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Limit Theorem on the Sum of Identically Distributed
Equally and Positively Correlated Joint Lognormals
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Abstract—We prove that the distribution of the sum of 𝑁
identically distributed jointly lognormal random variables, where
all pairs have the same strictly positive correlation coefficient,
converges to a lognormal with known parameters as 𝑁 becomes
large. We confirm our theorem by simulations and give an
application of the theorem.

Index Terms—Sum of lognormals, interference analysis.

I. INTRODUCTION

THE distribution of the sum of lognormal (SLN) random
variables is of interest in wireless communications, since

it accurately models the total interference power experienced
at a wireless receiver, where individual propagation paths
experience lognormal shadowing. Since no closed form is
known, finding an approximation to the SLN distribution has
been the subject of many papers in wireless communications
[1]–[7] (also [8] and additional references therein). Further-
more, this mathematical problem is also of interest in a wide
range of other fields, such as economics, microelectronics,
photonics, physics, and mathematics (e.g. [9] and some refer-
ences in [8]).

It can be said that the sum of independent lognormals has
received the most attention, as it is a simpler mathematical
problem. However, there also exist several papers that deal
with approximating the sum of correlated lognormals [3]–[6].
These papers show simulations of a small (𝑁 ≤ 24) number
of correlated lognormal terms. Also, [9] considers 𝑁 ≤ 50
correlated terms, but only studies the upper tail of the SLN
distribution.

We can argue, however, that these models may not reflect
the interference scenarios in future wireless networks. With
spectrum–sharing technologies, cognitive radio, use of unli-
censed bands, and the proliferation of femtocells, hot–spots,
and sensor networks, the number of potential interferers will
be several orders of magnitude greater than that in conven-
tional cellular systems. Furthermore, because the shadowing
correlation between propagation paths depends on the path
lengths and on the angle between them [10], it is expected
that the power received from many interferers will suffer from
correlated shadowing. As such, it would be useful to analyse
the sum of a large number of correlated lognormals.
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Therefore, to our knowledge, for the first time in literature,
we study the Sum of Identically Distributed, Equally and
(strictly) Positively Correlated Jointly Log–Normal (SIDE-
PCJLN) random variables as the number of summed terms
𝑁 → ∞. In the case of independent lognormals the Central
Limit Theorem applies and the distribution is asymptotically
Gaussian. There also exist limit theorems where the sums
of (𝑚)–dependent random variables with finite variance are
shown to converge to a Gaussian distribution [11]. However,
this is not the case for the SIDEPCJLN, where all terms are
correlated with each other. In fact, we will show that for
any non–zero correlation coefficient, and for any mean and
variance, the limit distribution as 𝑁 → ∞ is lognormal. We
support this by some Monte Carlo simulations with 𝑁 large.

It should be noted that there exist only a few papers that
give purely closed–form results on the SLN problem [1],
[2], [7], [9] and [8] and references therein, and only [9]
considers correlated terms. The asymptotic behaviour for large
𝑁 appears not to have been studied before.

The case of negative correlation is not explored because
the problem becomes ill–defined for any 𝜌 < 0 as 𝑁 becomes
large enough. Indeed, the correlation matrix must always be
positive semidefinite [10].

II. PROBLEM STATEMENT AND MOTIVATION

Let 𝑊⃗ = [𝑊𝑖]
𝑁
𝑖=1 be a vector of 𝑁 jointly Gaussian random

variables, each with the same mean 𝜇, same variance 𝜎2 ∕= 0,
and each pair with the same correlation coefficient 0 < 𝜌 ≤ 1.
Their correlation matrix can thus be written as

K𝑁×𝑁 = 𝜎2

⎛
⎜⎜⎜⎝

1 𝜌 ⋅ ⋅ ⋅ 𝜌
𝜌 1 ⋅ ⋅ ⋅ 𝜌
...

...
. . .

