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Convergence of Iterative Water-Filling With Quantized
Feedback: A Sufficient Condition

Ramy H. Gohary and Halim Yanikomeroglu

Abstract—In this paper, the iterative water-filling (IWF) algorithm is
considered when the noise-plus-interference levels fed back from the re-
ceivers are quantized. A sufficient condition for this algorithm to have a
unique Nash equilibrium is derived. This condition is shown to approach
the corresponding condition for standard IWF when the quantization res-
olution or the transmission power are sufficiently high.

Index Terms—Convergence, nonnegative matrix, noncooperative games,
Nash equilibrium, power allocation.

I. INTRODUCTION

I N OPEN spectrum communication systems several user pairs
share a common bandwidth of multiple orthogonal subchannels.

The users organize their transmissions autonomously without central
coordination. Given a total power budget, each user allocates its power
across the available subchannels in such a way that maximizes its
own utility, rather than the network utility. The transmissions of each
user must meet a spectral mask constraint that ensures that the power
allocated to each subchannel does not exceed a prescribed threshold.
When the utility is given by the rate at which data can be reliably
decoded, users may employ the so-called iterative water-filling (IWF)
algorithm [1]. In standard IWF, the receivers measure their observed
noise-plus-interference (NI) levels on all subchannels and feed back
this information to their respective transmitters. Based on the received
NI levels the transmitters update the power allocation across the
subchannels in such a way that maximizes their achievable data rate.

When a user updates its power allocation, the NI levels observed by
other users in the network change, causing them to update their power
allocations accordingly to maximize their achievable data rates. This
situation can be modelled as a noncooperative game in which users are
represented by competitive players and feasible power allocations are
represented by admissible strategies [2], [3].

In a practical communication system, it is desirable for the power
allocation game to have a unique Nash equilibrium; that is, a unique
set of power allocations at which no user can attain a higher rate by
making unilateral changes to its power allocation strategy. When such
an equilibrium is reached and the channel is static, feeding back the
NI levels to the transmitters may not be necessary and the transmitters
do not need to update their codebooks to adapt to fluctuations in the
rate that can be supported by varying power allocations. Furthermore,
the existence of a unique Nash equilibrium implies that the equilibrium
communication rates do not depend on the initial power allocations and
can be determined a priori. This enables the codebooks to be designed
offline. In contrast, when the game possesses multiple Nash equilibria,
the equilibrium rates and power allocations will depend on the initial
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power allocations, and determining these rates and the corresponding
codebooks becomes less straightforward. It is to be noted that, due to
the selfish nature of the IWF algorithm, the power allocations it gener-
ates, even at equilibrium, are not necessarily Pareto optimal [4]. In fact,
power allocations that yield uniformly higher rates might be achievable
if the users were to select their power allocations cooperatively.

Sufficient conditions under which the power allocation game con-
verges to a unique Nash equilibrium have been derived in [1] and [2]
for synchronous single antenna systems when exact NI levels are avail-
able at the transmitters. These results were extended in [3] to precoded
multiple-input multiple-output systems with finite-size constellations
and in [5] to asynchronous systems in which the users update their
power allocations using outdated NI level information. In addition to
those selfish power allocation strategies, a more cooperative approach
was proposed in [6]. In this approach, the users exchange their power
prices in order to maximize the overall network utility rather than their
own utilities. Being cooperative, the rates obtained by this price-based
IWF can be regarded as an upper bound on the rates obtained by com-
petitive schemes including the standard IWF and the quantized IWF
(QIWF) considered herein.

In IWF-based algorithms, the assumption that exact NI levels are
available at the transmitters is not realistic, because, in practice, only a
small number of bits is used for feeding back these levels. Unless prop-
erly accounted for, the uncertainty in the NI levels can lead the trans-
mitters to transmit data at rates that are not decodable by the receivers.
To overcome this difficulty, robust algorithms based on IWF have been
proposed in [7] and [8]. Using the algorithm in [7], it was shown that
uncertainty can be beneficial if it is properly accounted for by scaling
the NI levels. In particular, by adjusting the quantization resolution at
the receivers and the scaling factor at the transmitters, it was shown in
[7] that the performance of the robust IWF algorithm approaches that
of the cooperative price-based IWF one [6].

