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Abstract

The focus of this thesis is on studying the tradeoff between efficiency and fairness in

interference-limited cellular networks. We start by characterizing the optimal trade-

off between efficiency and fairness in general resource allocation problems, including

those encountered in cellular networks, where efficiency is measured by the sum-rate

and fairness is measured by the Jain’s fairness index. Among the commonly-used

methods to approach these problems is the one based on the α-fair policy. Analyzing

this policy, we show that it does not necessarily achieve the optimal Efficiency-Jain

Tradeoff (EJT) except for the case of two users. When the number of users is greater

than two, we prove that the gap between the efficiency achieved by the α-fair pol-

icy and that achieved by the optimal EJT policy for the same Jain’s index can be

unbounded. Finding the optimal EJT corresponds to solving potentially difficult

non-convex optimization problems. To alleviate this difficulty, we derive sufficient

conditions, which are shown to be sharp and naturally satisfied in various radio re-

source allocation problems. These conditions provide us with a means for identifying

cases in which finding the optimal EJT can be reformulated as convex optimization

problems. The new formulations are used to devise computationally-efficient resource

schedulers that achieve the optimal EJT and surpass the baseline schedulers in terms

of sum-rate efficiency, Jain’s fairness index, median rate, and user satisfaction, with-

out incurring additional complexity.

Applying the proposed optimal EJT schedulers in interference-limited cellular
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networks requires the development of efficient interference management techniques.

Inter-cell interference coordination (ICIC) is one of the most prominent techniques

to manage interference by coordinating the allocation of radio resources across mul-

tiple cells. The problem of achieving various efficiency-fairness tradeoffs, including

optimal EJT, in the long-term average rates can be cast as a multi-cell weighted

sum-rate maximization optimization problem. By identifying a separable structure

and a network-flow structure, we show that such optimization problem is amenable

to powerful optimization methods, including the primal-decomposition method, the

projected-subgradient method, and the network-flow optimization methods. Using

these optimization methods, we propose a polynomial-time distributed ICIC scheme

that finds a near-optimum multi-cell resource allocations. In comparison with the

baseline static and dynamic ICIC schemes, the proposed scheme is shown to achieve

higher gains in efficiency, Jain’s fairness index, cell-edge rate, and outage probability.
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Chapter 1

Introduction

1.1 Motivation

The ever-increasing demand for high-rate mobile data access is expected to grow

at an unprecedented pace. For instance, according to a recent mobile traffic fore-

cast report by Cisco [1], global mobile data traffic is expected to increase 18-fold

by 2016 as compared to 2011. Such a substantial increase in mobile data traffic

presents a tremendous challenge to service providers due to mainly the scarcity of

radio resources.

Allocating scarce radio resources to multiple users encounters conflicting goals

between efficiency and fairness. For instance, favouring a certain class of users may

increase the system efficiency, but would result in the dissatisfaction of other classes of

users. In contrast, providing equal benefits to all users may result in higher fairness,

but will potentially result in low efficiency. In the context of radio resource allocations

considered in this thesis, efficiency is measured by the sum-rate delivered to the users

of the network, while fairness is measured by the widely used Jain’s fairness index [2]–

a bounded continuous measure that conforms to standard fairness benchmarks. To

control the emphasis placed on either fairness or efficiency aspects, the provider uses a

tradeoff policy, which, unless properly chosen, results in wasteful allocations. Hence,
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for efficient utilization of resources, it is crucial to design an optimal Efficiency-Jain

Tradeoff (EJT) policy whereby the system provider allocates its resources in such a

way that no other allocation provides a strictly higher sum-rate efficiency and at the

same time be fairer to the users, as measured by Jain’s index.

In order to meet the ever-increasing demand for high-rate mobile data access,

we need not only to efficiently and fairly allocate the scarce resources, but also to

aggressively reuse these resources across the network. However, uncontrolled ag-

gressive reuse can potentially results in unacceptable interference levels, which can

complicate the allocation of these resources in a fair and an efficient manner. For

instance, reuse-1, in which all radio resources are used in every cell, is an example

of an aggressive frequency reuse scheme. While reuse-1 can potentially achieve high

sum-rate efficiency, it can result in unacceptable fairness levels as it jeopardizes the

throughput experienced by users close to the cell-edge, due to the excessive interfer-

ence experienced by these users. Conventionally, interference is mitigated by static

resource partitioning and frequency/cell-planning, where cells within close proximity

are assigned orthogonal resources. Static resource partitioning techniques suffer from

two drawbacks. First of all, the sum-rate efficiency is significantly reduced since each

cell is allocated only a fraction of the available resources. Secondly, frequency/cell-

planning may not be possible in emerging cellular networks where new low power

base-stations (BSs), such as femto-/pico-BSs, are expected to be deployed in an ad

hoc manner, without prior planning. To overcome these drawbacks, inter-cell inter-

ference coordination (ICIC) is introduced as one of the most prominent techniques to

manage interference by coordinating the allocation of radio resources across multiple

cells. Such coordination can potentially improve the efficiency-fairness tradeoff in the

entire network.

The main focus of this thesis is on investigating the optimal tradeoff between sum-

rate efficiency and Jain’s fairness index in resource allocation and devising distributed
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ICIC schemes that can achieve such optimal tradeoff in interference-limited cellular

networks.

1.2 Overview

1.2.1 Optimal Tradeoff between Sum-Rate Efficiency and

Jain’s Fairness Index in Resource Allocation

In the first part of the thesis, we study the tradeoff between the sum-rate efficiency

and Jain’s fairness index in general resource allocation problems. Such problems are

frequently encountered in wireless communication systems with M users. Among the

commonly-used methods to approach these problems is the one based on the α-fair

policy [3]. Analyzing this policy, we prove that it does not necessarily achieve the

optimal EJT except for the case of M = 2 users. When the number of users M > 2,

it is shown that the gap between the efficiency achieved by the α-fair policy and that

achieved by the optimal EJT policy for the same Jain’s index can be unbounded.