...
𝜌 𝜌 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎠ . (1)

Let
𝑌𝑖 = 𝑒𝑊𝑖 . (2)

We then say that 𝑌 = [𝑌𝑖]
𝑁
𝑖=1 is a jointly lognormal vector,

characterised by the same parameters. Now let

𝑋 =

𝑁∑
𝑖=1

𝑌𝑖. (3)

We say that 𝑋 follows a SIDEPCJLN distribution with param-
eters 𝜇, 𝜎2, 𝜌, 𝑁 . We want to find this distribution, particularly
for large 𝑁 .

The results found in this paper are essential to accurately
analyse the interference coming from a cluster of many in-
terferers, where the angular separation between the interferers
(as seen from the receiver) is small, and hence the shadowing
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terms are highly correlated [10]. Now one might be tempted
to argue that the analysis in this paper does not apply, since
some interferers are located closer to each other than others,
and hence the correlation coefficients are not all equal as in (1).
This is true, if one looks at the statistics of the interferers when
conditioned upon a particular layout. However, if we consider
the interferers as located randomly (within a particular area,
not necessarily uniformly), then the problem is perfectly sym-
metrical and each interferer is, on average, equally correlated
with each other one. We explore this idea further in [12],
where we successfully predict simulation distribution curves
through analysis.

In this paper, we present the fundamental mathematical tool
that is necessary to solve the interference problem in [12]. Of
course, this result may have applications in other branches of
science.

III. EFFICIENT SIMULATION

In order to generate the Gaussian vector 𝑊⃗ with a given
correlation matrix K and mean vector 𝜇⃗ = [𝜇𝑖]

𝑁
𝑖=1, it is

necessary to find a ”square root” of that matrix, such that

K = C𝑇C. (4)

This is often done by Cholesky factorisation [10], which
results in a triangular matrix. This is a computationally in-
tensive operation for large matrices: for a general matrix, the
complexity is 𝒪 (

𝑁3
)

[13]. Having obtained a solution for C,
we then generate a vector of independent standard Gaussian
random variables 𝑍⃗ = [𝑍𝑖]

𝑁
𝑖=1, from which the vector 𝑊⃗ is

calculated as follows:

𝑊⃗ = 𝑍⃗C+ 𝜇⃗. (5)

In general, there are very many solutions to (4), and they
are all equally valid for generating 𝑊⃗ . In the case of the
correlation matrix given in (1), we find that a convenient
solution (not the Cholesky factorisation) of (4) is

C𝑁×𝑁 = 𝜎

⎛
⎜⎜⎜⎝

𝑢 𝑣 ⋅ ⋅ ⋅ 𝑣
𝑣 𝑢 ⋅ ⋅ ⋅ 𝑣
...

...
. . .

...
𝑣 𝑣 ⋅ ⋅ ⋅ 𝑢

⎞
⎟⎟⎟⎠ . (6)

By equating (4), we obtain the system of equations{
𝑢2 + (𝑁 − 1)𝑣2 = 1,

2𝑢𝑣 + (𝑁 − 2)𝑣2 = 𝜌,
(7)

which has four solutions. We may chose any one of them, for
example⎧⎨

⎩
𝑢1 =

1

𝑁

(√
1 + (𝑁 − 1)𝜌+ (𝑁 − 1)

√
1− 𝜌

)
,

𝑣1 =
1

𝑁

(√
1 + (𝑁 − 1)𝜌−

√
1− 𝜌

)
.

(8)

We now have a closed–form expression for the matrix
C, which greatly accelerates its computation. However, the
memory requirements for this matrix and the computational
time for generating 𝑋 are both 𝒪 (

𝑁2
)
, which becomes

prohibitive as 𝑁 increases beyond the order of thousands. We
can exploit the particular form of the matrix (6) to compute 𝑋

more efficiently. Indeed, all entries in each row of the matrix
(6) are equal to 𝑣, except the diagonal terms 𝑢. Also, all mean
parameters are equal: 𝜇𝑖 = 𝜇. We may then write:

𝑌𝑖 = 𝑒𝜇 exp

⎛
⎝𝜎𝑣

𝑁∑
𝑗=1

𝑍𝑗

⎞
⎠ 𝑒𝜎(𝑢−𝑣)𝑍𝑖 , (9)

𝑋 = 𝑒𝜇 exp

⎛
⎝𝜎𝑣

𝑁∑
𝑗=1

𝑍𝑗

⎞
⎠ 𝑁∑

𝑖=1

𝑒𝜎(𝑢−𝑣)𝑍𝑖 , (10)

where (𝑢, 𝑣) is any of the four solutions of (7), for example
(8). All four choices will lead to identical distributions for
𝑋 , since any solution of (4) is equally valid to generate 𝑋
according to (5), (2), and (3).

