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Analysis of the Generalized DF-CF for
Gaussian Relay Channels: Decode or Compress?
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Abstract—We consider a three-node quasi-static communica-
tion system with a full-duplex relay. The goal is to determine the
relaying mode that enables rate-efficient communication under
given channel conditions. To achieve this goal, we consider a
generalized scheme that subsumes the decode-and-forward (DF)
and compress-and-forward (CF) schemes as special cases. The
generalized scheme is considered when the source and relay sig-
nals are synthesized from commonly-used Gaussian codebooks,
which are shown to be capacity achieving in two asymptotic cases:
perfect relay-destination link and broken source-destination link.
Studying the generalized DF-CF scheme, it is shown that, for two
non-asymptotic cases in which the signal-to-noise ratios (SNRs)
of the links satisfy certain conditions, this scheme reduces to
either DF or CF. For another set of non-asymptotic SNRs, the
generalized scheme is shown to yield strictly higher rates than
both DF and CF. Despite the complexity of the generalized
scheme, its rate advantage over DF and CF is shown to be
upper bounded by 0.5 bits per channel use. This indicates that
the practical benefit of the analysis of this scheme is to enable
selecting the relaying mode that suits a given channel realization.
Numerical results show that, under Rayleigh fading conditions,
this selection yields significant gains over fixed DF and CF.

Index Terms—Cooperative communication, Full-duplex, KKT
conditions.

I. INTRODUCTION

FUTURE advances in wireless communications are ex-
pected to bank on the substantial gains provided by effec-

tive cooperation between multiple nodes in the network [1].
In its simplest form, cooperation is established when a sin-
gle relay assists communication between a source-destination
pair [2], [3]. Relay operation modes can be categorized into
either full-duplex mode, in which the relay uses the same
physical channel for transmission and reception, and half-
duplex mode, in which these channels are orthogonal [4].
Due to its relative simplicity, half-duplex relaying is better
understood than its full-duplex counterpart. However, full-
duplex relays are generally more efficient and can enable
higher data rates to be reliably communicated. Among the
various relaying schemes are decode-and-forward (DF) and
compress-and-forward (CF) [5]. In DF, the relay decodes
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its observed signal and generates auxiliary information that
assists decoding at the destination. In contrast, in CF the
relay does not decode its observed signal, but compresses it
to generate auxiliary information that facilitates decoding at
the destination [5]. When the relay channel is Gaussian, the
optimal distribution of the DF signals is Gaussian, whereas the
optimal distribution of the CF signals is not known [6], except
for the asymptotic case in which the relay-destination link is
perfect. In this case, the distribution of the CF codebooks is
also Gaussian [7]. Despite the potential rate loss incurred by
using Gaussian signals with CF relaying in non-asymptotic
cases, at which the SNRs of the links assume finite values,
the asymptotic optimality and simplicity of these codebooks
have made them commonly used for studying CF relaying in
Gaussian channels [6].

Performance analyses of the DF and CF schemes with
Gaussian signals were conducted in [6] for special classes
of relay channels. For the case of low-power relays and
fading channels, an analysis of the rates achieved by DF
and time-division multiplexing was conducted in [8]. For
those cases, performance comparisons between the DF scheme
with direct transmission and other relaying schemes were
considered in [9]. It was shown that, for Gaussian relay
channels and Gaussian signals, the gap between the rate
achieved by the CF scheme and capacity is upper bounded by
a constant value when the noise processes at the relay and the
destination are independent [10], [11]. In [12], a similar bound
was obtained for Gaussian channels with correlated noises.
Practical implementation of DF and a variant of CF in half-
duplex relay systems was considered in [13] and [14]. In both
schemes the relaying mode is chosen depending on successful
decoding at the relay. In [13], the performance of the scheme
proposed therein is analyzed when decoding failures at the
destination are fed back, triggering retransmission. In contrast,
the performance analysis of the relaying scheme in [14] does
not consider feedback or retransmission. Extensions of the DF
and CF schemes are considered in [15] for Gaussian channels
with correlated relay and destination noises and in [6], [16]
for scalar Rayleigh fading channels. Extensions to multiple
antenna channels are considered in [17] and to networks with
one source, one destination and multiple relays in [18].

Although DF and CF can achieve the capacity of specific re-
lay channel models [5], [7], [19]–[22], whether these schemes
are capacity achieving in other cases is not known. Since
the capacity of general relay channels, even with a single
relay and simple scalar channels, remains an open problem,
it is important to investigate relaying schemes that offer the
potential of achieving rates higher than those achieved by
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DF and CF. One such scheme is the so-called quantize-
map-forward. This scheme was proposed in [10] and [23]
for Gaussian relay networks and was shown to achieve a
rate within a constant gap to capacity. Another scheme that
might offer higher rates than conventional DF and CF is the
generalized DF-CF scheme which was originally proposed
in [5, Theorem 7] and is the focus of the current paper.

The key idea of the generalized DF-CF scheme is to
combine DF and CF in one relaying scheme that subsumes
both schemes as special cases. In this generalization the relay
performs partial decoding and compression of its received
signal to generate auxiliary information to assist decoding at
the destination. To some extent, the philosophy underlying
the generalized DF-CF scheme resembles that of the DF-CF
switching proposed in [14] when decoding fails. However,
unlike [14] it avoids unsuccessful decoding at the relay and
provides deterministic thresholds beyond which the relay
ought to switch its operating mode.

The generalized DF-CF scheme has received significantly
less attention than either DF or CF. An instance in which a spe-
cial case of this scheme was used to develop a lower bound on
the capacity of the static relay channel was considered in [7].
Another instance was considered in [24], wherein a particular
geometric setup of a Gaussian relay network was considered
and a numerical demonstration of the rate advantage of the
generalized DF-CF scheme over DF and CF was provided.
Building on the generalized DF-CF scheme, other potentially
more advantageous, mixed DF and CF schemes have been
recently proposed in [25]–[27]. Similar to the generalization
proposed in [5, Theorem 7], the mixed schemes proposed
in [25]–[27] rely on the fundamental mechanism of superim-
posing DF and CF. Hence, the analysis methodology proposed
herein for the generalized DF-CF scheme in [5, Theorem 7]
can be extended to those mixed strategies. Numerical examples
that demonstrate the potential advantage of the generalized
DF-CF [5, Theorem 7] with Gaussian signals over individual
DF and CF schemes were provided in [26]. However, in
that work, the SNR regions at which the generalized DF-CF
reduces to either the DF or the CF scheme were not identified,
nor those at which the generalization is guaranteed to yield
strictly higher rates. In fact, the analysis of the generalized DF-
CF in [26] did prove the existence of distinct SNR operation
regions and did not bound the maximum rate advantage.

In this paper, we consider a full-duplex single relay commu-
nication system in which the source transmissions are received
by both the relay and the destination. The relay does not have
its own message and its output depends either deterministically
or stochastically on its observed signal [2], [3]. The destination
uses a noisy combination of the source and relay signals to
decode its intended message. We consider the generalized
DF-CF scheme in [5, Theorem 7]. Since this scheme sub-
sumes both DF and CF, it will enable us to determine the
appropriate relaying mode corresponding to a given SNR and
will also enable us to obtain explicit expressions for SNR
thresholds at which the relay ought to switch its operating
mode, depending on the given channel realization. Numerical
results show that, for quasi-static Rayleigh fading channel
conditions, this selection can yield significant gains over fixed
DF and CF. The SNR thresholds and the bound on the rate
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Fig. 1. Gaussian relay channel.

of the generalized scheme are obtained by particularizing the
generalized DF-CF in [5, Theorem 7] to the case in which the
source and relay signals are Gaussian and the relay channel
is also Gaussian. The Karush-Kuhn-Tucker (KKT) optimality
conditions corresponding to the problem of maximizing the
achievable rate are then analyzed to draw insight into the
generalized DF-CF scheme and to obtain the aforementioned
results. A similar approach can be used to analyze the mixed
DF-CF strategies in [25]–[27], but this is beyond the scope of
this paper. To obtain a better understanding of the generalized
DF-CF, we further analyze its maximum achievable rate and
show that it is at most 0.5 bits per channel use (bpcu) higher
than that achieved by the underlying DF and CF schemes.