Many applications, including wireless communications ones, involve the tradeoff

between the benefits (e.g., the rates) received by more than two users. Since in these

cases, the α-fair policy does not necessarily achieve the optimal EJT, we develop

another technique for achieving this tradeoff.

Finding the optimal EJT corresponds to solving a family of potentially difficult

non-convex optimization problems. To alleviate this difficulty, we derive sufficient

conditions, which are shown to be sharp and naturally satisfied in various radio re-

source allocation problems. These conditions provide us with a means for identifying

cases in which finding the optimal EJT can be reformulated as convex optimization

problems. The new formulations are used to devise computationally-efficient resource
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schedulers that enable the optimal EJT to be achieved for both quasi-static and er-

godic time-varying communication scenarios.

Through extensive simulations, we demonstrate the superiority of the proposed

optimal EJT scheduler as compared to the baseline schedulers in terms of sum-rate

efficiency, Jain’s fairness index, median rate, and user satisfaction.

In addition to the practical aspects of our contributions, we also cast new concep-

tual understandings of the optimal EJT. In particular, we provide intuitive geometric

interpretations and physical meanings of optimal EJT. Moreover, we demonstrate

that the tradeoff between efficiency and Jain’s fairness index may not necessarily

exist in some scenarios. In particular, we show that there exists scenarios where

increasing efficiency leads to an increase in Jain’s fairness index.

1.2.2 Inter-Cell Interference Coordination

Most of the currently available ICIC schemes in the literature have one (or more)

of the following drawbacks: requirement of a centralized controller, requirement of

the rate adaptation function to be differentiable, or heuristic-based schemes with no

comparison with the optimum scheme. The second part of the thesis is devoted to

developing a novel ICIC scheme that overcomes these drawbacks and achieves the

optimal EJT in interference-limited cellular networks.

The problem of achieving various efficiency-fairness tradeoff, including optimal

EJT, in the long-term average rates can be cast as a weighted sum-rate maximization

optimization problem. Unfortunately, this optimization problem can be shown to be

strongly NP-hard optimization problem, i.e., it is not only hard to solve but also

hard to approximate with guaranteed optimality gap. However, rather than pursuing

a heuristic approach, we start by exploiting the characteristics of dominant interferers

to carefully approximate the problem into a bound optimization problem. The re-

sulted bound optimization problem belongs to the class of combinatorial optimization
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problems which are not easy to solve in general; thus, we perform several mathemati-

cal transformations to the bound optimization problem in order to make it amenable

to existing optimization methods. In particular, we realize that the bound optimiza-

tion problem has a minimum cost network flow structure. This is an important insight

to the ICIC optimization problem because by exploiting such structure, we can use

network-based algorithms which have significantly reduced complexity as compared

to the general-purpose convex or linear optimization algorithms [4, p. 402]. This

is a key insight that allows us to devise a computationally-efficient polynomial-time

distributed ICIC scheme. Although the scheme is developed solely based on mathe-

matical derivations, it has simple and intuitive interpretation which would shed light

on how distributed ICIC schemes can be designed. Simulation results of a small

network show that the proposed scheme achieves a performance that is close to the

optimal one achieved by exhaustive search, which validates our approximation and

mathematical transformations. Furthermore, extensive simulation results show that

the proposed scheme achieves significantly higher cell-edge throughput, higher aggre-

gate throughput, and lower outage probability as compared to the baseline static and

dynamic schemes.

Although the proposed scheme is mainly developed in the context of a homoge-

neous network, where the access network consists of macro-BSs, we demonstrate its

effectiveness in the context of a heterogeneous network, where the access network

consists of macro-BSs, pico-BSs, femto-BSs, and relays.

1.3 Contributions

The key high-level contributions of this thesis are the followings:

� Development of a general mathematical framework which enables us to identify

practical scenarios for which the optimal EJT can be efficiently computed. The
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developed framework is shown to be applicable to various resource allocation

problems in communication networks. By applying this framework to the prob-

lem of scheduling radio resources in cellular networks, we devise novel resource

schedulers that achieve the optimal EJT for both quasi-static and time-varying

channels. Substantial gains are observed with respect to the baseline schedulers,

without incurring additional computational complexity.

� Development of a novel ICIC scheme that runs in polynomial time and finds

near-optimum dynamic multi-cell resource allocations that maximize a weighted

sum-rate in the entire network in a distributed manner. Substantial gains are

observed with respect to the baseline ICIC schemes in both homogeneous net-

works and heterogeneous networks.

1.4 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we review the

relevant literature in the area of efficiency-fairness tradeoff and present a theoretical

framework to characterize the optimal EJT in general resource allocation scenarios.

We then provide applications of this theoretical framework in Chapter 3, with special

emphasis on radio resource allocation in the downlink of cellular networks. In Chap-

ter 4, we review the literature relevant to ICIC and develop a novel distributed and

dynamic ICIC scheme in a homogeneous network, where the access network consists

solely of macro-BSs. In Chapter 5, we develop variants of the proposed ICIC scheme

that will prove useful in the context of a heterogeneous network, where the access

network consists of macro-BSs and pico-BSs. We conclude in Chapter 6 by summa-

rizing the major contributions of this thesis and highlighting a number of research

areas for future work. A list of the publications as well as the patent applications

produced during the PhD program is provided in Appendix A.
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Chapter 2

Optimal Tradeoff between Sum-Rate

Efficiency and Jain’s Fairness Index in

Resource Allocation: Theoretical

Framework

© 2013 IEEE. Parts of this chapter are reprinted, with permission, from:

A. Bin Sediq, R. H. Gohary, R. Schoenen, and H. Yanıkömeroḡlu, “Optimal

tradeoff between sum-rate efficiency and Jain’s fairness index in resource allo-

cation,” IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp.

3496–3509, July 2013.