Despite being inherent in the practical operation of the IWF algo-
rithm, NI quantization has not been accounted for in currently available
convergence analyses, e.g., [1]–[3], and [8]. It is, therefore, important
to question the relevance of these analyses in that practical case. In
particular, the question that we ask here is: How does the quantization
of the NI levels impact convergence? To answer this question in the
case of synchronous single antenna systems, we provide a novel tech-
nique that relies on representing the quantization noise by equivalent
iteration-dependent channel coefficients. By proper bounding of these
coefficients, we derive a sufficient condition that ensures that the quan-
tized power allocation game has a unique Nash equilibrium to which
the iterates are guaranteed to converge. Drawing insight from this con-
dition, it is shown that if the IWF algorithm with exact NI levels satis-
fies the convergence conditions in [2], the QIWF algorithm also con-
verges provided that the quantization resolution or the users’ powers are
sufficiently high. Furthermore, it is shown that, when the transmitters
scale the NI levels to account for quantization uncertainty as proposed
in [7], the convergence condition becomes more stringent.

In Section II, the system model and the problem statement are pre-
sented. In Section III, the convergence condition is derived. Section IV
provides numerical examples, and Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a wireless system with � user pairs and � quasi static
orthogonal subchannels. Each user pair has one transmit and one re-
ceive antenna. The received signal of user � on the �th subchannel
is given by: ��� � �����

�
� �

�

����� ���
�����

�
� � ��� , where ���� is

the complex channel gain between the transmitter of user 	 and the
receiver of user � on the �th subchannel, 	
 � � � � ��
 � � � 
 ��
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� � � � ��� � � � � ��� ��� is the transmitted signal of user � on the
�th subchannel, and ��� � �� ��� ��� is the additive white Gaussian
noise observed by the receiver of user � on the �th subchannel. Each
user � � � has a total power budget �� , which can be distributed
across the � subchannels, provided that the power allocated to any
subchannel � � � does not exceed a prescribed spectral mask ������� .

In the next section we will revisit the standard IWF algorithm, and
in Section II-B we will extend this algorithm to the case in which the
NI levels are quantized.

A. Iterative Water-Filling (IWF)

In the standard IWF algorithm [1], each user can decode its intended
signals, but not the signals intended for other users. Hence, each user
observes the signals intended for other users as additive interference.
The receivers measure their observed noise-plus-interference (NI)
levels on each subchannel and feed back these levels to their respective
transmitters. Assuming that all users use Gaussian signalling, the
transmitter of each user determines a power distribution across the
subchannels that enables it to achieve the maximum data rate. The
users update their powers iteratively until equilibrium is reached.

Let	��� be the normalized square channel gain of the�th subchannel
between user 
 and user �; i.e., 	��� � ������

��������
�. Let ������ �

������ �
�� denote the power allocated by user � � � to subchannel � �

� at the �th iteration, where ��	� denotes the expectation operator.
Assuming that the users update their power sequentially, the nor-

malized NI level observed by user � on the �th subchannel at the �th
iteration is given by

�
�����
� � ��� �

���

�	�

	���
�����
� �

�

�	�
�

	���
�������
� (1)

where ��� � �����
�
���

� is the equivalent noise variance [2], [7], and
�� � ������ �

��� 
 � � � � � � �. At the �th iteration, user � solves
the following optimization problem [2]:

max
�

�
���
� (2a)

subject to �
���
� �

�

�	�

	
� � �

�����
�

�
�����
�

and

�
���
� � �� (2b)

where �
���
� �

�����
� � � � � � 

�����
�  denotes the power allocation

strategy of user � at the �th iteration, ����
� denotes the sum rate that

user � can achieve on all subchannels when the noise and interference
are Gaussian and independent, and �� denotes its set of all feasible
power allocations; i.e.,

�� � ��

�

�	�

�� � ��� 
�
� � �������� 
� � � � (3)

The solution of this problem is given by standard water-filling [9]
and convergence analyses when the NI levels are assumed to be known
exactly at the transmitters can be found in [1], [2], and [5].

B. Quantized Iterative Water-Filling (QIWF)

In this section, the receivers are assumed to use a finite number of
bits to represent and feed the NI levels back to the transmitters. This
assumption is more practical than the assumption that exact NI levels
are available at the transmitters; feeding back exact NI levels is exhaus-
tive of the resources available for communication. Using quantized NI
levels instead of the exact ones, the transmitters determine their power
allocations using standard IWF filling and adjust their data rates ac-
cordingly.

