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Abstract—This paper considers optimization of transmit power
allocation in a two-tier single input multiple output uplink
network. The proposed system model is general enough to cover
both emerging heterogeneous network (HetNet) architectures and
cognitive radio (CR) networks. The first tier, which is assumed to
have one user, represents a macrocell (or a primary user network)
and the second tier represents a femtocell (or a secondary user
network) in a HetNet (or a CR network). Second tier users share
the same resources with the first tier user and they form a single
input multiple output multiple access channel to their intended
base station while causing interference to the first tier user.
Near-optimum allocation of transmission powers maximizing the
aggregate communication rate under individual transmission
power constraints and a constraint on the total interference
power at the first tier user is obtained by considering low-
complexity signal decoders without interference cancelation at
the second tier base station. It is shown that the power allocation
is a modified version of the classical water-filling algorithm.

I. INTRODUCTION

The demand of both society and industry for increasing data

rates is currently growing at an unprecedented pace. Emerging

next generation multi-tier wireless systems, such as cognitive

radio (CR) networks and heterogenous networks (HetNets)

with multiple antennas, are among key wireless technologies

to meet these needs. The underlying design philosophy in both

systems is to make different wireless systems, with different

operating conditions, cell sizes and constraints, function in

the same frequency block harmoniously. More dynamic and

smarter interference-aware resource allocation policies are

required for such heterogenous wireless systems to co-exist

in the same radio spectrum. In this paper, we focus on the

optimization of transmission powers for a two-tier communi-

cation network, and obtain the structure of a near-optimum

power control policy maximizing aggregate data rates subject

to power and interference constraints.

Earlier types of wireless networks are designed to minimize

aggregate power consumption in a network while sustaining a

target signal to interference plus noise ratio (SINR) [1], which

is a well-understood research problem. However, rather than
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attaining target SINR values by using minimum power, the

problem for next generation communication networks is to find

power control policies that maximize information theoretic bit

rates under appropriate system and technological constraints.

Power control problem maximizing communication rates for

single tier networks is also relatively well-understood research

problem in the literature. For example, Yu et al. focused on

maximizing total data rate of a Gaussian vector multiple access

channel (MAC) in [2]. They assumed that successive interfer-

ence cancelation (SIC) can be performed at the receiving base

station. Their main result is the generalization of the single

user water filling solution to the studied multiuser scenario,

where interference is taken as background noise. Inaltekin and

Hanly in [3], treated interference as Gaussian noise for a single

antenna MAC scenario and showed that the optimum power

control policy maximizing the total data rate of users in this

case is binary power allocation where users either transmit

with full power or do not transmit at all. The main point of

difference between our model and those studied in [2] and

[3] is that we consider interference constraints to regulate

transmission powers in different network tiers.

Next generation wireless systems such as CR networks

and HetNets are expected to include multiple tiers of users

operating in the same radio spectrum. This leads to a change

of design philosophy to distribute transmit power resources

among users. To this end, Ghasemi and Sousa focused on

an interference power limited power optimization problem for

cognitive radio networks consisting of one primary user (PU)

and one secondary user (SU) in [4]. In particular, they found

the optimum power control policy maximizing the ergodic data

rate of the SU while constraining the interference it causes to

the PU. Their solution turns out to be a modified water-filling

solution where the water level is found using the interference

constraint. The single user scenario in [4] is extended to the

multiuser scenario in [5] by maximizing the ergodic data rate

of a group of users in a secondary network while constraining

their average transmit power and the average interference

power caused to the primary user. They also showed that the

optimal power allocation is a modified version of the water-

filling solution. Our work in this paper extends the results



reported in [4] and [5] to multi-antenna two-tier networks.

In [6], the authors considered the problem of maximizing the

data rate of a MIMO multiple access secondary network, while

limiting the interference caused to each PU. To simplify the

solution, they also limited the total number of SUs in the

network and used quantized power levels. They obtained sub-

optimal solutions that provide some new insights about the

structure of the optimum power control. The work in [6] is

similar to our work but we do not limit the number of active

secondary users and we use continuous power levels rather

than quantized ones.