Therefore 𝑋 may be directly computed from the vector 𝑍⃗
using (10), and the time and memory requirements are now
𝒪 (𝑁), which allows us to simulate 𝑋 in reasonable time
for 𝑁 in the order of millions. There exist two alternative
methods [14], [15] for generating a correlated Gaussian vector
according to (1), also of complexity 𝒪 (𝑁).

IV. LIMIT THEOREM AND MOMENT-MATCHING

Theorem. Let 𝑋 follow a SIDEPCJLN distribution as in (3)
with parameters 𝜇, 𝜎2 ∕= 0, 0 < 𝜌 ≤ 1, 𝑁 ∈ ℕ

∗. Then,
as 𝑁 → ∞, the quantity 𝑋/𝑁 tends in distribution to a
lognormal random variable with parameters

(
𝑚∞, 𝑠2∞

)
given

by
𝑚∞ = 𝜇+ 1

2 (1− 𝜌)𝜎2,

𝑠2∞ = 𝜌𝜎2.
(11)

This theorem is proved in Appendix A. Note that, in the
independent case, such as in the Central Limit Theorem, the
sum would be normalised by

√
𝑁 because variances would

add to each other and the variance of the sum would be
𝒪 (𝑁). However, in our correlated case the variance of 𝑋
is 𝒪 (

𝑁2
)

for 0 < 𝜌 ≤ 1 as shown in Appendix B, and thus
a normalisation by 𝑁 is appropriate.

Given that the SIDEPCJLN distribution is lognormal in the
limit as 𝑁 → ∞, it would be interesting to also examine
its behaviour for moderate values of 𝑁 . We reason that since
for both 𝑁 = 1 and 𝑁 → ∞, the SIDEPCJLN distribution
is lognormal, then it might be approximately lognormal for
intermediate values of 𝑁 . Because a lognormal distribution
is uniquely determined by its first and second moments,
we can use moment-matching to accurately approximate the
SIDEPCJLN distribution, as long as it remains approximately
lognormal. We will see in Section V just how good this
approximation is. In Appendix B we will show that 𝑋 can be
approximated in distribution by a lognormal random variable
with parameters

𝑚 = 𝜇+ 3
2 ln𝑁 − 1

2 ln
(
1 + (𝑁 − 1)𝑒(𝜌−1)𝜎2

)
,

𝑠2 = 𝜎2 − ln𝑁 + ln
(
1 + (𝑁 − 1)𝑒(𝜌−1)𝜎2

)
.

(12)

For high 𝑁 , these expressions simplify to

𝑚 ≈ 𝜇+ ln𝑁 + 1
2 (1 − 𝜌)𝜎2,

𝑠2 ≈ 𝜌𝜎2 for large 𝑁.
(13)
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Fig. 1. SIDEPCJLN cdf on lognormal paper, 𝜎 = 6 dB, 𝜌 = 0.05.
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Fig. 2. SIDEPCJLN cdf on lognormal paper, 𝜎 = 6 dB, 𝜌 = 0.005.

Since the distribution of 𝑋 is approximately lognormal for
high 𝑁 per out theorem, it follows that its lognormal param-
eters are given by (13), which is consistent with (11), and the
additional ln𝑁 term results from the multiplication by 𝑁 .

V. VALIDATION THROUGH SIMULATION

Equations (12) and (13) both give the parameters of a lognor-
mal approximation to the SIDEPCJLN distribution. We wish
to evaluate the validity of these approximations as a function
of the SIDEPCJLN parameters. Since 𝑒𝜇 is a scaling factor,
we may set 𝜇 = 0 without loss of generality. We then fix the
parameters 𝜌 and 𝜎 and increase 𝑁 . We show simulations for
𝜎 = 6 dB and 12 dB, and for 𝜌 = 0.05 and 0.005. We have
also simulated for 𝜌 = 0.5 (not shown), where the convergence
to a lognormal distribution was very fast. Note that for the
equations to apply, the value of 𝜎 must be converted from
dB to natural units as follows: 𝜎[nat] = 0.1 ln 10 × 𝜎[dB].
Therefore, 𝜎 ∼= 1.382 and 2.763.

