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Abstract— In this paper, a forward decoding procedure is
developed for the compress-and-forward (CF) relaying scheme.
This procedure uses a layered framework and is based on
exploiting a feature of the N-to-1 mapping inherent in the
underlying Wyner–Ziv binning. It is shown that exploiting this
mapping enables the relaxation of the constraint on the rate of the
relay codewords representing the bin indices. For the cooperative
multimessage network, the proposed procedure achieves the same
rate region as the short-message noisy network coding (SNNC)
scheme. However, this procedure is more advantageous for other
networks including the two networks presented herein. The first
network is a relay chain one with two destinations, whereas the
second network is a partially cooperative multimessage one with
three destinations. In both networks, side information is available
to a subset of the decoding nodes, but not to the rest of the nodes,
and in both cases, the network benefits from the relaxation of the
rate of the CF bin indices. This relaxation results in rate regions
larger than those achieved by the conventional CF and SNNC.

Index Terms— Relay channel, compress-and-forward,
short-message noisy network coding, Wyner-Ziv binning,
layered framework, side information, relay chain, partially
cooperative multimessage network.

I. INTRODUCTION

COMPRESS-AND-FORWARD (CF) [1] is a classical
relaying scheme for communicating over relay channels.

In conventional CF, the source transmits a new codeword in
each time block. The relay uses a pre-designed codebook to
generate descriptions of its received signal. Using Wyner-Ziv
binning, the codewords in the codebook of this description are
randomly partitioned into non-overlapping bins, which results
in an N-to-1 mapping from the description codewords to the
bin indices. In each block, the CF relay provides a description
of its received signal and sends its bin index in the next
block to facilitate decoding at the receiver. Decoding at the
CF receiver comprises three steps [1]: 1) decoding the bin
index from the relay; 2) using the received signal as side
information to decode the relay description codeword in the
bin; and 3) recovering the transmitted codeword from the
source with the facilitation of the relay description. The last
two steps can also be performed jointly [2].
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CF relaying was originally proposed for the three-node relay
channel, but was later extended to channels with multiple
relays [3]–[5]. CF is also known to be capacity achieving for
various classes of relay channels [6]–[10].

Akin to CF is the noisy network coding (NNC) scheme
provided in [11]. The philosophy that underlies this scheme
resembles, to some extent, that of CF. However, there are
three differences between the CF scheme and the NNC one.
First, in contrast with random binning used in CF, in NNC the
relay transmits a codeword that bears a 1-to-1 correspondence
with the description codeword. Second, in NNC the source
uses repetitive transmission, wherein one long message is
encoded over a large number of blocks. This is in contrast with
conventional CF, wherein a new short message is transmitted
by the source in each time block. Finally, in NNC, the received
signals in all time blocks are concatenated and decoded jointly;
in CF the decoding is performed on a forward block-by-block
basis.

Repetitive encoding of long messages over a large number
of blocks incurs significant delay, which renders short
messaging more desirable. Variations of the original NNC
that use short message encoding (SNNC) were proposed
in [12]–[15]. Despite their differences, both NNC and SNNC
decoding use the inherent 1-to-1 mapping between the descrip-
tion codewords at the relay and its transmitted codewords. This
1-to-1 mapping can be seen as a special case of the general
Wyner-Ziv binning with equal rate of the Wyner-Ziv codes
and the description codewords at the relay.

In [12], SNNC was studied for the standard three-node
relay channel when forward and backward decoding are used.
In [13] and [14], it was shown that SNNC yields the same
rate region as NNC when either backward decoding or joint
decoding with concatenated blocks is used in the multimessage
network considered therein.

Forward decoding that uses the SNNC codebook structure
was investigated for the multimessage network in [15]. This
decoding is based on ordered partitions of the nodes, thereby
resulting in a set of constraints on the achievable rate. Using
a geometric approach, it was shown that, in the multimessage
network considered in [15], there exist ordered partitions
that yield a rate region that coincides with the one achieved
by NNC.

In the standard three-node relay channel, conventional CF,
NNC and SNNC achieve the same rate. However, in more
general multimessage networks, NNC and SNNC achieve rate
regions larger than that achieved by conventional CF.

In this paper, we consider a multimessage network similar
to the one considered in [11], [13], and [15]. For this network,
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we develop a decoding procedure based on the conventional
CF codebook structure. The proposed procedure uses multiple
layers of the joint typicality sets for decoding. At each layer, a
subset of the transmitted codewords and the codewords of the
relay descriptions are successfully decoded. The codebooks
that contains these successfully decoded codewords are used
to construct the joint typicality set at the next decoding
layer. Such sequential construction of the joint typicality set
at each layer provides a hierarchical structure whereby the
joint typicality set at one layer is a proper subset of that
at the layer below it. This construction provides in effect a
systematic method for obtaining the ordered partitions con-
ceived in [15]. In addition to the layered framework, the
proposed decoding procedure exploits the N-to-1 mapping that
underlies the Wyner-Ziv binning. We show that this procedure
is able to achieve the same rate region as that achieved by
SNNC in the multimessage network. However, because of the
N-to-1 mapping, this procedure enables the relaxation of the
constraint on the rate of the bin indices, which will be shown
to be beneficial in certain cases. In particular, we will provide
hereinafter instances in which the N-to-1 mapping yields rate
advantages. A key feature of those instances is that side
information from the source is available only to subset of the
nodes. This can be caused, for instance, when the link between
the source and the receiving node is broken. The lack of side
information may induce rate loss when the relay description
is used to recover the CF bin indices. In such situations it is
more beneficial for the receiving node to recover the CF bin
indices directly without side information, which enables the
node to take advantage of the relaxed constraint on the rate of
the CF bin indices. To investigate the gain of the relaxation
of the rate constraint on the CF bin indices, we consider
two networks. In the first network, a source broadcasts a
common message to two destinations, which are assisted by a
chain of two cascaded relays, cf. [16]. In this chain, the first
relay receives signals from the source, uses the CF strategy
and forwards the bin indices of its description codewords
to the second relay and the two destinations. The second
relay only receives signals from the first relay and uses the
decode-and-forward (DF) strategy to assist the destinations in
recovering the bin indices transmitted by the first relay. In the
second network, a source S sends common messages to two
receivers D1 and D2 with the assistance of a relay R. The relay
R cooperates with S in the transmission to D1 and D2, and also
sends independent messages to its own destination D3. Unlike
D1 and D2, destination D3 does not have direct link from S and
hence the link between R and D3 is a standard point-to-point
one. Without the signal from S, destination D3 can only
recover the message from R without the cooperation from S.
Therefore, the network is only partially cooperative. It will be
shown that for the considered networks, the relaxation of the
rate constraint provided by the N-to-1 mapping enables larger
rate regions to be achieved.

Notation: Regular face upper and lower case letters
will refer to random variables, and their corresponding
realizations, respectively. Boldface letters will refer to length-n
sequences, and the calligraphic font will be used to refer to sets
of nodes. A sequence x of an index s transmitted or selected

Fig. 1. Standard three-node relay channel (SNNC or CF).

by a node dk in block b is denoted by xk(sk,b). A sequence of
random variables of node index dk is denoted by Xk . A tuple
of random variables is denoted by XA � (Xk : dk ∈ A). The
sum rate of the codebooks of a set of nodes A is denoted by
RA �

∑
dk∈A Rdk .

II. PRELIMINARIES

We begin by reviewing the achievable rate of SNNC [13]
(with 1-to-1 mapping) and conventional CF (with N-to-1
mapping) [2] in the standard three-node relay channel [1]
shown in Fig. 1. Our goal in this section is to gain insight
into the relay transmission rate and its impact to the achievable
rate.

For both SNNC and conventional CF, the source sends X1
in each block and the relay and the receiver receive
Y2 and YD, respectively. Upon receiving Y2, the relay obtains
a description, Ŷ2, of its received signal, which is mapped
to X2. The relay then sends X2 in the next block to the receiver
to facilitate decoding. The difference between SNNC and
conventional CF in the codebook structure is the relationship
between Ŷ2 and X2. In SNNC, each ŷ2 is mapped to a
distinct x2, whereas in conventional CF, potentially multiple ŷ2
are assigned to one bin index which is mapped to an x2.

Let R1, Ř2 and R̂2 be the rates of the codewords that
represent the source message, the relay bin index and the relay
description of its received signal, respectively. Consider the
probability mass functions (pmfs) of the form

p(x1, x2, yD, y2, ŷ2) = p(x1)p(x2)p(yD, y2|x1, x2)p(ŷ2|x2, y2).

In SNNC [13], [15], Ř2 = R̂2, and the following rate can
be achieved:

R1 ≤ I (X1; Ŷ2, YD|X2), (1a)

R1 ≤ I (X1, X2; YD) − I (Ŷ2; Y2|X1, X2, YD). (1b)

In conventional CF, Ř2 ≤ R̂2, and the rate satisfying (1a)
and the following constraints is achievable, cf. [2, Sec. 16.7]:

R1 ≤ I (X1; YD|X2) − I (Ŷ2; Y2|X1, X2, YD) + Ř2, (2a)

Ř2 ≤ I (X2; YD). (2b)

Choosing Ř2 = I (X2; YD) in (2b) maximizes R1 and yields
the same rate expression as SNNC.

For the three-node relay channel, it was shown
in [2, Remark 16.3] that the achievable rate is maximized
when the two constraints in (1) are equal, which yields

I (X2; YD) = I (Ŷ2; Y2|X2, YD). (3)

It can be seen that when (3) is satisfied, CF is able to achieve
the same rate as SNNC and yields Ř2 = I (X2; YD) =
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Fig. 2. An N -node multimessage network.

I (Ŷ2; Y2|X2, YD) ≤ I (Ŷ2; Y2|X2) ≤ R̂2, which contrasts the
condition in SNNC, wherein Ř2 = R̂2.

In the next section, it will be shown that the result that
CF achieves the same rate as SNNC but yields a lower rate on
the bin indices can be extended to more general multimessage
networks.

III. A LAYERED FORWARD DECODING PROCEDURE

FOR MULTIMESSAGE NETWORKS

In a relay network with multiple receivers, when SNNC
(with 1-to-1 mapping) is used, the rate of the codewords
representing the bin indices at the relay is an intermediate
parameter and can be eliminated from the expressions of the
achievable rate region. In contrast, when conventional CF
(with N-to-1 mapping) is used in the presence of multiple
receivers, the rate of the codewords representing the bin
indices at the relay cannot be readily eliminated. The decoding
of the relay transmitted codewords at each receiver imposes a
constraint on the rate of the bin indices. This constraint appears
in the achievable rate expressions and induces a rate loss in
comparison with SNNC.

In this section, we analyze a CF forward decoding proce-
dure in which two component strategies are combined: the
N-to-1 mapping characteristic of conventional CF [1] and the
sliding-window decoding of the relay messages characteris-
tic of SNNC, see e.g., [15]. Combining these components
results in a new decoding procedure that subsumes conven-
tional CF and SNNC, and therefore enables potentially higher
rates to be achieved. Indeed, subsequent developments in
Theorems 1 and 2 show that combining these components
yields the same rate expressions as NNC and SNNC but with a
more relaxed constraint on rate of the bin indices at the relays.
The advantage of the relaxed constraint on the rate of the bin
indices will be illustrated in detail in the next section.

Consider the multimessage network shown in Fig. 2. The
network contains a set of nodes N = {1, . . . , N}, each of
which acts as a source, a receiver and a relay. As a source,
node dk ∈ N sends an independent common message through
the transmission of Xk to the set of its destinations Ddk ⊆ N .
The set of nodes that wish to send messages to dk is denoted
by Sdk ⊆ N . As a relay to assist the transmission of
other nodes, dk provides a description, Ŷk , of its received

signal Ydk , and facilitates the decoding at other nodes through
the transmission of Xk . Cooperation between nodes in this
network is based on the facilitation provided by the encoding
procedure at each node and the use of the received signal as
side information in the decoding procedure at each receiver.

In recovering the messages from the nodes in Sdk , the
receiver at dk can treat the information of the messages from
the nodes in N \Sdk as interference. Using this approach and
SNNC (with 1-to-1 mapping), expressions for the achievable
regions are provided in [15]. In Theorem 1 herein, this result
is extended to the codebook structure that bears the general
N-to-1 mapping. In contrast, in Theorem 2, an achievable rate
region is provided for the case when the receiver at dk treats
the interference from the nodes in N \Sdk as noise instead of
attempting to decode it.