2.1 Introduction

The resources available for wireless communication systems are usually scarce

and shared among multiple users. The way in which these resources are allocated

determines the efficiency of the system and the benefits received by its users. Since

the service provider is interested in maximizing the efficiency of the system and the

users are interested in maximizing their own benefits, the allocation of resources is
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typically encountered by conflicting goals. For example, providing equal benefits to

all users results in higher fairness, but will potentially result in low efficiency. On the

other hand, favouring a certain class of users may increase the system efficiency, but

would result in the dissatisfaction of other classes of users. To control the emphasis

placed on various goals, the provider uses a tradeoff policy, which, unless properly

chosen, can result in wasteful allocation of resources. In particular, a suboptimal

tradeoff policy can be less efficient and, at the same time, less fair to the users [3,5,6].

The benefits received by the users in the downlink of a wireless communication

system can be measured by the rates at which data is delivered to these users. These

rates are controlled by appropriate allocation of radio resources at the transmitter.

For instance, the transmitter may allocate its resources in such a way that maximizes

the sum of the rates delivered to the users. This allocation favours users that are

geographically closer to the transmitter, but “starves” farther users. Although more

efficient from the system perspective, such an allocation is unfair to the users at less

advantageous locations [7, 8]. A fairer allocation is one in which the minimum rate

received by the users is maximized [3, 6, 9]. However, this allocation can result in

unacceptable system efficiency, i.e., low sum-rate. Hence, it is desirable to find an

optimal tradeoff policy whereby the system provider allocates its resources in such a

way that no other allocation can provide a strictly higher efficiency and at the same

time be fairer to the users. The focus of this chapter is two folds: 1) to develop

a technique for obtaining an efficiency-fairness tradeoff that is optimal in a specific

sense; and 2) to derive sufficient conditions, which, when satisfied by the set of feasible

benefits, lead to efficiently computable optimal tradeoff and benefit vectors.

The applications that we will consider throughout the thesis are derived from

practical radio resource scheduling problems that arise in wireless communication

systems operating over quasi-static and ergodic time-varying channels. However, our

analysis applies to a broader class of frameworks, including social and economics
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ones [5, 10, 11].

To study the tradeoff between efficiency and fairness, we note that efficiency is

usually defined depending on the particular resource allocation problem considered.

For instance, in the case of wireless networks considered herein, efficiency is measured

by the sum-rate delivered to the users of the network. In contrast, several definitions

are used to quantify fairness. In [5], axioms that include continuity and homogeneity,

and subsequent features, are provided to obtain a general class of plausible fairness

measures. Among the members of that class are the entropy-based index [5] and

Jain’s fairness index [2]. In addition to the axioms and features provided in [5], we

identify two more features that commend the use of Jain’s index as a fairness measure.

� Conformity to standard fairness benchmarks: A fairness measure with this fea-

ture can be related to easily conceivable benchmarks. For instance, a Jain’s

index of p/100 can be regarded as the fairness index of an equivalent resource

allocation in which p% of the users receive equal non-zero benefits and the re-

maining (100−p)% receive zero benefits [2]. Analogous relations between other

metrics and standard benchmarks are not readily available.

� Accommodating more users: A good fairness measure enables more users with

specific benefit requirements to be accommodated in the system. The superior-

ity of Jain’s index in that respect will be illustrated by numerical comparisons

hereinafter.

A common approach to trading off efficiency with fairness in wireless networks is

to allocate the resources in a way that maximizes the sum-rate efficiency while en-

suring that the minimum rates achieved by the users exceed some prescribed bounds,

e.g., [6, 11]. Varying these bounds over the set of feasible rates provides a means for

controlling fairness [6]. A similar approach is to allocate the resources such that the
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sum-rate efficiency is maximized while satisfying a predetermined set of proportional-

rate constraints which can be varied to control fairness [12]. Another approach is to

allocate the resources in a way that maximizes a parametric utility, whereby one or

multiple parameters are used to control the emphasis on efficiency and fairness. A

commonly used policy is the α-fair one (also known as the α-fair utility) [3], wherein

various settings of a parameter α yield allocations that achieve popular efficiency-

fairness tradeoffs. For instance, setting α = 0 yields maximum efficiency, setting

α = 1 yields proportionally fair allocations [13], and setting α = ∞ yields alloca-

tions that are fair in the max-min sense [3]. Motivations for using the α-fair policy

are provided in [5]. Generally speaking, increasing α results in allocations that are

fairer [5] in a sense that does not necessarily conform to Jain’s index, as will be

shown hereinafter. Other parametric utilities for trading off efficiency and fairness

are considered in [14] and [15], and a comparison between multiple tradeoff criteria

is provided in [16].

Compared with other measures, Jain’s index provides a fairness criterion that

takes into consideration all the users of the system, not only those users that are

assigned minimal resources [2]. Maximizing Jain’s index without wasting valuable

resources requires optimal tradeoff between efficiency and this index. A question that

arises is whether maximizing the well-studied α-fair policy yields such an optimal

tradeoff. To address this question, we show that α-fair allocations are not guaranteed

to achieve the optimal EJT except for the case of M = 2 users. To overcome this

drawback, we develop a generic technique for obtaining optimal EJT allocations.

Unfortunately, this technique involves solving a family of potentially difficult non-

convex optimization problems. To alleviate this difficulty, we derive sharp sufficient

conditions which provide us with a means for identifying cases in which finding the

optimal EJT can be reformulated as convex optimization problems. Interestingly,

these sufficient conditions are satisfied by a wide range of resource allocation problems
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in communications networks, as we will demonstrate in Chapter 3.

Notation Bold-face and regular-face fonts will be used to denote vectors and

scalars, respectively. The set of length-M vectors with non-negative real entries will

be denoted by R
M
+ and the length-M all-one and all-zero vectors will be denoted by

1M and 0M , respectively. The symbols � and � will be used to denote element-wise

inequalities, and (·)T will be used to denote the transpose. The Euclidean norm will

be denoted by ‖ · ‖.