In Figures 1–4, we show Monte Carlo simulations of the
SIDEPCJLN distribution computed using (10), and compare
them to the lognormals with parameters (12) and (13). We
plot the distributions on lognormal paper [8], where lognormal
distributions are mapped onto straight lines.

We can make the following observations from these figures:
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Fig. 3. SIDEPCJLN cdf on lognormal paper, 𝜎 = 12 dB, 𝜌 = 0.05.
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Fig. 4. SIDEPCJLN cdf on lognormal paper, 𝜎 = 12 dB, 𝜌 = 0.005.

1) As per our theorem, for all 0 < 𝜌 ≤ 1 and 𝜎2 ∕= 0,
the SIDEPCJLN distribution tends toward a lognormal
distribution with parameters given by (12) or (13) as
𝑁 → ∞.

2) The SIDEPCJLN distribution is (trivially) lognormal
for 𝑁 = 1. For 𝑁 ≥ 2, the SIDEPCJLN distribution
becomes less and less lognormal until a certain 𝑁 , and
then begins to converge back to a lognormal distribution.
Once it is again approximately lognormal for 𝑁 = 𝑁0,
it will remain approximately lognormal for 𝑁 ≥ 𝑁0.

3) The convergence of the SIDEPCJLN to a lognormal is
faster for higher 𝜌, and for lower 𝜎.

4) Though the SIDEPCJLN distribution converges to a
lognormal, this convergence is not uniform over the
whole range of values and will in fact never converge at
arbitrarily large values, where the behaviour is instead
known to be that of the heaviest term in the sum times
the number of these heaviest terms, for −1 ≤ 𝜌 < 1 [9]
(as long as the matrix remains positive semidefinite).
This is notably visible in Figure 4. This is not in
contradiction with our result, since we have proved
convergence in distribution, i.e., convergence at every
point 𝑥 [16], but not necessarily in the limit behaviour
as 𝑥 → ∞.
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VI. CONCLUSION

In this paper we have shown, both through mathematical
analysis and Monte Carlo simulations, that the SIDEPCJLN
distribution will be well-approximated by a lognormal dis-
tribution with parameters (13), when 𝑁 is large enough. We
have observed the convergence of the SIDEPCJLN distribution
to this limit and concluded that the convergence is faster for
higher correlation coefficient 𝜌 and lower variance 𝜎2. We
have also observed how both the exact (12) and limit (13)
moment-matching lognormals approximate the SIDEPCJLN
distribution for moderate 𝑁 .

We see that the distribution of 𝑋 begins as lognormal, then
becomes less lognormal (which is well known [4]–[6]), and
eventually this trend reverses and we re-enter a lognormal
regime. It may be interesting to study how fast 𝑋 re-enters
the lognormal regime (within a certain accuracy, according to
some metric), as a function of 𝜌 and 𝜎. Figures 1–4 already
give some idea of this convergence rate.

We present our limit theorem as a general result in math-
ematics. However, we have also shown in [12] that we
may successfully predict with good accuracy the interference
distribution from a large cluster of interferers under correlated
shadowing by applying our theorem. Indeed, we observe that
the interference becomes approximately lognormal for large
interfering networks in many realistic scenarios.

APPENDIX A: PROOF OF LIMIT THEOREM

Proof: In order to prove the theorem, we show that 𝑋/𝑁
can be written as a product of two terms 𝐴 and 𝐵, the first
tending in distribution to a constant1 as 𝑁 → ∞, and the
second distributed lognormally. Let

𝐴 =
1

𝑁

𝑁∑
𝑖=1

𝑒𝜎(𝑢−𝑣)𝑍𝑖 ,

𝐵 = exp

⎛
⎝𝜇+ 𝜎𝑣

𝑁∑
𝑗=1

𝑍𝑗

⎞
⎠ .