In this paper, we focus on a single input multiple output

(SIMO) two-tier network that can be thought of as either

representing a SIMO HetNet scenario or a SIMO-CR net-

work scenario. For the HetNet scenario, the first and second

tiers respectively correspond to a macrocell and a femtocell.

Similarly, for the CR network case, the first tier can be

considered as the primary network and the second tier becomes

a secondary network. For simplicity, we will assume that there

is only one active first tier user (FTU) and multiple second

tier users (STU). The use of a single active FTU is a common

assumption in the literature, e.g., to maximize total information

theoretic capacity by scheduling at any one time only the user

with the best channel [7]. The STUs form a multiple access

channel with second tier base station (STB). The results that

we obtain can be adapted to downlink using uplink-downlink

duality [8]. In fact, this is one of our future goals.

The STUs are assumed to have single antenna and the STB

is equipped with multiple antennas. Device size limitations

force using single antenna at the user side, and multiple

antenna users will be considered as a future work. STUs use

the same resources as the FTU, and they interfere with the

signal reception at the FTU. In our previous work [9], we

have assumed that the STB is capable of performing successive

interference cancelation (SIC). In this work, we remove this

assumption and use the multiple antennas to create a receive

filter that mitigates the inter-user interference at the STB.

Different from the current work, the paper [9] only considered

a single input single output (SISO) communication scenario.

The power optimization problem studied in this paper turns

out to be non-convex optimization problem due to interference.

Hence, to overcome this difficulty, we utilize interference

canceling receive filters to simplify the original problem into

a convex one. We show that although the solution for the

modified power optimization problem is not necessarily a

solution for the original problem, it provides a close lower

bound. We further show that there are some nice structural

properties of the modified optimization problem that leads

to a sum-rate maximizing power allocation in the form of a

modified water-filling power allocation solution.

Throughout the paper the scalars are represented by lower-

case, vectors are shown as either lowercase bold or uppercase

bold overlined, and matrices are shown as uppercase bold

characters. The operator diag {·} places the elements on

the diagonal of a square matrix, (·)T and (·)H denote the

transpose and the Hermitian of a vector/matrix, respectively.

The operator |·| gives the absolute value for scalars.

II. SYSTEM MODEL

We consider a two-tier network, first tier has one user (FTU)

with single antenna, and second tier includes N users (STUs)

along with their corresponding base station forming a SIMO

network. Our model is illustrated schematically in Fig. 1.
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Fig. 1. An illustration of the studied system model with tier-2 users forming
a SIMO MAC to their base station and interfering with the tier-1 user.

We focus on the spectrum sharing paradigm [10] for the

co-existence of both network tiers in the same radio spectrum,

which leads to an interference and noise impaired system. As

illustrated in Fig. 1, the STUs form a SIMO-Multiple Access

Channel (SIMO-MAC) with second tier base station (STB) and

cause interference to the FTU. The vector hi corresponds to

the SIMO channel coefficient vector between the ith STU and

its base station. Similarly, gi corresponds to the interference

channel coefficient between the ith STU and the FTU. It is

assumed that direct and interference channel state information,

i.e., hi and gi for i ∈ {1, 2, . . . , N}, is perfectly known for

all users at the STB, which is a commonly used assumption

in the literature [11], [12]. Block-fading model is assumed to

model direct and interference channel variations over time.

Each STU will transmit with power Pi ∈ [0, Pmax], for i ∈
{1, 2, . . . , N} , based on the channel conditions.

Unlike our previous work in [9], we are assuming that

successive interference cancellation (SIC) is not available at

the STB. However, we added multiple antennas to the STB,

and therefore we can still suppress the intra-tier interference

by orthogonalizing direct channels from STUs to the STB, as

will be explained in Section III of the paper. Unlike [9], these

multiple antennas enable user-by-user detection in the receiver.

In order to achieve this, the STB should have at least as many

antennas as the total number of STUs.

Considering the intra-tier interference at the STB as Gaus-

sian noise, the aggregate communication rate achievable at the

STB is given by [13]

R total
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where P̄ =
[
P1 · · · PN

]T
, and σ2

n includes both the

variance of the zero mean, additive white Gaussian noise and

interference caused by the FTU at the receiver (STB).