Suppose that the set  � ���� � � � � ��� contains the � quantiza-
tion levels from which the receiver selects the most appropriate level
to quantize the observed NI levels. Upon observing ������� , the receiver
of the �th user chooses the level

�
�����
� � ��� ���

	��
�������� ��� (4)

and feeds it back to its respective transmitter. This level can be ex-
pressed as

�
�����
� � �

�����
� � �

�����
� (5)

where �
�����
� is a quantization error term that satisfies �������� � �

������, where ������ is the maximum quantization error of user �.
The values of �������� are design parameters that depend on the
dynamic range of the NI levels and the number of bits used to represent
them.

C. Summary of the QIWF Algorithm

In both the standard and the quantized IWF algorithms, the transmit-
ters are assumed to use Gaussian signalling and to update their power
allocations sequentially. In particular, transmitter � is assumed to up-
date its power allocation before transmitter ���, for � � �� � � � � ���.
Furthermore, it is assumed that the time interval between successive it-
erations spans many symbol intervals, which allows the receivers to
obtain accurate estimates of the NI levels. The operation of the QIWF
algorithm is as follows:

• At the �th iteration, the receivers compute accurate estimates
of their NI levels ��

�����
� ���	� in (1) and use (4) to obtain

�������� ���	�.
• The receivers feed back the quantized NI levels �������� ���	� to

their respective transmitters.
• At the �th iteration, the �th transmitter is scheduled to update its

power allocation. The �th transmitter replaces �������� ���	� in (2)
with ��������� ���	�, where � � � is a parameter that is used by
the transmitters to account for the uncertainty arising from the
quantization of the NI levels; see [7] and Section III-A below.
The �th transmitter solves (2) (with ��������� ���	� instead of
�������� ���	�) to determine its QIWF power allocation, ����� , and
its corresponding rate, ����

� .
• The �th transmitter uses ����� to send Gaussian signals with a rate
�
���
� .

• At the �����th iteration, the transmitters receive ������
��� ���	�
and the �� � ��th transmitter updates its power allocation.

Our goal in the next section is to establish a condition under which
the quantized power allocation game has a unique Nash equilibrium to
which the water-filling iterates are guaranteed to converge.

III. THE CONVERGENCE CONDITION OF QIWF

At the �th iteration of the QIWF algorithm, the �th user solves (2),
but with the exact NI levels, �������� �, replaced with their quantized
counterparts, �������� �. (Here, we assume that � � �. The case of
� � � is considered in Section III-A.) Similar to the standard IWF,
the objective of each user in the QIWF algorithm is a continuously dif-
ferentiable concave function. Hence, using Proposition 2.2.9 in [10]
it can be seen that the power allocation game has at least one Nash
equilibrium. Our goal now is to derive a condition under which this
equilibrium is unique. When this condition is satisfied, the equilibrium
power allocations and rates can be determined a priori and the com-
munication codebooks can be designed offline. We begin by recalling
the sufficient condition derived in [2] for the standard IWF algorithm
to have a unique Nash equilibrium. The analysis in [2] considered the
case in which the channels are static. When the channels are not static,
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i.e., time-varying, the users update their power allocations to adapt not
only to other users’ power allocations, but also to channel variations.
In this case, the channel coefficients may change before a Nash equi-
librium is reached.

Let ��� denote the ��th entry of the matrix � � ��� , where
��� � ������

�
���� �� � � �� � � � � � . Let � and � denote the strictly

lower and the strictly upper triangular parts of � , respectively. Using
the fact that the matrix �	 � �� is a 
-matrix (i.e., its off-diagonal
entries are nonpositive) [11], it was shown in [2] that if the spectral
radius

� �	 ������ � � (6)

the transformation that maps the error from one iteration to the next is
a contraction. This contraction ensures that the error norm decays to
zero at least at a geometric rate.

To derive a convergence condition for the case when quantized NI
levels are fed back, we begin by making the following remark for the
case when these levels are known perfectly at the transmitters.

Remark 1: As seen from (2), the transmitters do not allocate their
powers based on the particular coefficients ������, but rather on the
aggregate noise and interference. However, the convergence condition
in (6) and that derived herein are explicit in ������.