(14)

We find
(𝑢− 𝑣)2 = 1− 𝜌 (15)

from (7). Then

𝔼{𝐴} = 𝑒
1
2 (1−𝜌)𝜎2

,

𝔼
{
𝐴2

}
=

1

𝑁
𝑒2(1−𝜌)𝜎2

+
𝑁 − 1

𝑁
𝑒(1−𝜌)𝜎2

,

𝕍AR {𝐴} =
1

𝑁

(
𝑒2(1−𝜌)𝜎2 − 𝑒(1−𝜌)𝜎2

)
.

(16)

Since the variance of 𝐴 tends to zero as 𝑁 → ∞, 𝐴 tends in
distribution to a constant equal to 𝔼 {𝐴} [16].

Now from (8) we may find the asymptotic behaviour of 𝑣:

𝑣 ≈
√
𝜌/𝑁 for large 𝑁. (17)

A different solution of (7) for 𝑣 may lead to the same
asymptotic expression with a negative sign in front, which
does not affect the proof.

1Convergence to a constant in distribution and in probability are mathe-
matically equivalent [16]. For our purposes here, convergence in distribution
is always sufficient.

Now 𝐵 follows a lognormal distribution. From (14) and
(17) we find that it has parameters

(
𝑚0, 𝑠

2
0

)
equal to

𝑚0 = 𝜇,

𝑠20 ≈ 𝜌𝜎2 for large 𝑁.
(18)

This holds only for 0 < 𝜌 ≤ 1. If 𝜌 = 0, then 𝐵 becomes a
constant, and the rest of the argument does not follow.

Finally, we have

𝑋/𝑁 = 𝐴𝐵. (19)

This quantity is the product of a random variable that tends to
a constant in distribution, with a lognormal random variable
that tends to a particular lognormal distribution. According to
Slutsky’s Theorem [16], the product will therefore tend to a
lognormal distribution, and its parameters can be calculated
from (16), (18) and (19), and are

(
𝑚∞, 𝑠2∞

)
as given in (11).

However, if 𝜌 = 0, the quantity 𝐴𝐵 converges to the con-

stant 𝑒𝜇+
1
2𝜎

2

, as expected from the Law of Large Numbers.

APPENDIX B: MOMENT-MATCHING ANALYSIS

The first moment of 𝑋 is found using (7) as follows:

𝔼{𝑋} = 𝑒𝜇
𝑁∑
𝑖=1

𝔼

⎧⎨
⎩exp

⎛
⎝𝜎𝑣

𝑁∑
𝑗=1,𝑗 ∕=𝑖

𝑍𝑗

⎞
⎠
⎫⎬
⎭𝔼

{
𝑒𝜎𝑢𝑍𝑖

}

= 𝑁𝑒𝜇+
1
2𝜎

2((𝑁−1)𝑣2+𝑢2) = 𝑁𝑒𝜇+
1
2𝜎

2

.
(20)

Similarly, the second moment is found to be

𝔼
{
𝑋2

}
= 𝑁𝑒2𝜇+2𝜎2

(
1 + (𝑁 − 1)𝑒(𝜌−1)𝜎2

)
. (21)

The variance of 𝑋 is therefore

𝕍AR {𝑋} = 𝑁2𝑒2𝜇+𝜎2
(
𝑒𝜌𝜎

2 − 1
)

+𝑁𝑒2𝜇+2𝜎2
(
1− 𝑒(𝜌−1)𝜎2

)
.

(22)

Equating these moments to those of a lognormal random
variable 𝑋̃ with parameters

(
𝑚, 𝑠2

)
yields

𝑚 = 2 ln𝔼
{
𝑋̃
}
− 1

2 ln𝔼
{
𝑋̃2

}
= 2 ln𝔼 {𝑋} − 1

2 ln𝔼
{
𝑋2

}
,

𝑠2 = −2 ln𝔼
{
𝑋̃
}
+ ln𝔼

{
𝑋̃2

}
= −2 ln𝔼 {𝑋}+ ln𝔼

{
𝑋2

}
,

(23)

which gives (12), after substituting (20) and (21).
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of Mathematics and Statistics, Carleton University, Canada),
Dr. Norman C. Beaulieu (University of Alberta, Canada),
and Dr. John S. Thompson (University of Edinburgh, United
Kingdom) for valuable discussions.

