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Abstract—The maximum data rate that can be achieved by the
strictly causal full-duplex amplify-and-forward (AF) scheme in
general Gaussian relay channels is achieved by Gaussian code-
books and can be cast as the solution of an optimization problem
of the input transmit covariance and relay precoder. This problem
possesses an intricate nonconvex structure and is hence difficult to
solve. To circumvent this difficulty, the relay precoder is assumed
to be given and then the Karush–Kuhn–Tucker conditions are used
to obtain closed form expressions for the optimal input covariance
corresponding to that precoder. These expressions are used to
show that subdiagonal precoders suffice to attain the maximum
achievable rate of the AF scheme at any source transmit power. In
addition to significantly reducing the effort expended in searching
for the optimal relay precoder, this observation enables us to find
the optimal precoders at low and high source transmit powers.
For asymptotically low transmit powers, the optimal relaying
mechanism is shown to possess an interlacing structure, thereby
resembling half-duplex operation. In contrast, for asymptotically
high transmit powers, it is optimal for the relay to be silent. The
asymptotic analysis enables us to develop an explicit formulation
for a suboptimal precoder that, at intermediate source transmit
powers, are shown numerically to outperform asymptotically
optimal precoders.

Index Terms— Full-duplex AF relaying, KKT conditions, Schur
basis, tridiagonal matrices.

I. INTRODUCTION

I N typical communication scenarios, the data rate that can
be reliably communicated between a wireless source-des-

tination pair can be significantly increased by using a commu-
nication-assisting node, known as a relay [1]. Relay operation
modes can be classified into full-duplex, in which the relays can
transmit and receive information on the same physical channel,
and half-duplex, in which the relays transmit and receive in-
formation on orthogonal channels. To ensure effective collab-
oration between the source and the relay, both the transmis-
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sion scheme and the relaying mechanism have to be designed
jointly for the given channel conditions [2]. For instance, when
the source transmitted signal, the signal observed by the relay
and the signal observed by the receiver form a Markov chain,
the relay channel is said to be physically degraded, and the op-
timal full-duplex relaying strategy is the decode-and-forward
(DF) scheme [3]. On the other hand, when the signal received
by the relay is a physically degraded version of the direct com-
ponent of the signal observed by the receiver, the channel is said
to be reversely degraded and the optimal strategy is for the relay
to remain silent [3]. The maximum rate that can be achieved on
a general relay channel was shown in [3] to be upper-bounded
by the cut-set bound derived therein.
The capacity of a relatively broad class of half-duplex relay

channels was obtained in [4]. A subset of this class was consid-
ered in [5], and therein, a relaying scheme that uses 1-dimen-
sional piecewise linear mapping was proposed. Using the fact
that, for half-duplex channels, the transmissions of the source
and relay do not interfere, the scheme in [5] was shown to sub-
sume and outperform linear relaying strategies.
In contrast with the half-duplex case, the capacity of gen-

eral full-duplex relay channels that are neither degraded nor re-
versely degraded, remains an open problem, and relaying tech-
niques other than DF are able to achieve higher data rates [6].
For instance, under certain channel conditions, the compress-
and-forward (CF) relaying scheme developed in [3] was shown
to yield higher rates than DF. Another relaying technique is the
so-called amplify-and-forward (AF) scheme wherein the relay
forwards to the receiver a linearly precoded version of its re-
ceived signal without decoding it. Hence, this class of relays
is typically referred to as being nonregenerative [2]. In com-
parison with DF and CF, AF relaying is computationally less
demanding and is hence suitable for relaying terminals with
low processing capabilities. In addition to its relative simplicity,
the AF scheme was shown in [6] to outperform both DF and
CF relaying schemes under certain channel conditions. Since in
the full-duplex case considered herein the transmissions of the
source and relay interfere at the destination, the advantages of
the nonlinear scheme proposed in [5] for half-duplex systems
do not necessarily carry over to this case.
In addition to scalar relay channels in which the source and

the relay have one transmit antenna each, and the relay and the
destination have one receive antenna each, the use of relays
have been proposed for multiple-input multiple-output (MIMO)
systems. For instance, bounds on the capacity of MIMO relay
systems were studied in [7] and [8], in the presence of a direct
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MIMO link between the source and the destination. For the case
in which the relay is restricted to operate in a nonregenerative
mode and the channel used by the relay is orthogonal to that used
by the source, optimal relay precoders are available; see e.g., [9]
and [10]. For MIMO relay systems with multicarrier channels,
relay designs based on the minimummean square error criterion
are obtained in [11]. Other criteria and approaches for designing
relays are available in [2] and references therein.
Motivated by the potential gains and computational effi-

ciency of AF relaying [6], herein we consider the joint design
of the input transmit covariance and the relay precoder of an
AF relay-assisted communication system with a direct link
between the source and destination. Similar to [6], we assume
that the relay operates in a strictly causal full-duplex mode
wherein the transmissions of the relay are delayed by one
symbol duration and the relay uses the same physical channel
for transmission and reception, same time and frequency. A
related design problem in which the relay precoder is restricted
to have a Toeplitz structure was considered in [12]. By allowing
the Toeplitz relay precoder to be noncausal, bounds on the rates
that can be achieved by the AF relay system were provided in
[13].
In contrast with [12] and [13], in this paper we consider gen-

eral relay precoders that are not necessarily Toeplitz, but that are
strictly causal. In other words, we consider the classic full-du-
plex AF relay channel considered in [14]. Despite being classic,
the capacity of this channel is not known, and as mentioned in
[6], the joint optimization of the input covariance and relay pre-
coder for a block length greater than two is a “daunting” task. In-
deed, it is an intricate nonconvex problem with potentially high
dimensionality.
To address this difficulty, we propose a novel technique

for performing the joint optimization of the input transmit
covariance and the relay precoder. First, we note that when
the relay precoder matrix is given, the design problem of the
input covariance can be cast in a convex form for which the
Karush–Kuhn–Tucker (KKT) conditions are necessary and
sufficient for optimality. By analyzing these conditions, we
obtain closed form expressions of the optimal input covariance
corresponding to an arbitrary relay precoder. Substituting these
expressions in the original formulation, it is shown that subdi-
agonal precoders suffice to achieve the maximum rate of the AF
scheme. This observation reduces the number of optimization
variables from being quadratic to linear in the block length.
In addition to significantly reducing the effort expended in
searching for the rate-optimal precoder, restricting attention to
subdiagonal precoders enables us to identify precoders that are
asymptotically optimal at low and high source transmit powers.
At low source transmit powers, these precoders possess an
interlacing structure, which, in a sense, contrasts the Toeplitz
precoder structure proposed in [12] and [13]. The interlacing
structure of relay precoders implies that the relay transmits
every other time slot, which resembles, to some extent, half-du-
plex relaying. At high source transmit powers, it is shown that it
is optimal for the relay precoder to be silent. Optimal precoders
with interlacing subdiagonal structures are obtained using an
efficient 1-dimensional search algorithm. This algorithm also
generates precoder-covariance pairs, in which the precoders

are restricted to be rank-1; a restriction that is motivated by the
asymptotic analysis. It is shown that, while the rates yielded by
asymptotically optimal precoders (with interlacing structure)
do not depend on the block length, the rates yielded by rank-1
precoders are block length dependent. Rank-1 precoders are
shown to be more advantageous than their interlacing counter-
parts at intermediate source transmit powers. Another scenario
in which increasing the block length was shown to be beneficial
is the one in which the relay channel is binary symmetric with
two orthogonal components [15]. Hence, unlike the case of
Toeplitz precoders [12], increasing the block length is shown
to be advantageous in both the scenario considered herein and
the one considered in [15].
The paper is organized as follows. The system model and the

design problem are described in Section II. Closed form expres-
sions of the optimal input covariance corresponding to a given
relay precoder are derived in Section III. In Section IV, the
optimization of the relay precoder is considered. We begin in
Section IV-A by showing that restricting the precoder to have a
subdiagonal structure does not incur loss of optimality. Then in
Section IV-B, we provide an alternate formulation of the relay
design problem. This formulation is used in Section IV-C to
draw insight into the optimal relay precoder structure at low
transmit powers. In Section IV-D, we show that relay precoders
with an interlacing subdiagonal structure are optimal for asymp-
totically low source transmit powers, and in Section IV-E we
show that in the asymptotic case of high transmit powers, it
is optimal for the relay to be silent. In Section IV-F, we pro-
vide an efficient algorithm for finding the optimal relay pre-
coder with an interlacing subdiagonal structure and the corre-
sponding input covariance. Precoders generated by this algo-
rithm subsume asymptotically optimal ones and are later shown
to outperform them at intermediate source transmit powers. In
Section IV-G, the dependence of the AF achievable rate on the
block length is studied in the asymptotic cases of low and high
source transmit powers. In Section IV-H, we provide an explicit
block length dependent formulation for the rate yielded by the
optimal rank-1 precoder. This formulation is used to provide a
tight lower bound on the rates achieved by full-duplex AF re-
laying. Section V provides numerical examples, and Section VI
provides concluding remarks. For convenience, most of the no-
tation in [6] is adopted herein and most of the proofs are rele-
gated to the appendixes.

