ← arg max

x∈Xσ

η(x).

6: end for

reveals that the main difficulty in obtaining x⋆
σ lies in finding

a solution of the optimization problem in (6), let alone finding

the entire set Xσ . This difficulty arises because J(x) is a non-

concave function, even when C is a convex set. If the dimen-

sion of the set of feasible benefits is large, Procedure 1 can

be prohibitively complex to implement in real-time scenarios.

In such cases, this procedure might be used as a benchmark

for less costly algorithms that approximate the solution of the

underlying non-convex optimization problems. The accuracy

of such algorithms depends on the approximation technique

and the properties of C. The complexity of Procedure 1

motivates us to seek conditions, which, when satisfied by C,

the optimal EJT can be readily obtained.

B. A Property for Ensuring Tractability

In order to render the optimization problems underlying (6)

easy to solve, we begin by identifying a class of sets C
which satisfy what we refer to as the “monotonic tradeoff

property”. To do so, let J⋆
σ denote the maximum Jain’s index

corresponding to an efficiency η(x) = σ, i.e.,

J⋆
σ = max

η(x)=σ, x∈C
J(x). (8)

By definition, J⋆
σ is unique. However, it might be achieved by

multiple benefit vectors.

Using (8), we are now ready to define the monotonic

tradeoff property.

Definition 3 (Monotonic Tradeoff Property). A set C is said

to possess the monotonic tradeoff property if J⋆
σ is strictly

decreasing in σ, for σ ≥ σ⋆, and constant otherwise. �

This definition states that a set that possesses the monotonic

tradeoff property is one in which any decrease in efficiency

results in a strict increase in the Jain’s index, until σ⋆ is

reached. Decreasing efficiency beyond σ⋆ maintains Jain’s

index at its maximum. In other words,

J⋆
σ⋆ = max

η(x)=σ⋆,x∈C
J(x) = max

x∈C
J(x). (9)

An instance in which C satisfies the monotonic tradeoff

property is shown in Fig. 1(a) and the corresponding EJT is

shown in Fig. 1(b). These figures will be discussed in the next

section.

We will now show how the monotonic tradeoff property

facilitates finding the benefit vectors that achieve the optimal

EJT. When this property is satisfied, the inequality η(x) ≥ σ
in (6) is satisfied with equality when σ > σ⋆ because J⋆

σ is

strictly decreasing in σ. In this case, the optimization in (6) is

equivalent to that in (8). We now use (8) to obtain an equivalent

convex formulation. By definition, J(x) = η2(x)
M‖x‖2 . Hence,

when η(x) = σ, the objective in (8) can be expressed as
σ2

M‖x‖2 and (8) can be cast in the following equivalent form:

min
η(x)=σ, x∈C

‖x‖2. (10)

In contrast with (6), the objective in (10) is convex. In fact,

this objective is strictly convex, which implies that when C too

is convex, the optimization problem in (10) is easy to solve

and its solution is unique [14, p. 397]. In addition, if C is not

convex and (10) has multiple solutions, all these solutions will

achieve the same EJT as they all have the same efficiency, σ,

and the same Jain’s index. This eliminates the requirement

for finding all solutions in (6) since any solution of (10)

achieves the optimal EJT. To summarize, if the monotonic

tradeoff property in Definition 3 is satisfied, x⋆
σ can be found

by solving (10), which is significantly easier than solving the

optimization problems in (6) and (7) for an arbitrary C.

Similar to Procedure 1, the benefit vectors that achieve the

optimal EJT can be obtained by varying σ from σmax to σmin.

However, when C possesses the monotonic tradeoff property,

we can find x⋆
σ by solving (10) for each σ. This policy is

presented formally in Procedure 2 below.

Procedure 2 Optimal EJT for C possessing the monotonic

tradeoff property

Input: A set C possessing the monotonic tradeoff property

and step δ > 0
Output: x⋆

σ

1: Initialize σmin = min
x∈C

η(x), σmax = max
x∈C

η(x) and K =

⌊(σmax − σmin)/δ⌋.
2: for k = 0 : K do

3: σ = σmax − kδ
4: x⋆

σ = arg min
η(x)=σ, x∈C

‖x‖2

5: if J(x⋆
σ) = J(x⋆

σ+δ) then

6: quit

7: end if

8: end for

C. Sufficient Conditions for Satisfying the Monotonic Tradeoff

Property

In the previous section, we have shown that finding the set

of benefit vectors that achieve the optimal EJT is significantly
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simplified when the set C possesses the monotonic tradeoff

property. Unfortunately, we have not been able to identify a

distinguishing feature that is necessary for a set to possess the

monotonic tradeoff property. For instance, this property can

be possessed by sets that are either continuous or discrete,

convex or otherwise. This observation suggests that deriving

necessary conditions might be elusive. However, we have been

able to obtain sufficient conditions, which, when satisfied,

ensure that a given set possesses this property. Such conditions

are provided in Theorem 1 below1.

Theorem 1. The set C possesses the monotonic tradeoff

property if:

i. C is convex;

ii. xmin1M ∈ C; and

iii. every x ∈ C satisfies x � xmin1M , where xmin ≥ 0
provides a guarantee on the minimum benefit that each

user receives.

Proof: See Appendix B.

To provide a graphical illustration of Theorem 1, in Fig. 1(a)

we show a feasible set C satisfying the conditions of the

theorem with xmin = 0 for a case with M = 2 users. The EJT

corresponding to the set in Fig. 1(a) is shown in Fig. 1(b).

To show how Fig. 1(b) is obtained, we begin by noting

that, in Fig 1(a), the maximum Jain’s fairness line x1 = x2

passes through C and yields J(x) = 1. The regular-weight

dashed lines in this figure represent the constant efficiency

levels, η(x) = σ, at different values of σ. For σ ≤ 5.33, the

points at which the dashed lines intersect the x1 = x2 line

lie inside C. In this case, the maximal Jain’s index, J⋆
σ = 1.