The paper is organized as follows: Section II provides the
system model. Section III provides explicit construction of
the signals used by the generalized DF-CF scheme. The main
results of the paper are derived in Section IV. Section V
provides numerical examples and Section VI summarizes the
paper. For convenience, most derivations are relegated to the
appendices.

II. SYSTEM MODEL

We consider the three-node Gaussian relay channel depicted
in Figure 1. In this channel, the gain of the source-destination
link is normalized, and the gains of the source-relay and
the relay-destination links are denoted by the scalars a and
b, respectively. The source and relay transmit signals are
denoted by X1 and X2, and the mutually independent additive
Gaussian noises at the relay and destination are denoted by
Z1∼N (0, N) and Z ∼N (0, N), respectively. The relay and
destination received signals are respectively denoted by Y1 and
Y , and can be expressed as

Y1 = aX1 + Z1, and Y = X1 + bX2 + Z. (1)

The transmit power budgets at the source and relay are denoted
by P1 and P2, respectively. Using this notation, we define
γ0 � P1

N , γ1 � a2P1

N , and γ2 � b2P2

N to be the SNR of the
source-destination, the source-relay, and the relay-destination
links, respectively.

In the next section we will review the generalized DF-CF
scheme in [5, Theorem 7] and apply it to the Gaussian channel
in Figure 1 with Gaussian source and relay transmit signals.

III. GENERALIZATION OF DF AND CF FOR GAUSSIAN

RELAY CHANNELS

A. An information-theoretic background

An achievable rate: In describing the codebook structure
of the generalized DF-CF scheme, we will use the superscript
(·)n to denote the n-th extension of random variables. Source
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and relay length-n codewords are constructed by superimpos-
ing respective DF-structured (partial) codewords on their CF-
structured counterparts [5], [25]. The DF structure is generated
in the standard way by using two random variables U and
V , where Un is the codeword representing one part of the
message intended for the destination. Random partitions of
Un are given by V n, which are used by the relay to assist
the decoding of Y n at the destination. The source codewords,
Xn

1 , are constructed by superimposing a length-n vector
representing the residual part of the message intended for the
destination on Un. The received signal at the relay is repre-
sented by Y n

1 and a compressed description of it is given by
Ŷ n
1 . The CF-structured codewords used to facilitate decoding

are constructed by random partitioning of Ŷ n
1 . The length-n

vector representing the random partition is superimposed on
V n to generate the relay transmitted codeword, Xn

2 . Using
this construction with sufficiently large n, the following rate
is achieved [5]. The explicit construction will be given in
Section III-B for the case of Gaussian codebooks.

R∗
G = sup

{
min{R1, R2}

}
, (2a)

where the supremum is taken over joint distributions of
(U, V, Ŷ1, X1, X2, Y1, Y ) satisfying

I(Ŷ1;Y1|Y,X2, U) ≤ I(X2;Y |V ), (2b)

and the rates R1 and R2 are given by

R1 = I(X1;Y, Ŷ1|X2, U) + I(U ;Y1|X2, V ), (3a)

R2 = I(X1, X2;Y )− I(Ŷ1;Y1|X1, U,X2, Y ). (3b)

The cut-set bound: An upper bound on the capacity, C, of
a general multi-terminal channel is given by the cut-set bound
in [3]. This bound is attained by most relaying strategies that
are known to achieve capacity for specific channel models [5],
[7], [19]–[22]. Instances in which this bound was used to
compute the capacity of various relay networks are provided
in [18], [28]. Applying this bound to the standard three-node
relay channel yields [5, Theorem 4]

C ≤ sup
p(x1,x2)

min
{
I(X1;Y, Y1|X2), I(X1, X2;Y )

}
. (4)

B. Application to Gaussian signals

We now derive the expressions corresponding to (2) and (3)
when the relay channel and the signals are Gaussian. To map
the codebook structure described in [5], [25] to Gaussian
signals, we define the power partitions {αi}2i=0 to be used
at the source to construct U , a scaled version of V and X1,
and define {βj}1j=0 to be used at the relay to construct another
scaled version of V and X2, respectively. The power partitions
satisfy αi, βj ≥ 0, i = 0, 1, 2, j = 0, 1,

∑2
i=0 αi = 1,

and
∑1

j=0 βj = 1. To proceed with the description of
Gaussian signals, we let V ∼ N (0, 1), V1 =

√
α0P1V , and

V2 =
√
β0P2V .

The construction in [5] implies that each signal U can
be expressed as the superposition of a (base) component
V1 and another independent (incremental) component, X11.
The signals X1 and X2 are constructed similarly using base
components U and V2 and incremental components X12 and

X22, respectively. Using the approach in [7] and [6], the
auxiliary signal Ŷ1 can be expressed as the superposition of
Y1, X2 and U , as a base component, and a statistically inde-
pendent estimation noise Z ′, as an incremental component. In
particular, we can write

U = V1 +X11, X1 = U +X12, (5a)

X2 = V2 +X22, Ŷ1 = Y1 +X2 + U + Z ′, (5b)

where Z ′ ∼N (0, N ′). Note that, in this construction, N ′ is
a system parameter, V,X11 and X22 are mutually statistically
independent, and U and X12 are statistically independent;
X1 and X2 are correlated through V . The source uses the
power fraction α0P1 to transmit V1, the power fraction α1P1

to transmit X11 and the power fraction α2P1 to transmit X12.
The relay uses the power fraction β0P2 to transmit V2 and the
power fraction β1P2 to transmit X22.

IV. THE GENERALIZED DF-CF: ACHIEVABLE RATE AND

ANALYSIS

In this section, we will use the construction for the signals in
Section III-B to analyze the maximum rate that the generalized
DF-CF scheme can achieve when the channel in Figure 1
and the signals in (5) are Gaussian distributed. Our first
step is to particularize the rate given in (2) to obtain the
corresponding expressions for the Gaussian case. We then use
these expressions to formulate the problem of maximizing
the achievable rate of the generalized DF-CF scheme as an
optimization problem. In the remainder of the section, we will
draw insight into the structure of this problem by studying its
KKT conditions in various SNR regions.

Particularizing the rate expressions in (2) to the Gaussian
case yields the following result.

Proposition 1: Applying the generalized DF-CF scheme
with Gaussian signal components to the Gaussian relay chan-
nel in Figure 1 and using C(x) � 1

2 log2(1 + x), and
γ′ � N ′/N yields:

R∗
G = max

{αi}2
i=0,{βj}1

j=0,γ
′

min
{
R1, R2

}
, (6a)

subject to

γ′ ≥ (1 + α2(γ0 + γ1))(1 + (α1 + α2)γ0)

(1 + α2γ0)β1γ2
, (6b)

R1 = C
( α2γ1
1 + γ′ + α2γ0

)
+ C

( α1γ1
1 + α2γ1

)
, (6c)

R2 = C(γ0 + γ2 + 2
√
α0β0γ0γ2

)− C(γ′−1
)
, (6d)

2∑
i=0

αi = 1,

1∑
j=0

βj = 1, (6e)

αi ≥ 0, βj ≥ 0, ∀ i, j. (6f)

Proof: The derivation resembles the one in [26, Section
III-D], and is omitted for brevity.