Notation: Standard notations are used throughout. Ma-
trices are denoted by regular uppercase letters. For any integer
, the identity matrix is denoted by . The direct sum

operation, and the trace and determinant operators are denoted
by , , and , respectively. The notation is
used to imply that, for large , the complexity, given by the
number of multiplications, grows as .

II. SYSTEM MODEL AND DESIGN PROBLEM

We consider the classic strictly causal full-duplexAF relaying
scheme for the general Gaussian relay channel considered in [6]
and [14] and shown in Fig. 1. In this scheme, the source orga-
nizes its transmissions in blocks of length each. The signal
vector transmitted by the source is denoted by and that
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Fig. 1. AF full-duplex Gaussian relay channel [6].

received by the relay is denoted by . The relay pro-
cesses and generates a signal . To allow for symbol
synchronization and signal processing, the relay transmissions
depend on its received signal in previous time slots, but not in
the current one [6]. Hence, the first entry of is zero.
The signal vector received at the destination is denoted by

. The channel gain between the source and the destina-
tion is normalized to unity, that between the source and the relay
is denoted by , and that between the relay and the destination
is denoted by . The relay received signal can be expressed as

where is the additive white Gaussian noise
at the relay and is the noise variance. The relay performs
linear processing on , which is equivalent to left multiplying
by a strictly lower triangular precoder matrix . The relay

output matrix is , whence the received signal at the
destination is given by

(1)

where is the additive white Gaussian noise
at the destination; and are statistically independent. The
source and relay transmit power budgets for a block of channel
uses are denoted by and , respectively.
The maximum rate that can be achieved by this AF scheme is

given by [6] , where is the max-
imum rate that can be achieved by this AF scheme with block
length , and is the supremum of the mutual information be-
tween the -dimensional vectors and over all input prob-
ability distributions satisfying the linear relaying constraint and
the power budget constraints, i.e.,

(2)
In Section IV-G, it will be shown that

.
To facilitate the evaluation of , we will begin by con-

sidering the maximization of for any given . We will later
show that, for asymptotic source power cases, does not de-
pend on and hence, for these cases, the limit in the maximum
AF rate expression is equal to . Note that, since is strictly
lower triangular, the smallest nontrivial is equal to 2 and cor-
responds to 1-dimensional relaying.
To evaluate for any given , we note from (1) that, from

a rate perspective, the full-duplex Gaussian AF relay channel is
equivalent to a classic point-to-point vector Gaussian channel

with colored noise. Since the entropy of is maximized when
its entries are Gaussian distributed, it follows from [16, Ch. 10]
that the maximum rate of the channel in (1) is achieved when
the entries of are drawn from a Gaussian codebook; i.e.,

, where is the input covariance
matrix. Hence, restricting attention to the case in which has
a zero-mean Gaussian distribution with covariance does not
incur loss of optimality. In this case, the jointly rate-optimal
input covariance, , and relay precoder, , that maximize the
mutual information between and can be expressed as the
solution of the following optimization problem:

(3a)

(3b)

(3c)

(3d)

The objective in this optimization represents twice the rate
that can be reliably communicated over the AF relay channel
used over channel uses. The first constraint in (3b) follows
from the fact that is a covariance matrix and hence, must be
positive semidefinite. The second constraint in (3b) and the con-
straint in (3c) ensure that the average source and relay transmit
powers during blocks of channel uses do not exceed pre-
scribed power budgets, and , respectively. Finally, the con-
straint in (3d) ensures strict causality; i.e., that the relay trans-
missions depend only on its previously received signals.
Despite the intimate relevance of (3) to the maximum data

rate that can be achieved by the classic AF relaying scheme,
its intricate nonconvex structure conceals intrinsic features of
the optimal pair that solves it. To unravel some of these
features, we begin by assuming that a strictly lower triangular
relay precoder is given.We then seek closed form expressions
for the optimal covariance matrix . We will later use these
expressions to guide the optimization of the precoder matrix .

III. OPTIMIZING THE TRANSMIT COVARIANCE MATRIX FOR A
GIVEN LINEAR RELAY PRECODER

In this section, we will derive closed form expressions for the
optimal corresponding to an arbitrary relay precoder matrix
. First, we note that, with fixed, the objective of the opti-

mization problem in (3) is concave over the positive semidefi-
nite cone given by the first constraint in (3b). The second con-
straint in (3b) and the constraint in (3c) are linear in . Hence,
it is immediate that, for a given , the optimization problem in
(3) is convex. Furthermore, it is easy to verify that for strictly
positive and , the feasible set is not empty. Hence, Slater’s
condition holds and the (KKT) conditions are necessary and suf-
ficient for optimality [17].
Let denote the Lagrangian function corre-

sponding to (3), where and are the dual variables cor-
responding to the second constraint in (3b) and the constraint
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in (3c), respectively, and is the dual variable matrix corre-
sponding to the first constraint in (3b). Using this notation, we
have

(4)

where for notational convenience, we have used the following
definitions:

(5a)

(5b)

Using matrix differentiation expressions from [18] and
[19], the derivative of the objective in (3a) can be expressed as

. Invoking the matrix inversion lemma
[20], this derivative can be cast as ,
which is a more convenient form for subsequent analysis.
Hence, the KKT conditions can be written as

(6a)

(6b)

(6c)

(6d)

(6e)

The conditions in (6b) ensure the feasibility of the primal
problem, those in (6c) ensure the feasibility of the dual problem,
and those in (6d) and (6e) represent complementarity slackness.
The matrix in (6a) is nonsingular because, for

any , .
Furthermore, from the definition of the matrix in (5), it can
be seen that . Hence, from (6a), we have

(7)

where the strict inequality follows from the strict positive def-
initeness of . Using this observation and solving (6a) for
, we have

(8)

The matrix is
positive definite (cf. (7)) and . Hence, we have

but since is rank deficient because is
strictly lower triangular, it follows that which, together
with the second equality in (6d), yields

(9)

This implies that the rate-optimal input covariance exhausts all
the available source transmit power.

From the first complementarity slackness condition in (6d),
we have

(10)

Since and are positive semidefinite, it follows that either
or its columns span the null-space of the columns of

; that is, (10) is
equivalent to

(11)

We now consider possible selections of , , and that
solve (11). First, we note from (8) that choosing , , and
such that yields ,

which contradicts (9) and hence impossible. We are left with
two possibilities: either or lies in the null space of
the matrix . The first
case can be considered as a special case of the second one, and
hence for brevity, we will focus on the case of and
. The case of can be inferred from our analysis in a
straightforward manner.

A. Analysis for the Case of and

Let and , where ;
cf. (11). For (11) to hold, the vectors of must span the null
space of the matrix ;

that is, if and denote the eigendecompo-
sitions of and , respectively, then , where
denotes the orthonormal matrix that spans the null space of .
Using this notation, we write

(12)
This equation can be manipulated to yield

(13)

Using this expression, we have the following result.
Proposition 1: When and , the optimal is

given by

(14)
where , and denotes the matrix containing
the Schur vectors corresponding to the smallest eigenvalues
of the (asymmetric) matrix

(15)

Proof: See Appendix A.
The optimal can be obtained using the following algo-

rithm, which is illustrated in the flow chart in Fig. 2. The main
advantage of this algorithm is that it requires searching over one
parameter only; viz., , irrespective of . For each value of
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Fig. 2. Flow chart for finding optimal when and .