The problem is to find the optimal power allocation that

maximizes the total data rate of STUs subject to per user power

constraints and the total interference power constraint at the

FTU, which is formally given as

P̄⋆ = arg max
P̄

R total

(
P̄
)

s.t. Pi ≥ 0, ∀i,

Pi ≤ Pmax, ∀i,
N∑

i=1

|gi|
2
Pi ≤ Q,

(2)

where, the total interference power limit is represented as Q.

This is a non-convex power optimization problem due to the

intra-tier interference terms in the cost function. To simplify

this problem, we first design a receive filter at the STB to

diagonalize the direct channels, like the one in [14]. This

operation simplifies the power optimization problem in (2)

by turning the non-convex objective sum-rate function into

a convex function. This means that the solution we obtain

after this simplification is the global optimum of the simplified

problem but it may not be a global optimum of the original

problem due to the data processing inequality [15]. However,

to the best of our knowledge, there is no similar work in the

literature that combines a MAC without SIC in a multi-tier

network that is constrained by the interference caused from

one tier to another and this solution is the first step towards

finding the optimum power allocation to the original problem.

III. RECEIVE FILTER DESIGN

In order to eliminate the intra-tier interference through

a receive filter, we first introduce an auxiliary matrix

Ĥk =
[
h1 · · · hk−1 hk+1 · · · hN

]

NST B×(N−1)
, i.e.,

a matrix with all the channel vectors between STUs and

STB except for the kth STU’s channel. We then take

the singular value decomposition of this matrix as Ĥk =
[

Û1
k Û0

k

]

NST B×NST B

[

Σ̂k

0

]

NST B×(N−1)

VH
k .

Here, Σ̂k is an (N − 1)×(N − 1) matrix with non-zero sin-

gular values of Ĥk, and Û0
k is an NSTB×(NSTB − (N − 1))

matrix with vectors that are associated with the zero singular

values of Ĥk. The columns of Û0
k span the left null space of

Ĥk, therefore, multiplying Ĥk from the left by the columns

of Û0
k yields zero. Hence, selecting the columns of the receive

filter, U =
[
u1 · · · uN

]
, from the columns of Û0

k, results

in an interference free orthogonalized equivalent channel.

Capacity can further be increased by choosing the vector uk

as parallel as possible to hk, i.e., we should choose the vector

uk that maximizes abs
(
uH

k hk

)
. Hence, the receive filter is

formed as

U =
[
u1 · · · uN ·NST U

]

︸ ︷︷ ︸

NST B×(N ·NST U )

−→

kth column is a vector

taken from Û0
k, that

maximizes abs
(
uH

k hk

)
.

(3)

then the effective channel after the receive filter becomes

Heff = UHH = diag {µ1, . . . , µN}.

We observe that the effective channel Heff is a diagonal

matrix, i.e., each STU communicates in a point to point

scenario where ith STU has a channel coefficient µi; in other

words, the receive filter eliminates the intra-tier interference.

We also observe that the sum rate is just the sum of data rates

achieved by each user. This sum-rate can be shown as

R′
(
P̄
)

=
N∑

i=1

log2

(

1 +
Pi |µi|

2

σ2
n

)

. (4)

where R′ is the aggregate communication rate after the use of

the receive filter.

The important point here is the fact that the designed receive

filter may not be unitary, i.e., UHU 6= I. Hence, the noise at

the receive filter output at the STB may turn out to be colored

Gaussian noise. It is known that in general colored noise gives

a rate Ccolored ≤ Cwhite since we assume that noise is spatially

white in the decoding process [16]. Therefore, we show the

resulting sum-rate as R′
(
P̄
)

in (4), and this sum-rate is lower

than or equal to the rate in (1), i.e., R′
(
P̄
)
≤ Rtotal

(
P̄
)
. The

equality, hence optimality, occurs when UHU = I.