Theorem 1: Let (×N
k=1Xk, p(y N |x N ),×N

k=1Ydk ) be the
general discrete memoryless multimessage network. A rate
tuple (R1, . . . , RN ) is achievable if:

RS ≤ min
dk∈Sc∩DS

I (XS ; ŶŠc , Ydk |XSc)

−I (ŶN \Šc; YN \Šc |XN , ŶŠc , Ydk ) + ŘŠ , (4)

for all subsets S ⊂ N and Š ⊆ Sc = N \ S, such that
Sc ∩ DS �= ∅; the set DS � ∪dl∈SDdl , Šc � Sc \ Š. �

The implications of the inequalities in (4) can be inferred
by considering a three node network. In such a network, there
are two possibilities for S: S = {1} and S = {1, 2}. For the
first possibility, there are two cases for Š: Š = ∅ and Š = {2}.
Using these possibilities in (4) yields the following bounds on
the source rate, R1:

for S = {1}, Sc = {2}, Š = ∅, Šc = {2},
R1 ≤ I (X1; Ŷ2, YD|X2); (5a)

for S = {1, 2}, Sc = ∅, Š = Šc = ∅,

R1 ≤ I (X1, X2; YD) − I (Ŷ2; Y2|X1, X2, YD); (5b)

for S = {1}, Sc = {2}, Š = {2}, Šc = ∅,

R1 ≤ I (X1; YD|X2) − I (Ŷ2; Y2|X1, X2, YD) + Ř2. (5c)

The first two bounds are identical to the standard
CF bounds, cf. [2, Sec. 16.7] and (1a) and (1b). For the

third bound we note that choosing Ř2 ≥ I (Ŷ2; Y2|X2, YD)

reduces (5c) to (5a), and choosing Ř2 ≥ I (X2; YD)
reduces (5c) to (5b). This implies that for this scenario, (5c) is
redundant and subsequently, the proposed scheme does not
yield an advantage beyond conventional CF in the three node
network.

The expression on the right hand side of (4) can be regarded
as a generalization of the rate achieved by NNC and SNNC.
In particular, as shown in Remark 2, when RŠ satisfies the
conditions in (12), the rate expression in Theorem 1 reduces
to the one achieved by NNC and SNNC. As such, using
the proposed signalling strategy in particular networks can in
general yield a rate region that includes the rate region that can
be achieved by the NNC and SNNC schemes; the additional
advantage of the proposed scheme follows from exploiting
the N-to-1 mapping as elucidated in detail in the proof of
Theorem 1 and the examples in Sect. IV-A and IV-B.
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Proof: The decoding procedure uses strong joint
typicality [17] and features a layered framework. For layer 1
in this framework, the receiver considers the codebooks of all
the nodes in the network and constructs the set containing the
codewords that are jointly typical with the signal received in a
particular block. For layer 2, the receiver considers only those
codebooks that correspond to exactly one codeword in the
joint typicality set in layer 1, and subsequently constructs the
set containing the codewords that are jointly typical with
the signal received in the following block. Hence, the
codebooks considered at layer 2 is only a subset of those
at layer 1. Subsequent layers are constructed in a similar
way until all the relay description codewords are successfully
decoded. (Further discussions on the number of decoding
layers will be provided a the end of Sect. III.) Using the joint
typicality sets at all the layers jointly, the receiver recovers the
source messages. The details are as follows.

Codebook Generation: For node dk , generate 2n(Rk+Řk)

independent identically distributed (i.i.d.) xk(mk, sk), each
according to the distribution p(xk) = ∏n

i=1 p(xki ), mk ∈
[1 : 2nRk ], sk ∈ [1 : 2nŘk ]; for each xk(mk, sk), generate
2nR̂k i.i.d. ŷk(zk |mk, sk), each according to the distribution
p(ŷk|xk) = ∏n

i=1 p(ŷki |xki ), zk ∈ [1 : 2nR̂k ].
Random Binning: For node dk , randomly partition the

set {1, · · · , 2nR̂k } into 2nŘk bins. Let sk = Bk(zk) denote the
N-to-1 mapping corresponding to random binning at dk .

Encoding: Let b be the current block. At the end of
block b, node dk

• finds zk such that (ŷk(zk |mk,b, sk,b), xk(mk,b, sk,b),
ydk (b)) are jointly ε-typical. By the covering lemma
in [2], such a zk exists as n → ∞ if

R̂k ≥ I (Ŷk ; Ydk |Xk). (6)

If more than one such zk exist, choose the smallest zk

and let zk,b = zk ;
• determines sk = Bk(zkb ) and lets sk,b+1 = sk .

Codewords xk(mk,b, sk,b) are sent in block b from
all dk ∈ N .

Decoding Procedure: We provide a layered forward
decoding procedure for dk .

Let i, j denote the decoding layer and the block number of
the received signal used at layer i , respectively. Let �dk be the
layer at which the decoding at dk ends. We have

j = b − �dk + i. (7)

Using this relationship, we drop the block number j from the
expressions in the analysis of the decoding procedure when it
is clear. Furthermore, in analyzing the decoding at dk , node
identity dk is omitted from the subscript of �dk (� � �dk ) and
various sets of nodes when it is clear.

Let L be the maximum number of the decoding layers in
the network, i.e., L � maxdk∈N �dk . At any dk ∈ N ,

1 ≤ i ≤ � ≤ L ≤ N − 1. (8)

Consider the receiver at dk . Assuming that in block b ≥ �,
sN ,b−� has been successfully recovered, the receiver at dk

• constructs the following jointly ε-typical set:

(xAm,i , ŷAz(J ),i , ydk (b − � + i)). (9)

(The sets of nodes Am,i and Az(J ),i for i ≤ � will be
made clear below.)

• forms the set Am,i+1 : for each node dl in this set, there
exists a unique xdl (m̂dl ) in the jointly ε-typical set in (9),
and dl ∈ Am,i .

• forms the set Az(J c),i+1: which contains the node dl,
dl ∈ Am,i+1 ∩ Ac

z(J ), j , for all j < i ; (The set Ac
z(J ), j

is defined below.)
• forms the set Ac

z(J ),i+1 : for each node dl in this set,

there exist multiple ŷdl (ẑdl |m̂dl ) in the jointly ε-typical
set in (9), and dl ∈ Am,i+1 \ Az(J c),i+1;

• forms the set Az(J ),i+1 : for each node dl in this set,
there exists a unique ŷdl (ẑdl |m̂dl ) in the jointly ε-typical
set in (9), and dl ∈ Am,i+1 \ Az(J c),i+1;

• proceeds to layer i + 1 if Ac
z(J ),i+1 �= ∅;

• ends at layer i when Ac
z(J ),i+1 = ∅.

Using the jointly ε-typical sets in � layers jointly, the
receiver at dk declares that mSdk

= m̂Sdk
was sent in

block b−�; and that sN = ŝN was sent in block b−�+1.

Let A�m � Am,�+1 = Az(J ),�+1 ∪ Az(J c),�+1 and A�z �
Az(J ),�+1. Furthermore, let Am,1 � N , Az(J ),1 � N ,
Ac

z(J ),1 � ∅ and Az(J c),1 � ∅. In Lemmas 1 and 2, we provide
useful properties of the above sets.

Lemma 1: By definition, the sets formed by dk in the
decoding procedure have the following properties, for i ≤ �,

1. Ac
m,i+1 = Am,i \ Am,i+1;

2. Az(J ),i , Ac
z(J ),i and Az(J c),i are disjoint, Az(J ),i ∪Ac

z(J ),i ∪
Az(J c),i = Am,i ;

3. A�m ⊆ Am,i ⊆ Am, j , for i > j ;
4. (Az(J ),i ∪ Ac

z(J ),i)= Az(J ),i−1 ⊆ Az(J ), j , for i > j ;
5. Az(J ),i ∩ Az(J c),i+1 = ∅;
6. A�z ⊆ Az(J ),i+1 ⊆ Az(J ),i ;
7. For the receiver at dk , dk ∈ DSdk

and dk ∈ Am,i ,
dk ∈ Az(J ),i . Hence, dk ∈ A�m , dk ∈ A�z .

8. Ac
z(J ),�+1 = ∅.

Lemma 2: For the sets formed by the receiver, define
Az(J ),i\i+1 � ((Ac

m,i+1 \ Ac
z(J ),i) \ Az(J c),i) ∪ Ac

z(J ),i+1. The
following equality holds:

Az(J ),i\i+1 = Az(J ),i \ Az(J ),i+1. (10)

Proof: See details in Appendix A.
Analysis of the Probability of Error: See detailed analysis

in Appendix B.
Now, we make three remarks.
Remark 1: When A�m = A�z , we have Š = A�m \A�z = ∅

and Šc = Sc. The result in Theorem 1 reduces to the following
simplified form:

R(S) ≤ I (XS ; ŶSc, Ydk |XSc) − I (ŶS ; YS |XN , ŶSc , Ydk ),

(11)

for S ∩ Sdk �= ∅.
The simplified form of the achievable rate region coincides

with that of NNC and SNNC.
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Remark 2: The rate region described in Theorem 1 reduces
to the simplified form in (11) when ŘŠ satisfies the following
condition:

ŘŠ ≥ min{I (XSc\Šc; ŶŠc , Ydk |XŠc) − RSc\Šc,

I (ŶŠ ; YŠ |XSc , ŶŠc , Ydk )}. (12)

Proof: See detailed proof in Appendix C.

Remark 3: Theorem 1 shows that the proposed scheme
achieves the same rate region as NNC and SNNC but with
reduced rates of codewords representing the bin indices.
This reduction will be shown to result in a rate advantage
in Sect. IV.

Proof: To expose the reduction in the rate of the bin
indices, it suffices to show that the right hand side of (12) is
upper bounded by R̂Š . We have

I (ŶŠ ; YŠ |XSc , ŶŠc , Ydk )

=
∑

i∈Š
I (Ŷi ; YŠ |XSc , ŶKi , ŶŠc , Ydk )

=
∑

i∈Š
I (Ŷi ; Yi |XSc, ŶKi , ŶŠc , Ydk )

≤
∑

i∈Š
I (Ŷi ; Yi |Xi )

≤ R̂Š ,

where we have used Š ⊆ Sc. Clearly, the lower bound on ŘŠ
is lower than R̂Š .

We now consider the case in which the transmitted code-
words from the nodes in N \Sdk can only provide information
about the bin indices to facilitate decoding at dk , and the
receiver at dk treats the information representing the message
indices in XN \Sdk

as noise. Using this approach, we provide
the following theorem.

Theorem 2: Let (×N
k=1Xk, p(y N |x N ),×N

k=1Ydk ) be the
general discrete memoryless multimessage network. A rate
tuple (R1, . . . , RN ) is achievable if

RT ≤ I (XT , US ; ŶŠc , Ydk |XT c , USc)

− I (ŶN \Šc; YN \Šc |XSdk
, UN , ŶŠc , Ydk ) + ŘŠ , (13)

for all subsets S ⊂ N , Š ⊆ Sc = N \S and T ⊆ Sdk , where
T �= ∅; the subset Šc = Sc \ Š and T c = Sdk \ T . �

Similar to the case of Theorem 1, we note that the expres-
sion on the right hand side of (13) can be regarded as a
generalization of the rate achieved by NNC. In particular,
when RŠ satisfies the criteria in (18), the right hand side
of (13) reduces to (11), cf. Remark 5 and [11, Th. 3]. Hence,
in general, the signalling strategy that underlies Theorem 2
offers the potential of achieving rate regions that include those
achieved by the corresponding NNC scheme; the advantage
of that signalling strategy follows from exploiting the N-to-1
mapping as elucidated in detail in the proof of Theorem 2 and
the example in Sect. IV-B.

Proof: Using the same philosophy as that used in the proof
of Theorem 1, the decoding procedure herein also features a
layered framework. Details are provided below.

Codebook Generation: For node dk , generate 2nŘk

i.i.d. uk(sk), each according to the distribution p(uk) =
∏n

i=1 p(uki ), sk ∈ [1 : 2nŘk ]; for each uk(sk), generate 2nRk

i.i.d. xk(mk |sk), each according to the distribution p(xk|uki ) =∏n
i=1 p(xki |ski ), mk = [1 : 2nRk ]; for each uk(sk), gener-

ate 2nR̂k i.i.d. ŷk(zk |sk), each according to the distribution
p(ŷk|uk) = ∏n

i=1 p(ŷki |ski ), zk ∈ [1 : 2nR̂k ].
Random Binning: For node dk , randomly partition the

set {1, · · · , 2nR̂k } into 2nŘk bins. Let sk = Bk(zk) denote the
N-to-1 mapping at dk as the result of binning.

Encoding: Let b be the current block. At the end of
block b, node dk

• finds an index zk such that (ŷk(zk |sk,b), uk(sk,b),ydk (b))
are jointly ε-typical. By the covering lemma in [2], such
a zk exists as n → ∞ if

R̂k ≥ I (Ŷk ; Ydk |Uk). (14)

If more than one such zk exist, choose the smallest zk

and let zk,b = zk ;
• determines sk = Bk(zkb ) and lets sk,b+1 = sk .

Codewords xk(mk,b|sk,b) are sent in block b from
all dk ∈ N .

Decoding Procedure: Similar to the procedure provided
in the proof of Theorem 1, the procedure herein employs
the layered forward decoding strategy, and the relationships
in (7) and (8) hold. The main difference between the two
procedures lies in the sets formed at the receiver at each
decoding layer.