, the complexity of obtaining the corresponding is dom-
inated by the computation of the Schur basis, which incurs a
complexity of . This complexity is considerably less than
that of generic interior point methods, which is ; see e.g.,
[21].
Algorithm 1 (finding the optimal when , ):
1) Start from and .
2) Compute to be the Schur
decomposition that orders the eigenvalues of in (15) in
a nondecreasing order, where represents that first
columns of .

3) Since , the rank of must satisfy .
a) With fixed, update using a bisection search
on the left-hand side of (53); cf., Lemma 6 in
Appendix A.

b) Use updated to obtain and update the Schur
basis. Denote the updated Schur basis by .

c) If , and repeat, else
proceed to the next step.

d) Use (51) to determine .
e) If the value of computed from (51) lies between the

-th and -th diagonal entries of , determine
using (14). Otherwise, , and repeat.

4) If no can be found, , where is a small
step size and repeat.

Remark 1:
1) When , the optimal and . In that
case, using Lemma 6 in Appendix A, Algorithm 1 can be
shown to converge exponentially to the optimal .

2) When , Algorithm 1 can be readily modified
to yield the optimal and in at most steps,
each with complexity . In this case, contains the
eigenvectors corresponding to the largest eigenvalues
of .

In the next section, we will use the expressions obtained for
the optimal to gain insight into the structure of optimal relay
precoders.

IV. OPTIMIZING THE RELAY PRECODER

In Section III, the KKT conditions were used to study the op-
timization of the input covariance matrix, , when the precoder
matrix is given. The analysis of the KKT system was based
on partitioning the feasible region of the dual variables into the
following regions, which cover the entire set of admissible dual
variables: 1) , , , 2) , ,

, and 3) , , . The optimal in
each of these regions is parametrized by , , and . Hence,
finding a jointly optimal input covariance-relay precoder pair
can be cast as an optimization problem in these variables. The
cases in which and can be inferred from the case
in which and . Hence, in the forthcoming anal-
ysis we will focus on the latter case, and will allude to the other
cases as necessary.
When and , it was shown that the optimal

input covariance matrix corresponding to a given precoder
is given by (14). Substituting this expression for in (3) yields
that the joint design problem can be cast in the following form:

(16a)

(16b)

(16c)

(16d)

(16e)

where from (5),

(17)

Notice that when , the equality in the constraint in
(16d) is replaced with inequality “ ”.
The problem in (16) is nonconvex in and and involves

optimization over variables. In the next section, we
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will show that the number of optimization variables can be re-
duced to without loss of optimality. We will then use this sim-
plification to obtain input covariance-relay precoder pairs, i.e.,

pairs, that are asymptotically optimal at low and high
source transmit powers.

A. Optimality of Subdiagonal Precoders

The algorithm developed in Section III for obtaining the op-
timal corresponding to a given strictly lower triangular pre-
coder required the search over the dual variable .
Using this algorithm, the jointly optimal pair can be de-
termined by searching over the degrees of freedom in
, in addition to . The number of design degrees of freedom,

and thereby the design complexity, can be significantly reduced
using the following theorem.
Theorem 1: Relay precoders with the following subdiagonal

structure are rate-optimal for Gaussian strictly causal full-du-
plex AF relaying

...
...

. . .
...

...

(18)

where are the singular values of .
Proof: See Appendix D.

From this theorem and the fact that the dual variable can
be readily eliminated from (16), it can be seen that the optimal

pair can be determined by searching over and the
degrees of freedom of precoders of the form in (18). In other
words, using Theorem 1, finding the jointly optimal pair
reduces the search from variables to vari-
ables. Although this reduction in the search space is quite sig-
nificant, solving (16) for large can be quite difficult. To cir-
cumvent this difficulty, in Sections IV-C and IV-D we will show
how restricting to be subdiagonal will enable us to obtain so-
lutions of the optimization problem in (16) that are asymptoti-
cally optimal at low source transmit powers. In Section IV-E we
will show that, for the other asymptote of high source transmit
powers, setting is optimal.

B. Equivalent Formulation for Designing Relay Precoders

In order to draw insight into the structure of the optimal pre-
coder, we will develop an equivalent, but more convenient for-
mulation than the one in (16).
We begin by making the following observation.
Remark 2: For any given and , either the problem (16)

is infeasible or, at the optimal solution, the constraint in (16b)
is redundant.

Proof: See Appendix E.
This remark implies that, for given , if the opti-

mization problem in (16) is feasible, the corresponding optimal
obtained with the constraint in (16b) eliminated is the same

as that obtained if this constraint were present. Hence, for ap-
propriate values of and , this constraint can be eliminated.

This observation will enable us to formulate an auxiliary opti-
mization problem for the asymptotic case considered in the next
section.
We now consider the objective in (16a) and the constraint in

(16d). For the objective, substituting for from (14) yields

(19)

Since represents the first vectors of the Schur basis of the
matrix , we have from the first
statement of Lemma 5 in Appendix A that

(20)

Substituting from (20) in(19) yields

(21)

The matrix is upper triangular,
and its diagonal entries are the smallest eigenvalues of

.
Now, we consider the constraint in (16d), this constraint can

be expressed as

(22)

which is equivalent to

(23)

The left-hand side of this inequality can be expressed as follows:

(24)

where the second and last terms on the right-hand side of this
equality follow from invoking (16a) and (20), respectively.
Using (24) to substitute for the left-hand side of (23) yields

the constraint

(25)
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Using (25) and the fact that is monotonically in-
creasing, the problem in (16) can be cast as

(26a)

(26b)

(26c)

(26d)

(26e)

When , the equality in (26d) is replaced with inequality
“ ”.
Note that, because of Theorem 1, this formulation involves

searching over parameters, the subdiagonal entries of
and ; is readily obtained from (26d). Solving (26) and

taking half the logarithm of the inverse of the resulting objective
yields the capacity of the full-duplex AF scheme.
To enable further insight to be drawn from the problem in

(26), we substitute the subdiagonal form of in (18) in the
expression of in (15). Doing so, it can be verified that

assumes the following tridiagonal
form:

. . .
. . .

. . .
(27)

where ,

, , where

, , and .
Evaluating the constraints and the objective in (26) requires

analytical expressions for the eigenvalues of the above tridiag-
onal matrix. Unfortunately, such expressions are not known and
only bounds and results pertaining to special forms are avail-
able; see e.g., [22] and [23]. A classic result related to the eigen-
values of tridiagonal matrices is stated in the following lemma
[24].
Lemma 1: If for all , then the

eigenvalues of are distinct.
A corollary of this result is stated in the following lemma [25,

p. 312].
Lemma 2: If an eigenvalue of a matrix in the form in (27) has

multiplicity , then at least of the subdiagonal entries are
zero, i.e., for ,

.
In the next section, these lemmas will be used to identify

optimal relay precoders at asymptotically low source transmit
powers.

C. Asymptotically Optimal Relay Precoders: The Case of

In this section, we develop the optimal solution for the opti-
mization problem in (16) at asymptotically low source transmit
powers, i.e., when . The case of will be consid-
ered in Section IV-E.
The constraint in (16a) implies that

, unless

. Hence,
when , the constraint (16c) implies that

, which, using Lemma 5
in Appendix A, implies that

Using this observation in (26d), it can be seen that, when
, or . We will show that the latter
case yields , whereas the former case yields precoders
with a special structure.
When , the constraint in (3c) yields that

, which, because , further implies that
. Using this in (3a) yields that the objective in

that case is equal to

where the matrix inversion lemma was used in writing the
second equality, and the last inequality follows because

and is satisfied with
equality if and only if . Hence, we conclude that as-
suming that when yields the trivial
case of .
We now consider the other possibility of . In this

case, as , the constraint in (26d), or equivalently the
one in (16d), becomes redundant. By dropping the constraint in
(16d) and setting , the optimization problem in (16) can
be cast in the form of minimizing the product of the smallest
eigenvalues of the matrix subject to (16c), which

reduces to constraining the sum of the smallest eigenvalues
of to be greater than or equal to .
In order to proceed with the design of an asymptotically op-

timal relay precoder, we note that, for any , the matrix
is nonsingular. Hence, denoting

the ordered eigenvalues of by , it can be assumed
that there exists a scalar such that

(28)

We now use this observation and the formulation in (26) to
obtain the structure of the optimal relay precoder when .
To do that, we set and ignore the constraint in (26d).