In subsequent analysis, we will seek solutions of the opti-
mization problem in (6) for different SNR regions. We begin
by recasting (6) in a more convenient form. First, we introduce
a new variable t ≥ 1 such that 1

2 log(t) is a lower bound on
R1 and R2. Then, invoking the fact that the log(·) function is
monotonically increasing, the optimization in (6) is recast as
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max t, (7a)

subject to gi(t, α0, α2, β0, γ
′) ≤ 0, i = 1, . . . , 8,

(7b)

where, using
∑2

i=0 αi = 1 and
∑1

j=0 βj = 1 to eliminate α1

and β1, {gi}8i=1 can be defined as

g1(t, α0, α2, β0, γ
′) � t−(1+α2γ1

1+γ′+α2γ0
)1+(1−α0)γ1

1 + α2γ1
,

g2(t, α0, α2, β0, γ
′) � t−(1+γ0+γ2+2√α0β0γ0γ2

) γ′

1+γ′ ,

g3(t, α0, α2, β0, γ
′) � 1+

α2γ1
1 + α2γ0

− (1− β0)γ2
1 + (1 − α0)γ0

γ′,

g4(t, α0, α2, β0, γ
′) � −α2,

g5(t, α0, α2, β0, γ
′) � −α0,

g6(t, α0, α2, β0, γ
′) � α0 + α2 − 1,

g7(t, α0, α2, β0, γ
′) � β0 − 1,

g8(t, α0, α2, β0, γ
′) � −β0.

The optimization in (7) is not convex. Hence, the KKT
conditions are not sufficient for optimality. However, if a point
is a local minimum of (7) and if that point is regular (i.e., the
gradients of the active constraints are linearly independent),
then the KKT conditions are necessary for optimality [29,
Proposition 3.3.1]. In our analysis we will consider the KKT
system of (7); the regularity of the solutions that we obtain
can be verified by inspection.

Using λi to denote the Lagrange multiplier corresponding
to the i-th constraint in (7b), i = 1, . . . , 8, the KKT system
can be written as

λ1 + λ2 − 1 = 0, (8a)

λ1γ1
1 + α2γ1

(
1 + α2γ0 +

α2γ1
1 + γ′

)
− λ2γ

′

1 + γ′

√
γ0γ2β0

α0

− λ3γ0γ2γ
′(1 − β0)(

1 + (1− α0)γ0
)2 − λ5 + λ6 = 0, (8b)

λ1

(
1 + γ1(1− α0)

)(
γ0(1 + γ′)− γ1γ

′)(
1 + γ′)(1 + α2γ1

)2
− λ3γ1(

1 + α2γ0
)2 + λ4 − λ6 = 0, (8c)

λ2γ
′

1 + γ′

√
γ0γ2α0

β0
− λ3γ2γ

′

1 + (1− α0)γ0
− λ7 + λ8 = 0, (8d)

λ1γ1α2

(
1 + γ1(1 − α0)

)
(1 + γ′)2(1 + γ1α2)

− λ2

(
1 + γ0 + γ2 + 2

√
α0β0γ0γ2

)
(1 + γ′)2

− λ3γ2(1− β0)

1 + γ0(1− α0)
= 0, (8e)

gi(t, α0, α2, β0, γ
′) ≤ 0, λigi(t, α0, α2, β0, γ

′) = 0,

λi ≥ 0, i = 1, 2, ..., 8. (8f)

To study the KKT system, we will determine the values
of α0, α2, β0 and γ′ for different SNR regions. We begin
by providing achievable rates of the DF and CF schemes
for the Gaussian channel in Figure 1. The derivation of
these rates is omitted for brevity. For the DF scheme, the

maximum achievable rate is achieved with Gaussian signals [6,
Proposition 2] and is given by

R∗
DF = max

{ρi}1
i=0

min
{
RDF,1, RDF,2

}
, (9)

where RDF,1 = C(ρ1γ1) and RDF,2 = C(γ0 + γ2 +

2
√
ρ0γ0γ2

)
, ρ0 and ρ1 satisfy

∑1
i=0 ρi = 1, and

√
ρ0 =

E{X1X2}, where E{·} denotes the expectation operator;
cf. [5, Theorem 1]. In contrast with the DF scheme, in the CF
scheme it is not known if using Gaussian signalling achieves
its maximum rate. However, the maximum rate achieved with
Gaussian signals is given by

R∗
CF = C

(
γ0 + γ1γ2

(1 + γ0 + γ1 + γ2)

)
, (10)

where the normalized variance of the estimation noise that
enables this rate to be achieved is

γ′∗
CF � (1 + γ0 + γ1)

γ2
. (11)

Remark 1: Let γi ∈ (0,∞), i = 0, 1, 2. Then, setting
α2 = 0 and β0 = 1, the generalized DF-CF scheme yields the
maximum rate of the DF scheme, R∗

DF . Furthermore, setting
α2 = 1 and β1 = 1, the generalized DF-CF scheme yields
the maximum rate of the CF scheme with Gaussian signals,
R∗

CF . In particular, R∗
G

∣∣∣α2=0
β1=0

= R∗
DF , and R∗

G

∣∣∣α2=1
β1=1

= R∗
CF ,

with γ′∗
∣∣∣α2=1
β1=1

= γ′∗
CF .

Proof: Direct substitution in (6) yields the statements of
the remark.

We now analyze the rates yielded by the problem in (6)
for different choices of γ0, γ1 and γ2. We will consider the
case of γ0(1 + γ2) < γ1 < ∞ in Section IV-A, the case of
γ1 ≤ γ0 in Section IV-B. The remaining case in which γ1 ∈(
γ0, γ0(1+γ2)

]
has proved difficult to analyze. To circumvent

this difficulty, in Section IV-C we will consider SNRs that
yield R∗

DF = R∗
CF . Those SNRs can be readily verified to

belong to the region
(
γ0, γ0(1+γ2)

]
. In Section IV-C we will

touch upon two asymptotic cases, viz., γ2 → ∞ and γ0 → 0.
In Section IV-D we will provide an upper bound on the gain
of the generalized DF-CF scheme.

A. The case of γ0(1 + γ2) < γ1 < ∞
In this region a >

√
1 + b2P1

N1
. For this case, we have the

following result.
Theorem 1: When the channel gains in Figure 1 satisfy

γ1 > γ0(1 + γ2), the generalized DF-CF scheme using
Gaussian signals reduces to the DF scheme. In particular,
R∗

G = R∗
DF .

Proof: See Appendix A.
Hence, if the channel gain of the source-relay link is

sufficiently greater than the gain of source-destination link,
the generalized DF-CF with Gaussian signals does not yield
rates higher than those achieved by the DF scheme.

