A Cross-Layer Design for Generic Interference-Limited Multicarrier Networks

Rozita Rashtchi, Ramy H. Gohary, and Halim Yanikomeroglu Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

22-25 June 2014

IEEE International Symposium on Signal Processing Advances in Wireless Communications (SPAWC) 2014

Toronto, Canada

Introduction

Future wireless communication systems:

- ► Support large number of users,
- ► Provide High data rates,
- ► Offer flexibility in QoS.

To meet these prospective demands, scarce resources including time, frequency and power must judiciously exploited.

Design Variables

- **Data Routes:** $x_{\ell k}^{(d)}$ is the rate of the data intended for destination d on subcarrier k of link ℓ and $s_n^{(d)}$ is the rate of data injected into the network at node n and intended for destination d.
- **Power Allocations:** $p_{\ell k}$ is the power allocated for transmission on subcarrier k of link ℓ .
- Subcarrier Schedules: $\gamma_{\ell_1\ell_2...\ell_m}^{(k)}$ is the variable that determines the fraction of the signalling interval during which links $\ell_1, \ell_2, \ldots, \ell_m \in \mathcal{L}$ are simultaneously 'active' on subcarrier $k \in \mathcal{K}$ and the L m remaining

Numerical Example

- An exemplary network of N = 4 nodes and K = 4 subcarriers.
- The channels are quasi-static frequency flat Rayleigh fading with log-normal shadowing and pathloss components.
- Monte carlo simulation over 10 independent drops.
- ► 16380 time-share variables, 98 flow

Challenges

- Separate design of the network functionalities degrades the performance.
- Using a subcarrier exclusively by one node (i.e., without reuse) or throughout the signalling interval (i.e., without time-sharing) is relatively easy to implement but deprives the network from achieving potential higher rates.

Approach

- A cross-layer design that incorporates joint routing, scheduling and power allocation (JRSPA).
- Subcarriers are allowed to be reused and time-shared jointly by multiple links.
- This design generalizes currently existing designs.

Previous Work

links in ${\cal L}$ are 'silent'.

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

Signalling interval for k=1

(Flow conservation law)

(Non-overlapping schedules)

(Power Budget)

(Broadcasting)

(Half-duplex)

Design Problem

 $\max_{\{s_n^{(d)}\},\{x_{\ell k}^{(d)}\},\{p_{\ell k}\},\{\gamma_{\ell_1 \ell_2 \dots \ell_m}\}} \sum_{d \in \mathcal{D}} \sum_{n \in \mathcal{N} \setminus \{d\}} w_n^{(d)} s_n^{(d)},$ subject to $\sum_{\substack{\ell \in \mathcal{L} \ k \in \mathcal{K}}} \sum_{k \in \mathcal{K}} a_{n\ell} x_{\ell k}^{(d)} = s_n^{(d)},$ $\sum_{\substack{k \in \mathcal{K} \ \ell_1 \in \mathcal{O}(n)}} \sum_{m=1}^{L} \sum_{\ell_2 \in \mathcal{L}} \cdots \sum_{\ell_m \in \mathcal{L}} \gamma_{\ell_1 \dots \ell_m}^{(k)} p_{\ell_1 k} \leq P_n,$ $\sum_{m=1}^{L} \sum_{\ell_1 \in \mathcal{L}} \cdots \sum_{\ell_m \in \mathcal{L}} \gamma_{\ell_1 \dots \ell_m}^{(k)} \leq 1,$ $a_{n\ell_1}^+ a_{n\ell_2}^+ \sum_{m=2}^{L} \sum_{\ell_3 \in \mathcal{L}} \cdots \sum_{\ell_m \in \mathcal{L}} \gamma_{\ell_1 \dots \ell_m}^{(k)} = 0,$

 $a_{n\ell_1}^+ a_{n\ell_2}^- \sum_{m=2}^{L} \sum_{\ell_3 \in \mathcal{L}} \cdots \sum_{\ell_m \in \mathcal{L}} \gamma_{\ell_1 \dots \ell_m}^{(k)} = 0,$

variables and 48 power variables.

Sum-Rate (equal weights)

Sum-Rate (unequal weights)

- JRSPA (w/o TS, w/o FR): is NP-hard. Efficient algorithms were proposed.
- JRSPA (w. TS, w/o FR): is convex. Efficiently solved.
- JRSPA (w/o TS, w. FR): is NP-hard. A Suboptimal algorithm was proposed.
- JRSPA (w. TS, w. FR): is the main focus of this work.

System Model

- An OFDMA network with N nodes and L = N(N-1) links is considered.
- \blacktriangleright Each link has K subcarriers.
- ► There are D receivers across the network, $D \leq N$.
- Channels are time-invariant during each signalling interval.
- Nodes are able to send, receive and/or relay data.
- Half duplex operation mode, infinite backlog at source nodes and multihop routing are assumed.

Design Problem Overview

This problem is nonconvex, but shares some common features with the GP framework. To take the advantage of this framework, we define $s_n^{(d)} = \log_2 t_n^{(d)}, \quad x_{\ell k}^{(d)} = W \log_2 r_{\ell k}^{(d)}.$

Geometric Programming Monomial Approximation Let $z \in \mathbb{R}^n_+$. A standard GP is A monomial approximation of a differentiable function $h(z) \ge 0$ near $\min_{z} f_0(z),$ $z^{(0)}$ is st. $f_i(z) \le 1, \quad i = 1, \dots, m,$ $h(z) pprox h(z^{(0)}) \prod_{i=1}^{n} \left(\frac{z_i}{z_i^{(0)}}\right)^{\beta_i}.$ $g_i(z) = 1, \quad i = 1, \dots, p,$ $g_i = c_0 \pi_i z_i^{\alpha_i}$ are monomials, and where $\beta_i = \frac{z_i^{(0)}}{h(z^{(0)})} \frac{\partial h}{\partial z_i}\Big|_{z=z^{(0)}}$. $f_i = \Sigma_k c_k \pi_i z_i^{\alpha_{ik}}$ are posynomials. ► A GP can be easily converted ► The product of monomials is a to a convex problem. monomial.

Weighted Sum-Rate

Spectral efficiency is log₂(1 + SINR). This network is represented by a complete weighted directed graph.

GP-Approximated Design Problem

- Using the new variables, the objective and flow constraints are GP-compatible.
- ► The power budget and non-overlapping constraints are GP-compatible.
- In broadcasting and half-duplex constraints "= 0" is replaced with "≤ ε" to make it GP-compatible.
- The RHS of capacity constraint is approximated with a product of monomial approximations of each term.
- ► The non-negativity constraints are GP-compatible.
- Starting from a feasible power allocation and iterating on this GP is guaranteed to converge to a locally optimal solution, satisfying the KKT conditions.

Conclusion

- We considered a cross-layer design that incorporates joint routing, scheduling and power allocation with both FR and TS.
- We developed an efficient iterative algorithm that its convergence to a locally optimum is guaranteed.
- This design generalizes the existing designs in which only one of these aspects are considered and offers significant gains over them.