Next, let us assume that is given. In this case, the constraint
in (26d) can be cast as where
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is constant. Using Remark 2 and assuming that, for
the given , the problem in (26) is feasible, the constraint in
(26b) can be dropped without loss of optimality.
Noting that for any , the matrix is upper

triangular, it can be seen, that when and is given,
the optimization problem in (26) can be cast in the following
form:

(29a)

(29b)

(29c)

where the scalars and are strictly positive
because the eigenvalues of are equal to the eigenvalues of

, which is strictly
positive definite.
Necessary conditions that must be satisfied by the eigen-

values of that solves (29) are
given in the following lemma.
Lemma 3: For any given , the solution of the optimiza-

tion problem in (29) must satisfy

,
, (30)

for some .
Proof: See Appendix F.

This lemma asserts that the smallest eigenvalues of
must assume at most two distinct values. The smaller value has
multiplicity and the larger value has multi-
plicity . We will later identify a class of precoder matrices
that yields that has eigenvalues with the desired multiplic-

ities. Before we do that, we will summarize the results obtained
so far for the case of . In particular, using Lemma 3 and
invoking (47) and (50) in Appendix A, we have the following
proposition.
Proposition 2: As , the optimal goes to 0, and the

eigenvalues of the matrix that
solves (29) and admits a jointly optimal input covariance-relay
precoder pair must have the following structure:
1) , cf.
(47) and (50) in Appendix A; and

2) must assume at most two distinct values, cf.
Lemma 3.

To identify precoder matrices that yield with the struc-
ture in this proposition, we note from Lemma 2, that for
to have eigenvalues with multiplicity and , at least

of the subdiagonal entries of in (18)
must be zero. Since

, it follows that at least of the subdi-
agonal entries of must be equal to zero, and it remains to
determine these entries. For the ease of exposition, in the forth-
coming analysis we will assume that is even; the
case of odd can be considered similarly.

D. Asymptotic Optimality of With Interlacing Subdiagonal
Entries

In this section, we will use the conditions of Proposition 2 to
determine the structure of asymptotically optimal precoders at
low source transmit powers when . The case of
follows similarly and is omitted for brevity. The main result of
this section is given in the following proposition.
Proposition 3: Relay precoders with interlacing subdiagonal

entries are rate-optimal for strictly causal full-duplex AF re-
laying at asymptotically low source transmit powers, that is, as

. In particular, such precoders have the form in (18), but
with and , .

Proof: See Appendix G.
Remark 3:
1) The analysis in Appendix G implies that the objective de-
pends only on . Hence, at asymptotically low source
transmit powers, the sign of in Proposition 3 is imma-
terial.

2) The optimal in Proposition 3 corresponding to the case
of can be readily obtained from (83) by setting

and finding the roots of the resulting polynomial.

In Appendix G, it is shown that when , the optimal
precoder has rank . However, for nonasymptotic
source transmit powers, such a precoder may not be optimal.
Restricting attention to the case of precoders with interlacing
subdiagonal entries, it is shown that for nonasymptotic cases,
the rank of the optimal precoder within that class is either

or . In Section IV-F, we will present an
efficient algorithm for finding the optimal precoder with inter-
lacing subdiagonal entries in both cases.

E. Optimality of for Finite and

In this section, the optimization problem in (16) is studied
when is finite and , that is, when the relay transmit
power is finite and the source transmit power is asymptotically
high. We will show that, in that case, setting solves
the optimization problem in (16). Toward that end, we note that
since , the matrix

in (16d) is full rank; see (14). Using this obser-

vation, we have, for any matrix , ,

as

.
Setting , it can be seen that, as ,

the left-hand side of (16d) goes to infinity, which violates
the constraint in (16d). Thus, when , we must have

. Setting

(31)

it can be seen that the objective and the constraint of (16) are
independent of . Hence, setting does not incur loss of
optimality and yields . From Section III, we know
that is the matrix containing the Schur vectors corresponding
to the largest eigenvalues of . Hence, when ,
contains the eigenvectors of corresponding to its largest
eigenvalues. Using (31) in (17) it can be seen that these are
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the same as the eigenvectors corresponding to the smallest
eigenvalues of . Since the matrix is square, the smallest
eigenvalues of are the same as the smallest eigen-

values of . From (31), these eigenvalues are zero. It fol-
lows that .
In other words, in this asymptotic case the optimization problem
in (16) is trivial and is solved by setting .

F. Algorithm for Finding Optimal Precoders With an
Interlacing Subdiagonal Structure

In this section, we develop an algorithm for finding the op-
timal with interlacing subdiagonal structure. For the asymp-
totic case of , it was shown in Appendix G that such a
is optimal and to find it, the value of in Appendix G is set

to zero and must be determined. For nonasymptotic cases,
finding the optimal with interlacing subdiagonal structure re-
quires determining both and ; equals either 0 or ,
cf. Appendix G. For , the proposed algorithm performs an
exhaustive search over , and for , it performs an exhaus-
tive search over a grid. The value of that yields the
higher objective is chosen. Note that (75) implies that the rank of
the optimal with interlacing structure is either , cor-
responding to , or , corresponding to .
For , we note from (3d), that must satisfy

(32)

Using these observations, we have the following algorithm:
Algorithm 2:
1) Let be the number of search steps, and define

. For each , , consider
two possibilities: , corresponding to ,
and , , corresponding to .
For (corresponding to ), perform the
following steps:
a) Compute . Solve (83) to obtain ten-
tative values of , the positive roots of (83).

b) Compute using (71) and using (72).
c) Compute using (78). Notice that (78) ensures that,
in accordance with Remark 2, the constraint in (80) is
automatically satisfied.

d) Compute the objective in (76).
For and (corresponding to ), we
note that, from (32) and (90), we must have

, which implies that . However, from (89),
we have . Hence, to search for , discretize the interval

. For each pair , perform the following
steps:
a) Compute . Solve (83) to obtain .
b) Compute using (71) and using (72).
c) If satisfies (87), proceed to the next step. Otherwise,
discard the current and examine the next point in the

-grid.
d) Check if the pair satisfies (89). If it does, com-
pute the objective in (86). Otherwise, update the choice of
from the discretized interval.

2) Compare the values of the objectives corresponding to
and .

3) Select , , , and that yield the smallest objective.
4) Construct the input covariance using (14).

Remark 4 (Asymptotically Optimal Precoders and Precoders
Generated by Algorithm 2): Note that for asymptotically op-
timal precoders (as ), the optimal is equal to zero.
However, for nonasymptotic cases, the optimal for precoders
with interlacing subdiagonals can be equal to . Hence, at
asymptotically low transmit powers, the above algorithm yields
optimal precoders, but at intermediate powers it yields the op-
timal rank-1 precoders, corresponding to .
Remark 4 (Algorithm for the Case of ): The pre-

vious analysis focused on the case of . However, finding
the globally optimal precoder at asymptotically low transmit
powers requires considering the case of . In that case,

, and, similar to the case of , the asymptot-
ically optimal precoder possesses the interlacing structure. To
consider that case, it is required to search over as in the case
of in Algorithm 2. The optimal , and the corre-
sponding objective for this case are provided in Appendix H.