Remark 2: By comparing (17) with (18) in Appendix A,
it can be seen that when γ0(1 + γ2) < γ1 < γ0 + γ2,
R1 < R2; i.e., R1 is the constraining rate. In this case, β0

can be set to be less than 1 without reducing the achievable
rate of the generalized DF-CF scheme. Setting β0 < 1
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implies that the relay uses a fraction β1 > 0 of its power to
transmit its estimation of the received signal. Setting α1 = 1
and restricting R2 to be greater than or equal to R1 yields
β1 ≤ 1+γ0

1+γ1

(
1− γ1−γ0

γ2

)
. �

This remark implies that when γ0(1 + γ2) < γ1 < γ0 + γ2,
the relay does not need to use all its power for the maximum
generalized DF-CF rate to be achieved. We suspect that the
additional power might be used to yield a rate advantage for
networks with multiple destinations.

Having considered the case of γ0(1 + γ2) < γ1, next we
will consider the case of γ1 ≤ γ0.

B. The case of γ1 ≤ γ0

When γ1 ≤ γ0, a ≤ 1 and the result for this case is given
in the following theorem.

Theorem 2: When the gains in Figure 1 satisfy γ1 ≤ γ0,
the generalized DF-CF scheme using Gaussian signals reduces
to the corresponding CF scheme. In particular, R∗

G = R∗
CF .

Proof: See Appendix B.
Hence, when the signals are Gaussian and a ≤ 1, the rate

yielded by the generalized DF-CF scheme is not higher than
the rate of the corresponding CF scheme.

So far we have considered the cases of γ1 > γ0(1+γ2) and
γ1 ≤ γ0. Unfortunately, the case of γ0 < γ1 ≤ γ0(1 + γ2) is
rather difficult to analyze. To gain insight into this case, we
consider a subset of SNRs that falls thereunder. In particular,
in the next section we will focus on the case of γ1(1+ γ1) =
γ0(1 + γ0 + γ2), which will be shown to correspond to the
case of R∗

DF = R∗
CF .

C. The case of SNRs yielding R∗
DF = R∗

CF

Here we will show that when R∗
DF = R∗

CF , the rate
yielded by the generalized DF-CF scheme is strictly higher
than the rate yielded by either scheme. We begin by stating
the following lemma.

Lemma 1: For the Gaussian channel shown in Figure 1, the
DF scheme and the CF scheme using Gaussian signals yield
the same maximum achievable rate if and only if

γ1(1 + γ1) = γ0(1 + γ0 + γ2) (12)

Proof: See Appendix C-A.
An important implication of this lemma is given in the

following corollary.
Corollary 1: When γ1(1 + γ1) > γ0(1 + γ0 + γ2), R∗

DF >
R∗

CF and when γ1(1 + γ1) < γ0(1 + γ0 + γ2), R∗
DF < R∗

CF .
Proof: See Appendix C-B.

Corollary 1 provides an SNR threshold below which DF
is more advantageous than CF, and above which CF is more
advantageous than DF. This result will be used to develop a
DF/CF switching scheme which will be shown to yield signifi-
cant rate advantage over individual schemes under quasi-static
Rayleigh fading channel conditions.

Using Lemma 1, we have the following result.
Theorem 3: Suppose that the SNRs of the Gaussian channel

in Figure 1 are finite and bounded away from zero, i.e., 0 <
γ0, γ1, γ2 < ∞. If γi, i = 0, 1, 2, satisfy (12), then there
exist power partitions, {αi}2i=0 and {βj}1j=0, and normalized

estimation noise, γ′, such that the generalized DF-CF using
Gaussian signals provides a higher rate than the corresponding
DF and CF schemes.

Proof: See Appendix D.
Theorem 3 shows that for SNRs satisfying the condition

of Lemma 1, the generalized DF-CF using Gaussian signals
yields strictly higher rates than the corresponding DF and CF
schemes.

So far we have restricted our attention to strictly positive
finite SNRs. In the following remarks we will consider two
extreme cases, namely, γ2 → ∞ and γ0 → 0.

Remark 3: When γ2 → ∞ and 0 < γ0, γ1 < ∞, the
generalized DF-CF scheme using Gaussian signals reduces to
the corresponding CF scheme and achieves the capacity of the
relay channel; i.e., R∗

G = R∗
CF = C. �

The proof of this remark uses the fact that the Gaussian
distribution maximize the cut-set bound [6] for the considered
Gaussian channel and that this bound is achieved by the CF
scheme using Gaussian signals when γ2 → ∞. A similar
observation has been made independently in [7]. The fact that
CF is a special case of the generalized CF-DF yields the result.

Remark 4: When γ0 → 0, 0 < γ1 and γ2 < ∞, the gener-
alized DF-CF scheme reduces to DF, and achieves the capacity
of the channel in Figure 1. In particular, R∗

G = R∗
DF = C. �

To prove this remark, we invoke the fact that the cut-
set bound is maximized by the Gaussian distribution and
that Gaussian signals maximize the rate achieved by the DF
scheme for the considered relay channel. Direct substitution
for γ0 → 0 in the corresponding rate expressions show that
the DF scheme meets the cut-set bound and hence achieves
capacity. The fact that DF is a special case of the generalized
CF-DF scheme yields the result.

Having analyzed the maximum rate that can be achieved
by the generalized DF-CF scheme in various SNR regions,
we next provide an upper bound on the gap between the
maximum achievable rate of the generalized scheme and that
of individual DF and CF schemes.

D. An upper bound on the gain of the generalized DF-CF

An upper bound on the gain of the generalized DF-CF using
Gaussian signals over the corresponding DF and CF schemes
is provided in the following theorem.

Theorem 4: Using Gaussian signals, the maximum rate
achieved by the generalized DF-CF scheme is at most 0.5 bpcu
higher than that achieved by individual DF and CF schemes.

Proof: See Appendix E.
This theorem implies that, despite the inherent coding and
decoding complexity of the generalized DF-CF, its rate advan-
tage over DF and CF is relatively small. This indicates that
the practical benefit of the analysis of this scheme is to enable
appropriate selection of either DF or CF relaying depending
on the given channel realization.

In the next section, we will provide numerical confirmation
for the analytical findings obtained in this section. We will
also provide an example in which this analysis is exploited to
adapt the relay operation mode to the channel gains.
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V. NUMERICAL RESULTS

For numerical analysis, we note that the maximum DF rate,
R∗

DF , can be obtained from (9), by setting ρ∗0 = 0, or such that
RDF,1 = RDF,2, depending on the values of γi, i = 0, 1, 2.
The maximum CF rate, R∗

CF , is evaluated using (10), and the
maximum generalized DF-CF rate, R∗

G, is evaluated by using
the KKT conditions corresponding to (6) to reduce the search
for γ′∗ and the optimal power partitions to three parameters,
viz., α0, α2, β0 ∈ [0, 1]. Using the KKT system (8), it can be
shown that, when {αi}2i=0 > 0 and {βj}1j=0 > 0, R1 = R2

and (6b) holds with equality. Using these results, the search
for the optimal parameters can be simplified by expressing α2

as a function of γ′, α0 and β0. The cases in which a subset of
{αi}2i=0 and {βj}1j=0 are zero can be readily inferred by the
continuity of the rate expressions in the power partitions. The
cut-set bound is calculated using the expression in Theorem 4
in [5].

In Figure 2, the SNR of the source-destination link is set
to be γ0 = 5 dB and that of the relay-destination link is set
to be γ2 = 5.5 dB, which yields γ0(1 + γ2) = 11.5783 dB.