2.2 Preliminaries

Let x ∈ C ⊆ R
M
+ be a vector of non-negative real entries {xm}Mm=1, where xm is the

benefit received by user m and C is the set of feasible benefit vectors. Generally, the

benefits {xm}
M
m=1 and the set C depend on the application and the resources allocated

to each user [2, Sec. 5]. For example, in the downlink of wireless communications, xm

can be the rate of user m resulting from a particular allocation of the radio resources,

and C can be the set of all achievable rates. In this thesis, the efficiency, η(x), of a

resource allocation is defined by the sum of benefits (i.e., η(x) =
∑M

m=1 xm), and its

fairness is given by the Jain’s index defined below.

Definition 1 (Jain’s Index [2]). For x ∈ R
M
+ , Jain’s fairness index J : RM

+ → R+ is

given by

J(x) =
(

M
∑

m=1

xm

)2/

M
M
∑

m=1

x2
m. (2.1)

�

This definition shows that J(x) is continuous and lies in
[

1
M
, 1
]

. In this interval,

J = 1
M

corresponds to the least fair allocation in which only one user receives a non-

zero benefit, and J = 1 corresponds to the fairest allocation in which all users receive
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the same benefit.

In many cases, depending on C, there is an inherent tradeoff between η(x) and

J(x). Hence, to ensure efficient utilization of resources, we seek the optimal tradeoff,

which is defined next.

Definition 2 (Optimal EJT). An optimal EJT is one that results in a benefit vector

x⋆ such that no x 6= x⋆, x ∈ C satisfies either: 1) η(x) > η(x⋆), and at the same

time, J(x) ≥ J(x⋆), or 2) η(x) ≥ η(x⋆), and at the same time, J(x) > J(x⋆). �

This definition is closely related to Pareto optimality defined for optimization

problems with multiple objectives [17]. With efficiency and Jain’s index as objec-

tives, a Pareto optimal point is one at which efficiency cannot be increased without

decreasing Jain’s index and likewise, Jain’s index cannot be increased without de-

creasing efficiency. As such, a point that is optimal from the EJT perspective, as

per Definition 2, is equivalent to Pareto optimality in efficiency and Jain’s index.

However, a point that is Pareto optimal from an Efficiency-Jain perspective is not

necessarily Pareto optimal if the multiple objectives are taken to be the users’ benefits

themselves, rather than the efficiency and Jain’s index that these benefits achieve.

A graphical example that illustrates the definition of the optimal EJT is provided

in Fig. 2.1. In this figure, the shaded area represents the feasible set of efficiencies

and Jain’s indexes for this example. The corresponding optimal EJT curve as well as

a sub-optimal EJT curve are also shown in the figure. The sub-optimality of every

point in the sub-optimal EJT curve can be readily verified by noting that there are

feasible points to the north-east of this curve with simultaneously higher efficiency

and higher Jain’s index. On the contrary, there are no feasible points to the north-

east of the optimal EJT curve which verifies its optimality from EJT perspective.

Definition 2 will be used in the next section to determine whether the α-fair
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Figure 2.1: A graphical illustration of the definition of the optimal EJT provided
in Definition 2.

tradeoff policy achieves the optimal EJT.

2.3 Does α-fair Policy Achieve the Optimal

Efficiency-Jain Tradeoff?

Given an α ∈ [0,∞), the benefit vector x⋆
α generated by the α-fair tradeoff policy

maximizes the α-fair utility [3], i.e.,

x⋆
α = argmax

x∈C
Uα(x), (2.2)

where

Uα(x) =



















M
∑

m=1

log xm, α = 1,

1
1−α

M
∑

m=1

x1−α
m , α ≥ 0, α 6= 1.

(2.3)

The α-fair policy thus described was considered in [5]. It was shown therein that,
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for α 6= 1, x⋆
α generated by (2.2) is the same as that generated by

x⋆
α = argmax

x∈C

(
∣

∣

∣

α

1− α

∣

∣

∣
L
(

Hα(x)
)

+ L
(

η(x)
)

)

, (2.4)

where L(·) , sgn(·) log(| · |), and

Hα(x) = sgn(1− α) α

√

√

√

√

M
∑

m=1

( xm

η(x)

)1−α

. (2.5)

This equivalent formulation of the α-fair policy provides insight into the role of α.

In particular, it can be seen that L(·) is monotonically increasing and that, for any

α 6= 1, Hα(x) provides a homogeneous fairness measure [5]. Hence, it can be seen

that increasing α places more emphasis on fairness at the expense of efficiency.

Using the above observations, it was argued in [5] that solving (2.4) yields a

benefit vector that achieves the optimal tradeoff between Hα(x) and η(x). Although

this explanation offers a better understanding, it presents the fairness component of

the α-fair policy as being parameterized by α. Hence, according to this explanation,

varying α not only controls the emphasis placed on fairness, but also changes the

fairness measure itself.

In [5], the α-fair utility given in (2.3) is generalized by proposing a two-parameters

utility given as Uα,λ = Hα(x)(η(x)
1
λ ),1 where α is used to choose the fairness measure

and λ ∈ R is used to control the emphasis on efficiency. Using this utility, one

can obtain various optimal efficiency-fairness tradeoff benefit vectors for a particular

fairness measure by maximizing Uα,λ for a fixed α and different values of λ (cf. [5,18]

for guidelines on choosing α and λ). Unfortunately, while Uα,λ is log-concave for

α ∈ (0, 1) and λ ∈ [0, α
1−α

] [18], it is neither concave nor log-concave for α > 1, which

1It is also shown in [5] that Uα,λ generalizes various fairness measures, including Jain’s fairness
index, min-ratio, max-ratio, and entropy. Unfortunately, maximizing Uα,λ can be potentially difficult
due to the non-concavity of Uα,λ for general α and λ.
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can potentially complicate the search for vectors that maximize Uα,λ for α > 1.

A question that arises is whether the α-fair policy achieves the optimal efficiency-

fairness tradeoff in practical resource allocation scenarios wherein the fairness measure

does not depend on extrinsic parameters like α. To address this question, in this

section we investigate the relationship between the α-fair policy and the optimal

EJT. We begin by studying the case of M = 2 users. The main result in this case is

stated in the following proposition.