For σ > 5.33, the dashed lines representing the η(x) = σ
levels intersect the x1 = x2 line at points outside C. For these

efficiency levels, the maximal Jain’s indices are strictly less

than 1 and correspond to the points at which the dashed lines

intersect with the boundary of C. The optimal EJT benefit

vectors are shown by the thick dashed line on the boundary

of C. The variation of J⋆
σ with σ is depicted in Fig. 1(b).

It can be seen from this figure that, in agreement with

Theorem 1, the set C satisfies the monotonic tradeoff property

in Definition 3 with σ⋆ = 5.33. In this figure, the optimal EJT

corresponding to the thick dashed line on the boundary of C
in Fig. 1(a) is represented by the thick dashed line to the right

of σ⋆.

Although necessary conditions are not available, the suffi-

cient conditions provided in Theorem 1 are relatively sharp. To

illustrate that, we consider the optimal EJT for the set C shown

in Fig. 2(a). This set satisfies the first condition of Theorem 1,

but does not satisfy the second and third conditions. In other

words, C is convex, but there is no xmin such that xmin1M ∈ C
and x � xmin1M , ∀x ∈ C. We will now demonstrate that

this set does not possess the monotonic tradeoff property in

Definition 3.

For the set shown in Fig. 2(a), the maximum Jain’s fairness

line x1 = x2 intersects C at one point, viz., x1 = x2 = 6. At

this point, the efficiency, σ = 12 and Jain’s index, J(x) = 1.

1This theorem is a generalized version of the one we provided in [15]
wherein xmin was restricted to be zero.
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Fig. 1. (a) A convex set that satisfies the conditions in Theorem 1 and (b)
its EJT curve.

At any other point in C, Jain’s index is strictly less than

1. To see why this implies that C does not possess the

monotonic tradeoff property, we note that, for each dashed

line representing constant σ ∈ [3.6, 12) and σ ∈ (12, 13] the

maximal Jain’s index, J⋆
σ , corresponds to the intersection of

the dashed line with the non-vertical part of the boundary of C.

For σ ∈ [3.6, 12), J⋆
σ is strictly monotonically increasing in σ,

and for σ ∈ (12, 13], J⋆
σ , is strictly monotonically decreasing

in σ.2 Hence, it can be seen that, for σ < 12, the tradeoff

is not meaningful, since, in that region, both η(x) and J⋆
σ(x)

can be increased at the same time. The optimal EJT benefit

vectors are shown by the thick dashed line on the boundary

of C.

The variation of J⋆
σ with σ is depicted in Fig. 2(b). As we

pointed out, J⋆
σ is strictly increasing for σ < 12, implying

that C does not satisfy the monotonic tradeoff property in

Definition 3. For σ ∈ (12, 13], the optimal EJT corresponding

to the thick dashed line on the boundary of C in Fig. 2(a) is

represented by the thick dashed line to the right of σ⋆.

2For this C, any σ < 3.6 or σ > 13 is not feasible.
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Fig. 2. (a) A convex set that does not satisfy the conditions in Theorem 1
and (b) its EJT curve.

D. Practical Applications of Theorem 1

The sufficient conditions given in Theorem 1 are quite gen-

eral and can be applied to scenarios beyond those considered

hereinafter. Indeed, these conditions are applicable, not only

to communication systems, but also to other fields including

social and economics ones. The conditions in Theorem 1 are

naturally satisfied in various resource allocation problems in

communication networks. For instance, in congestion control

in elastic traffic communication networks [1], [10] the users

share finite-capacity links and the goal is to assign the benefit

vector x, which represents the users’ rates, in an efficient and

fair manner. The set of feasible rates in this case is given by

C = {x|Ax � c,0M � x}, where the ℓ-th entry of c ∈ R
L
+

is the capacity of link ℓ, ℓ = 1, . . . ,L, and A is a matrix

with binary entries that represent the assignment of users to

links. In this case, the set C is a convex polyhedron [14, p.

31] containing 0M , and thereby satisfying the conditions of

Theorem 1 with xmin = 0. Hence, C satisfies the monotonic

tradeoff property and Procedure 2 can be used to find all the

optimal EJT rate vectors.

Another example is the allocation of radio resources in the

downlink of cellular networks, which will be discussed in

Section VI in more detail.

E. Geometric Interpretation of the Optimal EJT

When C satisfies the sufficient conditions given in Theo-

rem 1, optimal EJT benefit vectors {x⋆
σ} have an interesting

geometric interpretation. To see that, we use (10) to write

x⋆
σ = arg min

η(x)=σ, x∈C

M
∑

m=1

x2
m

= arg min
η(x)=σ, x∈C

M
∑

m=1

(

x2
m − 2

σ

M
η(x) +

σ2

M2

)

= arg min
η(x)=σ, x∈C

∥

∥

∥
x−

σ

M
1M

∥

∥

∥

2

. (11)

The last equality states that x⋆
σ is the unique Euclidean

projection [14, p. 397] of the equal allocation vector σ
M
1M

onto the set {x|η(x) = σ, x ∈ C}. In other words, a benefit

vector x⋆
σ achieves the optimal EJT if there is no feasible

benefit vector y 6= x⋆
σ such that η(y) = σ is closer to the

fairest solution σ
M
1M . This interpretation commends the use

of Jain’s index as a fairness measure and is illustrated in Fig. 3.