Consider the receiver at dk . Assuming that in block b,
sN ,b−� has been successfully recovered, where � � �dk , the
receiver at dk

• constructs the following jointly ε-typical set:

(xAm,i , uAs,i , ŷAz(J ),i , ydk (b − � + i)). (15)

(The definition of the sets of nodes Am,i , As,i and Az(J ),i

for i ≤ � is given below.)
• forms the set As,i+1 : for each node dl in this set, there

exists a unique udl (ŝdl ) in the jointly ε-typical set in (15),
and dl ∈ As,i ;

• forms the set Am,i+1 : for each node dl in this set, there
exists a unique xdl (m̂dl |ŝdl ) in the jointly ε-typical set
in (15), and dl ∈ Am,i ∩ As,i+1;

• forms set Az(J c),i+1, which contains the node dl ∈
As,i+1 ∩Ac

z(J ), j , for all j < i ; (The set Ac
z(J ), j is defined

below.)
• forms the set Ac

z(J ),i+1 : for each node dl in this set,
there exist multiple ŷdl (ẑdl |ŝdl ) in the jointly ε-typical
set in (15), and dl ∈ As,i+1 \ Az(J c),i+1;

• forms the set Az(J ),i+1 : for each node dl in this set,
there exists a unique ŷdl (ẑdl |ŝdl ) in the jointly ε-typical
set in (15), and dl ∈ As,i+1 \ Az(J c),i+1;

• proceeds to layer i + 1 if Ac
z(J ),i+1 �= ∅.

• ends at layer i when Az(J ),i+1 = ∅.
Using the jointly ε-typical sets in � layers jointly, the
receiver at dk declares that mSdk

= m̂Sdk
were sent in

block b−�; and that sN = ŝN were sent in block b−�+1.
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Let A�m � Am,�+1, A�s � As,�+1 = Az(J ),�+1 ∪Az(J c),�+1

and A�z � Az(J ),�+1. Furthermore, let Am,1 � Sdk ,
As,1 � N , Az(J ),1 � N , Ac

z(J ),1 � ∅ and Az(J c),1 � ∅.
In Lemmas 3 and 4 we provide the counterparts of
Lemmas 1 and 2 for the decoding procedure of Theorem 2.

Lemma 3: The sets formed by the receiver at dk ∈ N in the
decoding procedure have the following properties, for i ≤ �,

1. Ac
m,i+1 = Am,i \ Am,i+1, Ac

s,i+1 = As,i \ As,i+1;
2. Az(J ),i,Ac

z(J ),i and Az(J c),i are disjoint, Az(J ),i ∪Ac
z(J ),i ∪

Az(J c),i = As,i ;
3. A�m ⊆ Am,i ⊆ Am, j , A�s ⊆ As,i ⊆ As, j , for i > j ;
4. (Az(J ),i ∪ Ac

z(J ),i) = Az(J ),i−1 ⊆ Az(J ), j , for i > j ;
5. Az(J ),i ∩ Az(J c),i+1 = ∅;
6. A�z ⊆ Az(J ),i+1 ⊆ Az(J ),i ;
7. For the receiver at ∀dk , dk ∈ DSdk

and dk ∈ Am,i ,
dk ∈ Az(J ),i . Hence, dk ∈ A�m , dk ∈ A�z .

8. Ac
z(J ),�+1 = ∅;

9. Az(J ),i ⊆ As,i , Am,i ⊆ As,i .
Lemma 4: For the sets formed by the receiver, define

Az(J ),i\i+1 � ((Ac
s,i+1 \ Ac

z(J ),i) \ Az(J c),i ) ∪ Ac
z(J ),i+1. The

following equality holds:

Az(J ),i\i+1 = Az(J ),i \ Az(J ),i+1. (16)

Proof: Replacing Ac
m,i+1 and Am,i by Ac

s,i+1 and As,i ,
respectively, the lemma can be proved using a technique
similar to the one in the proof of Lemma 2. Details are omitted.

Analysis of the Probability of Error: See details in
Appendix D.

Next, we make three remarks.
Remark 4: When A�,s = A�,z , we have Š = A�s \A�,z = ∅

and Šc = Sc. The result in Theorem 2 reduces to the following
simplified form:

RT ≤ I (XT , US ; ŶSc, Ydk |XT c , USc )

−I (ŶS ; YS |XSdk
, UN , ŶSc , Ydk ). (17)

for T �= ∅.
�

The simplified form of the achievable rate region coincides
with [11, Th. 3].

Remark 5: The rate region described in Theorem 2 reduces
to the simplified form in (17) when ŘŠ satisfies the following
condition:

ŘŠ ≥ min{I (USc\Šc; ŶSc , Ydk |X Ť c , UŠc ),

I (ŶŠ ; YŠ |XT c , USc , ŶŠc , Ydk )}. (18)

Proof: Detailed proof is provided in Appendix E.
Remark 6: Theorem 2 shows that the proposed scheme

achieves the same rate region as NNC but with reduced bin
indices rates. This reduction will be shown to result in a rate
advantage in Sect. IV-B.

Proof: To expose the reduction in the rate of the bin
indices, it suffices to show that the right hand side of (18) is

upper bounded by R̂Š . Towards that end, we write

I (ŶŠ ; YŠ |XT c , USc , ŶŠc , Ydk )

=
∑

i∈Š
I (Ŷi ; YŠ |XT c , USc , ŶKi , ŶŠc , Ydk )

=
∑

i∈Š
I (Ŷi ; Yi |XT c , USc , ŶKi , ŶŠc , Ydk )

≤
∑

i∈Š
I (Ŷi ; Yi |Ui )

≤ R̂Š ,

where we have used Š ⊆ Sc. Clearly, the lower bound on ŘŠ
is lower than R̂Š .

Since the 1-to-1 mapping satisfies the condition in (18),
the achievable rate region of the simplified form in (17)
can also be obtained by using short message encoding with
1-to-1 mapping. This observation extends the results provided
in [13] and [15] for SNNC.

To obtain an upper bound on the maximum number
of decoding layers, we recall that the decoding procedure
described in the proofs of Theorems 1 and 2 progresses from
one layer to the next depending on the outcome of a joint-
typicality test. In particular, if at a given layer i , multiple
description codewords of a particular node are found to be
in the joint-typicality set, the decoding procedure excludes
the codebooks corresponding to the multiple description code-
words and progresses to the next layer, i.e., layer i + 1.
The decoding procedure stops once it reaches a layer with
no multiple description codewords of any node in the joint-
typicality set. From this procedure, it can be seen that the
number of candidate description codebooks examined in each
layer decreases strictly from one layer to the next, which
implies that the maximum number of layers, L, is upper
bounded by N − 1. Hence, the decoding delay in the network
can be upper bounded by N −1 blocks. In block 1, each node
uses a message index and a known bin index in encoding.
From block 2, each node performs the encoding as described
in the procedure provided in the proofs of the theorems. To end
the transmission, each node continues to encode and transmit
for N − 2 blocks using a known message index and the bin
index of the description of its received signal in the previous
block.

Finally, we note that for the cooperative multimessage
network shown in Fig. 2, the results of using N-to-1 mapping
in Theorem 1 and 2 do not yield a rate gain in comparison with
their simplified forms which can also be achieved by SNNC
(with 1-to-1 mapping). However, our goal is not to show
the rate advantage of the N-to-1 mapping in this network,
but rather to show its advantage in the network instances
considered in the next section.

IV. EXPLOITING THE GAIN OF N -TO-1 MAPPING

In this section, we consider two network instances in which
side information is only available to a subset, but not to the rest
of the receiving nodes. We will show that for these instances
the relaxation of the bin indices rate constraints resulting
from the N-to-1 mapping renders the decoding procedures
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Fig. 3. A two-destination broadcast relay chain network.

in Theorems 1 and 2 more advantageous than their SNNC
counterparts.

The first network is a relay chain one in which a source
broadcasts a common message to two destinations, which are
assisted by a chain of two cascaded relays. In this chain,
the first relay receives signals from the source, uses the
CF strategy and forwards the bin indices of its description
codewords to the second relay and the two destinations. The
second relay only receives signals from the first relay and
uses the DF strategy to assist the destinations in recovering
the bin indices transmitted by the first relay. In this case, the
relaxation of the rate of the bin indices of the CF description
codewords provided by Theorem 1 benefits the decoding at
the second relay and is able to provide a rate gain over SNNC
and conventional CF.

The second network is a multimessage one in which, in
addition to the source messages, a CF relay has its own
independent messages to send to a separate receiver that
has no access to side information. The transmission of the
bin indices by the CF relay causes interference to this
receiver. We show that the N-to-1 mapping that underlies
Theorems 1 and 2 results in a reduction in the rate of the
bin indices, thereby providing a rate gain over other schemes
that use 1-to-1 mapping.

We now analyze the achievable rates of these two networks.

A. Achievable Rate of a Broadcast Relay Chain Network

We now describe the two-destination relay network shown
in Fig. 3. In this network, a source S wishes to send a
common message to two destinations D1 and D2 through
the transmission of X1 with the assistance of a CF relay R1
and a DF relay R2 in a chain. The received signals at relay
R1 and R2 are denoted by Yi , i = 2, 3, respectively, and the
received signal Y3 is independent of X1. The received signals
at D1 and D2 are denoted by YDi , i = 1 and 2, respectively.

Without R2, the network reduces to a broadcast relay
channel, cf. [18]. In that case, using N-to-1 mapping yields the
same achievable rate R1 as 1-to-1 mapping. However, since
Y3 is independent of X1, correct decoding at R2 imposes a
constraint on the rate of the CF bin indices.

We evaluate three relaying strategies in the analysis of the
achievable rate of this network. In all the considered strategies,
node S uses the standard CF codebook structure. The relay R2
uses the standard DF codebook structure and procedure.1 The
difference between these three strategies lies in the way that
the relay R1 operates. In particular, in

• Strategy 1, the decoding procedure combines DF decod-
ing and the decoding procedure of Theorem 1;

• Strategy 2, the decoding procedure combines DF decod-
ing and the decoding procedure of SNNC; and in

• Strategy 3, the decoding procedure combines DF decod-
ing and the decoding procedure of conventional CF.

The detailed procedures are provided in Appendix F.
Next, we provide the achievable rate expressions for these

strategies for the discrete memoryless case and the Gaussian
case.

1) The Discrete Memoryless Case: The achievable rate
corresponding to the above relaying strategies for the discrete
memoryless case are provided in the following corollary.

Corollary 1: For the discrete memoryless network in
Fig. 3, (X1, p(y2|x1)p(y3|x2)p(yD1 , yD2 |x1, x2, x3), Y2×Y3×
YD1 × YD2), the rate R1 is achievable, where

• for Strategy 1,

R1 ≤ sup min
i=1,2

min{I (X1; Ŷ2, YDi |X2, X3),

I (X1; YDi |X2, X3) − I (Ŷ2; Y2|X1, X2, X3, YDi )

+ min{I (X2; Y3|X3), I (X2, X3; YDi )}}; (19)

• for Strategy 2,

R1 ≤ sup min
i=1,2

min{I (X1; Ŷ2, YDi |X2, X3),

I (X1, X2, X3; YDi ) − I (Ŷ2; Y2|X1, X2, X3, YDi ),

(20)

subject to

I (Ŷ2; Y2|X2, X3) ≤ I (X2; Y3|X3);
• for Strategy 3,

R1 ≤ sup min
i=1,2

{min{I (X1; Ŷ2, YDi |X2, X3),

I (X1; YDi |X2, X3) − I (Ŷ2; Y2|X1, X2, X3, YDi )

+ min{I (X2; Y3|X3), min
i=1,2

I (X2, X3; YDi )}}}, (21)

where, for all strategies, the supremum is taken over the
pmfs of the form

p(x1, x2, x3, y2, y3, yDS , ŷ2) = p(x1)p(x2|x3)p(x3)

p(y2|x1)p(y3|x2)p(yD1, yD2 |x1, x2, x3)p(ŷ2|x2, x3, y2).

�
Proof: See details in Appendix. F

We note that Strategies 2 and 3 can be regarded as special
cases of Strategy 1. Hence, Strategy 1 offers the potential

1Herein we provide the achievable rate expressions when R2 operates in
the DF mode. The counterparts of the expressions when R2 operates in the
CF mode can be readily obtained using the procedure in Theorem 1, SNNC
and conventional CF. However, to maintain focus, the expressions pertaining
to this case are not presented.
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Fig. 4. A two-destination Gaussian broadcast relay network with a relay
chain, where Z ′ is an independent additive noise and Z2, Z3, ZD1 and
ZD2 ∼ N (0, 1).

of yielding a higher achievable rate than Strategies 2 and 3.
We will next show that this is actually the case when the
network is Gaussian.