Authorized licensed use limited to: Carleton University. Downloaded on January 4, 2010 at 09:13 from IEEE Xplore.  Restrictions apply. 



3542 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 12, DECEMBER 2009

REFERENCES

[1] F. Berggren and S. Ben Slimane, “A simple bound on the outage
probability with lognormally distributed interferers,” IEEE Commun.
Lett., vol. 8, pp. 271-273, May 2004.

[2] F. Berggren, “An error bound for moment matching methods of log-
normal sum distributions,” European Trans. Telecommun., vol. 16, pp.
573-577, 2005.

[3] A. A. Abu-Dayya and N. C. Beaulieu, “Outage probabilities in the
presence of correlated lognormal interferers,” IEEE Trans. Veh. Technol.,
vol. 43, pp. 164-173, Feb. 1994.

[4] P. Pirinen, “Statistical power sum analysis for nonidentically distributed
correlated lognormal signals,” in Proc. Finnish Signal Processing Symp.
(FINSIG), pp. 254-258, May 2003.

[5] C. L. J. Lam and T. Le-Ngoc, “Outage probability with correlated
lognormal interferers using log shifted gamma approximation,” in Proc.
International Conf. Inf., Commun. Signal Processing (ICICS), pp. 618-
622, Dec. 2005.

[6] N. B. Mehta, A. F. Molisch, J. Wu, and J. Zhang, “Approximating the
sum of correlated lognormal or, lognormal-Rice random variables,” in
Proc. IEEE International Conf. Commun. (ICC), vol. 4, pp. 1605-1610,
June 2006.

[7] H. Nie and S. Chen, “Lognormal sum approximation with type IV
Pearson distribution,” IEEE Commun. Lett., vol. 11, pp. 790-792, Oct.
2007.

[8] S. S. Szyszkowicz and H. Yanikomeroglu, “On the tails of the distri-
bution of the sum of lognormals,” in Proc. IEEE International Conf.
Commun. (ICC), pp. 5324-5329, June 2007.

[9] S. Asmussen and L. Rojas-Nandayapa, “Asymptotics of sums of log-
normal random variables with Gaussian copula,” Statistics Probability
Lett., vol. 78, pp. 2709-2714, Nov. 2008.

[10] T. Klingenbrunn and P. Mogensen, “Modelling cross-correlated shadow-
ing in network simulations,” in Proc. IEEE Veh. Technol. Conf. (VTC),
vol. 3, pp. 1407-1411, Sep. 1999.

[11] W. Hoeffding and H. Robbins, “The central limit theorem for dependent
random variables,” Duke Mathematical J., vol. 15, pp. 773-780, 1948.

[12] S. S. Szyszkowicz and H. Yanikomeroglu, “Analysis of interference from
large clusters as modeled by the sum of many correlated lognormals,”
in Proc. IEEE Wireless Commun. Netw. Conf., pp. 741-745, Mar. 2008.

[13] B. Alkire, “Cholesky factorization of augmented positive definite ma-
trices,” Electrical Engineering Department, UCLA, Dec. 2002.

[14] A. J. Coulson, A. G. Williamson, and R. G. Vaughan, “A statistical
basis for lognormal shadowing effects in multipath fading channels,”
IEEE Trans. Commun., vol. 46, pp. 494-502, Apr. 1998.

[15] R. Fraile, J. F. Monserrat, J. Gozálvez, and N. Cardona, “Mobile radio
bi–dimensional large–scale fading modelling with site–to–site cross–
correlation,” European Trans. Telecommun., vol. 19, pp. 101-106, Jan.
2008.

[16] V. K. Rohatgi and A. K. M. E. Saleh, An Introduction to Probability
and Statistics, 2nd ed. Wiley–Interscience, 2001.

Authorized licensed use limited to: Carleton University. Downloaded on January 4, 2010 at 09:13 from IEEE Xplore.  Restrictions apply. 