It also complements the interpretation given in [16] that Jain’s

index represents the angular deviation from a scaled all-one

vector.

x 1
=
· ·
· =

xM

C

Projection

in
(11)

η(x) =
σ

σ
M
1M

x⋆
σ

β1M

P
ro

jectio
n

in
(1

2
)

Fig. 3. The optimal EJT benefit vector, x⋆
σ , is the unique projection of the

fairest vector σ

M
1M onto the set {x|η(x) = σ, x ∈ C}. Projection of β1M

onto C is also shown.

F. An Alternate Formulation

In Section IV-B it was shown that, if the set C possesses the

monotonic tradeoff property, the optimal EJT benefit vectors

can be obtained by solving the optimization problem in (10)

for each σ. As such, the solution of (10) can be viewed as

being parameterized by σ.

Although the form in (10) is convenient for providing

an explicit characterization of the optimal EJT, the equality

constraint therein renders it difficult to utilize in some appli-

cations. An instance of these applications is considered in the

next section, wherein the instantaneous allocations of radio
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resources are to be updated for optimizing long-term average

rates.

One approach to address the aforementioned difficulty is

to incorporate the equality constraint into the objective by

eliminating one of the variables [14, pp. 523–524]. However,

this approach can be shown to result in complicating the

computation of gradient vectors necessary for the development

of effective procedures for updating resource allocations. To

alleviate this difficulty, we now provide an alternate formula-

tion for (10). In this formulation, the efficiency σ is implicitly

accounted for by a non-negative parameter β in the objective,

and the benefit vectors are only constrained to lie in C. In

particular, when the conditions of Theorem 1 are satisfied,

we have that for any σ = η(x), the formulation in (10) is

equivalent to

min
x∈C
‖x‖2 − 2βη(x), (12)

for some β ∈ [0,∞). To see this, we let σ be the efficiency

corresponding to the solution of (12) for a given β ∈ [0,∞);
letting β = 0 corresponds to σmin, the minimum feasible

efficiency, and letting β → ∞ corresponds to σ → σmax,

the maximum feasible efficiency. For intermediate values of

β, it can be shown that the efficiency generated by (12) is

monotonically increasing in β. Thus, the EJT obtained by

letting β span the interval [0,∞) in (12) is the same as that

obtained by letting σ span the interval [σmin, σmax) in (10).

Similar to the observation made in the previous section, the

objective in (12) can be equivalently expressed as ‖x−β1M‖2.

Hence, the optimum EJT benefit vector generated by (12)

is the Euclidean projection of the benefit vector β1M onto

the feasible set C. A subtle difference between the objectives

in (12) and (11) is that, the projection in (12) is onto C,

whereas that in (11) is onto the intersection of C with the

hyperplane η(x) = σ; cf. Fig. 3.

To obtain further insight into the role of β, we note

that, because of the monotonic tradeoff property, the solution

of (10) remains unchanged if the equality constraint is replaced

by the inequality η(x) ≥ σ. Hence, 2β can be regarded as the

Lagrange multiplier corresponding to this constraint and is,

therefore, non-negative.

V. IMPLICATIONS OF THEOREM 1 IN RADIO RESOURCE

ALLOCATIONS

In this section, we consider the scheduling of radio re-

sources to multiple users in the downlink of a wireless

communication network using the multiple access technique

based on orthogonal frequency division multiplexing (OFDM).

Resources are divided into N (time-frequency) resource

blocks (RBs) [17], and the goal is to allocate these RBs to M
users in a way that is both “efficient and fair”. We consider

quasi-static and ergodic time-varying channels. For quasi-

static channels, we consider scheduling with and without time-

sharing. In the case of time-sharing, the scheduling variables

are continuous and the corresponding set of feasible benefit

vectors, C, satisfies the conditions of Theorem 1. In contrast, in

the case without time-sharing, the scheduling variables are dis-

crete and C does not satisfy the conditions of Theorem 1. For

ergodic time-varying channels, time-sharing is not plausible

and the scheduling variables are discrete. In spite of that, the

corresponding set of feasible benefit vectors, C, can be shown

to satisfy the conditions of Theorem 1. It is worth noting

that several communication scenarios are neither quasi-static

nor ergodic time-varying, e.g., non-ergodic communication

scenarios [18]. For these scenarios, an appropriate efficiency

measure would account for the probability of outage.

A. Case 1: Quasi-Static Channels

Under quasi-static channel conditions and given modulation

and coding schemes, the data rate of each user m ∈ M ,

{1, . . . ,M} on RB n ∈ N , {1, . . . , N}, which we denote

by rmn, is a deterministic quantity known to the transmitter.

The transmitter objective is to determine a fair RB allocation

that ensures efficient communication of data to the users. To

achieve this goal, let ρmn ∈ [0, 1] be a scheduling variable that

assigns RB n to user m for a fraction ρmn of the signalling

interval [19]. At each time instant, each RB is used by at

most one user, and thus
∑M

m=1 ρmn ≤ 1. The total data rate

(benefit) of user m is given by xm =
∑N

n=1 ρmnrmn and the

efficiency of the network is given by the total sum-rate, which

is given by η(x) =
∑M

m=1 xm. The set of achievable rates

(benefits) of the users is given by

C =
{

x|xm =
N
∑

n=1
ρmnrmn,

M
∑

m=1
ρmn ≤ 1, ρmn ∈ [0, 1],

xm ≥ xmin,m =∈M, n ∈ N
}

,

(13)

where xmin ≥ 0 represents a feasible threshold on the

minimum rate that must be delivered to each user. Using

this description, the goal of the transmitter can be cast as to

determine the set {ρmn} that results in rate vectors x that

span the optimal EJT. This goal can be achieved by invoking

the results of Theorem 1. In particular, we note that the set C
in (13) is convex and contains the vector xmin1M . Hence,

the conditions of Theorem 1 are satisfied and C possesses

the monotonic tradeoff property. Based on this observation,

Procedure 2 will be used in Section VI-A to obtain {ρmn}
that achieve every point on the optimal EJT.