G. Independence of the Block Length in Asymptotic Cases

The analysis in the previous sections assumed that the block
length is fixed. We will now provide results for the case in
which is allowed to vary. We begin by recalling that, in [6],
in (2) was argued to form a superadditive sequence in . Using
this observation, the following remark was deduced in [6].
Remark 6: The maximum rate achieved by full-duplex AF

relaying is a monotonically increasing function of the block
length, . Furthermore,

Proof: With a slight abuse of notation, let be the vector
containing the symbols transmitted by the
source and let be the corresponding vector containing the
symbols received by the destination. Invoking
the definition of in (2), we have, for any ,

(33)

(34)

where the probability distributions in (33) and (34) satisfy the
constraints in (2). To write the inequality in (34), we used the
fact that the channel is memoryless and that factorizable proba-
bility distributions form a proper subset of general distributions.
Dividing both sides by shows that encoding over a total
signaling interval of channel uses yields a rate higher
than the average rate yielded by separate encoding over two in-
tervals of and channel uses for fractions and of
the total signaling interval, respectively.
Motivated by this remark, we will now investigate the effect

on increasing on in the two asymptotic cases
of and . In the latter case, the optimal relay
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precoders are rank- and are generated by Algorithm 2 with
. The case of pertaining to precoders generated

by Algorithm 2 for intermediate source transmit powers will be
investigated in the next section.
To begin with, we note that in the formulation in (3) the objec-

tive is to maximize twice the rate communicated over channel
uses. Hence, the per-channel-use rate is equal to the value of the
objective in (3a) divided by . To study the effect of increasing
on the per-channel-use rate yielded by this formulation, let

and , where and are constants indepen-
dent of .
In Section IV-E we showed that, for any fixed , when

, the optimal . In this case, it can be immediately
seen that the covariance that solves (3) is given by and

. Hence, is independent of

and , that is, increasing
in this asymptotic case does not yield additional gain.
We will now show a similar result for the asymptotic case of

, that is, we will show that for this case does not
depend on . Hence, in this asymptotic case too, increasing
does not yield additional gain. To arrive at this result we recall
that, when , the optimal and hence, the optimal

. Substituting these values for and and using
and , in the objective in (76) and the constraints
in (78) and (83) in Appendix G yields that is given by

(35a)

(35b)

where , and

and are given in (71) and (84), respectively.
Examining (35) reveals that for the asymptotic case of ,

depends only on , but does not depend on ; can be
readily eliminated from this formulation. Hence, we conclude
that when , it suffices to set ; must be strictly
greater than 1 for to be strictly lower triangular.
Unfortunately, the intricate form of the Schur vectors of the

general (asymmetric) tridiagonal matrices that appear in (16)
has prohibited us from computing at
intermediate source transmit powers. For these powers, the
optimal does not necessarily have the interlacing struc-
ture. To obtain a lower bound on the maximum AF rate (i.e.,

), in the next section we will consider the optimal
relay precoders generated by Algorithm 2 with .
Setting to this value yields the optimal rank-1 relay precoder.
The rate achieved by such a precoder and the corresponding
optimal input covariance matrix is a (non-monotonic) function
of , and, at intermediate source transmit powers, this rate can
be significantly higher than the rate achieved by the asymptoti-
cally optimal precoder; cf. Example 4 in Section V below.
Remark 7 (1-dimensional AF Relaying): The fact that ,

the rate generated by asymptotically optimal precoders, is inde-
pendent of implies that it suffices for to be set equal to 2.
This corresponds to 1-dimensional relaying, in which the relay

scales its observed signal during one symbol interval and for-
wards it to the destination during the following symbol interval.
Hence, asymptotically optimal relaying is in essence 1-dimen-
sional relaying.

H. AF Achievable Rate

In the previous section it was shown that, when , the
optimal and the relay channel reduces to the standard
additive white Gaussian noise one. It was also shown that, for
the case of , the maximum rate that can be achieved by
strictly causal full-duplex AF relaying can be expressed as the
solution of the, effectively 1-dimensional, optimization problem
in (35). This problem corresponds to the case of
and is solved by Algorithm 2 with . For intermediate
source transmit powers, Algorithm 2 with yields op-
timal rank-1 relay precoders, which are shown in in Example 4
in Section V below to yield rates higher than those yielded by
the asymptotically optimal precoders generated by the optimiza-
tion in (35). Note that the latter optimization corresponds to set-
ting , and as shown in Appendix G, setting to lie in

yields strictly lower rates than setting and
.

We will now provide explicit expressions for the rate gener-
ated by Algorithm 2 with . Let denote this rate
for finite , and substitute for and in the ob-
jective in (86), the expression for in (90), the expressions
for and , and the constraint in (87). After
simplification, the rate can be expressed as

(36a)

(36b)

(36c)

where is given in (71) and are given in (84),
and

For a given , (36) constitutes a 2-dimensional optimization
problem in and ; can be eliminated using (36b). Using
the formulation in (36) and the one in Section IV-G yields the
following result.
Proposition 4: For the full-duplex Gaussian relay channel

in Fig. 1, the rate achieved by strictly causal AF relaying with
block length , , satisfies

(37)

where is the rate of optimal 1-dimensional relaying given in
(35), and is given in (36).
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Notice that, as shown in Section IV-G, in (37) does not
depend on . Furthermore, it represents the maximum AF rate
at asymptotically low and high values of .
Remark 6 in the previous section shows that is monoton-

ically increasing in . However, the intricacy of (36) conceals
the effect of increasing on . Using (36), one can easily
construct examples to show that, unlike , is not mono-
tonically increasing in . In fact, the formulation in (36) can be

used to show that, for , ,
which implies that, for sufficiently large , rank-1 relaying is
ineffective. However, in Section V, we will provide examples
that show that, with , this relaying scheme can offer ap-
preciable rate gain over 1-dimensional AF relaying when is
finite. Collecting these facts, we have the following result.
Corollary 1: The maximum rate that can be achieved by full-

duplex AF satisfies

Analytical comparison between , the rate generated by
1-dimensional AF relaying, and , the rate corresponding to
optimal rank-1 relay precoders seems formidable. Hence, in the
next section, this comparison will be performed numerically.
We will show that, for intermediate values of , the rate yielded
by rank-1 relay precoders (corresponding to in Al-
gorithm 2) can be significantly higher than that yielded by its
optimal 1-dimensional counterpart (corresponding to in
Algorithm 2).

V. NUMERICAL EXAMPLES

In this section, we consider the relay channel depicted in
Fig. 1. We will provide four numerical examples. In all exam-
ples the noise variance is set equal to 1. In the first example,
the performance of the AF scheme in which the input covari-
ance is optimized for a given relay precoder is compared
with the case in which is restricted to be a scaled identity.
In the second example, the performance of AF when and
are obtained by Algorithm 2 is compared with the performance
of AF when the optimal and are obtained by exhaustive
search over subdiagonal relay precoders. Note that in applying
Algorithm 2 both cases of and must be con-
sidered; cf. Remark 4. In the third example, the rate achieved
by AF when and are generated by Algorithm 2 is com-
pared with the cut-set bound and the rate achieved by other re-
laying schemes including CF and the generalized DF scheme
considered in [6]. Finally, in the last example we compare the
rate yielded by asymptotically optimal 1-dimensional relaying,
which corresponds to setting in Algorithm 2 and the
lower bound in Proposition 4, which is obtained by Algorithm
2 with either corresponding to 1-dimensional relaying or

corresponding to multidimensional relaying; cf. Re-
marks 4 and 5 in Section IV-F and Remark 7 and Corollary 1 in
Section IV-G.
Example 1: In this example, we consider the optimization of

the input covariance for a given relay precoder, , when the

Fig. 3. Optimal input covariance, for .

block length, , the source-relay channel gain, ,
and the relay-destination channel gain, . The maximum
rates that can be achieved with the optimal for the given are
plotted in Fig. 3 for transmit powers, , of 10, 15, and 20 dB and
a relay precoder , where the th entry of

is given by , and .
The optimal covariance for the given is obtained using Al-

gorithm 1. For improved efficiency, we begin by considering
simplified versions of Algorithm 1 corresponding to the possi-
bilities of , and and . If no solution of
the KKT system is found for these cases, Algorithm 1 is run for
the more general case of and ; cf. Remark 1 in
Section III-A.
For comparison, the rate obtained by is also shown,

where is chosen such that either the constraint in (3c) or the
second constraint in (3b) is satisfied with equality; i.e.,