We will later show how this observation will enable us to represent
the quantization error using virtual channel coefficients, which will
then lead us to derive a sufficient convergence condition. Further in-
sight into the convergence behavior of the IWF algorithm can be sum-
marized in the following remark.

Remark 2: The potential of the users not converging arises from
their competitiveness and from the desire to guarantee that the rates at
which they transmit their data are decodable by the respective receivers.
Hence, if the receivers feed back values that do not correspond to the
true NI levels, the power allocation iterations may converge irrespective
of the values of ����� (e.g., the receivers feed back a constant value).
However, in that case the receivers are not guaranteed to be able to
decode their received signals.

Using these remarks we will derive a sufficient convergence condi-
tion for the QIWF algorithm. At the th iteration of this algorithm, the
transmitter of user � � � water-fills on �������

� � instead of �	������ �.
To exploit the analysis in [2] in the case of QIWF, we express the levels
��

�����
� � as [cf. (1)]

�
�����
� � �

�
� 	

���

���

�
�
�� 	 �

�����
�� �

�����
�

	

�

�����

�
�
�� 	 �

�����
�� �

�������
� (7)

where ��������� � are virtual iteration-dependent channel coefficients.

We note that, based on Remark 1, any set of ��������� � that satisfies
(7) will exhibit the same convergence characteristics. However, for
given �������

� �� ���� � and ������, there are infinitely many choices of
��

�����
�� � that satisfy (7). To derive a convergence condition, we seek a

deterministic map that associates with each quantization level in � a
particular set ������

�
����� ���; i.e., a map � 
 � � ���.

To find an appropriate map, we revisit the condition in (6). Let us
construct the matrices ����� and ����� to be the matrices that correspond
to � and � in (6), but with entries constructed from ������ 	 �

���

�� ��
instead of ������. We would like to find a set of iteration-independent
coefficients ������ for each quantization level in � such that the itera-
tions are guaranteed to converge for any quantization error.

Since at any iteration  , the NI levels will be quantized to one of the
quantization levels in�, for the QIWF algorithm to converge it suffices
to ensure that ���	� �������� ������ � � for every level in�. However,

unless the map � 
 � � ���, which generates a set ��������� ������� ���
for every �

�����
� � � is properly chosen, the convergence condition

may be quite difficult to satisfy. To see this, observe that, if some of the
power iterates in (7) are zero, the corresponding coefficients ��������� �
can be arbitrary large resulting in unbounded spectral radius of the ma-
trix �	 � �������� �����; cf. Lemma 2 below.

Our goal now is to find an appropriate map, and then use this map to
bound ��������� ������� ��� and subsequently to bound the spectral radius
of �	 � �������� �����. As demonstrated earlier, despite potential con-
vergence, without an appropriate map, ���	 � �������� ������ may be
arbitrary large if at any iteration one of the users allocate zero power to
one of the available subchannels. Hence, for ���	 � �������� ������ to
provide an effective convergence criterion, it is desirable for the map �
to yield the set of equivalent channel parameters ��������� ������� ��� for
each quantization level in � that minimizes ���	 � �������� ������, at
each iteration  . In other words, the optimal map can be regarded as the
one that corresponds to the solution of following optimization problem
for all iterations :

��
�� �

� �	 � �������� ����� (8a)

subject to �
�����
� � �

�
� 	

���

���

�
�
�� 	 �

�����
�� �

�����
�

	

�

�����

�
�
�� 	 �

�����
�� �

�������
� � � �� �� (8b)

However, this optimization problem is not convex and its solution is it-
eration-dependent. To see this, consider the case of� � �. In this case,
���	� �������� ������ � ������� ��

�
��	 �

�����
�� �����������

�
��	

�
�����
�� ��, which is not jointly convex in ��������� � and ��������� �. Hence,

even finding the optimal solution of this problem numerically is dif-
ficult, let alone finding a closed-form expression for this solution in
terms of �������

� �, which is needed to proceed with the analysis.
To circumvent this difficulty, we seek insight into this problem

by bounding the objective in (8a). To do so, we note that, be-
cause �	 � ������ is lower triangular with unity diagonal entries,
�����	� ������ � �. Hence, the entries of the matrix �	� �������� �����

can be expressed as polynomials in ������ with iteration-dependent
coefficients ��������� �. Now, using ([11], Problem 3.0.3), the spectral
radius can be bounded by