IV. NEAR-OPTIMUM POWER ALLOCATION

After the diagonalization of the channel by the receive

filter U, user-by-user detection is possible. The total data rate

becomes the sum of each STU’s individual data rate, then the

new optimization problem can be written as

P̄⋆ = arg max
P̄

N∑

i=1

log2

(

1 + Pi |µi|
2
)

s.t. Pi ≥ 0, ∀i,

Pi ≤ Pmax, ∀i,
N∑

i=1

|gi|
2
Pi ≤ Q,

(5)

where, without loss of generality, the variance of the Gaussian

noise is taken as 1.

It is obvious that the cost function of this problem is

different than that of our previous work in [9], therefore,

the allocation procedure is different too. The optimum power

allocation for this problem is given in the theorem below,

Theorem 1: For a two-tier network, that contains one FTU

and multiple STUs where the STB is using a receive filter to

remove the inter-user interference, the optimum power alloca-

tion under power constraints and an interference constraint on

the FTU is given by the modified water-filling power allocation

algorithm. The solution to this problem is

P ⋆
i = min

[(

1

ln (2)λ |gi|
2 −

1

|µi|
2

)

, Pmax

]+

, (6)

N∑

i=1

min

[(

1

ln (2)λ |gi|
2 −

1

|µi|
2

)

, Pmax

]+

|gi|
2

= Q, (7)

where (x)
+

= max (x, 0).



Proof: To solve the problem in (5), we need to find the

Lagrangian,

L = −

N∑

i=1

log2

(

1 + Pi |µi|
2
)

+ λ

(
N∑

i=1

|gi|
2
Pi − Q

)

and equate its first derivative to zero [17], i.e.,

∂L

∂Pi

∣
∣
∣
∣
Pi=P ⋆

i

=
1

ln (2)

|µi|
2

1 + P ⋆
i |µi|

2 − λ |gi|
2

= 0. (8)

We incorporate the first and second constraints to the

solution at the next step as follows

P ⋆
i = min

[(

1

ln (2)λ |gi|
2 −

1

|µi|
2

)

, Pmax

]+

. (9)

Equation (9) defines the modified water-filling power allo-

cation with 1
ln(2)λ|gi|

2 as the water level. This level is found

by solving

N∑

i=1

|gi|
2
P ⋆

i = Q for the Lagrange multiplier λ.

The optimum power allocation solution in (6), first the water

level is defined such that the interference constraint is not

violated. If there are users that need more power than that

level then they are set to have zero power, and if the power of

an STU is higher than Pmax then that user is set to work with

Pmax. Next a set is created which includes STUs with neither

zero power nor Pmax, (S = {i : 0 < Pi < Pmax}). Afterwords

the remaining power is calculated using the interference con-

straint and it is distributed evenly within the users in S. Again,

if any user is allocated with power more than Pmax, that user’s

power is set to Pmax and it is discarded from the set S. This

power distribution continues until interference constraint is

satisfied.

As follows, the solution is similar to the conventional water-

filling solution with a few structural differences. The first

and probably the most clear difference is that the process is

actually interference-filling rather than a power-filling process

because the water level is found using the total interference

constraint in (7). Moreover, as another difference, the water

level, in (6), has an additional multiplier (interference channel

power gain |gi|
2
) in its denominator. Furthermore, note that

transmit power of each antenna is upper limited rather than

a per user power limit. These differences are the reasons to

call the solution modified water-filling solution. In addition,

one has to remember that this solution is optimum for the

simplified problem given in (5), but it may not be a global

optimum solution of the original problem in (2). Therefore

we call this solution near-optimum.

It can be obviously seen that if the interference channel

power gain (|gi|
2
) increases, then the allocated power to the

related user decreases, i.e., the interference channel power gain

effects each user’s water level directly. Therefore, increasing

the interference channel power gain, decreases the related user

data rate and eventually decreases the total data rate.

V. SIMULATIONS AND RESULTS

In the simulations the model has 1 FTU and varying number

of STUs (3, 5, 7, 9) each with single antenna. The number of

antennas in the STB is equal to the total number of STUs (i.e.,

3, 5, 7, 9). In all of the simulations, maximum power per user

is set to 1 Watt, interference constraint Q is chosen as 1 Watt,

and noise is zero-mean circularly symmetric additive white

Gaussian noise with variance σ2. Without loss of generality,

we will assume the noise variance as σ2 = 1 in the sim-

ulations. Mean of the power gains of the channels between

STUs and STB is constant at unity but the mean channel

power gains between the FTU and STUs are varying. For each

channel configuration, we plot the ergodic sum-rates achieved

by averaging over long time intervals. That is, for any given

H =
[
h1 h2 · · · hN

]
and g =

[
g1 g2 · · · gN

]T
,

we first solve the optimum power control problem posed in (5).