When the RBs are not time-shared, {ρmn} assume binary

values (i.e., ρmn ∈ {0, 1}), resulting in the set C being non-

convex. In this case, C may not possess the monotonic tradeoff

property and Procedure 1 can be used to obtain the optimal

{ρmn}. However, we note that, in contrast with Procedure 2,

which is used when time-sharing is allowed and {ρmn} are

continuous, Procedure 1 is significantly more computationally-

demanding.

B. Case 2: Ergodic Time-Varying Channel

We now consider the problem of determining the radio

resource allocations that span the optimal EJT when the

channels are ergodic and time-varying. Before providing the

mathematical framework for this case, we begin by noting

that, from a practical perspective, one is typically interested

in average, rather than instantaneous, rates [17], [18]. In those

cases, one might be tempted to apply the same approach in
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the previous section on instantaneous realizations of the chan-

nels. Although this would guarantee optimal tradeoff between

efficiency and fairness in every time instant, it suffers from

a major drawback that was alluded to in [17]. In particular,

applying that instantaneous strategy does not necessarily lead

to long-term average rates that are optimal from an EJT

perspective.

For ergodic time-varying channels considered in this sec-

tion, the channel gains assume random values in every time

slot t. When these gains are available at the transmitter and the

receivers, the instantaneous data rate of each user m ∈ M on

each RB n ∈ N is denoted by rmn(t). To achieve various

points on the long-term average optimal EJT, we define,

similar to the previous section, scheduling variables. However,

in the current case of time-varying channels, these variables

are binary, indexed by t, and denoted by {ρmn(t)}. The reason

that {ρmn(t)} are assumed to be binary is that the channel

gains take on different values in each time slot, rendering

time-sharing implausible. In other words, for each channel

realization, the role of {ρmn(t)} is to assign each RB to a

particular user. Updating {ρmn(t)} to achieve points on the

long-term average optimal EJT will be accomplished using

the gradient scheduling algorithm, which we describe next.

1) The Gradient Scheduling Algorithm: The gradient

scheduling algorithm is a particular instance of adaptive al-

gorithms that enable efficient solving of stochastic optimiza-

tion problems wherein the utilities to be maximized involve

long-term averaging over an ergodic process; see e.g., [17],

[20]. The key idea that underlies such an algorithm is to

use gradient-based steps to update the optimization variables

sequentially using current and previous observations of the

process. In addition to its relative simplicity, variants of the

gradient scheduling algorithm were shown in [17] and [20]

to yield the optimal solution of the stochastic optimization

problem as the number of observations becomes sufficiently

large.

To apply this algorithm to the current framework, let

Rm(t) be the data rate scheduled to user m at time t, i.e.,

Rm(t) =
N
∑

n=1
ρmn(t)rmn(t). Maximizing the standard average

rate of user m directly results in spurious behaviour [21],

which can be alleviated by using the exponentially-weighted

moving average instead. To do so, let µ ∈ (0, 1) be a small

positive scalar [20] and define Wm(t) to be

Wm(t) = µ
t

∑

i=0

(1 − µ)i−tRm(i)

= (1− µ)Wm(t− 1) + µRm(t). (14)

For notational convenience, let W(t) = [W1(t), . . . ,WM (t)]T

and R(t) = [R1(t), . . . , RM (t)]T . Since our goal is optimize

long-term (i.e., steady-state) average rates, the benefit vector of

the M users, x, can be defined to be limt→∞ W(t). Using the

above notation, the idea behind gradient scheduling algorithm

can be described as follows: Given the exponentially-weighted

average rates at t − 1, W(t − 1), and the instantaneous

rates, {rmn(t)}, the task of the scheduler is to determine the

instantaneous scheduling variables, {ρmn(t)}, in such a way

that maximizes a given system utility U(x) : R
M → R.

We will later show how U(·) can be chosen to account

for various tradeoff criteria. Since at time t the scheduler

knows the previous values of W(t), but not future ones,

its instantaneous decisions, {ρmn(t)}, can only depend on

W(t−1) and {rmn(t)}. In the gradient scheduling algorithm,

the scheduler generates these decisions using the first order

Taylor’s series expansion of U(W(t)) around W(t − 1). In

particular, using (14) with a sufficiently small µ, we can write

U(W(t)) ≈ U(W(t−1))+µ∇U(W(t−1))T (R(t)−W(t−
1)). Noting that, at time t, U(W(t− 1)) is constant, it can be

seen that only the term containing R(t) depends on {ρmn(t)}.
Hence, maximizing U(W(t)) is approximately equivalent to

solving

max
{ρmn(t)}∈S

∇U(W(t− 1))TR(t), (15)

where S ,
{

{ρmn}
∣

∣

∑M
m=1 ρmn ≤ 1, ρmn ∈ {0, 1}, ∀m ∈

M, n ∈ N
}

.

Invoking the definition of R(t), the solution of (15) can be

expressed as

ρmn(t) =

{

1, if m = arg max
m∈M

∂U(W(t−1))
∂Wm(t−1) rmn(t),

0, otherwise.
(16)

It is shown in [17], [20], [21] that, when the rate processes

{rmn(t)} are ergodic and the utility U(·) is concave, the

scheduling variables obtained by the gradient scheduling al-

gorithm in (16) yield a long-term average rate vector x that

maximizes U(x), asymptotically as µ→ 0.