� �	 � �������� ����� 	 �� 
 	 � �����
��

�����
�


 	 � �����
��

�����
� � (9)

From this bound, it is seen that ���	 � �������� ������ is bounded by a
polynomial in ������ with coefficients ��������� �. Since ���� � � for all
�� � and �, the polynomials on the right hand side of (9) are bounded
by polynomials in which the coefficients ��������� � that satisfy (7) are
nonnegative. In this case, the bounding polynomial is monotonically
increasing in each coefficient �������� . Using this observation we can
find an appropriate, yet not necessarily optimal, map by solving the
following problem:

��
�� �

���
������� ���

�
�����
�� (10a)

subject to �
�����
�� � �� �� � � � ��� (10b)

�
�����
� � �

�
� 	

���

���

����� 	 �
�����
�� ��

�����
�

	

�

�����

�
�
�� 	 �

�����
�� �

�������
� � � �� �� (10c)
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In Appendix A, this problem is cast as a linear program (LP) and one
of its solutions is shown to be �������� � �

�����
� � � �� �, where �������� �

is a set of scalars that do not depend on �. Substituting for �������� in
(10c) yields

�
�����
� � ��� �

���

���

�
�
��	

�����
� �

�

�����

�
�
��	

�������
�

� �
�����
�

�

����� ���
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�
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�����
� � �

�����
�

�

����� ���

	
�����
� � (11)

Using (11), we can bound the scalars �������� �. In particular, we have

�
�����
� �

�
�����
� � 


�����
�

�

����� ��� 	
�����
�

�
������

�

����� ��� 	
�����
�

� (12)

To find an iteration-independent bound on ������� , we use the fol-
lowing result from [12].

Lemma 1: The minimum power allocated by any user � � � to
any subchannel  � � at any iteration � is lower bounded by ��� ; i.e.,
	
�����
� 	 ��� , for all � �� � , where

�
�
� � �

��
�� �

�

���

�
	 ���
�

��������
�

��	� � ���

�
�
���

�
����� � �

�
�

�

� (13)

where�� is a lower bound on the number of subchannels occupied by
user � and is given by the largest integer for which ���� ��


	 �
�
����� �

�� � � ��
��� �

���
� � is satisfied for all � � �� . In this expression,


������ � ��� � �

����� ��� �
�
���

�
����� � ��� 
 � is defined to be the per-

mutation of subchannels of user � such that 
	 ���
����� � 


	 �
�
����� � 
 
 
 �



	 ���
����� , and ����� denotes the equivalent variance of the noise of user �

that satisfies ����� � ������� , for � � �� � � � � � � �.
Invoking this lemma into (12), we have

�
�����
� �

������
�

����� ��� �
�
�

�
�
� � (14)

Using (14), we now present the main result of the paper.
Theorem 1: Let ������ � 	
����

�
�� � ��� � be the ��th entry of

the matrix �� � ��� . Let �� and �� be the strictly lower and
upper triangular parts of ��, respectively. Then, if

� �
 ����
��
�� � � (15)

the iterates of the QIWF power allocation game converge to a unique
Nash equilibrium.

Proof: To prove this theorem, we use the following lemma from
[13].

Lemma 2: Let � and� be nonnegative matrices satisfying � � �,
element-wise. Then ��� � � ����.

From this lemma, it is seen that the spectral norm increases monoton-
ically with the entries of any nonnegative matrix. Now, since ���
 �
������ � �, and �
 � ������ is a �-matrix, it follows that the entries of
�
 � �������� ����� are polynomials in ������ � �

�����
�� ��. However, we

have shown that to represent the quantization of the NI levels, it suf-
fices to set �������� � �

�����
� � ��� , for all � �� �. Doing so, we can write

����� � �� and ����� � ���

Hence, we have �
 � �������� ����� � �
 � ���
����, which, using

Lemma 2, implies that if the condition in (15) is satisfied, then ���
 �
�������� ������ � �. Hence, the condition in (15) guarantees the con-

traction of the norm of the error vectors, and completes the proof.
Noting that ��� in (13) is monotonically increasing in �� , it can be

seen from Theorem 1 that as the quantization resolution or the users’
powers increase, the sufficient condition for the QIWF algorithm to
have a unique Nash equilibrium approaches the corresponding condi-
tion for the standard IWF algorithm.