Proposition 1. Let C be an arbitrary set, possibly discrete, and let M = 2. For any

α ∈ (0,∞), the α-fair benefit vector x⋆
α generated by (2.2) achieves the optimal EJT.

Proof. We will proceed by contradiction. Let α ∈ (0,∞) be given and suppose that

x⋆
α does not achieve the optimal EJT, that is, there exists a non α-fair optimal vector

x such that either: 1) η(x) > η (x⋆
α) and J(x) ≥ J (x⋆

α); or 2) η(x) ≥ η (x⋆
α) and

J(x) > J (x⋆
α). We will show that such a vector x results in Uα(x) > Uα(x

⋆
α), which

contradicts the definition of α-fair benefit vectors; cf. (2.2). We will focus on the first

case. The proof for the second case follows similar lines and is omitted for brevity.

Since M = 2, we can define a parameter ω = maxx
minx

. Using this ω, we have

J(x) = (1+ω)2

2(1+ω2)
. Now, dJ

dω
= − ω2−1

(ω2+1)2
. Since, by definition, ω ≥ 1, it can be seen that

J is monotonically decreasing in ω. This with the fact that, in the considered case,

J(x) ≥ J (x⋆
α) implies that

maxx

min x
≤

maxx⋆
α

min x⋆
α

. (2.6)

Since in this case we also have η(x) > η(x⋆
α), it follows that min x + maxx >

minx⋆
α + maxx⋆

α, which is equivalent to
(

1 + maxx
minx

)

minx >
(

1 + maxx⋆
α

minx⋆
α

)

minx⋆
α.

This inequality implies that

min x >

(

1 + maxx⋆
α

minx⋆
α

)

(

1 + maxx

minx

) minx⋆
α. (2.7)
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Invoking (2.6) implies that the fraction on the right hand side is greater than 1, which

further implies that we can write minx = minx⋆
α + ǫ1, with ǫ1 > 0. Since x is not

α-fair, we must have

Uα(x) < Uα(x
⋆
α). (2.8)

We now observe that Uα(x) is strictly increasing in each xm, m = 1, 2. This obser-

vation and (2.8) imply that maxx = maxx⋆
α − ǫ2, with ǫ2 > 0. Combining this with

the fact that minx = minx⋆
α + ǫ1 and the fact that in the current case η(x) > η (x⋆

α)

yields ǫ1 > ǫ2. Using this notation, it can be readily verified that, because ǫ1 > ǫ2,

∇Uα(x)
T (x⋆

α − x) = −ǫ1(minx)−α

(

1−
ǫ2
ǫ1

(maxx

min x

)−α
)

< 0.

Now, direct computation of the Hessian of Uα(x) shows that Uα is concave for any

α ∈ (0,∞). Thus [17, p. 69], Uα(x
⋆
α) ≤ Uα(x) +∇Uα(x)

T (x⋆
α − x), which yields

Uα(x
⋆
α) < Uα(x). (2.9)

This with (2.8) establish the desired contradiction.

Proposition 1 shows that for an arbitrary set C and M = 2, the α-fair policy yields

a tradeoff that is optimal from Jain’s index perspective. However, this result does

not necessarily carry over to cases with M > 2 users. To show this, we constructed

counter examples for M = 3 and M = 4. The case of M = 4 yields deeper insight

and will be explained in more detail.

Example 1. Let C contain two benefit vectors, i.e., C = {x,y}, where x = [8, 8, 90,

90] and y = [7, 14, 27, 86].

For α = 2, maximizing the α-fair utility yields y because U2(y) > U2(x). However,

η(x) = 196, η(y) = 134, J(x) = 0.59 and J(y) = 0.54, that is, η(x) > η(y) and
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J(x) > J(y), which implies that x is the optimal EJT benefit vector. This agrees with

intuition since, by inspection, x offers 75% of the users higher benefits than y. �

Drawing more insight from the above example, we will show that the efficiency

gap between the benefit vectors generated by the optimal EJT policy and those

generated by the α-fair one can be unbounded. To show that, let us modify C in the

above example such that C = {x,y, x̂, ŷ}, where x̂ = cx, ŷ = cy, and c > 1 is some

constant. In this case, it can be easily verified that ŷ is the α-fair benefit vector and

x̂ is the optimal EJT benefit vector. Furthermore, because Jain’s index is invariant

under scaling, J(x̂) = J(x) > J(ŷ) = J(y). However, direct computation reveals

that η(x̂)− η(ŷ) = c
(

η(x)− η(y)
)

. Hence, an unbounded c, results in an unbounded

difference in efficiency between the optimal EJT and the α-fair benefit vectors. The

existence of such c depends, of course, on C. In fact, it will be shown later that the

structure of C is intimately related to the optimal EJT.

Another insight that can be drawn from the above example is that the α-fair

benefit vector corresponding to α = 0 is x. From Jain’s index perspective, this vector

is fairer than the α-fair benefit vector corresponding to α = 2. Hence, this example

shows that, although increasing α results in benefit vectors that are fairer in the

senses considered in [3] and [5], it does not necessarily improve fairness in the Jain’s

index sense.

Many applications, including wireless communications ones, involve the tradeoff

between the benefit vectors of more than two users. Since in these cases, maximizing

the α-fair utility does not necessarily yield benefit vectors that achieve the optimal

EJT (cf. Example 1), in the next section we will develop a technique for achieving

this tradeoff.
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2.4 The Optimal Efficiency-Jain Tradeoff Policy

In this section, we develop a generic technique for obtaining the optimal EJT for

an arbitrary set C. To enable practical implementation of this technique, we identify

conditions on C, which render the underlying optimization problems easy to solve.

We will then provide instances in which these conditions are satisfied in practice. A

geometric interpretation that commends the use of Jain’s index as a fairness measure

is then provided. We conclude this section by providing an alternate formulation

that will prove useful in characterizing and achieving the optimal EJT in ergodic

time-varying scenarios.