Figure 2 shows that, in agreement with Theorem 1, for
γ1 > 11.5783 dB, the maximum rate of the generalized DF-
CF scheme, R∗

G, coincides with the maximum rate of the DF
scheme, R∗

DF . Similarly, in agreement with Theorem 2, for
γ1 ≤ 5 dB, R∗

G coincides with the maximum rate of the
CF scheme, R∗

CF . We note that Theorem 1 and 2 provide
SNR conditions that are only sufficient for the generalized
DF-CF scheme to reduce to DF or CF, respectively. However,
these conditions are not necessary. In fact, we observe that
the generalized DF-CF scheme reduces to DF and CF in the
neighbourhood of the inner boundary of γ0 < γ1 ≤ γ0(1+γ2).

To investigate the performance of the generalized DF-CF
scheme when γ0 < γ1 ≤ γ0(1 + γ2), in Figure 2, we plot a
magnified version of the region spanned by γ1 ∈ [6.3, 6.6].
As asserted by Theorem 3, it can be seen that, when γ1 =
6.496377 dB, γ1(1+γ1) = γ0(1+γ0+γ2), resulting in R1 =
R2. This setting yields R∗

DF = R∗
CF = 1.22486 bpcu. At this

SNR, the generalized DF-CF scheme yields a rate advantage
ΔG = R∗

G − R∗
DF = 2.62× 10−3 bpcu. This rate advantage

is obtained by setting α0 = 0.004, α1 = 0.762621, α2 =
1−α1−α0, β0 = 0.179, and β1 = 1−β0. In agreement with
Theorem 4, the gain offered by the generalized DF-CF scheme
is strictly less than 0.5 bpcu. Similar to the numerical results
reported for the generalization in [27], the rate advantage of
the generalization considered herein is marginal. The cut-set
bound at these particular SNRs is 1.54503 bpcu and the gap
to the generalized DF-CF rate is 0.31755 bpcu. However, this
does not preclude the possibility that the generalized DF-CF
might yield higher rate gains for more general networks; cf.
Remark 2.

In Figure 3 we verify Remarks 3 and 4. In Figure 3(a), we
set γ0 = 1 dB and γ1 = 5 dB. In accordance with Remark 3, it
can be seen that as γ2 becomes sufficiently large, R∗

G coincides
with R∗

CF and with the cut-set bound. Figure 3(b) is obtained
by setting γ1 = 10 dB and γ2 = 5 dB. As stated in Remark 4,
for small γ0, R∗

G coincides with R∗
DF and with the cut-set

bound.
Finally, we provide a numerical example to expose the
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Fig. 2. Maximum achievable rate of the generalized DF-CF scheme.

practical implications of the analysis of the generalized DF-
CF scheme. We consider a quasi-static frequency-flat Rayleigh
fading relay channel in which the channel coefficients take on
random values, but are held constant for the entire signalling
duration. The coefficients are drawn from the standard zero
mean Gaussian distribution with the variance adjusted to yield
two instances of average SNRs, γ̄i = E{γi}, i = 0, 1, 2. In
both instances γ̄0 = 5 dB and γ̄1 ranges between 0 and
20 dB. In the first instance γ̄2 = 5.5 dB, whereas in the
second instance γ̄2 = 10 dB. For both instances, we assume
that the instantaneous channel gains, and hence {γi}2i=0, are
available at the source, relay and destination, and we compare
the following three schemes: the standard DF and CF schemes
and a DF/CF switching scheme. In the standard schemes the
relay uses either DF or CF relaying regardless of the channel
realization, whereas in the switching scheme, the relay uses
Corollary 1 to select its operation mode depending on the
current realization of {γi}2i=0. From Figure 4(a) and 4(b), it
can be seen that enabling the relay to switch between DF and
CF yields a significant gain over either scheme. For the first
instance, Figure 4(a) shows a gain of 4 dB, when the DF/CF
switching scheme is used and the rate is 1.1 bpcu. The second
instance is considered in Figure 4(b) and the gain of the DF/CF
switching scheme is 3 dB, when the rate is 1.3 bpcu.

VI. CONCLUSION

In this paper, we investigated the generalized DF-CF
scheme developed in Theorem 7 in [5] when Gaussian signals
are used for signalling over scalar power-constrained Gaus-
sian memoryless channels. Gaussian signals are generally not
known to be optimal for either the CF or the generalized
scheme and higher rates might be achievable if the input
signals were optimally distributed. When the signals are
restricted to be Gaussian, the generalized DF-CF scheme:

• reduces to CF, and outperforms DF, if either the SNR of
the source-relay link is less than or equal to the SNR of
the source-destination link, or if the relay transmit power
is sufficiently high. In the latter case the CF scheme
achieves capacity;
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Fig. 3. Asymptotic optimality of the generalized DF-CF scheme.

• reduces to DF, and outperforms CF, when the SNR of
the source-relay link is sufficiently higher than that of the
source-destination link, or when the SNR of the source-
destination link is sufficiently low. In the latter case the
DF scheme achieves capacity; and

• achieves a strictly higher rate than the corresponding DF
and CF schemes, when these schemes yield the same rate.

In addition, we have shown that the advantage of the gener-
alized DF-CF scheme over individual DF and CF schemes is
upper bounded by 0.5 bpcu. Finally, we exploited the analysis
of the generalized DF-CF to provide a DF/CF switching
scheme that was shown to yield substantial rate gains over
standard DF and CF schemes under quasi-static Rayleigh
fading channel conditions.

APPENDIX A
PROOF OF THEOREM 1

The proof of this theorem relies on the following result.
Lemma 2: When γ1 > γ0(1 + γ2), γ′ must satisfy

γ′ >
γ0

γ1 − γ0
. (13)
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Fig. 4. Maximum achievable rate in state-static Rayleigh fading channel.

Proof: We proceed by contradiction. Suppose that
γ′ ≤ γ0

γ1−γ0
. In this case, the constraint in (6b) yields

(1+α2(γ0+γ1))(1+(α1+α2)γ0)
(1+α2γ0)β1γ2

≤ γ0

γ1−γ0
, which, by the fact that

β1 ≤ 1, implies that

(
1 + α2

(
γ0 + γ1

))(
1 +

(
α1 + α2

)
γ0
)

≤ γ0
γ1 − γ0

(
1 + α2γ0

)
γ2.

Manipulating this inequality and using
∑2

i=0 αi = 1 yields

γ0(1+γ2)−γ1
γ0(γ1−γ0)

− α2γ1γ2

(γ1−γ0)
(
1+α2(γ0+γ1)

) ≥ 1− α0,

which requires γ0(1+γ2)−γ1

γ0(γ1−γ0)
≥ 1 − α0. If γ1 > γ0(1 + γ2),

this inequality implies α0 > 1, which violates the constraint
α0 ≤ 1 in (6e) and yields the statement of the lemma.

We will now use this lemma, to prove Theorem 1. Con-
sidering the equality in (8c), it can be seen from Lemma 2
that, because γ1 > γ0(1 + γ2), the coefficients of λ1 and λ3

in this equality are strictly positive. There are two distinct
possibilities, namely, λ1 = 0 and λ1 > 0.
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Case 1 (λ1 = 0): In this case, invoking (8a) yields λ2 = 1.
Substituting λ1 = 0 and λ2 = 1 in (8e) yields

1 + γ0 + γ2 + 2
√
α0β0γ0γ2

(1 + γ′)2
= −λ3

γ2(1− β0)

1 + γ0(1 − α0)
. (14)

This equality is satisfied if and only if both sides of this
equation are zero. Hence, γ′ must be infinite and λ3 = 0
or β0 = 1.