A. Convergence of QIWF With �  �

In the QIWF algorithm the transmitters allocate their powers and
subsequently their rates based on quantized, rather than accurate, NI
levels. Because of the inherent uncertainty associated with quantiza-
tion, the rates allocated by the transmitters to some subchannels may
exceed the maximum decodable rates of the receivers; cf. Remark 2.
To avoid such occurrences, the transmitters may use the robust itera-
tive water-filling strategy proposed in [7]. In this strategy, the transmit-
ters allocate their powers and rates based on scaled versions of their
received NI levels. This strategy was shown in [7] to reduce the com-
petitiveness among users and to enable them to cooperate unintention-
ally. In fact, it was shown in [7] that scaling the NI levels enables the
network to support rates that are close to those supported by the coop-
erative price-based IWF algorithm proposed in [6].

To implement the robust iterative water-filling strategy the transmit-
ters allocate their power based on ��������� �, rather than �������� �,
where � is an appropriately chosen parameter greater than one. In this
case, using an approach similar to the one used to derive Theorem 1,
the following result can be proved.

Corollary 1: The QIWF with �  � converges to the unique Nash
equilibrium of the power allocation game if

� ����
 ����
��
�� � �� (16)

We now show that for any �  �, the condition in (16) is more
stringent than that in (15). To do so, we note that because �  �, we
can write ����
���� � �
����. However, both ����
���� and
�
 � ��� are positive stable, in addition to being �-matrices. Hence,
from ([11], Theorem 2.5.4), we have ����
 � ���

����  �
 �
���

����, which, from Lemma 2, yields ������
 � �������� 	
���
����

�����. This implies that the condition in (16) is generally
more stringent than that in (15).

The above discussion indicates that, although using power alloca-
tion strategies based on scaled versions of the quantized NI levels can
be beneficial from a network utility perspective [7], aggressive quanti-
zation and scaling may jeopardize the convergence of the power allo-
cations.

IV. NUMERICAL EXAMPLES

In this section, we provide two numerical examples. In the first ex-
ample, we investigate the rates achieved by the QIWF algorithm and in
the second example we investigate the convergence behaviour of this
algorithm. In both examples, the receivers are assumed to round the NI
levels to the closest integer, i.e., ������ � ���, the transmitters are
assumed to have identical power budgets, �� � � , and the spectral
mask of each transmitter ������� � ����� � � � ��  � � . The noise
variance �	 � �.

Example 1: In this example, we consider a case with ! � � users
and � � �� subchannels. The subchannels are assumed to be fre-
quency flat Rayleigh fading with coefficients, �"����, drawn from the
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Fig. 1. Average sum rate achieved by standard and quantized IWF for � �1,
2, 5, and 15.

TABLE I
CHANNEL COEFFICIENTS USED IN EXAMPLE 2

standard zero mean and unit variance circularly symmetric complex
Gaussian distribution.

In Fig. 1 the average sum rate achieved by the standard IWF algo-
rithm and the QIWF algorithm with � � �� �� � and �� are plotted
versus ����. From this figure, it can be seen that when � � �, the
average sum rate achieved by QIWF is close to that achieved by the
standard IWF algorithm. However, by increasing �, a slight deterio-
ration is observed at low ����, but a significant gain is observed at
higher ����. For instance, at ���� � �� dB, the average sum rate
achieved by QIWF with � � � is about 77 bits per channel use (bpcu),
whereas that achieved by the standard IWF is about 68 bpcu. Hence,
it can be seen that QIWF with � � � can yield significant rate gains.
This result is consistent with the analysis in [7], wherein it was shown
that increasing � reduces the competitiveness among users.

Example 2: In this example we investigate the convergence be-
haviour of the QIWF algorithm. We consider a scenario with � � �
users and � � � subchannels with the randomly selected coefficients
in Table I. In this instance, the channel coefficients ������� ��� are
drawn from the standard zero mean unit variance complex Gaussian
distribution, whereas the channel coefficients ������

�
��� are drawn

from the zero mean complex Gaussian distribution with variance 10.
From this table, it can be verified that �			 � 

���
 � ���� 

�, which implies that the standard IWF algorithm has a unique Nash
equilibrium; cf. (6). To verify this result, in Figs. 2(a) and (b) the norm
of the error �

��� ��
�����
� ��

���
� � is plotted versus the iteration index,

� , when � � �� dB and � � �� dB, respectively.