2.4.1 A Technique for Obtaining the Optimal EJT for an

Arbitrary C

A standard approach to find the optimum tradeoff benefit vectors is to use scalar-

ization [17, p. 178]. Using scalarization, one can devise a parameterized utility

function of the form

Uυ(x) = νη(x) + (1− ν)F (x), (2.10)

where ν ∈ [0, 1] is a parameter that controls the emphasis on efficiency relative to

the emphasis on fairness, and F (x) is a fairness function that maps x into a real

number, to quantify fairness, such as Jain’s index. If Uν(x) is a concave function, and

C is a convex set, then a benefit vector that maximizes Uν(x) achieves the optimum

tradeoff between η(x) and F (x) and such a vector can be computed efficiently using

standard convex optimization techniques. Unfortunately, it can be shown that for

F (x) = J(x), Uν(x) given by (2.10) is not concave. One might be tempted to replace

Jain’s index with another meaningful fairness function such that Uν(x) is concave. A

meaningful fairness function should be homogeneous of degree zero [2,5], i.e., it should
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be invariant under scaling so that it is not affected by changing the units under which

the benefit vector is measured. Unfortunately, as we prove in the following Lemma,

the only homogeneous function of degree zero that makes Uν(x) concave is a constant

function, which is not a good fairness measure.

Lemma 1. Let Uν(x) : R
M
+ → R be a utility function that is parameterized by ν ∈ [0,

1] such that Uν(x) = νη(x) + (1 − ν)F (x), where F (x) is a fairness function that is

homogeneous of degree zero. Then, Uν(x) is a concave function if and only if F (x) is

a constant function.

Proof. We proceed by showing that if Uν(x) is concave, then F (x) is a constant

function and showing the converse, i.e., if F (x) is a constant function, then Uν(x) is

concave.

Assume that Uν(x) is a concave function. By this assumption, we have [17, p. 69]

Uν(y) ≤ Uν(x) +∇Uν(x)
T (y − x), ∀x,y ∈ R

M
+ . (2.11)

Since F (x) is a homogeneous function of degree zero, then

F (cy) = F (y), ∀c > 0, (2.12)

∇F (x)Tx = 0, (2.13)

where (2.12) follows from the definition of a homogeneous function of degree zero and

(2.13) follows from Euler’s homogeneous function theorem [19]. By substituting (2.12)

and (2.13) in (2.11), we get

Uν(cy) = cνη(y) + (1− ν)F (y) ≤ Uν(x) + c∇Uν(x)
Ty − ν1Tx,→

F (y) ≤ F (x) + c
(1−ν)

(∇Uν(x)− ν1)Ty, ∀x,y ∈ R
M
+ , ∀c > 0.

(2.14)
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We now show that F (x) is a constant function by contradiction. Suppose that F (x)

is not a constant function, i.e., there exist x and y such that F (y) > F (x) + ǫ, ǫ > 0.

We will show the contradiction by showing that there exists c, such that (2.14) does

not hold. If (∇Uν(x)−ν1)Ty < 0, then (2.14) does not hold when c > ǫ(1−ν)
|(∇Uν(x)−ν1)Ty|

.

If (∇Uν(x) − ν1)Ty > 0, then (2.14) does not hold when c < ǫ(1−ν)
(∇Uν(x)−ν1)T y

. If

(∇Uν(x) − ν1)Ty = 0, then (2.14) does not hold for any c. Therefore, (2.14) holds

true only when F (y) = F (x), ∀x,y ∈ R
M
+ , i.e., F (x) is a constant function.

Conversely, if F (x) is a constant function, then Uν(x) is affine and thus concave.

Corollary 1. The only fairness function, F (x), that is homogeneous of degree zero

and concave is the constant function.

Proof. The proof follows directly from Lemma 1 by using the fact that F (x) =

Uν=0(x).

Based on the result of Lemma 1, we conclude that it is not straightforward to use

scalarization in our problem, even if C is a convex set.

Another approach to find the optimal EJT is based on maximizing Jain’s index

while constraining the efficiency to be greater than a parameterized threshold. To

elaborate, let σ be a threshold on the minimum efficiency, and let Xσ be the set of all

benefit vectors that yield an efficiency greater than σ and, at the same time, maximize

Jain’s index, that is,

Xσ ,

{

x
∣

∣x = arg max
η(x)≥σ, x∈C

J(x)
}

. (2.15)

We note that the cardinality of Xσ depends on C. Furthermore, some elements in

Xσ may satisfy the condition η(x) ≥ σ in (2.15) with a strict inequality. Since we are

seeking the benefit vectors that achieve the optimal EJT, we pick those vectors in Xσ
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that maximize η(x). In particular, let x⋆
σ be one of the benefit vectors that achieve

the optimal EJT corresponding to σ, that is,

x⋆
σ ∈ arg max

x∈Xσ

η(x). (2.16)

From (2.15) and (2.16), it can be seen that, for the given σ, x⋆
σ achieves the optimal

EJT in Definition 2. Hence, the set of all EJT-optimal benefit vectors can be obtained

by decrementing σ from σmax = max
x∈C

η(x) to σmin = min
x∈C

η(x) in P + 1 steps, each of

size δ. For each step p, p = 0, . . . , P , the optimization problems in (2.15) and (2.16)

corresponding to σ = σmax−pδ are solved; a smaller δ results in evaluating more points

and therefore obtaining a smoother EJT curve. This policy is presented formally in

Procedure 1.

Procedure 1 Optimal EJT policy for arbitrary C

Input: Arbitrary set C and step δ > 0
Output: x⋆

σ

1: Initialize σmin = min
x∈C

η(x), σmax = max
x∈C

η(x) and P = ⌊(σmax − σmin)/δ⌋.

2: for p = 0 : P , do
3: σ = σmax − pδ
4: Find Xσ in (2.15).
5: x⋆

σ ← arg max
x∈Xσ

η(x).