2) Application of Gradient Scheduling to Efficiency-

Fairness Utilities: With a proper choice of U(·) in (16), the

gradient scheduling algorithm can be made to yield instan-

taneous schedules that attain long-term optimal efficiency-

fairness tradeoffs for various fairness measures. To show this,

we consider the case in which the set C contains the long-

term average rate benefit vectors corresponding to all possible

choices of the scheduling variables {ρmn(t)}, i.e.,

C =
⋃

{ρmn(t)}∈S, ∀t

{

x|xm = lim
t→∞

µ
t

∑

i=0

(1− µ)i−t Rm(i),

Rm(i) =
N
∑

n=1
ρmn(i)rmn(i)

}

.

(17)

This definition implies that the instantaneous scheduling vari-

ables generated by (16) yield long-term average rate benefit

vectors that lie in C.

a) Achieving α-Fairness: When the fairness measure is

given by the α-fair utility, the function U(·) in (16) is replaced

with the utility Uα(x) in (3). Since this utility is concave for

all α ∈ [0,∞), the gradient scheduling algorithm with µ→ 0
can be used to obtain the instantaneous schedules that yield

the corresponding long-term optimal average rate vectors. In

this case, these schedules are given by

ρmn(t) =

{

1, if m = arg max
m∈M

(Wm(t− 1))−αrmn(t),

0, otherwise.
(18)
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b) Achieving Optimum EJT: We now show how to use

the gradient scheduling algorithm to obtain optimum EJT. For

simplicity we restrict our attention to the case of xmin = 0.

To consider this case, we note that, with xmin = 0, the set of

feasible benefit vectors defined in (17) satisfies the conditions

of Theorem 1. In particular, this set is convex and contains the

all-zero vector 0M . To see that C is convex in x, we note that,

for any two long-term average rate benefit vectors x1,x2 ∈ C
and any θ ∈ [0, 1], the line segment θx1 + (1 − θ)x2 is also

in C [17]. That 0M ∈ C follows from the fact that setting the

scheduling variables ρmn(t) = 0 for all m, n and t is feasible,

i.e., the all-zero M ×N matrix 0MN ∈ S.

Now that the conditions of Theorem 1 are satisfied, we

know that C possesses the monotonic tradeoff property in

Definition 3, and Procedure 2 can be used to find the optimum

EJT long-term average rates. In this procedure, the optimiza-

tion problem in (10) is solved for various choices of σ. For

each value of σ, the problem in (10) involves a constraint

on the sum of the long-term average rates. Unfortunately,

incorporating such a constraint in the gradient scheduling

algorithm is not straightforward and hence, this algorithm

cannot be used directly to solve (10) in the current stochastic

framework. To circumvent this difficulty, we use the alternate

formulation of (10) given in (12). Using that formulation, the

gradient scheduling algorithm can be applied with the utility

U(·) in (16) replaced with

Uβ(x) = −‖x‖
2 + 2βη(x). (19)

where, as explained in Section IV-F, β ∈ [0,∞).
Using the utility in (19), the instantaneous schedules that

yield the optimal EJT long-term average rate vectors, for a

given β, are given by

ρmn(t) =

{

1, if m = arg max
m∈M

(β −Wm(t− 1))rmn(t),

0, otherwise.
(20)

Now that we have shown how the gradient scheduling

algorithm can be used to yield optimal EJT long-term average

rate vectors, in the next section we will investigate the perfor-

mance of this algorithm in practical wireless communication

scenarios.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we compare the EJT achieved by the optimal

and the α-fair based schedulers for two cases. In the first case,

the channels between the base station (BS) and the users are

quasi-static and in the second case these channels are ergodic

time-varying.

A. Case 1: Quasi-Static Channels

We consider one realization of a quasi-static network with

M = 4 users and N = 5 RBs. As an example, we assume

that the rate matrix r = [rmn] is given by

r =









544 648 807 544 722
388 92 223 388 56
35 544 35 722 56
35 56 35 92 35









. (21)

The rates in this matrix are given in Kb/s and were obtained

from simulating a practical scenario based on the Long Term

Evolution (LTE) standard [22]. In the considered scenario,

users 1 and 2 are closer to the BS than users 3 and 4, and the

wireless channels are quasi-static frequency-flat and Rayleigh

fading on each RB.

The comparisons between the optimal EJT and the tradeoff

achieved by the α-fair policy for the case when the RBs can be

time-shared among users are shown in Fig. 4(a) and Fig. 4(b).

In Fig. 4(a), it is assumed that there is no minimum rate

guarantee, i.e., xmin = 0, while in Fig. 4(b) the minimum rate

guarantee is assumed to be 50 Kb/s, i.e., xmin = 50 Kb/s. Pro-

cedure 2 was used to obtain the optimal EJT, and the tradeoff

achieved by the α-fair policy was obtained by solving (2). The

convex optimization problems underlying Procedure 2 and the

α-fair policy were solved using ‘fmincon’, which is available

in the MATLAB optimization toolbox. From both figures, it

can be seen that, while these tradeoffs are close to each other

for small and large values of α, for intermediate values, the

tradeoff generated by the optimal EJT policy is significantly

better than that generated by the α-fair one. For example, for a

Jain’s index of 0.7, the optimal EJT policy provides 33% gain

in efficiency as compared to the α-fair policy for the case of

xmin = 0 Kb/s and 21% gain in efficiency for the case of

xmin = 50 Kb/s.

In Figs. 5(a) and 5(b) we present the counterparts of

Figs. 4(a) and 4(b), but for the case when the RBs are not

time-shared by the users. In Fig. 5(a), xmin = 0, while in

Fig. 5(b) xmin = 50 Kb/s. Since the set C in this case is not

convex and hence does not satisfy the sufficient conditions for

possessing the monotonic tradeoff property, Procedure 1 was

used to obtain the optimal EJT; cf. Section V-A. The non-

convex optimization problems underlying Procedure 1 and the

α-fair policy were solved using exhaustive search. Similar to

the case of time-sharing considered in Figs. 4(a) and 4(b),

it can be seen from Figs. 5(a) and 5(b) that, in this case too,

the optimal EJT policy provides tradeoffs that are significantly

better than those provided by the α-fair policy when xmin = 0
and when xmin = 50 Kb/s.