Fig. 2. Convergence behaviour of QIWF with � � �� �. (a) � � �� dB. (b)
� � �� dB.

When no quantization is used, it can be seen from Figs. 2(a) and (b),
that, because the condition in (6) is satisfied, the standard IWF with
� � � converges, irrespective of the power level. Now, we consider
the case in which the NI levels are quantized. When � � �� dB, the
QIWF algorithm with � � � does not converge. However, from the
discussion following Theorem 1, we noted that the QIWF algorithm
is guaranteed to converge if (6) is satisfied, and � is sufficiently high.
This observation is verified in Fig. 2(b), which shows that by increasing
� to 20 dB, the iterates of the quantized IWF with � � � converge. In
contrast, for the case of QIWF with � � �, the condition in Corollary
1 is not satisfied and the iterates do not converge at both � � �� dB
and � � �� dB.

V. CONCLUSION

In this paper we investigated the convergence of the IWF algorithm
when the noise-plus-interference (NI) levels fed back from the re-
ceivers are quantized. In this case, we have shown that at least one Nash
equilibrium exists for the power allocation game. We then derived a
sufficient condition under which this equilibrium is unique, and the
iterates are guaranteed to converge. Using this condition we showed
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that quantizing the NI levels can cause the, otherwise convergent IWF
algorithm, to oscillate. Furthermore, we showed that if the standard
IWF algorithm converges and the transmit power is sufficiently high,
the QIWF algorithm is guaranteed to converge. Finally, we showed
that although scaling the NI levels can increase the network utility, it
can jeopardize the convergence of the QIWF algorithm.

APPENDIX A
AN OPTIMAL SOLUTION OF (10)

The optimization in (10) can be cast as

min � (17a)

subject to �
�����
�� � �� �� � � �� � �� �� � � �

(17b)
�

����� ���

�
�����
� �

�����
�� � �

�����
�

� � �� � � �	� � � �� � � � � 
 (17c)

where for notational convenience, we have used

�
�����
� �

�
�����
� � � ��� � � � � � � ��

�
�������
� � � �� � �� � � � � 	�

and

�
�����
� � �

�����
� � 

�
� �

�

����� ���

�
�
���

�����
� � 	 �� �� ��

The optimization in (17) is in the form of an LP, for which the
Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient
for optimality. Using ��������� � and �������� � to denote the Lagrange
multipliers corresponding to the constraints in (17b) and (17c), respec-
tively, the Lagrangian can be expressed as

� � ��

�

���

�

���

�

����� ���

�
�����
�� �

�����
�� � �

�

�

���

�

���

�
�����
�

�

����� ���

�
�����
� �

�����
�� � �

�����
� �

From the KKT conditions, we have �	

�

� � �

�

���
�

���
�

����� ��� �
�����
�� � ��which yields

�

���

�

���

�

����� ���

�
�����
�� � ��

This equation implies that at least one element of the set ��������� � is
strictly positive. From the KKT conditions, we also have that

��

��
�����
��

� �
�����
�� � �

�����
� �

�����
� � �� (18)

The last equality implies that for any �� � and � for which
�
�����
� �

�����
� �� � for � � �� � � � � 	� � �� �

�
�����
�� � �� � � �� � � � � 	� � �� �� (19)

Notice that from the KKT conditions, the multipliers �������� must be
nonnegative. From the KKT complementarity slackness conditions we
have

�
�����
�� ��

�����
�� � �� � �� 	 �� �� �� �� (20)

Hence, from (19) and (20), we have that, when ������� �
�����
� �� �

�
�����
�� � �

�����
� �

�
�����
�

�

����� ��� �
�����
�

� � � �� � � � � 	� � �� ��

(21)

When �
�����
� �

�����
� � �, the equality in (18) yields �������� � �,

which implies that the corresponding inequalities in (17b) are not nec-
essarily active. However, the KKT conditions are still satisfied by the
choice of �������� in (21).
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