We will show that λ6 > 0. To do so, we consider (8b) and
use λ1 = 0 and λ2 = 1 to write

√
γ0γ2

√
β0

α0
+ λ3

(
1− β0

)
γ0γ2γ

′(
1 + (1− α0)γ0

)2 + λ5 = λ6. (15)

For any non-negative λ3, if 0 < β0 ≤ 1, the left hand
side of (15) is strictly positive, which implies that λ6 > 0. It
remains to consider the case of β0 = 0. In this case the first
term on the left hand side of (15) vanishes and we are left
with two possibilities: either λ3γ

′ > 0, which yields λ6 > 0,
or λ3γ

′ = 0. In the latter case, we consider (8d), from which
we have

√
γ0γ2

√
α0

β0
+ λ8 = λ7. (16)

Since β0 = 0, we have from the last equality in (8f) with i = 7
that λ7 = 0. Using this observation and the fact that β0 = 0

implies that
√

α0

β0
→ ∞ in (16) which is a contradiction1, i.e.,

the KKT system cannot be satisfied with λ1 = 0, β0 = 0 and
λ3γ

′ = 0.
Hence, for the KKT system in (8) to be satisfied with λ1 = 0

when γ1 > γ0(1 + γ2), we must have λ6 > 0. Using this
in (8c) yields λ4 > 0, which using (8f) yields the following
optimal power partitions: α0 = 1, α1 = 0, α2 = 0. Using
these partitions together with γ′ → ∞, yields R1 = 0 in (6c).
Hence, the solution of the KKT system with λ1 = 0 does not
correspond to the maximum rate of the generalized DF-CF
scheme.

Case 2 (λ1 > 0): Using Lemma 2, it can be seen that the
first term in (8c) is strictly positive, which implies that λ4 > 0
and thus α2 = 0. Substituting in (6c) yields

R1 = C(α1γ1
)
, (17)

which does not depend on β0 and γ′. Hence, choosing β0 to
maximize R2 in (6d) does not reduce R1. From (6d) it can
be seen that R2 is monotonically increasing in both β0 and
γ′. However, from (6b), γ′ is bounded by a monotonically
increasing function of β0. Hence, maximizing β0 directly
maximizes the positive term of R2 and minimizes the negative
term by maximizing the lower bound on γ′. In particular, R2

is maximized by setting β0 = 1, which yields

R2 = C(γ0 + γ2 + 2
√
α0γ0γ2

)
. (18)

Hence, we have shown that the optimal solution of (7)
corresponds to Case 2 in which α2 = 0 and β1 = 1−β0 = 0.
Using these settings in Proposition 1 yields the statement of
the theorem.

1Here we assume that
√

β0
α0

= 0. Otherwise, λ6 would be strictly positive
as claimed.

APPENDIX B
PROOF OF THEOREM 2

To prove this theorem, we use the following two lemmas.
Lemma 3: For the Gaussian channel shown in Figure 1, the

maximum rate that the generalized DF-CF scheme achieves
using Gaussian signals is attained when the constraint in (6b)
is satisfied with equality, that is, in that case,

I(Ŷ1;Y1|X2, U, Y ) = I(X2;Y |V ). (19)

Proof: We now prove the lemma using the KKT sys-
tem (8). We note that another proof that uses a different
approach has been obtained independently in Lemma 2 and
Remark 5 of [27].

We consider the following three cases of α2 and γ′: 1) α2 =
0, arbitrary γ′; 2) α2 > 0, γ′ < ∞; and 3) α2 > 0, γ′ → ∞.
We will show that in each case if the maximum rate of the
generalized DF-CF scheme is attained, the constraint on γ′

in (6b) is satisfied with equality.
From the complementarity slackness conditions in (8f), it

can be seen that if λ3 were strictly positive, the constraint
on γ′ must be active and the lemma is automatically proved.
Hence, to complete the proof of this lemma, it remains to
consider the case of λ3 = 0, which is what we do in the
forthcoming analysis.

Case 1 [α2 = 0 and γ′ ≥ 0 ]: In this case, substituting
in (6c) and (6d) yields

R1 = C(α1γ1), and

R2 =
1

2
log2

(
(1 + γ0 + γ2 + 2

√
α0β0γ0γ2)

γ′

1 + γ′
)
.

Following an argument analogous to the one used in Case 2
in the proof of Theorem 1, it can be seen that in this case, the
generalized DF-CF reduces to DF and γ′ → ∞ which satisfies
the constraint in (6b) with equality.

Case 2 [α2 > 0 and γ′ < ∞]: Using λ3 = 0 and that
γ′ is finite in (8e) and (8d) yields

λ1

α2γ1
(
1+(1−α0)γ1

)
1+α2γ1

= λ2

(
1+γ0+γ2+2

√
α0β0γ0γ2

)
,

(20)
and

λ2

√
α0γ0γ2
β0

γ′

1 + γ′ + λ8 = λ7. (21)

Now, since, from (8a), λ1 + λ2 = 1, it follows from (20)
that, in this case, λ1 > 0 and λ2 > 0.

For γ2 < ∞, it can be seen from (6b) that γ′ > 0. Using this
observation in (21), we identify two possible cases:

√
α0

β0
> 0

and
√

α0

β0
= 0.

We will show that the first case yields a contradiction:
Suppose that

√
α0

β0
> 0. In this case, it is immediate that

the left hand side of (21) is strictly positive and that λ7 > 0.
This implies that β1 = 0 (cf. (8f)). Using this in (6b) yields
γ′ ≥ ∞, which contradicts the condition γ′ < ∞.

For the second case, we have
√

α0

β0
= 0. Substituting for

λ3 = 0 in (8b) yields

λ1

(
1 +

α2γ1
1 + γ′ + α2γ0

) γ1
1 + α2γ1

+ λ6
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= λ2

√
β0

α0

√
γ0γ2

γ′

1 + γ′ + λ5. (22)

Since 0 < λi, γj, γ
′ < ∞, i = 1, 2, j = 0, 1, 2, it can be

seen that, because
√

α0

β0
= 0, the right hand side of (22) is

positive and infinite. Hence, it can be seen that λ6 = ∞. This
implies that α0 + α2 = 1. Invoking the fact that in this case
α0 = 0, we have α2 = 1. Using this in (6c) and (6d) yields
R1 = C

(
γ0 +

γ1

1+γ′

)
, and R2 = C

(
γ0 + γ2

)
− C

(
1
γ′

)
. From

these expressions, we have R1 monotonically increasing in γ′

and R2 monotonically decreasing in γ′. Hence, maximizing
min{R1, R2} is achieved by a value of γ′ at which R1 = R2.
This equality, together with the particular value of γ′ yield
that in that case β1 = 1 and (6b) holds with equality.

Case 3 [α2 > 0 and γ′ → ∞]: We consider two SNR
regions: γ0 < γ1 and γ0 ≥ γ1.
a) The case of γ0 < γ1: Using λ3 = 0 and γ′ → ∞ in (8c)

yields

λ1

(
1 + (1 − α0)γ1

)
(γ1 − γ0)

(1 + α2γ1)2
− λ4 + λ6 = 0.