2) The Gaussian Case: Now, we compare the considered
strategies for the Gaussian network depicted in Fig. 4. The
network shown in this figure is composed of scalar chan-
nel coefficients, independent additive Gaussian noises and
Gaussian codebooks with average power constraints. As shown
in Fig. 4, the transmitted signals from nodes S, R1 and R2 are
denoted by Xi ∼ N (0, Pi ), where Pi is the average transmit
power, i = 1, 2, 3, respectively. The gain of the S-to-R1 and
S-to-Di links are denoted by aSR and aSDi , i = 1, 2. The
gain of the R1-to-R2 and R1-to-Di links are denoted by aRR
and aRDi , i = 1, 2, respectively. The gain of the R2-to-Di

link is denoted by aRSi , i = 1, 2. The independent additive
noises on the S-to-R1, and R1-to-R2 links are denoted by
Z2 and Z3, respectively, and that at the receiver Di is denoted
by ZDi , i = 1, 2. All noises are Gaussian distributed with
zero mean and unit variance. Using this notation, the received
signals at R1, R2 and Di , i = 1, 2, can be expressed
as

Y2 = aSR X1 + Z2,

Y3 = aRR X2 + Z3,

YD1 = aSD1 X1 + aRD1 X2 + aRS1 X3 + ZD1 ,

YD2 = aSD2 X1 + aRD2 X2 + aRS2 X3 + ZD2 . (22)

Denoting the description of the received signal at R1 by Ŷ2 =
Y2 + N ′, where N ′ ∼ N (0, N ′) [19], we now define following
signal-to-noise ratios (SNRs):

γSR = a2
SR P1, γRR = a2

RR P2,

γSDi = a2
SDi

P1, γRDi = a2
RDi

P2

γRSi = a2
RSi

P3, γ ′ = N ′, i = 1, 2.

Let C(x) = 1
2 log2(1 + x) and let ρ be the correlation

coefficient between X2 and X3, i.e., ρ = E(X2 X3)√
P2 P3

. Using the

technique in [20], we have

I (X1; Ŷ2, YDi |X2, X3) = C
( γSR

1 + γ ′ + γSDi

)
,

I (X1; YDi |X2, X3) = C(γSDi ),

I (X2, X3; YDi ) = C
(γRDi +γRSi +2ρ

√
γRDi γRSi

1 + γSDi

)
,

I (X1, X2, X3; YDi ) = C(γSDi + γRDi + γRSi

+ 2ρ
√

γRDi γRSi ),

I (X2; Y3|X3) = C((1 − ρ2)γRR),

I (Ŷ2; Y2|X1, X2, X3, YDi ) = C(1/γ ′),

I (Ŷ2; Y2|X2, X3) = C
(1 + γSR

γ ′
)
.

Using these results in Corollary 1, we have the following
proposition.

Proposition 1: For the network shown in Fig. 4, the rate R1
is achievable, where

• for Strategy 1:

R1 ≤ max
ρ,γ ′ min

i=1,2
min

{
C
( γSR

1 + γ ′ + γSDi

)
, C(γSDi ) − C

( 1

γ ′
)

+ min
{
C
(γRDi + γRSi + 2ρ

√
γRDi γRSi

1 + γSDi

)
,

C((1 − ρ2)γRR)
}}

;
• for Strategy 2:

R1 ≤ max
ρ,γ ′ min

i=1,2
min

{
C
( γSR

1 + γ ′ + γSDi

)
,

C(γSDi + γRDi + γRSi

+ 2ρ
√

γRDi γRSi ) − C(1/γ ′)
}
,

subject to

C
(1 + γSR

γ ′
)

≤ C((1 − ρ2)γRR);
• for Strategy 3:

R1 ≤ max
ρ,γ ′ min

i=1,2

{
min

{
C
( γSR

1 + γ ′ + γSDi

)
,

C(γSDi ) − C(1/γ ′)
+ min

{
C((1 − ρ2)γRR),

min
i=1,2

(γRDi + γRSi + 2ρ
√

γRDi γRSi

1 + γSDi

)}}}
,

where, for all strategies, ρ ∈ [−1, 1], γ ′ ≥ 0.
To illustrate the advantage of Strategy 1, in Fig. 5 we plot

the achievable rates provided in Proposition 1 for the three
strategies when γSR = 2, γSD1 = 1, γSD2 = 2, γRD1 = 2,
γRD2 = 1, γRS1 = 2, γRS2 = 1 and 0 ≤ γRR ≤ 4.

From Fig. 5 it can be seen that when γRR ≤ 0.7, Strategies 1
and 3 achieve the same rate, which is higher than that achieved
by Strategy 2. For γRR > 0.7, Strategy 1 achieves a higher
rate than both Strategies 2 and 3. Fig. 5 also shows that for
γRR ≤ 1.6, Strategy 3 achieves a higher rate than Strategy 2,
and for γRR > 1.6, Strategy 2 achieves a higher rate than
Strategy 3. Note that if γRR is sufficiently large, the constraint
on γ ′ in the achievable rate of Strategy 2 becomes inactive.
In that case, Strategies 1 and 2 yield the same rate.
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Fig. 5. Achievable rates of a two-destination Gaussian broadcast relay chain
network in Fig. 4, γSR = 2, γSD1 = 1, γSD2 = 2, γRD1 = 2, γRD2 = 1,
γRS1 = 2, γRS2 = 1.

Fig. 6. A two-message three-receiver partially cooperative network.

B. Achievable Rate Region of a Partially
Cooperative Multimessage Network

In this section, we consider an example that belongs to a
class of multimessage networks. In this class, each source node
wishes to send an independent message to its destinations
with the assistance of relay nodes. Each relay node has its
own independent message and wishes to send it to its own
destinations through the direct link without the assistance of
other nodes. The destinations of the relay nodes do not have
direct links from other nodes. The set of destinations of the
source nodes and the set of destinations of the relay nodes
are disjoint. Each destination recovers its intended messages
without collaboration.

Fig. 6 shows an example of such a network. In this example,
source S wishes to send a common message to two receivers
D1 and D2, with the assistance of node R. In addition, node R
has its own independent message and wishes to send it to a
third destination, D3. Since the only link to D3 is the R-to-D3
one, node R sends its message to D3 without being assisted
by S. Hence, the network is only a partially cooperative one.

For the network in Fig. 6, we consider a relaying scheme
in which node R facilitates decoding at D1 and D2 by
transmitting the bin index of a description of its received
signal. Let X1 and X2 be the codewords sent by S and R,
respectively. Let Y2 and YDi be the received signal at R and

Di , i = 1, 2, 3, respectively, and let Ŷ2 be the codewords
corresponding to the description of R of its received signal.
We use R1, R2, Ř2 and R̂2 to denote the rate of X1, the rate
of the independent message sent from R to D3, the rate of the
relay bin indices and the rate of the description codebook at
the relay, respectively.

Without D3, the network reduces to a broadcast relay
channel, cf. [18]. In that case, Theorems 1 and 2 imply that
using either the N-to-1 or the 1-to-1 mapping yields the same
achievable rate, R1. However, the presence of D3 and the fact
that its received signal, YD3, does not contain information
about X1 implies that these rates are not necessarily identical.
To explore this possibility, we consider the following decoding
strategies:
1. Use SNNC codebook structure at S and R. Use SNNC

decoding procedure (Theorem 1 with Ř2 = R̂2) at Di ,
i = 1, 2, 3. The corresponding achievable rate region is
denoted by R1.

2. Use SNNC codebook structure at S and R. Only decode
desired codewords at Di , i = 1, 2, 3, and treat the unde-
sired signal as noise (Theorem 2 with Ř2 = R̂2). The
corresponding achievable rate region is denoted by R2.

3. Use CF codebook structure at S and R. Use the decoding
procedure in Theorem 1 at D1 and D2, and directly recover
the intended message from R at D3. The corresponding
achievable rate region is denoted by R3.

4. Use CF codebook structure at S and R. Use the decoding
procedure in Theorem 2 at D1 and D2, and directly recover
the intended message from R at D3. The corresponding
achievable rate region is denoted by R4.

Next, we provide the achievable rate expressions for these
strategies for the discrete memoryless case and the Gaussian
case.

1) The Discrete Memoryless Case: In the following corol-
lary we provide expressions for the rate regions that can
be achieved by each of the above strategies in the discrete
memoryless case:

Corollary 2: For the discrete memoryless network in
Fig. 6 (X1 ×X2, p(y2, yD1, yD2 |x1, x2)p(yD3 |x2), Y2 ×YD1 ×
YD2 × YD3), consider fixed pmf of the form:

• for Strategies 1 and 3,

p(x1, x2, ŷ2, y2, yDS, yD3)

= p(x1)p(x2)

×p(ŷ2|x2, y2)p(y2, yD1 , yD2 |x1, x2)p(yD3 |x2).

• for Strategies 2 and 4,

p(x1, x2, u, ŷ2, y2, yDS, yD3)

= p(x1)p(x2|u)p(u)

×p(ŷ2|u, y2)p(y2, yD1 , yD2 |x1, x2)p(yD3 |x2).

Using Strategy 1, the rate pair (R1, R2) is achievable, where

R1 + R2 ≤ min
i=1,2

{I (X1, X2; YDi ) − I (Ŷ2; Y2|X1, X2, YDi )},
(26a)

R1 ≤ min
i=1,2

I (X1; Ŷ2, YDi |X2), (26b)

R1 + R2 ≤ I (X2; YD3) − I (Ŷ2; Y2|X1, X2, YD3). (26c)
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Fig. 7. Gaussian particularization of the network in Fig. 6.

Using Strategy 2, the rate pair (R1, R2) is achievable, where

R1 ≤ min
i=1,2

{I (X1, U2; YDi ) − I (Ŷ2; Y2|X1, U2, YDi )}, (27a)

R1 ≤ min
i=1,2

I (X1; Ŷ2, YDi |U2), (27b)

R2 ≤ min{I (X2; YD3 |U), I (X2; YD3) − I (Ŷ2; Y2|U2, YD3)}.
(27c)

Using Strategy 3, the rate pair (R1, R2) is achievable, if the
sum rate and R1 satisfy (26a) and (26b), respectively, and the
following constraints on R1 and R2 are satisfied:

R1 ≤ I (X1; YDi |X2) − I (Ŷ2; Y2|X1, X2, YDi ) + Ř2, (28a)

R2 ≤ I (X2; YD3) − Ř2. (28b)

Using Strategy 4, the rate pair (R1, R2) is achievable, if
R1 satisfies (27a) and (27b), and the following constraints on
R1 and R2 are satisfied:

R1 ≤ I (X1; YDi |U2) − I (Ŷ2; Y2|X1, U2, YDi ) + Ř2, (29a)

R2 ≤ min{I (X2; YD3 |U2), I (X2; YD3) − Ř2}. (29b)
�

Next, we will particularize the network in Fig. 6 to the
Gaussian case.

2) The Gaussian Case: Now we consider the case that
each link in Fig. 6 is an additive white Gaussian channel
with i.i.d. zero mean unit variance Gaussian noises Z2 at R,
and ZDi and at Di , i = 1, 2, 3, respectively. Nodes S and R
are assumed to use Gaussian codebooks with average trans-
mit power constraints. This case is shown in Fig. 7. For
constructing the codebook of node R in Strategies 2 and 4,
we use α0 ∈ [0, 1] to represent the fraction of power that
R allocates to transmit the bin index and α1 = 1 − α0 to
represent the fraction of power that R allocates to transmit
its own message index. The SNRs of the S-to-R, S-to-Di

and R-to-Di links are denoted by γSR, γSDi and γRDi ,
i = 1, 2, 3, respectively. The variance of the additional noise
in the relay description of its received signal is denoted
by γ ′ [19]. Using these notations and a technique similar
to the one in [20], Corollary 2 can be readily used to
obtain expressions for achievable rates on this network. These
expressions are recorded in the following proposition.

Proposition 2: For the Gaussian network shown in Fig. 7,
the rate pair (R1, R2) is achievable, where for

• Strategy 1,

R1 + R2 ≤ min
i=1,2

C(γSDi + γRDi ) − C(1/γ ′), (30a)

R1 ≤ min
i=1,2

C
(

γSR

1 + γ ′ + γSDi

)

, (30b)

R1 + R2 ≤ C(γRD3) − C(1/γ ′); (30c)

• Strategy 2,

R1 ≤ min
i=1,2

C
( γSDi + α0γRDi

1 + (1 − α0)γRDi

)
− C(1/γ ′), (31a)

R1 ≤ C
( γSR

1 + γ ′ + γSDi

1 + (1 − α0)γRDi

)
, (31b)

R2 ≤ min
{
C
(
(1 − α0)γRD3

)
, C(γRD3) − C

(1 + γSR

γ ′
)}

;
(31c)

• Strategy 3,

R1, R2 satisfy (30a) and (30b), (32a)

R1 ≤ min
i=1,2

C(γSDi ) − C(1/γ ′) + Ř2, (32b)

R2 ≤ C(γRD3) − Ř2, (32c)

Ř2 ≤ C
(1 + γSR

γ ′
)
; (32d)

• Strategy 4,

R1, R2 satisfy (31a), (31b) and (32d), (33a)

R1 ≤ min
i=1,2

C
( γSDi

1 + (1 − α0)γRDi

)
− C(1/γ ′) + Ř2,

(33b)

R2 ≤ min
{
C
(
(1 − α0)γRD3

)
, C

(
γRD3

) − Ř2
}
, (33c)

where, for all strategies, α0 ∈ [0, 1].
We now compare the rate expressions of Strategies 1 and 3.