.
From Fig. 3, it can be seen that in the low relay transmit

power region, the relay power constraint is active and the max-
imum rate increases with the relay power budget, . However,
the achievable rate ceases to increase after exceeds a certain
threshold. In this region, the relay power constraint is not active
and . Roughly speaking, the ability of the relay to pro-
vide an increase in the achievable rate is constrained by both its
power budget and the quality of the signal it receives. Hence,
for fixed transmit power budget, , increasing beyond a cer-
tain threshold does not yield additional rate gain. It can be seen
from the figure that, at low relay transmit powers, the optimal
yields achievable rates that are significantly greater than those
achieved by scaled identity input covariance matrix.
Example 2: In this example, we consider the joint optimiza-

tion of the input covariance-relay precoder pair when the
block length, , the source-relay channel gain, ,
and the relay-destination channel gain, . The relay power
budget is set equal to 10 dB and the transmitter power is
varied between 0 and 20 dB.
In Fig. 4, we plot the rates yielded by the optimal input covari-

ance-relay precoder pair. This pair was obtained using an ex-
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Fig. 4. Comparison between and obtained by exhaustive search and gen-
erated by Algorithm 2.

haustive search over subdiagonal precoders of the form in (18)
and applying Algorithm 1 to obtain the corresponding optimal
covariance matrix. In Fig. 4, we plot the rates corresponding to
the asymptotically optimal relay precoders obtained using Al-
gorithm 2. For comparison, in this figure we also plot the rates
yielded by scaled identity input covariance and the optimal co-
variance corresponding to a Toeplitz subdiagonal precoder [12],
[13], i.e., , .
From this figure, it can be seen that when the transmit power,
, is low (less than 6 dB in this example) or high (greater than

16 dB), the rate achieved by the asymptotically optimal relay
matrices coincides with that achieved by the optimal relay ma-
trices. For high transmit powers, both exhaustive search and
Algorithm 2 yield . For intermediate powers, the rate
achieved by the precoder generated by Algorithm 2 is less than
that achieved by the optimal precoder, but the gap between these
rates appears to be generally small. Note that at intermediate
powers, the precoders generated by Algorithm 2 are rank 1, i.e.,
not asymptotically optimal.
It is worth noting that, with the interlacing structure inherent

in the asymptotically optimal relays, the relay transmits during
one time slot and stays inactive during the next one, which re-
sembles, to some extent, operating in a half-duplex mode. At
intermediate powers, the rank-1 precoders generated by Algo-
rithm 2 correspond to the relay being silent during all but one of
the channel uses, that is, the relay concentrates all its energy
in one time slot.
Fig. 4 also shows that the rates achieved by the optimal

pair and the pair generated by Algorithm 2
are significantly higher than those achieved by a fixed and
the corresponding optimal . However, for example, when

, the rate achieved by the Toeplitz precoder [12],
[13] (i.e., with identical subdiagonal entries) is close to that
achieved by the optimal precoder and slightly exceeds the rate
achieved by the precoder generated by Algorithm 2.
Example 3: In the previous example, we showed that the

precoders generated by Algorithm 2 yield rates that appear to
be relatively close to the rates yielded by optimal precoders.
Hence, to reduce the computational effort, in this example, we

Fig. 5. Comparison between the rate achieved by AF with and generated
by Algorithm 2, the cut-set bound, and the rate achieved by the generalized DF
and CF schemes.

only consider the rate achieved by the AF scheme when and
are generated by Algorithm 2. This rate is compared with

the cut-set bound and the rate achieved by CF and the gen-
eralized DF scheme considered in [6]. Note that, as shown in
Sections IV-C and IV-E, and Remarks 4 and 7, Algorithm 2 gen-
erates pairs that are optimal at asymptotically low and
high transmit powers, i.e., when and .
The rates achieved by the aforementioned schemes are

plotted in Fig. 5 when , , , and .
From this figure, it can be seen that for low transmit powers,
AF performs better than both the generalized DF and the CF
scheme. At these powers the optimal assumes the interlacing
structure described in Section IV-C, which corresponds to
1-dimensional relaying, and although we considered the case of

, setting , at these powers, suffices for the consid-
ered AF scheme to attain its maximum rate; cf. Section IV-G.
At intermediate transmit powers, both the generalized DF and

CF schemes yield higher rates than those achieved by the pre-
coders generated by Algorithm 2, which, at these powers, cor-
respond to either the asymptotically optimal 1-dimensional re-
laying, or multidimensional relaying with optimal rank-1 relay
precoders. A comparison between these relaying schemes will
be presented in Example 4 below for various block lengths.
Finally, numerical comparisons suggest that, in many cases,

the gap between the better of the CF and the generalized DF, and
the AF scheme with precoders generated by Algorithm 2 is rel-
atively small (less than 10% for this example). This observation
reinforces the case for using AF over either DF and CF for ap-
plications with stringent complexity and delay constraints, even
at moderate source transmit powers.
Example 4: This example provides a comparison between

asymptotically optimal (1-dimensional) relay precoders which
correspond to setting in Algorithm 2 and the lower bound
in Proposition 4, which is obtained by Algorithm 2 with ei-
ther , corresponding to 1-dimensional relaying, or

, corresponding to multidimensional relaying with optimal
rank-1 relay precoders. The rates achieved by these precoders
are plotted in Fig. 6 when , , ,
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Fig. 6. Comparison between the rate achieved by 1-dimensional (asymptoti-
cally optimal AF) and multidimensional (rank-1) AF with block length

.

and . The value of is varied between 6 and 16 dB.
From this figure, we note that at intermediate source transmit
powers, multidimensional relaying corresponding to
in Algorithm 2 can yield an appreciable gain over 1-dimensional
relaying. For instance, at a data rate of 2 bits per channel use, the
gain in this example is in excess of 0.8 dB. In addition, we note
that, although is monotonically increasing in as shown in
Remark 6, the multidimensional relaying rate, , in (36) and
subsequently the lower bound in Proposition 4 do not possess
this property. For instance, setting at yields a
rate higher than that yielded by . However, at ,
setting yields an appreciable gain over , which, at
this source transmit power coincides with the rate of 1-dimen-
sional relaying.

VI. CONCLUSION

The maximum data rate that can be achieved by the classic
strictly causal full-duplex AF scheme in Gaussian relay chan-
nels is cast as the solution of a joint optimization problem of a
positive semidefinite input covariance and a strictly lower tri-
angular relay precoder. Although this problem is not convex,
when the relay precoder is given, finding the corresponding op-
timal input covariance constitutes a convex problem for which
the KKT conditions are sufficient and necessary for optimality.
Using these conditions, closed form expressions for the optimal
input covariance were derived, and these expressions were sub-
sequently used to show that restricting the relay precoders to be
subdiagonal does not incur loss of optimality. This result en-
abled us to reduce the number of optimization variables from
quadratic to linear in the block length. Furthermore, the sub-
diagonal structure enabled us to identify a class of relay pre-
coders that are asymptotically optimal at low and high source
transmit powers. Precoders in this class transmit every other
time slot in what resembles half-duplex operation. For interme-
diate transmit powers, we developed an efficient algorithm for
generating optimal rank-1 precoders, which are shown, via nu-
merical simulations, to achieve rates that are significantly higher
than those achieved by asymptotically optimal (1-dimensional)
precoders.

APPENDIX A
PROOF OF PROPOSITION 1

To study the case of and , we invoke (11) to
cast (8) in forms that are more convenient to derive expressions
for and . In particular, to derive an explicit expression for
, we multiply both sides of (8) by , and
use the fact that to write

(38)
Left multiplying (38) by , and taking the transpose of both
sides of the resulting equation yields

(39)
For notational convenience, we use the fact that to

define and . Furthermore, we define

(40)

Denoting the (full) eigendecomposition of by

, the equality in (39) can be written as

where and . Left and right multipli-
cation of both sides of this equation by and , respectively,
and using to denote and to denote yields

(41)

where and denote partitions of

and with , . Right multiplying (41) by

and simplifying yield

(42)

We will use (42) to obtain the optimal , but first, let us derive
similar equations for the dual matrix, .
Right multiplying (38) by and using (6d) yields

(43)

The full eigendecomposition of can be expressed as

. Using this decomposition and left and

right multiplication and , respectively, yields

(44)
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where . Left multiplication

of (44) by and simplifying yields

(45)

We now consider (42) and (45). First, we note that , ,
, and are full rank and positive definite. Second, since, for

any two square matrices and , the eigenvalues of
are the same as the eigenvalues of , it follows that and

must be such that the eigenvalues of are
less than and the eigenvalues of are greater than .
We now proceed to determine the orthogonal bases of and
. From (42) and (45), it is seen that . To
determine and , we invoke the Schur decomposition of
an arbitrary (asymmetric) matrix .