B. Case 2: Ergodic Time-Varying Channel

We now compare the performance of the α-fair scheduler

in (18) with the one proposed in (20). To do so, we consider a

cellular network based on the IMT-advanced guidelines for the

Urban Macro (UMa) scenario [23]. As per these guidelines,

the number of hexagonal sectors is 57, and these sectors are

served by 19 BSs, each with a tri-sector antenna to serve

a 3-sector cell-site. The users are uniformly dropped in the

57 sectors, and Monte Carlo simulations are carried over 104

time slots and averaged over 10 independent drops. The users

are assumed to be associated with the sector with the highest

received average power. This power depends on large channel

variations, which are mainly due to non-uniform antenna

patterns (cf. [23, pp. 17–18]) and distance-dependent path-loss

and correlated shadowing. To incorporate these variations in

our simulations, we considered the line-of-sight (LOS) and

non-line of-sight (NLOS) users as in [23, pp. 17–33]. For
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Fig. 4. A comparison between the EJTs achieved by the optimal and α-fair
policies, with time-sharing.

the LOS users, the path-loss exponent is set to be 2.2 and

the shadowing is assumed log-normal with standard deviation

of 4 dB. For the NLOS users, the path-loss exponent is set

to be 3.9 and the log-normal shadowing standard deviation

is set to be 6 dB. The system parameters are based on the

LTE standard, whereby each RB is composed of a time slot

of 7 OFDM symbols and 12 subcarriers [22]. The simulation

parameters are given in Table I.

In addition to large variations, the received signal power is

subject to small-scale variations due to time-varying multipath

fading. Variations of the received signal power due to fading

within each RB is negligible and hence, the channels can be

assumed fixed over each RB. For other RBs the channels take

on different values depending on the spectro-temporal corre-

lation of the IMT-advanced model for the UMa scenario [24].

At time slot t, each user m ∈ M calculates its received

signal-to-interference-plus-noise ratios (SINRs) on all the RBs,

and subsequently determines rmn(t), the data rate that can be

reliably communicated on every RB n ∈ N . The set of all

the rates at time t, {rmn(t)}, are available at the BS, which

subsequently determines the appropriate scheduling variables,
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Fig. 5. A comparison between the EJTs achieved by the optimal and α-fair
policies, without time-sharing.

{ρmn(t)}, depending on previously scheduled rates and the

adopted scheduling strategy.

1) EJT Comparison: Using the UMa model with the above

parameter settings, in Fig. 6 we plot the EJT curve for both the

α-fair scheduler in (18) and the proposed scheduler in (20).

From this figure it can be seen that the scheduler in (20)

achieves better tradeoffs, especially in the high fairness region.

For example, for a Jain’s index of 0.94, the scheduler in (20)

provides 33% gain in efficiency as compared to the α-fair

scheduler.

2) User Satisfaction Comparison: To illustrate the advan-

tage of using Jain’s index, we compare the number of satisfied

users when the scheduling is performed based on the optimal

EJT and α-fair policies. In particular, we assume that a user

is satisfied if its long-term average rate exceeds a certain

threshold. To perform this comparison, for the α-fair policy,

the parameter α is chosen to maximize the percentage of users

for which the rates obtained by the scheduler in (18) exceed

a given threshold. Similarly, for the proposed optimal EJT

policy, the parameter β is chosen to maximize the percentage

of users for which the rates obtained by the scheduler in (20)
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TABLE I
SIMULATION PARAMETERS BASED ON IMT-ADVANCED UMA SCENARIO.

Parameter Assumption or Value

Number of sectors 57

Number of users 570

Inter-site distance 500 m

BS height 25 m

Min. distance b/w user and BS 25 m

User speed 30 km/h

Bandwidth (downlink) 10 MHz

Sub-carrier spacing 15 KHz

Number of RBs (N ) 50

OFDM symbol duration 66.67 µs

Number of sub-carriers per RB 12

Number of OFDM symbols per RB 7

Carrier Frequency (GHz) 2.0

Total BS transmit power 46 dBm

Number of drops 10

Number of time-slots per drop 10000

Smoothing factor (µ) 0.01

BS antenna gain (boresight) 17 dBi

User antenna gain 0 dBi

Feeder loss 2 dB

Channel estimation delay 4 time slots

SINR estimation margin 6 dB

Antenna tilt 12◦ [25, p. 4]

Traffic model Full buffer

exceed the same threshold. Unfortunately, obtaining closed-

form expressions for the optimal α and β as functions of rate

thresholds has proved intractable. As an alternative, for each

threshold we perform an exhaustive search to find the optimal

α and β that maximize the number of satisfied users in each

policy. In practice, the optimal α and β can be determined

through a pre-communication learning phase that enables the

BSs to evaluate user satisfactions for tentative values of α and

β.

The comparison between the percentage of satisfied users

at given rate thresholds is plotted in Fig. 7. As expected, the

number of satisfied users is monotonically decreasing with the

threshold for both schedulers. However, the scheduler based

on the optimal EJT is consistently better than the one based

on the α-fair policy as it enables significantly more users to

be satisfied. For instance, for the considered scenario when

the threshold is set to be 1 Mb/s, the scheduler based on

the optimal EJT satisfies 10% more users than those satisfied

by the scheduler based on the α-fair policy. Hence, from

a service provider’s perspective, using the scheduler based

on the optimal EJT yields valuable increase in the ability

of the system to satisfy users with long-term average rate

requirements.