From Remark 2, constraint (32b) on R1 in Strategy 3 coin-
cides with (30b) in Strategy 1 when Ř2 = maxi=1,2 C

( 1
γ ′ +

γSR
γ ′(1+γSDi )

)
. Without loss of generality, assume γSD1 ≤ γSD2 .

Then let Ř2 = C
(

1
γ ′ + γSR

γ ′(1+γSD1 )

)

. From the decoding at D1

and D2, the constraint on R1 from the decoding at D1 is tighter
than that at D2 in both strategies according to (30b). It can
be seen that the sum rate constraint from (32b) and (32c) in
Strategy 3, C(γSD1)+C(γRD3)−C(1/γ ′), is more relaxed than
that in (30c) in Strategy 1. Note that (30a) is a common sum
rate constraint in both strategies. Hence the sum rate constraint
in Strategy 3 is more relaxed than that in Strategy 1 in general.
This implies that in general, the constraint on R2 in Strategy 3
is more relaxed than that in Strategy 1 for the same constraint
on R1. Therefore, we obtain R1 ⊆ R3.

To compare the rate expressions of Strategies 2 and 4, it
can be shown that from Remark 5, constraint (33b) reduces

to (31a) when Ř2 = maxi=1,2 C
(

1
γ ′ + γSR(1+(1−α0)γRDi )

γ ′(1+(1−α0)γRDi +γSDi )

)

≤

C
(

1
γ ′ + γSR

γ ′

)

. Using this in (33c) implies that Strategy 4

yields a more relaxed constraint on R2 in comparison with the
constraint in (31c) for Strategy 2. Hence, we have R2 ⊆ R4.
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Fig. 8. Achievable rate region for the network in Figure 7. (γSR = 2,
γSD1 = 1, γRD1 = 4, γSD2 = 2, γRD2 = 1, γRD3 = 1.)

Fig. 8 provides the achievable rate regions of each strategy
for an SNR instance in which γSR = 2, γSD1 = 1, γRD1 = 4,
γSD2 = 2, γRD2 = 1, γRD3 = 1. For this instance, it can be seen
from Fig. 8 that R1 ⊆ R2 ⊆ R4 ⊆ R3. Strategy 1 in which
D1 and D2 treat the undesired signal from R as interference,
in comparison with Strategy 2 in which D1 and D2 treat the
undesired signal from R as noise, yields smaller achievable
rate region. Interestingly, under this SNR condition, treating
the undesired signal as interference at D1 and D2 in Strategy 3
does not induce additional rate loss in comparison with treating
it as noise in Strategy 4. Hence it is beneficial to use Strategy 3
which yields a larger achievable rate region.

V. CONCLUSION

In this paper, we provided a layered forward decoding pro-
cedure that enables exploiting the N-to-1 mapping that under-
lies CF relaying. This procedure relaxes the rate constraint
on the bin indices, and is subsequently able to yield a rate
advantage over CF-based schemes that use the 1-to-1 mapping.
To illustrate the advantage of this procedure, we considered
two networks, a two-destination broadcast relay chain network
and a partially cooperative multimessage network. In both
networks, side information is only available to a subset of the
receiving nodes, but not to the rest of the receiving nodes. Our
findings are confirmed by numerical evaluation of Gaussian
instances of these networks.

APPENDIX A
PROOF OF LEMMA 2

To prove the lemma, consider
Az(J ),i\i+1

= (Ac
m,i+1 \ Ac

z(J ),i \ Az(J c),i ) ∪ Ac
z(J ),i+1

(a)= (Ac
m,i+1 \ (Ac

z(J ),i ∪ Az(J c),i )) ∪ Ac
z(J ),i+1

= (Ac
m,i+1 \ (Am,i \ Az(J ),i)) ∪ Ac

z(J ),i+1
(b)= (Ac

m,i+1 ∩ Az(J ),i) ∪ (Ac
m,i+1 \ Am,i ) ∪ Ac

z(J ),i+1

= (Ac
m,i+1 ∩ Az(J ),i) ∪ Ac

z(J ),i+1
(c)= (Ac

m,i+1 ∪ Ac
z(J ),i+1) ∩ (Az(J ),i ∪ Ac

z(J ),i+1)
(d)= (Ac

m,i+1 ∪ Ac
z(J ),i+1) ∩ Az(J ),i

(e)= ((Am,i \ Am,i+1) ∪ Ac
z(J ),i+1) ∩ Az(J ),i

= (Am,i \ (Az(J c),i+1 ∪ Az(J ),i+1)) ∩ Az(J ),i
(f)= (Az(J ),i ∩ Am,i ) \ (Az(J c),i+1 ∪ Az(J ),i+1))

= Az(J ),i \ (Az(J c),i+1 ∪ Az(J ),i+1)

= Az(J ),i \ Az(J c),i+1 \ Az(J ),i+1
(g)= Az(J ),i \ Az(J ),i+1.

The proof uses the properties in Lemma 1. In particular,
(a) follows from Property 2; (b) follows Property 1 such that
Ac

m,i+1 \ Am,i = ∅; (c) follows from Property 4; (d) follows
from Property 1; (e) follows from Property 2 and 3; (f) follows
from Property 2; (g) follows from Property 5.

APPENDIX B
ANALYSIS OF PROBABILITY OF ERROR FOR THEOREM 1

Without loss of generality, assume that for any node dk ∈ N ,
ml = 1, sl = 1 were transmitted and zl = 1 was selected in
block b − �, b − � + 1, . . . , b.

We begin the analysis of the probability of error by pro-
viding the following lemma, which applies to any decoding
layer i at any given decoding node d .

Lemma 5: Let U and V be all the nodes whose codewords
XU and ŶV are considered at a given layer of the decoding
procedure. Let the codewords of M ⊆ U and Z ⊆ V be
XM ⊆ XU and ŶZ ⊆ ŶV , respectively, where for each node
in M and each node in Z there are multiple codewords that
lie in the joint typicality set at the considered layer. For any
sets G ⊆ M and F ⊆ Z ,

P((XG((m, s) �= (1, 1)), ŶF (z �= 1), XM\G, ŶZ\F ,

xU\M, ŷV\Z , Yd) ∈ A(n)
ε ) ≤ 2n(RM+ŘM+R̂Z−I0); (34)

and

P((xG(1, 1), ŷF (1), XM\G, ŶZ\F , xU\M, ŷV\Z , Yd) ∈ A(n)
ε )

≤ 2n(RM+ŘM+R̂Z−I0), (35)

where

I0 = I (XM; XU\M, ŶV\Z , Yd )

+
∑

i∈Z
I (Ŷi ; XU , ŶV\Z , ŶKi , Yd |Xi ), (36)

where ŶKi � Ŷ{di′ ∈Z :i ′<i,}, for i ∈ Z .
Proof: Using joint typicality lemma in [2, Sect.2.5.1], the

first statement in the lemma can be readily obtained.
To prove the second the statement in the lemma, consider

that the probability P(XG((m, s) �= (1, 1)), ŶF (z �= 1),

xU\M, ŷV\Z, Yd ) ∈ A(n)
ε ) can be upper bounded by

2n(RG+ŘG+R̂F−I ′), where (37a)

I ′ = I (XG; XU\M, ŶV\Z , Yd )

+
∑

i∈F
I (Ŷi ; XU\M∪G, ŶV\Z , ŶKi , Yd |Xi ). (37b)

Note that if RG + ŘG + R̂F ≤ I ′, the probability
P(XG((m, s) �= (1, 1)), ŶF (z �= 1), xU\M, ŷV\Z , Yd ) ∈
A(n)

ε ) vanishes as n → 0, which contradicts the definition
of G and F . Hence (37a) and (37b) provide

RG + ŘG + R̂F > I ′. (38)
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Now, the probability P((xG((1, 1)), ŷF (1), XM\G, ŶZ\F ,
xU\M, ŷV\Z , Yd) ∈ A(n)

ε ) can be upper bounded by

P((xG((1, 1)),ŷF (1),XM\G,ŶZ\F ,xU\M, ŷV\Z , Yd)∈A(n)
ε )

≤ 2n(RM\G+ŘM\G+R̂Z\F−I1), (39)

where

I1 = I (XM\G; XU\M∪G, ŶV\Z∪F , Yd )

+
∑

i∈Z\F
I (Ŷi ; XU , ŶV\Z∪F , ŶKi , Yd |Xi )

= I (XM; XU\M, ŶV\Z , Yd ) − I (XG ; ŶV\Z, Yd |XU\M)

+ I (XM\G; ŶF |XU\M∪G, ŶV\Z , Yd )

+
∑

i∈Z
I (Ŷi ; XU , ŶV\Z , ŶKi , Yd |Xi )

−
∑

i∈F
I (Ŷi ; XU , ŶV\Z , ŶKi , Yd |Xi )

= I (XM; XU\M, ŶV\Z , Yd )

+
∑

i∈Z
I (Ŷi ; XU , ŶV\Z , ŶKi , Yd |Xi )

− I (XG; ŶV\Z , Yd |XU\M)

+ I (XM\G; ŶF |XU\M∪G, ŶV\Z , Yd )

−
∑

i∈F
I (Ŷi ; XU\M∪G, ŶV\Z , ŶKi , Yd |Xi )

−
∑

i∈F
I (Ŷi ; XM\G|XU\M∪G, ŶV\Z , ŶKi , Yd )

= I (XM; XU\M, ŶV\Z , Yd )

+
∑

i∈Z
I (Ŷi ; XU , ŶV\Z , ŶKi , Yd |Xi )

− I (XG; ŶV\Z , Yd |XU\M)

−
∑

i∈F
I (Ŷi ; XU\M∪G, ŶV\Z , ŶKi , Yd |Xi )

= I0 − I ′ (40)

≥ I0 − RG − ŘG − RF , (41)

where (40) follows from (36) and (37b), and (41) follows
from (38). Substituting (41) in (39) yields the result of the
second statement in the lemma, which completes the proof of
the lemma.

We note that by definition, the following relationship holds
between the sets in Lemma 5 and the sets defined in the
decoding procedure:

U = Am,i , V = Am,i \ Az(J c),i+1, (42a)

M = Ac
m,i+1, Z = Ac

z(J ),i+1. (42b)

Using Properties 4 and 5 in Lemma 1, set Z can also be
written as

Z = Az(J ),i \ Az(J ),i+1 \ Az(J c),i+1. (43)

Furthermore, using Property 2 in Lemma 1, we have

V \ Z = (Am,i \ Az(J c),i+1) \ Ac
z(J ),i+1

= Az(J ),i+1. (44)

Now we analyze the probability of error. Define the
following events for layer i in the decoding procedure:

Ei,1 = {(xAm,i (1, 1), ŷz(J ),i(1|1, 1), Ydk (b − � + i)) /∈ A(n)
ε };

Ei,2 = {(XAc
m,i+1

(m̂, ŝ), xAm,i+1 (1, 1), ŶAc
z(J ),i+1(ẑ|1, 1),

Ŷ(Ac
m,i+1\Ac

z(J ),i )\Az(J c),i
(ẑ|m̂, ŝ), ŷAz(J ),i+1(1|1, 1),

Ydk (b − � + i)) ∈ A(n)
ε , for some m̂, ẑ, ŝ ∈ B(ẑ)}.

The receiver at dk makes an error if any event in
E � (∪iEi,1)

⋃
(∩iEi,2) occurs for some m̂ �= 1, ŝ �= 1.

Using the union bound, the probability of error is given by
P(E) = P((∪iEi,1)

⋃
(∩iEi,2)) = P(∪iEi,1) + P(∩iEi,2) ≤∑

i P(Ei,1) + P(∩iEi,2). By the conditional typicality lemma
in [2], P(Ei,1) → 0 as n → ∞. Now we upper bound
P(∩iEi,2). Consider the probability P(Ei,2) for the case that
(m̂, ŝ) �= (1, 1) for xl(m̂, ŝ), dl ∈ Ac

m,i+1, which can be
bounded by

P(Ei,2) ≤
∑

mAm,i ,sAm,i ,zAz,i

2−nβi , where (45a)

βi =
3∑

j=1

βi, j , and (45b)

βi,1 = I (XAc
m,i+1

; ŶAz(J ),i+1 , Ydk |XAm,i+1 ),

βi,2 =
∑

i∈(Ac
m,i+1\Ac

z(J ),i )\Az(J c),i

I (Ŷi ; XAm,i , ŶAz(J ),i+1 , ŶKi , Ydk |Xi ),

βi,3 =
∑

i∈Ac
z(J ),i+1

I (Ŷi ; XAm,i , Ŷ((Ac
m,i+1\Ac

z(J ),i )\Az(J c),i )∪

Az(J ),i+1, ŶKi , Ydk |Xi ).

Note that using chain rule and Lemma 2, we can rewrite βi

in (45b) as

βi = I (XAc
m,i+1

; ŶAz(J ),i+1 , Ydk |XAm,i+1 )

+
∑

i∈Az(J ),i \Az(J ),i+1

I (Ŷi ; XAm,i , ŶAz(J ),i+1 , ŶKi , Ydk |Xi ),

which can be shown, by substituting the sets using (42), (43)
and (44), to have same the form as (36) in Lemma 5.