Lemma 4 (Schur decomposition [20]): Let
be an asymmetric matrix with real eigenvalues. For each such
matrix there exists an orthonormal matrix such that the matrix

is upper triangular. The diagonal entries of are
the eigenvalues of and their order can be arbitrarily chosen
depending on .
We now apply Lemma 4 and the discussion preceding it to the

matrix . Let be the Schur basis of that arranges its eigen-
values in a nondecreasing order, i.e., is upper triangular
with nondecreasing diagonal entries. From (42) and (45), we
have that . However, these equations do not require

and to be upper triangular. Hence, it can be seen that
to satisfy these equations, we can choose to be
in the form

(46)

where and are orthonormal and
and are complementary partitions of

. Using (46) in the first equality in (45) yields

(47)

Left and rightmultiplication of (47) by and , respectively,
yields

(48)

Using (48), the matrix can be written as

(49)
Since the matrix is symmetric, the matrix

must be symmetric, which is
what we show next using the following lemma.

Lemma 5: Let be two nonsingular sym-
metric matrices. Let be a Schur orthonormal

basis of the matrix , where and are arbitrary com-
plementary partitions of this basis. Then,

Proof: See Appendix B.
Letting and implies that ,

which using Lemma 5 implies that in (49) is symmetric.
Substituting for from (49) in (8) yields . Alternatively,
can be obtained using (42). In particular, expressing as

and left and right multiplying both sides of (42)
by and , respectively, yields

(50)

Right multiplying (50) by and using Lemma 5 yields

which, after substituting for and , yields (14).
To find the optimal , we note that since , we

have

(51)

Similarly, using the constraint , we have

(52)

Substituting for from (51) in (52) and simplifying, yields

(53)

The implementation of Algorithm 1 requires an efficient
means for finding the optimal for a given . Such a means
can be obtained by using the following lemma.

Lemma 6: For any matrix , the function

is monotonically decreasing in . Fur-

thermore, if the number of distinct eigenvalues of is greater
than one, then is strongly monotonically decreasing.

Proof: See Appendix C.
Since is positive semidefinite, Lemma 6 asserts

that the left-hand side of (53) is monotonically decreasing in .
This observation ensures that, for any given , a standard bi-
section search will converge exponentially to the corresponding
optimal . However, we note that, in general, when the
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Schur basis , depends on which renders the search more
difficult than the cases of and considered in
Remark 1.

APPENDIX B
PROOF OF LEMMA 5

We will prove the first statement of the lemma. The proof of
the second statement is similar, and is omitted for brevity.
Let be any nonsingular matrix that is block parti-

tioned as , and let be block parti-

tioned in the same way, where ,
and . Then, the north west block of , i.e.,

, is given by [20]

(54)

Let , where and . Let

from which we have

(55)

Now, from (54) we have

Since is a Schur basis of , we have
, whence the second term in this

equation vanishes yielding

(56)

From (55) and(56), we have

Using this result, we have

(57)
Now, the projector matrix can be expressed as .
Substituting this identity into (57) yields

The second term of this equation vanishes because
. Hence, we have

(58)

from which the first statement of the lemma directly follows.

APPENDIX C
PROOF OF LEMMA 6

To prove Lemma 6, we use to denote the eigenvalues
of and write

Now,

(59)

Let denote the numerator of (59). The first summation in
can be expressed as

(60)
Substituting from (60) into and simplifying, we have

(61)

Let

(62)

Using this substitution in the right-hand side of (61), we have

(63)
The last inequality holds strictly if for some

. Hence, the derivative in (59) is monotonically de-
creasing as claimed in the lemma.

APPENDIX D
PROOF OF THEOREM 1

To prove this theorem, let the singular value decomposition
of be denoted by . We will first show that the
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optimization problem in (16) depends only on and
, but not on and individually. Invoking the sin-

gular value decomposition of in (17) yields

(64)

From this equation, it can be seen that, if denotes
the Schur basis of the matrix , then

can be expressed as , where and
depend only on and , but not on and . We will
now examine the objective and the constraints of (16).
For the objective, we note that, because is the Schur basis

of the matrix , the objective in
(16a) is the product of the smallest eigenvalues of . Now,
from (64) it can be seen that the eigenvalues of depend only
on and , but not on and .
Using the singular value decomposition of and the fact that

, the constraint in (16b), can be expressed as

Based on Remark 2, this constraint can be eliminated if (16) is
feasible for the given and .
The constraint in (16c) can be expressed as

and the constraint in (16d) can be expressed as

Finally, we consider the constraint on in (16e). We will show
that this constraint is equivalent to the constraint that
, . First, note that the constraint on in (16e) im-
plies that all the eigenvalues of are zero; i.e., ,

. Since ,
, it can be seen that the optimization problem cor-

responding to (16) but with the constraint on in (16e) replaced
with the constraint that is a relaxation of (16) and this
relaxation depends only on and but not on and .
Suppose that solving this relaxation yields .
If is lower triangular, then satisfies the constraints of
(16). If is not lower triangular, then there exists a Schur or-
thonormal matrix such that is
lower triangular; cf., Lemma 4. However, since all the other con-
straints of (16) and the corresponding relaxation depend only
on and but not on
and , it follows that replacing with and with

yields a lower triangular that satisfies the constraints
of (16). Since the optimization problem corresponding to (16)
with the constraint on in (16e) replaced with the constraint
that is a relaxation of (16), it follows that the value
of the objective corresponding to is a lower bound on the
objective of the original optimization problem in (16). How-
ever, since satisfies the constraints of (16), it can be seen
that solves (16). Hence, we have shown that the constraint
on in (16e) is equivalent to the constraint that ,

, and thus this constraint depends only on and
but not on and . Hence, we conclude that the opti-

mization problem in (16) depends only on and , but not
on and .
To prove the statement of the theorem, it remains to determine

. Since the optimization problem in (16) depends
only on and , the matrix (or ) can be arbitrarily
chosen. In particular, suppose that the optimal matrix is
known, then the optimization in (16) yields the same value for
arbitrary and . Using this observation and
setting , it can be seen that for to be lower
triangular, must be of the form

...
...

. . .
...

...

(65)

Using this , , and
yields in (18).

APPENDIX E
PROOF OF REMARK 2

The constraint in (16b) can be expressed as
and

the objective can be expressed as
. Now, for any two matrices and

satisfying , we have [20].
Hence, if (16) is feasible, removing the constraint in (16b)
does not affect the optimal solution of (16). This is because,
if (16) is feasible and, for a given satisfying (16c) and
(16d), the constraint in (16b) is violated, a greater value of the
objective can be attained by selecting another that satisfies
(16b)–(16d). Conversely, if (16b) is removed and, at the
optimal solution, (16b) is violated, then (16) must be infeasible.

APPENDIX F
PROOF OF LEMMA 3

For notational convenience, let denote the eigen-
values of , where . The Lagrangian
corresponding to (29) is given by
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Since the problem in (29) is not convex, the KKT conditions are
only necessary for optimality. Using the Lagrangian expression,
these conditions can be written as

(66)

(67)

Since , we can assume that
and , where . Now,

the last condition in (67) yields . Using
this in (66) yields

(68)
From (68), we have and

, where is strictly greater than .