VII. CONCLUSIONS

In this paper, we considered multiuser resource allocations

that achieve the optimal tradeoff between efficiency and

fairness from the Jain’s index perspective. We showed that,

in general, the commonly-used α-fair policy does not yield

the optimal EJTs except for the two-user case. To achieve

the optimal EJTs in the general case, we developed two

procedures. In the first procedure, the set of feasible allocations

is arbitrary, but finding the allocations that achieve the optimal
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Fig. 6. A comparison between the EJTs achieved by the optimal and α-fair
policies in the long-term average rates.
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Fig. 7. Percentage of satisfied users for different thresholds.

EJTs involves solving potentially difficult optimization prob-

lems. In contrast, in the second procedure, the set of feasible

allocations is assumed to have a monotonic property that arises

in many practical scenarios. This property is exploited to

facilitate the search for allocations that achieve the optimal

EJTs. This property is shown to arise naturally in the problem

of scheduling radio resources in quasi-static and ergodic time-

varying communication scenarios, and it enables us to devise

computationally-efficient schedulers that achieve the optimal

EJT. Our analysis is supported by illustrations, geometric

interpretations and numerical examples.

ACKNOWLEDGMENT

The authors would like to express their gratitude to Dr.

Gamini Senarath, Dr. Ho Ting Cheng, and Dr. Petar Djukic of

Huawei Technologies Canada Co., Ltd.

APPENDIX A

PROOF OF PROPOSITION 1

We will proceed by contradiction. Let α ∈ (0,∞) be given

and suppose that x⋆
α does not achieve the optimal EJT, that is,
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there exists a non α-fair optimal vector x such that either 1)

η(x) > η (x⋆
α) and J(x) ≥ J (x⋆

α); or 2) η(x) ≥ η (x⋆
α) and

J(x) > J (x⋆
α). We will show that such a vector x results in

Uα(x) > Uα(x
⋆
α), which contradicts the definition of α-fair

benefit vectors; cf. (2). We will focus on the first case. The

proof for the second case follows similar lines and is omitted

for brevity.

Since M = 2, we can define a parameter ω = maxx
minx

. Using

this ω, we have J(x) = (1+ω)2

2(1+ω2) . Now, dJ
dω

= − ω2−1
(ω2+1)2 . Since,

by definition, ω ≥ 1, it can be seen that J is monotonically

decreasing in ω. This with the fact that, in the considered case,

J(x) ≥ J (x⋆
α) implies that

maxx

minx
≤

maxx⋆
α

minx⋆
α

. (22)

Since in this case we also have η(x) > η(x⋆
α), it follows that

minx + maxx > minx⋆
α + maxx⋆

α, which is equivalent to
(

1 + maxx
minx

)

minx >
(

1 +
maxx⋆

α

minx⋆
α

)

minx⋆
α. This inequality

implies that

minx >

(

1 +
maxx

⋆

α

minx⋆
α

)

(

1 + maxx
minx

) minx⋆
α. (23)

Invoking (22) implies that the fraction on the right hand side

is greater than 1, which further implies that we can write

minx = minx⋆
α + ǫ1, with ǫ1 > 0. Since x is not α-fair,

we must have

Uα(x) < Uα(x
⋆
α). (24)

We now observe that Uα(x) is strictly increasing in each xm,

m = 1, 2. This observation and (24) imply that maxx =
maxx⋆

α − ǫ2, with ǫ2 > 0. Combining this with the fact that

minx = minx⋆
α + ǫ1 and the fact that in the current case

η(x) > η (x⋆
α) yields ǫ1 > ǫ2. Using this notation, it can be

readily verified that, because ǫ1 > ǫ2,

∇Uα(x)
T (x⋆

α − x) = −ǫ1(minx)−α
(

1− ǫ2
ǫ1

(

maxx
minx

)−α
)

< 0,

Now, direct computation of the Hessian of Uα(x) shows

that Uα is concave for any α ∈ (0,∞). Thus [14, p. 69],

Uα(x
⋆
α) ≤ Uα(x) +∇Uα(x)

T (x⋆
α − x), which yields

Uα(x
⋆
α) < Uα(x). (25)

This with (24) establish the desired contradiction.

APPENDIX B

PROOF OF THEOREM 1

Let x⋆
σ1

and x⋆
σ2

be the benefit vectors obtained using (10)

with σ1 and σ2, respectively, where σmin ≤ σ1 < σ2 ≤ σmax.

To prove Theorem 1, it suffices to show that if the conditions

of the theorem are satisfied, then J⋆
σ1
≥ J⋆

σ2
with equality if

and only if J⋆
σ2

= J⋆
σ⋆ , where J⋆

σ and J⋆
σ⋆ are given by (8)

and (9), respectively. We consider two distinct cases: xmin > 0
and xmin = 0.

Case 1 (xmin > 0): First we note that, because xmin1 ∈
C, J⋆

σ⋆ = 1. Now, the convexity of C implies that, for any

θ ∈ (0, 1),

yθ = θxmin1+ (1− θ)x⋆
σ2
∈ C. (26)

Substituting for yθ from (26) in (1), it can be verified that

J(yθ)− J⋆
σ2

= a(1− J(yθ)), (27)

where a =
θ2M2x2

min
+2θ(1−θ)Mxmin1

Tx⋆

σ

M(1−θ)2x⋆
σ
Tx⋆

σ

≥ 0.