When γ0 < γ1, the coefficient of λ1 is strictly positive.
Following the proof of Theorem 1 it can be shown that
the optimization leads to α2 = 0, which contradicts the
condition α2 > 0.

b) The case of γ0 ≥ γ1: In this case, we rewrite the rate
expressions in Proposition 1 as

R1 =
1

2
log2

(1 + α2γ0)(1 + (α1 + α2)γ1)

1 + α2γ1
, and

R2 = C
(
1 + γ0 + γ2 + 2

√
α0β0γ0γ2

)
. (23)

Since γ0 ≥ γ1, then, from (23), R1 is maximized when
α2 = 1. However, in this case

R1 = C(γ0) < C
(
γ0 +

γ1γ2
1 + γ0 + γ1 + γ2

)
= R∗

CF , (24)

where the last equality follows from (10). Since R∗
G is

the maximum of min{R1, R2}, (24) implies that R∗
G is

strictly less than the CF rate, which establishes the desired
contradiction.

To conclude Case 3, we have, when γi < ∞, i = 0, 1, 2,
setting α2 > 0 and γ′ → ∞ does not allow the generalized
DF-CF to attain its maximum rate.

Finally, gathering our results from Cases 1, 2 and 3 and the
case of λ3 > 0, it can be seen that for all relevant instances
of α2 and γ′, the maximum rate that the generalized DF-CF
scheme achieves using Gaussian signals is attained when the
constraint in (6b) is satisfied with equality.

To complete the proof of Theorem 2, we need the following
result.

Lemma 4: Rate R1 and R2 in Theorem 7 in [5] satisfy

R1 = R2 +Δ, (25)

where Δ = −I(X2, U ;Y ) + I(X2;Y |V ) + I(U ;Y1|X2, V ).
Proof: Invoking Lemma 3 in the expression of R2 in

Theorem 7 in [5] yields

R2 = I(X1, X2;Y )− I(Ŷ1;Y1|X2, X1, U, Y )

= I(X1, X2;Y )− I(Ŷ1;Y1|X2, X1, U, Y )

− I(X2;Y |V ) + I(Ŷ1;Y1|X2, U, Y )

= I(X1;Y |X2) + I(X1; Ŷ1|X2, U, Y ) + I(V ;Y )

= I(V ;Y ) + I(U ;Y |X2, V ) + I(X1;Y, Ŷ1|X2, U),
(26)

where the second equality follows Lemma 3. The third and
fourth equalities follows from using the chain rule and the
fact that, by construction, (V,X2, Y ) form the Markov chain
V → X2 → Y and that, conditional on (X2, U), (X1, Y1, Ŷ1)
form the Markov chain X1 → Y1 → Ŷ1, and (U,X1, Y ) form
the Markov chain U → X1 → Y .

Substituting for I(X1;Y, Ŷ1|X2, U) from (26) in the first
term of R1 in (3a) yields

R1 = R2−I(V ;Y )− I(U ;Y |X2, V ) + I(U ;Y1|X2, V )

= R2−I(X2, U ;Y ) +I(X2;Y |V ) +I(U ;Y1|X2, V )

= R2−I(X2,U ;Y )+I(X2;Y |V )+I(U ;Y1|X2,V ) (27)

= R2 +Δ,

where Δ � −I(X2, U ;Y ) + I(X2;Y |V ) + I(U ;Y1|X2, V ).
In writing (27) we have used the fact that, conditioned on
(X2, U), Y is independent of V .

To proceed with the proof of Theorem 2, we invoke the
construction in Section III-B into (25) to show that when γ1 ≤
γ0, Δ ≤ 0; i.e., in that region R1 is the constraining rate.

Invoking the construction in Section III-B, it is straightfor-
ward to show that

I(X2, U ;Y ) =
1

2
log2

(1+γ0+γ2+2
√
α0β0γ0γ2

1+α2γ0

)
, (28a)

I(X2, Y |V ) =
1

2
log2

(1 + (α1 + α2)γ0 + β1γ2
1 + (α1 + α2)γ0

)
, (28b)

I(U, Y1|X2, V ) =
1

2
log2

(1 + (α1 + α2)γ1
1 + α2γ1

)
. (28c)

Substituting these expressions into the expression of Δ in
Lemma 4 yields

Δ =
1

2
log2

((1 + (α1 + α2)γ1
1 + (α1 + α2)γ0

)(1 + α2γ0
1 + α2γ1

)
( 1 + (α1 + α2)γ0 + β1γ2

1 + γ0 + γ2 + 2
√
α0β0γ0γ2

))
. (29)

Noting that α1 + α2 ≤ 1 and β1 ≤ 1, it is immediate that
1+(α1+α2)γ0+β1γ2

1+γ0+γ2+2
√
α0β0γ0γ2

≤ 1. Furthermore, it can be shown that,

for γ1 ≤ γ0,
(

1+(α1+α2)γ1

1+(α1+α2)γ0

)(
1+α2γ0

1+α2γ1

)
≤ 1, which implies

that Δ ≤ 0. Using this in (25), we have that, when γ1 ≤ γ0,
R1 is the constraining rate and to maximize it we substitute
for R2 from (6d) and for Δ from (29) into (25), which yields

R1 =
1

2
log2

((1 + (α1 + α2)γ1
1 + (α1 + α2)γ0

)(1 + α2γ0
1 + α2γ1

)
(
1 + γ0(α1 + α2) + γ2β1

)( γ′

1 + γ′
))

. (30)

Invoking Lemma 3 and substituting for γ′ from (6b) in (30)
yields

R1 =
1

2
log2

((1 + (α1 + α2)γ1
1 + (α1 + α2)γ0

)(1 + α2γ0
1 + α2γ1

))
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+
1

2
log2

((
1 + α2(γ0 + γ1)

)(
1 + (α1 + α2)γ0

))
+

1

2
log2

(
1+(α1+α2)γ0

)
+β1γ2

β1γ2(1+α2γ0)+
(
1+α2(γ0+γ1)

)(
1+(α1+α2)γ0

) .
The first two terms are independent of {βj}1j=0, and the last
term is monotonically increasing in β1. Hence, the optimal
value of β1 in this SNR range is 1. Using this result, we
rewrite R1 as

R1 =
1

2
log2

((1 + (α1 + α2)γ1
1 + (α1 + α2)γ0

)(1 + α2γ0
1 + α2γ1

))

+
1

2
log2

((
1 + (α1 + α2)γ0 + γ2

))

+
1

2
log2

(
1 + α2(γ0 + γ1)

γ2(1+α2γ0)
1+(α1+α2)γ0

+
(
1 + α2(γ0 + γ1)

)
)
.

Since γ1 ≤ γ0, it can be shown that the first term is upper
bounded by 1 and the bound is reached when α1 = 0. The
second term is maximized when α1+α2 = 1. For the last term,
the denominator is minimized when α1+α2 = 1. The resulting
expression is monotonically increasing in α2 and is maximized
when α2 = 1. Hence, the rate maximizing power partitions
for γ1 ≤ γ0 are α2 = 1 and β1 = 1. From Proposition 1, such
power partitions reduce the generalized DF-CF scheme to the
CF scheme, which completes the proof of Theorem 2.

APPENDIX C
PROOF OF LEMMA 1 AND COROLLARY 1

A. Proof of Lemma 1

The direct part is proved by substituting γ1(1+γ1) = γ0(1+
γ0 + γ2) in (10). Simplifying yields R∗

CF = C(γ1). We will
focus on the case of γ2 > 0, i.e, the case in which the relay-
destination link is not broken. In this case, γ1 < γ0 + γ2.
Using this in (9), yields RDF,1 < RDF,2, which implies that
R∗

DF = R∗
DF,1 = C(γ1). This completes the proof of the

direct part.
To prove the converse, we need to show that if R∗

DF = R∗
CF

then γ1(1 + γ1) = γ0(1 + γ0 + γ2). We begin by providing
an upper bound on the maximum achievable rate of the CF
scheme using Gaussian signals, R∗

CF . From (10), we have, for
any ρ0 ≥ 0,

R∗
CF = C

(
γ0 +

γ1γ2
1 + γ0 + γ1 + γ2

)
< C(γ0 + γ2 + 2

√
ρ0γ0γ2).

