
A Cross-Layer Design for Generic Interference-Limited
Multicarrier Networks

Rozita Rashtchi, Ramy H. Gohary, and Halim Yanikomeroglu
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

22-25 June 2014 IEEE International Symposium on Signal Processing
Advances in Wireless Communications (SPAWC) 2014 Toronto, Canada

Introduction

Future wireless communication systems:
I Support large number of users,
I Provide High data rates,
I Offer flexibility in QoS.
To meet these prospective demands, scarce
resources including time, frequency and power
must judiciously exploited.

Challenges

I Separate design of the network
functionalities degrades the performance.

I Using a subcarrier exclusively by one
node (i.e., without reuse) or throughout
the signalling interval (i.e., without
time-sharing) is relatively easy to
implement but deprives the network from
achieving potential higher rates.

Approach

I A cross-layer design that incorporates
joint routing, scheduling and power
allocation (JRSPA).

I Subcarriers are allowed to be reused and
time-shared jointly by multiple links.

I This design generalizes currently existing
designs.

Previous Work

I JRSPA (w/o TS, w/o FR): is NP-hard.
Efficient algorithms were proposed.

I JRSPA (w. TS, w/o FR): is convex.
Efficiently solved.

I JRSPA (w/o TS, w. FR): is NP-hard. A
Suboptimal algorithm was proposed.

I JRSPA (w. TS, w. FR): is the main
focus of this work.

System Model

I An OFDMA network with N nodes and
L = N(N − 1) links is considered.

I Each link has K subcarriers.
I There are D receivers across the

network, D ≤ N .
I Channels are time-invariant during each

signalling interval.
I Nodes are able to send, receive and/or

relay data.
I Half duplex operation mode, infinite

backlog at source nodes and multihop
routing are assumed.

I Spectral efficiency is log2(1 + SINR).
I This network is represented by a

complete weighted directed graph.
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Fig. 1: A network with N = 4, K = 2 (solid and dashed lines) and D = {1, 2}.
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Design Variables

I Data Routes: x(d)
`k is the rate of the data intended for destination d on

subcarrier k of link ` and s(d)
n is the rate of data injected into the network

at node n and intended for destination d.
I Power Allocations: p`k is the power allocated for transmission on

subcarrier k of link `.
I Subcarrier Schedules: γ(k)

`1`2...`m is the variable that determines the
fraction of the signalling interval during which links `1, `2, . . . , `m ∈ L are
simultaneously ‘active’ on subcarrier k ∈ K and the L−m remaining
links in L are ‘silent’.
. For example, a network with L = 3 links and K = 1 subcarrier:
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Design Problem

max
{s(d)

n },{x(d)
`k },{p`k},{γ`1`2...`m}

∑
d∈D

∑
n∈N\{d}

w(d)
n s

(d)
n ,

subject to
∑
`∈L

∑
k∈K

an`x
(d)
`k = s(d)

n , (Flow conservation law)
∑

k∈K
∑

`1∈O(n)
L∑

m=1
∑

`2∈L
· · · ∑

`m∈L
γ

(k)
`1...`mp`1k ≤ Pn, (Power Budget)

L∑
m=1

∑
`1∈L
· · · ∑

`m∈L
γ

(k)
`1...`m ≤ 1, (Non-overlapping schedules)

a+
n`1
a+
n`2

L∑
m=2

∑
`3∈L
· · · ∑

`m∈L
γ

(k)
`1...`m = 0, (Broadcasting)

a+
n`1
a−n`2

L∑
m=2

∑
`3∈L
· · · ∑

`m∈L
γ

(k)
`1...`m = 0, (Half-duplex)

∑
d
x

(d)
`k ≤ γ

(k)
` log(1 + p`kg`k) + L∑

m=1
γ

(k)
`,`1...`m log

1 + p`kg`k
1 + ∑L

m=1 p`mkg
′
`mk

 ,

(Link capacity)
x

(d)
`k , s

(d)
n , γ`1`2...`m, p`k ≥ 0, (Non-negativity)

Design Problem Overview

This problem is nonconvex, but shares some common features with the GP
framework. To take the advantage of this framework, we define
s(d)
n = log2 t

(d)
n , x

(d)
`k = W log2 r

(d)
`k .

Geometric Programming

Let z ∈ Rn
+. A standard GP is

min
z

f0(z),
st. fi(z) ≤ 1, i = 1, . . . ,m,

gi(z) = 1, i = 1, . . . , p,
gi = c0

∏
i z

αi
i are monomials, and

fi = ∑
k ck

∏
i z

αik
i are posynomials.

I A GP can be easily converted
to a convex problem.

Monomial Approximation

A monomial approximation of a dif-
ferentiable function h(z) ≥ 0 near
z(0) is

h(z) ≈ h(z(0)) n∏
i=1


zi

z
(0)
i


βi
.

where βi = z
(0)
i

h(z(0))
∂h
∂zi

∣∣∣∣∣∣z=z(0).

I The product of monomials is a
monomial.

GP-Approximated Design Problem

I Using the new variables, the objective and flow constraints are
GP-compatible.

I The power budget and non-overlapping constraints are GP-compatible.
I In broadcasting and half-duplex constraints “= 0” is replaced with “≤ ε”

to make it GP-compatible.
I The RHS of capacity constraint is approximated with a product of

monomial approximations of each term.
I The non-negativity constraints are GP-compatible.
Starting from a feasible power allocation and iterating on this GP is guaranteed
to converge to a locally optimal solution, satisfying the KKT conditions.

Numerical Example

I An exemplary network of N = 4 nodes
and K = 4 subcarriers.

I The channels are quasi-static frequency
flat Rayleigh fading with log-normal
shadowing and pathloss components.

I Monte carlo simulation over 10
independent drops.

I 16380 time-share variables, 98 flow
variables and 48 power variables.
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Conclusion

I We considered a cross-layer design that
incorporates joint routing, scheduling and
power allocation with both FR and TS.

I We developed an efficient iterative
algorithm that its convergence to a
locally optimum is guaranteed.

I This design generalizes the existing
designs in which only one of these
aspects are considered and offers
significant gains over them.