For node dl ∈ G ⊆ M � Ac
m,i+1 and dk ∈ F ⊆

Z � Ac
z(J ),i+1, multiple xl(m̂, ŝ) and ŷk(ẑ|m̂, ŝ) are found

in the joint typicality set, respectively, at layer i . For the case
(m̂, ŝ) �= (1, 1) and ẑ �= 1, the probability of the event is given
by P(Ei,2), for which an upper bound is provided in (45). For
the case (m̂, ŝ) = (1, 1) and the case ẑ = 1, substituting sets
in Lemma 5 using (42) provides that the probability of these
cases can also be upper bounded by (45).



302 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

Hence, we can upper bound the probability P(∩iEi,2) as

P(

�⋂

i=1

Ei,2)

≤
�∏

i=1

∑

mAm,i ,sAm,i ,zAz,i

P(Ei,2)

≤
�∏

i=1

∑

mAc
m,i+1

,sAc
m,i+1

,zAz(J ),i\i+1

2−nβi

≤
�−1∏

i=1

∏

l∈mAc
m,i+1

2nRl
∏

l∈Az(J ),i\i+1

2nR̂l · 2−n
∑3

j=1 βi, j

∏

l∈mAc
�m

2nRl
∏

l∈A�m \A�z

2−nŘl
∏

l∈Az(J ),�−1\�

2nR̂l · 2−n
∑3

j=1 βi, j

= 2nRAm,1\A�m · 2
−nŘA�m \A�z

· 2n
∑�

i=1(R̂Az(J ),i \Az(J ),i+1 −∑3
j=1 βi, j ). (46)

Using chain rule and the definition of A�z , we can expand
βi,1 as

βi,1 = I (XAc
m,i+1

; ŶAz(J ),�+1, Ydk |XAm,i+1 )

+I (XAc
m,i+1

; ŶAz(J ),i+1\Az(J ),�+1 |XAm,i+1 , ŶAz(J ),�+1)

= I (XAc
m,i+1

; ŶA�z
, Ydk |XAm,i+1 )

+I (XAc
m,i+1

; ŶAz(J ),i+1\A�z
|XAm,i+1 , ŶA�z

, Ydk ). (47)

We define

βi,1,1 = I (XAc
m,i+1

; ŶA�z
, Ydk |XAm,i+1 ),

βi,1,2 = I (XAc
m,i+1

; ŶAz(J ),i+1\A�z
|XAm,i+1 , ŶA�z

, Ydk ).

Now, consider the summation of βi,1,1 from two consecutive
decoding layers � and � − 1:

(XAm,�\Am,�+1; ŶA�z
, Ydk |XAm,�+1 )

+I (XAc
m,�

; ŶA�z
, Ydk |XAm,�\Am,�+1 , XAm,�+1)

= I (XAm,�\Am,�+1, XAc
m,�

; ŶA�z
, Ydk |XAm,�+1)

= I (XAm,�−1\Am,�+1 ; ŶA�z
, Ydk |XAm,�+1)

where the first equality follows the chain rule and in the last
equality we have used

(Am,� \ Am,�+1) ∪ Ac
m,� = Am,�−1 \ Am,�+1

by Property 1 and 3 in Lemma 1.
Using the same technique iteratively, it can be shown that∑�
i=ĩ

β i,1,1 = I (XAm,ĩ \Am,�+1 ; ŶA�z
, Ydk |XAm,�+1). Hence,

∑�
i=1 βi,1,1 yields

�∑

i=1

βi,1,1 = I (XAm,1\Am,�+1 ; ŶA�z
, Ydk |XAm,�+1)

= I (XAm,1\A�m
; ŶA�z

, Ydk |XA�m
). (48)

Next, consider the summation of βi,2 and βi,3 in (46) for
all possible ẑ. We define βi,2∪3 − R̂Az(J ),i\Az(J ),i+1 , where

βi,2∪3 − R̂Az(J ),i \Az(J ),i+1

=
∑

i∈(Ac
m,i+1\Ac

z(J ),i )\Az(J c),i

I (Ŷi ; XAm,i , ŶAz,i+1 , ŶKi , Ydk |Xi ) − R̂i

+
∑

i∈Ac
z,i+1

(−R̂i + I (Ŷi ; XAm,i , ŶKi , Ydk ,

Ŷ((Ac
m,i+1\Ac

z,i )\Az(J c),i )∪Az(J ),i+1 |Xi ))

≤
∑

i∈(Ac
m,i+1\Ac

z(J ),i )\Az(J c),i

−I (Ŷi ; Yi |XAm,i , ŶAz(J ),i+1 , ŶKi , Ydk )

−
∑

i∈Ac
z,i+1

I (Ŷi ; Yi |XAm,i , ŶKi , Ydk ,

Ŷ((Ac
m,i+1\Ac

z(J ),i )\Az(J c),i )∪Az(J ),i+1)

= − I (Ŷ(Ac
m,i+1\Ac

z(J ),i )\Az(J c),i
; Y(Ac

m,i+1\Ac
z(J ),i )\Az(J c),i

|XAm,i , ŶAz(J ),i+1 , Ydk )

− I (ŶAc
z(J ),i+1

; YAc
z(J ),i+1

|XAm,i , Ŷ((Ac
m,i+1\Ac

z(J ),i )\Az(J c),i )∪Az(J ),i+1 , Ydk )

= − I (Ŷ(Ac
m,i+1\Ac

z(J ),i )\Az(J c),i
, ŶAc

z(J ),i+1
;

Y(Ac
m,i+1\Ac

z(J ),i )\Az(J c),i
, YAc

z(J ),i+1

|XAm,i , ŶAz(J ),i+1 , Ydk )

= − I (ŶAz(J ),i\Az(J ),i+1 ; YAz(J ),i\Az(J ),i+1

|XAm,i , ŶAz(J ),i+1 , Ydk ),

where in the first inequality we have used (6), the second and
third equalities follow the chain rule, and in the last equality
we have used (10) from Lemma 2.

By definition, Az(J ),�+1 = A�z , hence Az(J ),�+1 \ A�z = ∅
and β�,1,2 = 0. Now, for layer � and � − 1, we calculate

β�,2∪3 − R̂Az(J ),�\Az(J ),�+1 + β�−1,1,2

+ β�−1,2∪3 − R̂Az(J ),�−1\Az(J ),�

≤ − I (ŶAz(J ),�\A�z
; YAz(J ),�\A�z

|XAm,�
, ŶA�z

, Ydk )

+ I (XAc
m,�

; ŶAz(J ),�\A�z
|XAm,�

, ŶA�z
, Ydk )

− I (ŶAz(J ),�−1\Az(J ),�
; YAz(J ),�−1\Az(J ),�

XAm,�−1 , ŶAz(J ),�
, Ydk )

= − I (ŶAz(J ),�\A�z
; YAz(J ),�\A�z

|XAm,�−1 , ŶA�z
, Ydk )

− I (ŶAz(J ),�−1\Az(J ),�
; YAz(J ),�−1\Az(J ),�

|XAm,�−1 , ŶAz(J ),�
, Ydk )

= − I (Ŷ(Az(J ),�−1\Az(J ),�)∪(Az(J ),�\A�z );
Y(Az(J ),�−1\Az(J ),�)∪(Az(J ),�\A�z )

|XAm,�−1 , ŶA�z
, Ydk )

= − I (ŶAz(J ),�−1\A�z
; YAz(J ),�−1\A�z

|XAm,�−1 , ŶA�z
, Ydk ),

(49)
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where the first and second equalities follow the chain rule, and
in the last equality we have used

(Az(J ),i \ Az(J ),i+1) ∪ (Az(J ),i+1 \ A�z ) = Az(J ),i \ A�z

(50)

for ∀i ≤ �, which is a direct consequence from Property 6 in
Lemma 1.

Using this technique iteratively, we obtain∑�
i=ĩ

βi,1,2 + βi,2∪3 − R̂Az(J ),i\Az(J ),i+1 ≤ −I (ŶAz(J ),ĩ \A�z
;

YAz(J ),ĩ\A�z
|XAm,ĩ

, ŶA�z
, Ydk ). Consider the summation over

all � layers, we have

�∑

i=1

βi,1,2 + βi,2∪3 − R̂Az(J ),i\Az(J ),i+1

≤ −I (ŶAz(J ),1\A�z
; YAz(J ),1\A�z

|XAm,1 , ŶA�z
, Ydk ). (51)

Using (48) and (51), the probability in (46) can be upper
bounded by

P(∩iEi,2)

≤ 2
n(RAm,1\A�m

−ŘA�m \A�z
) · 2−n(

∑�
i=1 βi,1,1+∑�

i=1(βi,1,2+βi,2U3 ))

= 2n(RAm,1\A�m
−I(A))

,

where I(A) is given by

I (XAm,1\A�m
; ŶA�z

, Ydk |XA�m
)

−I (ŶAz(J ),1\A�z
; YAz(J ),1\A�z

|XAm,1 , ŶA�z
, Ydk ) + ŘA�m \A�z

.

Using Am,1 = Az(J ),1 by definition, I(A) can be written as

I (XAm,1\A�m
; ŶA�z

, Ydk |XA�m
)

−I (ŶAm,1\A�z
; YAm,1\A�z

|XAm,1, ŶA�z
, Ydk ) + ŘA�m \A�z

.

Let S � Am,1 \ A�m ,Sc � A�m , hence Sc = N \ S. Let
Š � A�m \ A�z , Šc � A�z , hence Šc = A�m \ Š. The above
result yields that P(E) → 0 as n → ∞, if

RS ≤ I (XS ; ŶŠc , Ydk |XSc)

−I (ŶN \Šc; YN \Šc |XN , ŶŠc , Ydk ) + ŘŠ .

Using the technique similar to the one in [13], it can be shown
that for S ∩ Sdk = ∅, the constraints in the above inequality
can be dropped and dk ∈ DS . By Property 7 in Lemma 1,
dk ∈ A�m = Sc. Hence dk ∈ Sc ∩ DS . This completes the
proof of the theorem.

APPENDIX C
PROOF OF REMARK 2

To prove the lemma, first we note that when

ŘŠ ≥ I (XSc\Šc; ŶŠc, Ydk |XŠc) − RSc\Šc, (52)

the probability of error tends to 0 as n → ∞ if the rate
expression in (4) satisfies

RN \Šc = RS∪(Sc\Šc)

≤ I (XS∪(Sc\Šc)
; ŶŠc , Ydk |XŠc)

−I (ŶN \Šc; YN \Šc |XN , ŶŠc , Ydk )

= I (XN \Šc; ŶŠc , Ydk |XŠc)

−I (ŶN \Šc; YN \Šc |XN , ŶŠc , Ydk ),

where we have used

S ∪ (Sc \ Šc) = N \ Šc

since Šc ⊆ Sc and Sc = N \ S. Redefine S � N \ Šc and
Sc � Šc, we have

RS ≤ I (XS ; ŶSc, Ydk |XSc) − I (ŶS ; YS |XN , ŶSc , Ydk ),

which is the simplified form of the rate expression (11).
Next, in general the rate expression in (4) can be modified

to the following form:

RS ≤ I (XS ; ŶSc , Ydk |XSc)

−I (XS ; ŶSc\Šc |XSc , ŶŠc , Ydk )

−I (ŶN \Šc; YN \Šc |XN , ŶŠc , Ydk ) + ŘŠ
= I (XS ; ŶSc , Ydk |XSc)

+I (YSc\Šc; ŶSc\Šc |XN , ŶŠc , Ydk )

−I (ŶN \Šc; YN \Šc |XN , ŶŠc , Ydk ) + ŘŠ
−I (ŶSc\Šc; YSc\Šc |XSc , ŶŠc , Ydk )

= I (XS ; ŶSc , Ydk |XSc) − (ŶS ; YS |XN , ŶSc , Ydk )

+ŘŠ − I (ŶŠ ; YŠ |XSc , ŶŠc , Ydk ). (53)

where the first two steps follow the chain rule; in the last
equality we have also used chain rule and Sc \ Šc = Š and

(N \ Šc) \ (Sc \ Šc) = S, all by definition.
It can be seen that if

ŘŠ ≥ I (ŶŠ ; YŠ |XSc , ŶŠc , Ydk ), (54)

the rate expression in (53) reduces to its simplified form (11).

APPENDIX D
ANALYSIS OF PROBABILITY OF ERROR FOR THEOREM 2

Without loss of generality, assume that for any node dk ∈ N ,
ml = 1, sl = 1 were transmitted and zl = 1 was selected in
block b − �, b − � + 1, . . . , b.

We begin the analysis of the probability of error by provid-
ing the following lemma, which is a counterpart of Lemma 5
and applies to any decoding layer at any decoding node d .