Then, we average data rates over H and g to obtain ergodic

sum-rates E
H,g

[R (P ⋆ (H,g))]. These rates are plotted as a

function of the number of STUs, and the effect of different

fading parameters (means of channel power gains) are inves-

tigated.
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Fig. 2. Comparison of SISO scenario with SIC versus SIMO scenario without
SIC.

In Fig. 2, both STU-STB and STU-FTU channels are chosen

as Rayleigh fading channels. Sum-rate is observed for both

SISO scenario with SIC and SIMO scenario without SIC for

different number of STUs and different interference channel

means. As expected, an increase in the mean of the power

gains of interference channels results in a decrease in the

sum-rate. This result can be seen in the power allocation

in (6). As seen, increasing |gi|
2
, decreases P̂i, that is, the

power of the related antenna decreases; this, in turn, decreases

the data rate of the corresponding user. Moreover, it can be

seen that the multiple antennas in the SIMO scenario do not

only eliminate the interference, but they also increase the data

rate of STUs. In the SIMO scenario increasing the means of

interference channel power gains decreases the data rate more

in comparison to the decrease in the SISO scenario.
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SIMO − eq. (1) − Brute Force

SIMO − eq. (1) − Lower Bound

Fig. 3. Comparison of SISO scenario with SIC versus SIMO scenario without
SIC.

As mentioned earlier, the allocation found by the problem

in (5) may not give a global optimum solution to the original

problem in (2). Actually, using the P ⋆
i ’s found by the modified

water-filling algorithm in the rate formula (6) achieves a lower

bound for the optimum aggregate communication rate. To find

out how close this lower bound is, we need to find a brute force

maximum of the data rate in (1) by using an exhaustive search

method and compare the results.

In Fig. 3, the lower bound and the exhaustive search results

of the optimum rate for the problem in (2) is compared. It can

be observed that the brute force solution and the lower bound

are close to each other. This suggests that the lower bound,

found using the solution of the simplified problem, is close to

the optimum solution of the original problem.

VI. CONCLUSIONS

Data rate maximization for a two-tier network framework

that covers both a HetNet and a CR network is examined in

this paper. First tier may represent a macrocell of a HetNet or

a primary network in cognitive radio network, and the second

tier can be thought of as a femtocell or a secondary network

for a Hetnet, or a cognitive radio network, respectively. It

is assumed that all users share the same resources, hence,

in the uplink the STUs cause interference to the FTU. The

problem is to maximize the aggregate data rate of STUs while

constraining the total interference caused to the FTU.

It is assumed that the STB is not capable of doing successive

interference cancelation (SIC), hence, suffers from inter-user

interference. This causes the cost function in (2) to be non-

convex. In order to mitigate this interference and have a

simplified and convex cost function, a receive filter is designed

to orthogonalize each channel of each antenna.

In the optimization problem, along with individual power

constraints, the interference caused by STUs to the FTU is

held under a threshold level. The optimum power allocation,

for the simplified problem, is found as a modified water-filling

power allocation where the power level is found using the total

interference power constraint. To the best of our knowledge,

this solution can be thought as a generalized version to the

similar solutions in the literature. Also, this solution is a close

lower bound and a near-optimum solution to the original non-

convex problem. Simulations for Rayleigh fading scenarios

showed the evolution of the total data rate with respect

to number of STUs and varying channel parameters. It is

seen that the interference channel, i.e., the channel between

STUs and FTU, directly effects the data rate of users and

increasing the number of antennas not only helps eliminating

the interference but also helps increasing the data rate.

Using the optimum solution of the simplified problem in the

original communication rate in (1), we found a lower bound

to the original problem in (2). To show that this lower bound

is a tight bound, we compared it with a brute force solution

of the original problem.
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