To prove the theorem, we will show that J(yθ)− J⋆
σ2
≥ 0,

with equality if and only if J⋆
σ2

= 1. To do so, we note

that, by the properties of Jain’s index, if J⋆
σ2

< 1, then

x⋆
σ2
6= γ11, and subsequently from (26) yθ 6= γ21 for any

γ1, γ2 > 0. This implies that J(yθ) < 1, which further implies

from (27) and the fact that a > 0 for any θ ∈ (0, 1) that

J(yθ) > J⋆
σ2

. We next show that there exists a θ0 ∈ (0, 1)
such that η(yθ0) = σ1. In particular, setting θ0 = σ2−σ1

σ2−Mxmin

yields this efficiency. Since J⋆
σ1

is the maximum Jain’s index

corresponding to η(x) = σ1, we must have J⋆
σ1
≥ J(yθ0),

which implies that J⋆
σ1

> J⋆
σ2

.

For the case of J⋆
σ2

= 1, we note that yθ = γ21, for some γ2
and therefore, by the homogeneity of Jain’s index, J(yθ) = 1
for any θ. The statement of the theorem follows by using an

argument analogous to the above and noting that J⋆
σ ≤ 1, for

any σ including σ1.

Case 2 (xmin = 0): The proof for the case of xmin > 0
does not hold when xmin = 0. Furthermore, it is easy to find

sets C for which xmin = 0, but vectors of the form γ11 /∈ C
even for infinitesimal values of γ1 > 0, e.g., C = {x1, x2 :
0 ≤ x2 ≤ cx1}, where c ∈ (0, 1).

To prove the theorem for this case, we provide the following

lemma:

Lemma 1. Let C be a set satisfying the conditions of Theo-

rem 1 with xmin = 0 and let σmin ≤ σ1 ≤ σ2 ≤ σmax, then

J⋆
σ1
≥ J⋆

σ2
.

Before providing the proof, we note that unlike the claim of

Theorem 1, this lemma does not tell whether a strict decrease

in σ will yield a strict increase in Jain’s index.

Proof: Let x⋆
σ2

be the optimal benefit vector at efficiency

σ2; that is, J(x⋆
σ2
) = J⋆

σ2
. Since C is convex and 0M ∈ C, it

follows that, for any θ ∈ [0, 1], x̂ = θx⋆
σ2
∈ C. Noting that

σ1 ≤ σ2 and setting θ = σ1

σ2

, it can be seen that η(x̂) = σ1.

Now, the homogeneity of Jain’s index implies that J(x̂) =
J⋆
σ2

. However, J⋆
σ1

is the optimal Jain’s index at efficiency

σ1 and hence J⋆
σ1
≥ J(x̂), which completes the proof of the

lemma.

We now proceed to complete the proof of Theorem 1. Let

σ⋆ be the highest efficiency corresponding to the maximum

achievable Jain’s index, i.e., J⋆
σ⋆ . We will consider two cases:

σ2 ≤ σ⋆ and σ2 > σ⋆.

When σ2 ≤ σ⋆, we have by assumption that σ1 < σ⋆,

which, by Lemma 1, implies that J⋆
σ2

= J⋆
σ1

= J⋆
σ2

, and the

theorem is proved in this case.

We now consider the case of σ2 > σ⋆. We again consider

two cases: σ1 ≤ σ⋆ and σ1 > σ⋆.
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Since σ2 > σ⋆, it follows by the definition of σ⋆ that J⋆
σ2

<
J⋆
σ⋆ . Now, if σ1 ≤ σ⋆, invoking Lemma 1 yields J⋆

σ1
= J⋆

σ⋆

which implies that J⋆
σ2

< J⋆
σ1

.

We next prove the theorem for the remaining case of σ2 >
σ1 > σ⋆.

For this case, we will consider the line segment, yθ ,

connecting x⋆
σ2

with x⋆
σ⋆

, i.e., yθ = θx⋆
σ⋆

+ (1 − θ)x⋆
σ2

,

θ ∈ [0, 1]. The convexity assumption implies that yθ ∈ C.

Substituting for yθ in (1), it can be verified that, for any

x⋆
σ2
,yθ such that ‖x⋆

σ2
‖‖yθ‖ > 0,

J(yθ)− J(x⋆
σ2
) =

θ2(σ⋆2‖x⋆

σ2
‖2−σ2

2
‖x⋆

σ⋆
‖2)+2θ(1−θ)σ2(σ

⋆‖x⋆

σ2
‖2−σ2x

⋆

σ⋆
Tx⋆

σ2
)

M‖x⋆
σ2

‖2‖yθ‖2 .

(28)

We will now use this equality to show that J(yθ) > J(x⋆
σ2
).

For the first term in the numerator, we note that, since by

assumption σ2 > σ⋆, we have J⋆
σ2

< J⋆
σ⋆ , which implies that

σ⋆2‖x⋆
σ2
‖2 − σ2

2‖x
⋆
σ⋆
‖2 > 0. For the second term, we note

that, by the Cauchy-Schwartz inequality,

σ⋆‖x⋆
σ2
‖2 − σ2x

⋆
σ⋆

T
x⋆
σ2
≥ ‖x⋆

σ2
‖(σ⋆‖x⋆

σ2
‖ − σ2‖x

⋆
σ⋆‖) > 0.

The strict positivity follows from the fact that J⋆
σ2

< J⋆
σ⋆ .

Hence, we have shown that J(yθ) > J(x⋆
σ2
) for any θ ∈

(0, 1).
We next show that there exists a θ0 ∈ (0, 1) such that

η(yθ0) = σ1. In particular, setting θ0 = σ2−σ1

σ2−σ⋆ yields this

efficiency, where θ0 ∈ (0, 1) by the assumption that σ1 > σ⋆.

Since J⋆
σ1

is the maximum Jain’s index corresponding to

η(x) = σ1, we must have J⋆
σ1
≥ J(yθ0), which implies that

J⋆
σ1

> J⋆
σ2

and completes the proof of the theorem.
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