Lemma 6: Let U,W and V be all the nodes whose code-
words XU , UW and ŶV are considered at a given layer of the
decoding procedure. Let the codewords of M ⊆ U,J ⊆ W
and Z ⊆ V be XM ⊆ XU , UJ ⊆ UW and ŶZ ⊆ ŶV ,
respectively, where for each node in M, each node in W
and each node in Z there are multiple codewords that lie in
the joint typicality set at the considered layer. For any sets
G ⊆ M,H ⊆ J and F ⊆ Z ,

P((XG(m �=1), UH(s �=1), ŶF (z �=1), XM\G, UJ \H, ŶZ\F ,

xU\M, uW\J , ŷV\Z, Yd ) ∈ A(n)
ε ) ≤ 2n(RM+ŘJ +R̂Z−I0);

(55)

and

P((xG(1), uH(1), ŷF (1), XM\G, UJ \H, ŶZ\F ,

xU\M, uW\J , ŷV\Z, Yd ) ∈ A(n)
ε ) ≤ 2n(RM+ŘJ +R̂Z−I0),

(56)
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where

I0 = I (XM, UJ ; ŶV\Z, Yd |XU\M, UW\J )

+
∑

i∈Z
I (Ŷi ; XU , UW , ŶV\Z , ŶKi , Yd |Ui ), (57)

Proof: Using the following substitution in Lemma 5,

(XM, UJ ) � XM and (XU , UW ) � XU ,

the result in Lemma 6 can be readily obtained.
We note that by definition, the following relationship holds

between the sets in Lemma 6 and the sets defined in the
decoding procedure for Theorem 2:

U = Am,i , W = As,i , V = As,i \ Az(J c),i+1, (58a)

M = Ac
m,i+1, J = Ac

s,i+1, Z = Ac
z(J ),i+1. (58b)

Using Properties 4 and 5 in Lemma 1, set Z can also be
written as

Z = Az(J ),i \ Az(J ),i+1 \ Az(J c),i+1. (59)

Furthermore, using Property 2 in Lemma 1, we have

V \ Z = (As,i \ Az(J c),i+1) \ Ac
z(J ),i+1

= Az(J ),i+1. (60)

Now we analyze the probability of error. Define the follow-
ing events for layer i in the decoding procedure:

Ei,1 = {(xAm,i (1|1), uAs,i (1), ŷz(J ),i(1|1),

Ydk (b − � + i)) /∈ A(n)
ε };

Ei,2 = {(UAc
s,i+1

(ŝ), uAs,i+1 (1),

XAc
m,i+1

(m̂|ŝ), XAc
m,i+1

(m̂|1), xAm,i+1(1|1),

ŶAc
z(J ),i+1(ẑ|1), Ŷ(Ac

s,i+1\Ac
z(J ),i )\Az(J c),i

(ẑ|ŝ),
ŷAz(J ),i+1(1|1), Ydk (b − � + i)) ∈ A(n)

ε ,

for some m̂, ẑ and ŝ ∈ B(ẑ)}.
The receiver at dk makes an error if any event in

E � (∪iEi,1)
⋃

(∩iEi,2) for some m̂ �= 1, ŝ �= 1 occurs.
Using the union bound, the probability of error is given by
P(E) = P((∪iEi,1)

⋃
(∩iEi,2)) = P(∪iEi,1) + P(∩iEi,2) ≤∑

i P(Ei,1) + P(∩iEi,2). By the conditional typicality lemma
in [2], P(Ei,1) → 0 as n → ∞. Now we upper bound
P(∩iEi,2). Consider the probability P(Ei,2) for the case that
m̂ �= 1 for xl(m̂|ŝ), dl ∈ Ac

m,i+1 and ŝ �= 1 for ul(ŝ), dl ∈
Ac

s,i+1, which can be bounded by

P(Ei,2) ≤
∑

mAm,i ,sAs,i ,zAz,i

2−nβi , where (61a)

βi =
3∑

j=1

βi, j , and (61b)

βi,1 = I (XAc
m,i+1

, UAc
s,i+1

; ŶAz(J ),i+1 , Ydk |XAm,i+1 , UAs,i+1),

βi,2 =
∑

i∈(Ac
s,i+1\Ac

z(J ),i )\Az(J c),i

I (Ŷi ; XAm,i , UAs,i , ŶAz(J ),i+1 , ŶKi , Ydk |Ui ),

βi,3 =
∑

i∈Ac
z(J ),i+1

I (Ŷi ; XAm,i , UAs,i ,

Ŷ((Ac
s,i+1\Ac

z(J ),i )\Az(J c),i )∪Az(J ),i+1, ŶKi , Ydk |Ui ).

Note that using chain rule and Lemma 2, we can rewrite βi

in (61b) as

βi = I (XAc
m,i+1

, UAc
s,i+1

; ŶAz(J ),i+1 , Ydk |XAm,i+1 , UAs,i+1 )

+
∑

i∈Az(J ),i \Az(J ),i+1

I (Ŷi ; XAm,i , UAs,i , ŶAz(J ),i+1 , ŶKi , Ydk |Xi ),

which can be shown, by substituting the sets using (58), (59)
and (60), to have same the form as (57) in Lemma 6.

For node dl ∈ G ⊆ M � Ac
m,i+1, dh ∈ H ⊆ J � Ac

s,i+1
and dk ∈ F ⊆ Z � Ac

z(J ),i+1, multiple xl(m̂|ŝ), u(ŝ) and
ŷk(ẑ|ŝ) are found in the joint typicality set, respectively, at
layer i . For the case m̂ �= 1, ŝ �= 1 and ẑ �= 1, the probability
of the event is given by P(Ei,2), for which an upper bound is
provided in (61). For the case m̂ = 1, the case ŝ = 1 and the
case ẑ = 1, substituting sets in Lemma 6 using (58) provides
that the probability of these cases can also be upper bounded
by (45).

Now consider the probability of event Ei,2 over the � layers:

P(

�⋂

i=1

Ei,2)

≤
�∏

i=1

∑

mAm,i ,sAs,i ,zAz,i

P(Ei,2)

≤
�∏

i=1

∑

mAc
m,i+1

,sAc
s,i+1

,zAz(J ),i\i+1

2−nβi

≤
�−1∏

i=1

∏

l∈mAc
m,i+1

2nRl
∏

l∈Az(J ),i\i+1

2nR̂l · 2−n
∑3

j=1 βi, j

∏

l∈mAc
�m

2nRl
∏

l∈A�s \A�z

2−nŘl
∏

l∈Az(J ),�−1\�

2nR̂l · 2−n
∑3

j=1 βi, j

= 2nRAm,1\A�m · 2
−nŘA�s \A�z

· 2n
∑�

i=1(R̂Az(J ),i \Az(J ),i+1 −∑3
j=1 βi, j ). (62)

Using chain rule and the definition of A�z , we can
expand βi,1 as

βi,1 = I (XAc
m,i+1

, UAc
s,i+1

; ŶAz(J ),�+1, Ydk |XAm,i+1 , UAs,i+1 )

+ I (XAc
m,i+1

, UAc
s,i+1

; ŶAz(J ),i+1\Az(J ),�+1

|XAm,i+1 , UAs,i+1 , ŶAz(J ),�+1)

= I (XAc
m,i+1

, UAc
s,i+1

; ŶA�z
, Ydk |XAm,i+1 , UAs,i+1 )

+ I (XAc
m,i+1

, UAc
s,i+1

; ŶAz(J ),i+1\A�z

|XAm,i+1 , UAs,i+1 , ŶA�z
, Ydk ). (63)
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We define

βi,1,1 = I (XAc
m,i+1

, UAc
s,i+1

; ŶA�z
, Ydk |XAm,i+1 , UAs,i+1 )

βi,1,2 = I (XAc
m,i+1

, UAc
s,i+1

; ŶAz(J ),i+1\A�z

|XAm,i+1 , UAs,i+1 , ŶA�z
, Ydk ).

Now, consider the summation of βi,1,1 from two consecutive
decoding layers � and � − 1:

(XAm,�\Am,�+1 , UAs,�\As,�+1 ; ŶA�z
, Ydk |XAm,�+1 , UAs,�+1 )

+I (XAc
m,�

, UAc
s,�

; ŶA�z
, Ydk |XAm,�\Am,�+1, XAm,�+1 ,

UAs,�\As,�+1 , UAs,�+1 )

= I (XAm,�\Am,�+1 , XAc
m,�

, UAs,�\As,�+1 , UAc
s,�

; ŶA�z
, Ydk

|XAm,�+1 , UAs,�+1 )

= I (XAm,�−1\Am,�+1 , UAs,�−1\As,�+1 ; ŶA�z
, Ydk

|XAm,�+1 , UAs,�+1 )

where the first equality follows the chain rule and in the last
equality we have used

(Am,� \ Am,�+1) ∪ Ac
m,� = Am,�−1 \ Am,�+1,

(As,� \ As,�+1) ∪ Ac
s,� = As,�−1 \ As,�+1

by Property 1 and 3 in Lemma 3.
Using this technique iteratively, we obtain

∑�
i=ĩ

βi,1,1 =
I (XAm,ĩ \A�m

, UAs,ĩ \A�s
; ŶA�z

, Ydk |XA�m
, UA�s

). Consider the
summation over all � layers, we have

�∑

i=1

βi,1,1 = I (XAm,1\A�m
, UAs,1\A�s

; ŶA�z
, Ydk |XA�m

, UA�s
).

(64)

Next, consider the summation of βi,2 and βi,3 in (62) for
all possible ẑ. We define βi,2∪3 − R̂Az(J ),i\Az(J ),i+1 , where

βi,2∪3 − R̂Az(J ),i\Az(J ),i+1

=
∑

i∈(Ac
s,i+1\Ac

z(J ),i )\Az(J c),i

I (Ŷi ; XAm,i , UAs,i , ŶAz,i+1 , ŶKi , Ydk |Ui ) − R̂i

+
∑

i∈Ac
z,i+1

−R̂i + I (Ŷi ; XAm,i , UAs,i , ŶKi , Ydk ,

Ŷ((Ac
s,i+1\Ac

z,i )\Az(J c),i )∪Az(J ),i+1 |Ui )

≤
∑

i∈(Ac
s,i+1\Ac

z(J ),i )\Az(J c),i

−I (Ŷi ; Yi |XAm,i , UAs,i , ŶAz(J ),i+1 , ŶKi , Ydk )

−
∑

i∈Ac
z,i+1

I (Ŷi ; Yi |XAm,i , UAs,i , ŶKi , Ydk ,

Ŷ((Ac
s,i+1\Ac

z(J ),i )\Az(J c),i )∪Az(J ),i+1)

= −I (Ŷ(Ac
s,i+1\Ac

z(J ),i )\Az(J c),i
; Y(Ac

s,i+1\Ac
z(J ),i )\Az(J c),i

|XAm,i , UAs,i , ŶAz(J ),i+1 , Ydk )

−I (ŶAc
z(J ),i+1

; YAc
z(J ),i+1

|XAm,i , UAs,i ,

Ŷ((Ac
s,i+1\Ac

z(J ),i )\Az(J c),i )∪Az(J ),i+1 , Ydk )

= −I (Ŷ(Ac
s,i+1\Ac

z(J ),i )\Az(J c),i
, ŶAc

z(J ),i+1
;

Y(Ac
s,i+1\Ac

z(J ),i )\Az(J c),i
, YAc

z(J ),i+1

|XAm,i , UAs,i , ŶAz(J ),i+1 , Ydk )

= −I (ŶAz(J ),i \Az(J ),i+1; YAz(J ),i\Az(J ),i+1

|XAm,i , UAs,i , ŶAz(J ),i+1 , Ydk ),

where in the first inequality we have used (14), the second and
third equalities follow the chain rule, and in the last equality
we have used (16) from Lemma 4.

By definition, Az(J ),�+1 = A�z , hence Az(J ),�+1 \ A�z = ∅
and β�,1,2 = 0. Now, for layer � and � − 1, we calculate

β�,2∪3 − R̂Az(J ),�\Az(J ),�+1 + β�−1,1,2

+β�−1,2∪3 − R̂Az(J ),�−1\Az(J ),�

≤ −I (ŶAz(J ),�\A�z
; YAz(J ),�\A�z

|XAm,�
, UAs,� , ŶA�z

, Ydk )

+I (XAc
m,�

, UAc
s,�

; ŶAz(J ),�\A�z
|XAm,�

, UAs,� , ŶA�z
, Ydk )

−I (ŶAz(J ),�−1\Az(J ),�
; YAz(J ),�−1\Az(J ),�

|XAm,�−1 , UAs,�−1 , ŶAz(J ),�
, Ydk )

= −I (ŶAz(J ),�\A�z
; YAz(J ),�\A�z

|XAm,�−1 , UAs,�−1 , ŶA�z
, Ydk )

−I (ŶAz(J ),�−1\Az(J ),�
; YAz(J ),�−1\Az(J ),�

|XAm,�−1 , UAs,�−1 , ŶAz(J ),�
, Ydk )

= −I (Ŷ(Az(J ),�−1\Az(J ),�)∪(Az(J ),�\A�z );
Y(Az(J ),�−1\Az(J ),�)∪(Az(J ),�\A�z )

|XAm,�−1 , UAs,�−1 , ŶA�z
, Ydk )

= −I (ŶAz(J ),�−1\A�z
; YAz(J ),�−1\A�z

|XAm,�−1 , UAs,�−1 , ŶA�z
, Ydk ), (65)

where the first and second equalities follow chain rule, and
in the last equality we have used a property similar to (50),
which is a direct consequence of Property 6 of Lemma 3.