APPENDIX G
PROOF OF PROPOSITION 3

The goal of analysis in this appendix is two fold: one, to prove
Proposition 3, and two, to facilitate the design of an efficient
algorithm for finding optimal relay precoders with interlacing
subdiagonal structures. To achieve this goal with minimal re-
dundancy, we will keep the analysis general for any ,
even though we have shown in Section IV-C that as

. This generalization will enable us to explore the use of
subdiagonal precoders with interlacing structure in cases other
than the one of . Such precoders are shown to provide
close-to-optimal performance in Section V.
From Proposition 2 and Lemma 2 we know that of

the subdiagonal entries of must be zero in order for the eigen-
values of the matrix to have the required multiplicities. The
objective and constraints in (29) are functions only of the min-
imum eigenvalues of , which must have the multiplicities
in Lemma 3. Hence, only the part of that yields with eigen-
values with the desired multiplicities contribute directly to the
objective in (29a). Now, from Lemma 2 and the structure of
in (27), it can be seen that if some consecutive subdiagonal en-
tries of are nonzero, the resulting will have a corresponding
diagonal block with distinct eigenvalues. Hence, for to yield
with eigenvalues with the required multiplicities, some of its

nonzero subdiagonal entries must be identical and each must be
followed by a zero. We will make these observations precise in
the following analysis.
Suppose that has the subdiagonal structure in (18) and let

us assume that the eigenvalues of in (29a) correspond to
the first subdiagonal entries of , where , and for
ease of exposition, is assumed even. We will later show that
the optimal .
To yield with the desired eigenvalue multiplicities in

Lemma 3, the considered entries must be interlacing.

In particular, suppose that for , and
let for , and for

, .
With this structure, the matrix is diagonal with the first

diagonal entries equal to zero, the following
entries interlacing with values and 0, respectively, and the
remaining entries are nonzero and do not contribute to
the objective in (29a); cf., (27). We will study the optimization
problem in (26) when is restricted to have this structure.
The structure of yields a matrix of the form

(69)

where

(70)

and is the diagonal block of corresponding to the part of
with consecutive nonzero entries. The eigenvalues of are

distinct and therefore do not satisfy the conditions of Lemma 3
and do not contribute to the objective in (29a).
The construction in (69) yields a with an upper left
corner with the following distinct three eigenvalues:

with multiplicity , and

(71a)

(71b)

each with multiplicity .
The matrix in (14) is given by the Schur vectors that corre-

spond to the smallest eigenvalues of . These are the same
as the Schur vectors that correspond to the largest eigen-
values of . These eigenvalues are given by , and pos-
sibly , depending on the optimal values of and .
The Schur vectors corresponding to correspond to the

zero diagonal entries of , and without loss of generality
can be written as .
The Schur vectors corresponding to coincide with the

eigenvectors corresponding to these eigenvalues and can be ex-
pressed as , where ,

are defined below. See (72) and (73), shown at the
bottom of the next page.
To study the optimization problem in (26) when is sub-

diagonal and its first subdiagonal entries are restricted
to have the interlacing structure, we consider matrices of the
form for . First, we note that, because
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corresponds to the zero diagonal entries of , we have
. Second, we have

(74)

Before examining the details of the optimization problem in
(26), we note that the constraint in (26e) is satisfied by the subdi-
agonal construction of and that there are two possibilities for
the matrix to satisfy the conditions of Proposition 2 for any
given with the interlacing diagonal entries: either
or , . We will consider these cases
separately. For both cases

(75)

1) Case of : We will show that in this case the
optimal and the optimal . To do that, we begin by
noting that for any given , the eigenvectors
of will be the Schur vectors corresponding to the smallest
eigenvalue of , which is given by and has multiplicity

; that is, We will now examine the objective
and the constraints of (26).

a) Objective in (26c): The objective is given by

(76)

b) Constraint in (26c): The left-hand side of this constraint
can be expressed as

(77)

where in (77), we have used Lemma 5 and the fact
that contains vectors of the Schur basis of
to replace with

.
From (74), we have

Substituting in (77) yields that the constraint in (26c) is equiv-
alent to

(78)

Note that here we used the fact that, because is greater than
zero, the constraint in (77) is satisfied with equality at the op-
timal solution.

c) Constraint in (26d): Noting that the diagonal entries
of are the smallest eigen-
values of , this constraint can be expressed as

(79)
where are the consecutive nonzero subdiagonal
entries of . Note that, from (79), it can be readily seen that the
optimal must be equal to . This is because the entries

do not appear except in this constraint and their effect
is to reduce the fraction of available for the relay to transmit
its signal. We will later make this observation more formal. In
writing (79), we assumed that is greater than zero and hence,
the constraint in (26d) is satisfied with equality. However, when

, this constraint can be satisfied with strict inequality.
d) Constraint in (26b): This constraint is equivalent to the

constraint that

which is equivalent to the constraint that the maximum eigen-
value of the matrix is
less than . Using Lemma 5, and the fact that the eigenvalues
of this matrix are equal and are given by , the constraint in

(26b) can be cast as

(80)

e) Deriving an auxiliary constraint from (78) and (79):
From (78) and(79), it can be deduced that

(81)

(72)

(73)
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Let . Substituting

for from (72), the constraint in(81) can be cast as

Manipulating this constraint, and using the notation

(82)

yields the following quadratic polynomial in :

(83)

where

(84)

Now, we note that using the inequality in (80) in (76) shows
that, when , the index of the objective is greater than
1. Hence, for any feasible and (yielding ), the objec-

tive is maximized when is maximum, that is, when
and .
Next, we consider the case of . We will show

that for this case also setting and is optimal as
.

2) Case of : Wewill show that for the asymptotic
case of , the optimal number of interlacing subdiagonal
entries is and the optimal . For nonasymptotic
cases, the optimal number of interlacing subdiagonal entries is
also , but in those cases the optimal is either
or . We begin by noting that, for any given

, when , the eigenvectors of
are the Schur vectors corresponding to the two smallest distinct
eigenvalues of : , which has multiplicity and ,

which has multiplicity . The matrix in this case is given
by , and subsequently, it can be readily seen
that

(85)

We will now examine the objective and the constraints of (26)
for this case.

a) Objective in (26a): The objective is given by

(86)

b) Constraint in (26c): From (85), we have

Using this in (77), the constraint in (26c) can be expressed in
the following form:

(87)

c) Constraint in (26d): The first diagonal entries of
are equal to and the next

entries are equal to . Hence, the constraint in (26d)

can be written as

(88)

Similar to the discussion following (79), it can be seen that the
optimal must be equal to , because the entries
do not appear except in this constraint and their effect is to re-
duce .

d) Constraint in (26b): This constraint is equivalent to the
constraint that

(89)

e) Deriving an auxiliary constraint from (87) and (88):
Analogous to the case of , we now derive a simpli-
fied constraint from (87) and(88) for the current case of

. Combining (87) and(88) yields

(90)

Let , and

Using these
definitions and simplifying yields a quadratic polynomial in
similar to the one in (83), but with coefficients ,

, where are defined in (84).
Now, we note that the inequality in (89) implies that the term

in (86) is greater than 1. Hence, the optimal in this

case is always equal to . However, the term may
be greater or less than 1. If, for a feasible and (yielding

), this term is greater than 1, the optimal is equal to 0. On

the other hand, if this term is less than 1, the optimal
, which, from (75), implies that .

To complete the proof of Proposition 3wewill now show that,
similar to the previous case of , when the
asymptotically optimal as must have . To do so,
we note that since satisfies the inequality in (89), each term
on the left-hand side of (87) must be nonnegative. This implies
that, as , both terms must tend to 0. Since , we
must have and at the same time either or

. The latter possibility can be dismissed by using (88)
to show that if and , , that is, in

this case approaches 0 from the left, which contradicts the
fact that . Hence, we conclude that as , must be
equal to 0, which completes the proof of the proposition.
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APPENDIX H
OPTIMAL INTERLACING PRECODER: CASE OF

When , the optimal precoder at asymptotically low
transmit power possesses an interlacing subdiagonal structure
analogous to the one in the case of . Since a complete
search for the optimal precoder requires considering both cases,
we herein provide expressions for this case. The derivation of
these expressions resembles that in Appendix G and is omitted
for brevity.
When , it can be seen from (12) that . In that

case, it can be verified that
• the objective in (26a) is given by

(91)

• the constraint in (26b) is equivalent to

(92)

where is given in (71),
• the constraint in (26c) can be shown to be equivalent to

(93)

• the constraint in (26d) is given by

(94)

Using (93) and (94) to solve for , we obtain

(95)

Using (91), (92), (93), and (95), the counterpart of
Algorithm 2 can be readily derived.
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