Comparing this bound with (9), it can be seen that R∗
CF <

RDF,2. This implies that if the maximum achievable rate of the
DF scheme is given by R∗

DF = RDF,2 ≤ RDF,1, then R∗
CF <

R∗
DF . Hence for R∗

DF to be equal to R∗
CF , RDF,1 must be

the constraining rate of the DF scheme, i.e., R∗
DF = RDF,1 <

RDF,2. However, from (9), this implies that γ1 < γ0 + γ2.
Otherwise, if this condition is not satisfied, the maximum rate
of the DF scheme is achieved with ρi ≥ 0, i = 0, 1, such that∑1

i=0 ρi = 1 and RDF,1 = RDF,2.
From (9), it can be seen that, for γ1 < γ0 + γ2, R∗

DF =
RDF,1 = C(γ1). Equating this rate with R∗

CF in (10) yields
γ1(1 + γ1) = γ0(1 + γ0 + γ2), which completes the proof of
the lemma.

B. Proof of Corollary 1

The SNR region γ1(1 + γ1) > γ0(1 + γ0 + γ2) can be
divided into two non-overlapping sub-regions: γ1 ≥ γ0 + γ2
and γ0 + γ2 > γ1 > γ0(1+γ0+γ2)

1+γ1
.

For SNRs satisfying γ1 ≥ γ0 + γ2, it can be seen from (9)
that R∗

DF = RDF,1 = RDF,2 > C(γ0 + γ2). Now, the
expression of R∗

CF in (10) yields R∗
CF < C(γ0 + γ2). Hence,

in this SNR region, R∗
DF > R∗

CF .
We now consider the SNR region in which γ0 + γ2 >

γ1 > γ0(1+γ0+γ2)
1+γ1

. In this region, we have from (9) that
R∗

DF = C(γ1) = RDF,1 < RDF,2. Using the fact that in
this region γ1 > γ0(1+γ0+γ2)

1+γ1
in (10) yields R∗

DF > R∗
CF ,

which completes the proof of the first statement.
For the second statement of the corollary, it can be verified

that the condition that γ1(1+ γ1) < γ0(1+ γ0+ γ2) is equiv-
alent to the condition that γ1 < γ0 +

γ1γ2

1+γ0+γ1+γ2
< γ0 + γ2.

Using these inequalities to bound R∗
CF in (10) and noting that

in this region RDF,1 < RDF,2, it follows that R∗
DF < R∗

CF ,
which completes the proof of the second statement.

APPENDIX D
PROOF OF THEOREM 3

To prove this theorem, we will use contradiction. First, we
will assume that R∗

G = R∗
CF = R∗

DF , and then we will show
that this R∗

G and the corresponding power partitions and γ′ do
not satisfy the KKT necessary optimality conditions in (8).

First, we recall the result of Remark 1, indicating that the
generalized DF-CF scheme reduces to the CF scheme when
α2 = 1 and β1 = 1. Substituting from (12) in (11) yields

γ′ =
γ0

γ1 − γ0
. (31)

Note that the SNR condition in Lemma 1 implies that γ1 > γ0,
and hence that 0 < γ′ < ∞.

Next, we will examine the KKT system (8). We note that if
α2 = 1 and β1 = 1 are optimal, then for the complementary
slackness equality in (8f) with i = 4, 7, we must have λ4 =
λ7 = 0.

Substituting for γ′ from (31) in (8c), the coefficient of λ1

vanishes and using λ4 = 0 yields λ3
γ1

(1+γ0)2
+ λ6 = 0, which

implies that λ3 = λ6 = 0. Using this result and the fact that
γ′ < ∞ in (8e) yields λ1γ1 = λ2(1 + γ0 + γ2).

Now, invoking λ1+λ2 = 1, yields λ1, λ2 > 0; both λ1 and
λ2 are finite and bounded away from 0. Substituting for λ3, λ7

and γ′ in (8d) yields −λ2

√
α0

β0

γ0
√
γ0γ2

γ1
= λ8. Since λ2 > 0,

for this equality to be satisfied, we must have λ8 = 0, and√
α0

β0
= 0. (32)

Substituting for λ3, λ6 and γ′ in (8b) yields

λ1γ1 = λ2

√
β0

α0

γ0
√
γ0γ2

γ1
+ λ5. (33)

Now, the left hand side is finite. However, using (32), and
the fact that λ2 > 0 and λ5 ≥ 0 implies that the right hand
side is infinite. Hence, we conclude that the equality in (33)
does not hold. This indicates that, when the SNRs satisfy the
condition in Lemma 1, setting α2 = 1 and β1 = 1 does not
satisfy the KKT conditions necessary for optimality. Hence,
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reducing the generalized DF-CF to the CF scheme by setting
α2 = β1 = 1 is suboptimal; i.e., R∗

G > R∗
CF .

To complete the proof of the theorem, we note that at the
SNRs satisfying Lemma 1, R∗

DF = R∗
CF , which implies that,

in this region, R∗
G > R∗

DF .

APPENDIX E
PROOF OF THEOREM 4

Let ΔG = R∗
G −max{R∗

DF , R
∗
CF } and consider the cases

of γ1 ≤ γ0 and γ1 > γ0.
From Theorem 2, when γ1 ≤ γ0, R∗

G = R∗
CF ≥ R∗

DF , and
hence in that region, ΔG = 0.

We now consider the SNR region γ1 > γ0. From the
definition of ΔG, we can write

ΔG ≤ R∗
G −R∗

DF

= max
S

min{R1, R2} −R∗
DF

≤ max
S

R1 −R∗
DF , (34)

where S is the feasible set of the problem in (6), and R1 and
R2 are defined in (6c) and (6d), respectively. Using (9) and
the fact that ρ∗i ∈ [0, 1], i = 0, 1, and ρ∗0 + ρ∗1 = 1, we have

R∗
DF = C(γ0 + γ2 + 2

√
ρ∗0γ0γ2) = C(ρ∗1γ1). (35)

Using the monotonicity of the expression of R2 in (6d) in
γ′, we can write

R2 ≤ C(γ0 + γ2 + 2
√
α0β0γ0γ2). (36)

Since R∗
G ≥ R∗

DF , a comparison of (35) and (36) reveals that
α0β0 ≥ ρ∗0. But, since β0 ∈ [0, 1], we must have α0 ≥ ρ∗0.
Hence, invoking

∑2
i=0 αi =

∑1
i=0 ρ

∗
i = 1 yields

α1 + α2 ≤ ρ∗1. (37)

We will use (37) to obtain a bound on ΔG. In particular,
from (34) and (35), we can write

ΔG ≤ max
α1,α2∈[0,1]

1

2
log

(1+α2(γ0+γ1))(1+(α1+α2)γ1)

(1+α2γ1)(1+ρ∗1γ1)

≤ max
α2∈[0,1]

1

2
log
(
1 +

α2γ0
1 + α2γ1

)
(38)

≤ 1

2
log
(
1 +

γ0
1 + γ1

)
(39)

< 0.5 bpcu,

where (38) follows from invoking (37), (39) follows from the
monotonicity of the rational expression in α2, and the last
inequality follows from using the fact that γ1 > γ0.
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