Using this technique iteratively, we obtain∑�
i=ĩ

βi,1,2 + βi,2∪3 − R̂Az(J ),i\Az(J ),i+1 ≤ −I (ŶAz(J ),ĩ \A�z
;

YAz(J ),ĩ\A�z
|XAm,ĩ

, UAs,ĩ
, ŶA�z

, Ydk ).

Consider the summation over all � layers, we have

�∑

i=1

βi,1,2 + βi,2∪3 − R̂Az(J ),i\Az(J ),i+1

= −I (ŶAz(J ),1\A�z
; YAz(J ),1\A�z

|XAm,1 , UAs,1 , ŶA�z
, Ydk ).

(66)

Using (64) and (66), the probability in (62) can be upper
bounded by

P(∩iEi,2)

≤ 2n(RAm,1\A�m
−ŘA�s \A�,z ) · 2−n(

∑�
i=1 βi,1,1+∑�

i=1(βi,1,2+βi,2U3 ))

= 2n(RAm,1\A�m
−I(A))

,

where I(A) is given by

I (XAm,1\A�m
, UAs,1\A�s

; ŶA�z
, Ydk |XA�m

, UA�s
)

− I (ŶAz(J ),1\A�z
; YAz(J ),1\A�z

|XAm,1, UAs,1 , ŶA�z
, Ydk )

+ ŘA�s \A�,z .
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Using As,1 = Az(J ),1 by definition, I(A) can be written as

I (XAm,1\A�m
, UAs,1\A�s

; ŶA�z
, Ydk |XA�m

, UA�s
)

−I (ŶAs,1\A�z
; YAs,1\A�z

|XAm,1 , UAs,1 , ŶA�z
, Ydk )+ ŘA�s \A�,z .

Let T � Am,1 \ A�m ,T c � A�m . Let S � As,1 \ A�s ,

Sc � A�s , hence Sc = N \ S. Let Š � A�s \ A�z , Šc � A�z ,
hence Šc = A�s \ Š . The above result yields that P(E) → 0
as n → ∞, if

RT ≤ I (XT , US ; ŶŠc , Ydk |XT c , USc)

−I (ŶN \Šc; YN \Šc |XSdk
, UN , ŶŠc , Ydk ) + ŘŠ .

Assume that the constraint is violated for T = ∅, we have

I (ŶN \Šc ; YN \Šc |XSdk
, UN , ŶŠc , Ydk )

> I (US ; ŶŠc , Ydk |XSdk
, USc ) + ŘŠ . (67)

In this case, the constraint on RT can be bounded by:

RT ≤ I (XT , US ; ŶŠc , Ydk |XT c , USc)

− I (ŶN \Šc; YN \Šc |XSdk
, UN , ŶŠc , Ydk ) + ŘŠ

= I (XT ; ŶŠc , Ydk |XT c , USc)

+ I (US ; ŶŠc , Ydk |XSdk
, USc)

− I (ŶN \Šc; YN \Šc |XSdk
, UN , ŶŠc , Ydk ) + ŘŠ

< I (XT ; ŶŠc , Ydk |XT c , USc),

where the last inequality follows from (67). This implies that
the receiver can treat the signal from the nodes in S \ T
as noise. Hence, the constraint for the case T = ∅ can be
dropped. This completes the proof of the theorem.

APPENDIX E
PROOF OF REMARK 5

To prove the lemma, first we note that when

ŘŠ ≥ I (USc\Šc; ŶSc , Ydk |X Ť c , UŠc), (68)

the rate expression in (13) yields

RT ≤ I (XT , US∪Sc\Šc; ŶŠc , Ydk |XT c , UŠc)

−I (ŶN \Šc; YN \Šc |XSdk
, UN , ŶŠc , Ydk )

= I (XT , UN \Šc; ŶŠc , Ydk |XT c , UŠc)

−I (ŶN \Šc; YN \Šc |XSdk
, UN , ŶŠc , Ydk ),

where we have used Šc ⊆ Sc and Sc = N \ S. Redefine
S � N \ Šc and Sc � Šc yields the simplified form of the
rate expression (17).

Next, in general, the rate expression in (13) can be modified
to the following form:

RT ≤ I (XT , US ; ŶSc, Ydk |XT c , USc )

− I (XT , US ; ŶSc\Šc |XT c , USc , ŶŠc , Ydk )

− I (ŶN \Šc; YN \Šc |XSdk
, UN , ŶŠc , Ydk ) + ŘŠ

= I (XT , US ; ŶSc, Ydk |XT c , USc )

+ I (YSc\Šc; ŶSc\Šc |XSdk
, UN , ŶŠc , Ydk )

− I (ŶN \Šc; YN \Šc |XSdk
, UN , ŶŠc , Ydk ) + ŘŠ

− I (ŶSc\Šc; YSc\Šc |XT c , USc , ŶŠc , Ydk )

= I (XT , US ; ŶSc, Ydk |XSc)

− (ŶS; YS |XSdk
, UN , ŶSc , Ydk )

+ ŘŠ − I (ŶŠ ; YŠ |XT c , USc , ŶŠc , Ydk ),

where in the last equality we have used Šc = Sc \ Š and
(N \Šc)\(Sc\Šc) = S due to Šc ⊆ Sc ⊆ N and Sc = N \S.
It can be seen that if

ŘŠ ≥ I (ŶŠ ; YŠ |XT c , USc , ŶŠc , Ydk ), (69)

the rate expression reduces to its simplified form (11).
Conditions (68) and (69) together provide the desired result.

APPENDIX F
PROOF OF COROLLARY 1

Codebook generation and the encoding procedure incorpo-
rates those in Theorem 1 and the standard DF [1]. The detailed
procedures are provided herein for completeness.

a) Codebook generation:

• Generate 2nR1 i.i.d x1(m1), each according to distribution
p(x1) = ∏n

i=1 p(x1i), m1 ∈ [1 : 2nR1 ].
• Generate 2nŘ3 i.i.d x3(s3), each according to distribution

p(x3) = ∏n
i=1 p(x3i), s3 ∈ [1 : 2nŘ3].

• For each x3(s3), generate 2nŘ2 i.i.d x2(s2), each according
to distribution p(x2|x3) = ∏n

i=1 p(x2i |x3i), s2 ∈ [1 :
2nŘ2 ].

• For each (x2(s2), x3(s3)) pair, generate 2nR̂2 i.i.d
ŷ2(z2), each according to distribution p(ŷ2|x2, x3) =
∏n

i=1 p(ŷ2i |x2i , x3i ), z2 ∈ [1 : 2nR̂2 ].
b) Random Binning:

• Randomly partition the set {1, 2, · · · , 2nR̂2} into 2nŘ2

bins. Let s2 = B2(z2) denote the N-to-1 mapping as the
results of binning.

• Randomly partition the set {1, 2, · · · , 2nŘ2} into 2nŘ3

bins. Let s3 = B2(s2) denote the N-to-1 mapping as the
results of binning.

c) Encoding: In block j ,

• source S encodes x1(m1, j+1);
• relay R1 finds an index z such that

(x2(s j ), x3(s j ), ŷ2(z|s2, j , s3, j ), y2( j)) are jointly
ε-typical. Such a z exists as n → ∞ if

R̂2 ≥ I (Ŷ2; Y2|X2, X3). (70)
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If there exist more than one such z, choose the smallest
one and let z2, j = z;

• relay R1 finds the bin index s2, j+1 = B2(z2, j ) and
s3, j+2 = B2(s2, j+1).

• relay R2 finds a unique index s2 such that
(x2(s2), x3(s3, j ), y3( j)) are jointly ε-typical. The
probability of error tends to 0 as n → ∞ if

Ř2 ≤ I (X2; Y3|X3), (71)

and obtains s3, j+1 = B2(s2);
• codewords x1(m1, j ), x2(s2, j ) and x3(s3, j ) are sent into

the channel.
d) Decoding and probability of error: Now, we upper
bound the probability of erroneous decoding at the des-
tinations and analyze the constraints on the rate of bin
indices Ř2 and Ř3.

◦ Using Strategy 1, the decoding procedure at the
destinations Di , i = 1, 2, partially follows the one in
Theorem 1. In addition, at each decoding layer, the
codeword transmitted by the relay R2 that represents
the bin index of s2, i.e., x3(s3) where s3 = B2(s2)
for each s2, must be jointly typical with the received
signal at the next layer. Hence, using Theorem 1
and (70), when the following constraints are satisfied,
the probability of error tends to 0 as n → ∞.

R1 ≤ I (X1; Ŷ2, YDi |X2, X3), (72a)

R1 ≤ I (X1; YDi |X2, X3) − I (Ŷ2; Y2|X1, X2, X3, YDi)

+ Ř2, (72b)

R1 ≤ I (X1; YDi |X2, X3) − I (Ŷ2; Y2|X1, X2, X3, YDi)

+ I (X2; YDi |X3) + Ř3, (72c)

R1 ≤ I (X1; YDi |X2, X3) − I (Ŷ2; Y2|X1, X2, X3, YDi)

+ I (X2, X3; YDi ). (72d)

Now we simplify these constraints. First, it can be
seen that when

Ř3 ≥ Ř2 − min
i=1,2

I (X2; YDi |X3), (73)

the constraint (72c) is more relaxed than (72b).
We note that random binning imposes Ř3 ≤ Ř2,
which is satisfied under condition (73). Hence (72c)
can be dropped without inducing additional con-
straint.
Next, we consider the constraint (72b) in two cases.

� case 1: I (Ŷ2; Y2|X2, X3, YDi ) ≤ I (X2; Y3|X3).
In this case, choosing I (Ŷ2; Y2|X2, X3, YDi ) ≤
Ř2 ≤ I (X2; Y3|X3) renders the constraint (72b)
to be more relaxed than (72a).

� case 2: I (Ŷ2; Y2|X2, X3, YDi ) > I (X2; Y3|X3).
In this case, choosing Ř2 ≤ I (X2; Y3|X3) <
I (Ŷ2; Y2|X2, X3, YDi ) renders the constraint (72b)
to be more relaxed than

R1 ≤ I (X1; YDi |X2, X3)

− I (Ŷ2; Y2|X1, X2, X3, YDi )

+ I (X2; Y3|X3). (74)

Constraint (72d) and (74) provide

R1 ≤ I (X1; YDi |X2, X3)

− I (Ŷ2; Y2|X1, X2, X3, YDi )

+ min{I (X2; Y3|X3), I (X2, X3; YDi )}. (75)

In both cases, constraint (71) and the condition
Ř2 ≤ R̂2 which is imposed by random binning are
satisfied. Therefore, constraint (72b) can be dropped,
and (72a) and (75) yield (19).

◦ Using Strategy 2, the 1-to-1 mapping implies
R̂2 = Ř2, and hence (70) and (71) impose the
following constraint:

I (Ŷ2; Y2|X2, X3) ≤ R̂2 = Ř2 ≤ I (X2; Y3|X3). (76)

However, for the case Ř2 = R̂2, constraint (72b)
is more relaxed than (72a). Furthermore, con-
straint (72c) can be dropped when selecting

Ř3 ≥ max
i=1,2

min{I (X3; YDi ),

Ř2 − I (Y̌2; YDi |X2, X3, YDi )

−I (X2; YDi |X3)}. (77)

Constraints (72a), (72d) and (76) yield (20) in the
corollary.

◦ Using Strategy 3, the recovery of s2 at the destination
Di implies that

Ř2 ≤ min
i=1,2

{I (X2; YDi |X3) + min{Ř3, I (X3; YDi )}},
(78)

in which the rate Ř3 can be chosen as

Ř3 ≥ I (X3; YDi ), (79)

such that the right hand side of (78) is maximized,
and we obtain

Ř2 ≤ min
i=1,2

I (X2, X3; YDi ). (80)

If (71) is not binding, it can be seen from
(79) and (80) that Ř3 ≤ Ř2 can be satisfied.
On the other hand, if (71) is binding, we can choose
Ř3 ≤ Ř2 = I (X2; Y3|X3). In both cases, the
constraint Ř3 ≤ Ř2 imposed by random binning can
be satisfied and we have

Ř2 ≤ min{I (X2; Y3|X3), min
i=1,2

{I (X2, X3; YDi )}}.
(81)

Next, the destinations use s2 to recover m1. The
probability of erroneous decoding tends to 0 as
n → ∞ if

R1 ≤ I (X1; Ŷ2, YDi |X2, X3) (82)

R1 ≤ I (X1; YDi |X2, X3)

− I (Ŷ2; Y2|X1, X2, X3, YDi ) + Ř2. (83)
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Hence, when choosing

Ř2 = min{I ((Ŷ2; Y2|X2, X3, YDi ),

min{I (X2; Y3|X3), min
i=1,2

{I (X2, X3; YDi )}}},

which satisfies the constraint Ř2 ≤ R̂2 imposed
by random binning. The constraints (82) and (83)
yield (21).
This completes the proof of the corollary.
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