6: end for

Inspection of Procedure 1 reveals that the main difficulty in obtaining x⋆
σ lies in

finding a solution of the optimization problem in (2.15), let alone finding the entire

set Xσ. This difficulty arises because J(x) is a non-concave function, even when

C is a convex set2. Indeed, any non-constant homogeneous fairness function with

degree zero is a non-concave function as given by Corollary 1. If the dimension

of the set of feasible benefits is large, Procedure 1 can be prohibitively complex to

2It can be shown that J(x) is a (non-strictly) quasi-concave function; thus, using bisection and
convex feasibility optimization techniques, it is possible to find efficiently an optimal solution when
C is convex [17, pp. 145–146]. However, it is still difficult to find the entire set of optimal solutions
Xσ, for quasi-concave objective functions even when C is convex.
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implement in real-time scenarios. In such cases, this procedure might be used as a

benchmark for less costly algorithms that approximate the solution of the underlying

non-convex optimization problems. The accuracy of such algorithms depends on the

approximation technique and the properties of C. The complexity of Procedure 1

motivates us to seek conditions on C that enable the optimal EJT to be readily

obtained.

We conclude this section by highlighting that finding the optimal EJT benefit

vectors can also be formulated based on finding all benefit vectors that maximize

the efficiency while constraining the Jain’s index to be greater than a parameterized

threshold, and then choose those vectors that have the highest Jain’s index. That

is, for a given threshold on the minimum Jain’s index, J0, the benefit vectors that

achieve the optimal EJT, x⋆
J0
, can be found as follows

x⋆
J0
∈ arg max

x∈XJ0

J(x), (2.17)

where

XJ0 ,

{

x
∣

∣x = arg max
J(x)≥J0, x∈C

η(x)
}

. (2.18)

If C is convex, then finding a single element of XJ0 can be cast as a second-order cone

programming problem, which can be solved efficiently using standard convex opti-

mization techniques [20]. However, such an approach has two main disadvantages.

First of all, finding all elements of the set XJ0 is still difficult even if C is convex3. Sec-

ondly, and most importantly, it is shown in [20] that it is difficult to incorporate such

formulation in the problem of scheduling radio resources in time-varying channels.

Indeed, it is demonstrated that constructing a scheduler based on this formulation

leads to inferior EJT as compared to α-fair based scheduling, cf. [20, Fig. 2]. Since

3Note that the objective function in (2.18) is not strictly concave which implies that the solution
for (2.18) is not necessarily unique.
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the problem of scheduling radio resources in time-varying channels is the focus of this

thesis, the formulation given by (2.17) and (2.18) is not considered hereinafter.

2.4.2 A Property for Ensuring Tractability

In order to render the optimization problems underlying (2.15) easy to solve, we

begin by identifying a class of sets C which satisfy what we refer to as the “monotonic

tradeoff property”. To do so, let J⋆
σ denote the maximum Jain’s index corresponding

to an efficiency η(x) = σ, i.e.,

J⋆
σ = max

η(x)=σ, x∈C
J(x). (2.19)

By definition, J⋆
σ is unique. However, it might be achieved by multiple benefit vectors.

Using (2.19), we are now ready to define the monotonic tradeoff property.

Definition 3 (Monotonic Tradeoff Property). A set C is said to possess the monotonic

tradeoff property if J⋆
σ is strictly decreasing in σ, for σ ≥ σ⋆, and constant otherwise.

�

This definition states that a set that possesses the monotonic tradeoff property

is one in which any decrease in efficiency results in a strict increase in Jain’s index,

until σ⋆ is reached. Decreasing efficiency beyond σ⋆ maintains Jain’s index at its

maximum. In other words,

J⋆
σ⋆ = max

η(x)=σ⋆ ,x∈C
J(x) = max

x∈C
J(x). (2.20)

An instance in which C satisfies the monotonic tradeoff property is shown in

Fig. 2.2(a) and the corresponding EJT is shown in Fig. 2.2(b). These figures will be

discussed in the next section.

23



We will now show how the monotonic tradeoff property facilitates finding the

benefit vectors that achieve the optimal EJT. When a set possesses this property

and σ > σ⋆, the inequality η(x) ≥ σ in (2.15) is satisfied with equality because J⋆
σ

is strictly decreasing in σ. In this case, the optimization in (2.15) is equivalent to

that in (2.19). We now use (2.19) to obtain an equivalent convex formulation. By

definition, J(x) = η2(x)
M‖x‖2

. Hence, when η(x) = σ, the objective in (2.19) can be

expressed as σ2

M‖x‖2
and (2.19) can be cast in the following equivalent form:

min
η(x)=σ, x∈C

‖x‖2. (2.21)

In contrast with (2.15), the objective in (2.21) is convex. In fact, this objective is

strictly convex, which implies that when C too is convex, the optimization problem

in (2.21) is easy to solve and its solution is unique [17, p. 397]. In addition, if C

is not convex and (2.21) has multiple solutions, all these solutions will achieve the

same EJT as they all have the same efficiency, σ, and the same Jain’s index. This

observation eliminates the requirement for finding all solutions in (2.15) since any

solution of (2.21) achieves the optimal EJT. To summarize, if the monotonic tradeoff

property in Definition 3 is satisfied, x⋆
σ can be found by solving (2.21), which is

significantly easier to solve than the optimization problems in (2.15) and (2.16) for

an arbitrary C.

Similar to Procedure 1, the benefit vectors that achieve the optimal EJT can be

obtained by varying σ from σmax to σmin. However, when C possesses the monotonic

tradeoff property, we can find x⋆
σ by solving (2.21) for each σ. This policy is presented

formally in Procedure 2 below.
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Procedure 2 Optimal EJT for C possessing the monotonic tradeoff property

Input: A set C possessing the monotonic tradeoff property and step δ > 0
Output: x⋆

σ

1: Initialize σmin = min
x∈C

η(x), σmax = max
x∈C

η(x) and P = ⌊(σmax − σmin)/δ⌋.

2: for p = 0 : P , do
3: σ = σmax − pδ
4: x⋆

σ = arg min
η(x)=σ, x∈C

‖x‖2

5: if J(x⋆
σ) = J(x⋆

σ+δ) then
6: quit
7: end if
8: end for

2.4.3 Sufficient Conditions for Satisfying the Monotonic

Tradeoff Property

In the previous section, we showed that finding the set of benefit vectors that

achieve the optimal EJT is significantly simplified when the set C possesses the mono-

tonic tradeoff property. Unfortunately, we have not been able to identify a distin-

guishing feature that is necessary for a set to possess that property. For instance, the

monotonic tradeoff property can be possessed by sets that are either continuous or

discrete, convex or otherwise. This observation suggests that deriving necessary con-

ditions might be elusive. However, we have been able to obtain sufficient conditions

that ensure that a given set possesses this property. Such conditions are provided in

Theorem 1 below4.

Theorem 1. The set C possesses the monotonic tradeoff property if:

i. C is convex;

ii. xmin1M ∈ C; and

iii. every x ∈ C satisfies x � xmin1M , where xmin ≥ 0 provides a guarantee on the

4This theorem is a generalized version of the one we provided in [21], wherein xmin was restricted
to be zero.
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minimum benefit that each user receives.

Proof. Let x⋆
σ1

and x⋆
σ2

be the benefit vectors obtained using (2.21) with σ1 and σ2,

respectively, where σmin ≤ σ1 < σ2 ≤ σmax. To prove Theorem 1, it suffices to show

that if the conditions of the theorem are satisfied, then J⋆
σ1
≥ J⋆

σ2
with equality if and

only if J⋆
σ2

= J⋆
σ⋆ , where J⋆

σ and J⋆
σ⋆ are given by (2.19) and (2.20), respectively. We

consider two distinct cases: xmin > 0 and xmin = 0.

Case 1 (xmin > 0) First we note that, because xmin1 ∈ C, J
⋆
σ⋆ = 1. Now, the

convexity of C implies that, for any θ ∈ (0, 1),

yθ = θxmin1 + (1− θ)x⋆
σ2
∈ C. (2.22)

Substituting for yθ from (2.22) in (2.1), it can be verified that

J(yθ)− J⋆
σ2

= a(1− J(yθ)), (2.23)

where a =
θ2M2x2

min+2θ(1−θ)Mxmin1
Tx⋆

σ

M(1−θ)2x⋆
σ
Tx⋆

σ
≥ 0.

To prove the theorem, we will show that J(yθ)−J⋆
σ2
≥ 0, with equality if and only

if J⋆
σ2

= 1. To do so, we note that, by the properties of Jain’s index, if J⋆
σ2

< 1, then

x⋆
σ2
6= γ11, and subsequently from (2.22) yθ 6= γ21 for any γ1, γ2 > 0. This implies

that J(yθ) < 1. This with (2.23) and the fact that a > 0 for any θ ∈ (0, 1) further

implies that J(yθ) > J⋆
σ2
. We next show that there exists a θ0 ∈ (0, 1) such that

η(yθ0) = σ1. In particular, setting θ0 = σ2−σ1

σ2−Mxmin
yields this efficiency. Since J⋆

σ1
is

the maximum Jain’s index corresponding to η(x) = σ1, we must have J⋆
σ1
≥ J(yθ0),

which implies that J⋆
σ1

> J⋆
σ2
.

For the case of J⋆
σ2

= 1, we note that yθ = γ21, for some γ2 and therefore, by

the homogeneity of Jain’s index, J(yθ) = 1 for any θ. The statement of the theorem

follows by using an argument analogous to the above and noting that J⋆
σ ≤ 1, for any
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σ including σ1.

Case 2 (xmin = 0) The proof for the case of xmin > 0 does not hold when xmin = 0.

Furthermore, it is easy to find sets C for which xmin = 0, but vectors of the form

γ11 /∈ C even for infinitesimal values of γ1 > 0, e.g., C = {x1, x2 : 0 ≤ x2 ≤ cx1},

where c ∈ (0, 1).

To prove the theorem for this case, we provide the following lemma:

Lemma 2. Let C be a set satisfying the conditions of Theorem 1 with xmin = 0 and

let σmin ≤ σ1 ≤ σ2 ≤ σmax, then J⋆
σ1
≥ J⋆

σ2
.

Before providing the proof, we note that unlike the claim of Theorem 1, this lemma

does not tell whether a strict decrease in σ will yield a strict increase in Jain’s index.

Proof. Let x⋆
σ2

be the optimal benefit vector at efficiency σ2; that is, J(x⋆
σ2
) = J⋆

σ2
.

Since C is convex and 0M ∈ C, it follows that, for any θ ∈ [0, 1], x̂ = θx⋆
σ2
∈ C. Noting

that σ1 ≤ σ2 and setting θ = σ1

σ2
, it can be seen that η(x̂) = σ1. Now, the homogeneity

of Jain’s index implies that J(x̂) = J⋆
σ2
. However, J⋆

σ1
is the optimal Jain’s index at

efficiency σ1 and hence J⋆
σ1
≥ J(x̂), which completes the proof of the lemma.

We now proceed to complete the proof of Theorem 1. Let σ⋆ be the highest

efficiency corresponding to the maximum achievable Jain’s index, i.e., J⋆
σ⋆ . We will

consider two cases: σ2 ≤ σ⋆ and σ2 > σ⋆.

When σ2 ≤ σ⋆, we have by assumption that σ1 < σ⋆, which, by Lemma 2, implies

that J⋆
σ2

= J⋆
σ1

= J⋆
σ2
, and the theorem is proved in this case.

We now consider the case of σ2 > σ⋆. We again consider two cases: σ1 ≤ σ⋆ and

σ1 > σ⋆.

Since σ2 > σ⋆, it follows by the definition of σ⋆ that J⋆
σ2

< J⋆
σ⋆ . Now, if σ1 ≤ σ⋆,

invoking Lemma 2 yields J⋆
σ1

= J⋆
σ⋆ which implies that J⋆

σ2
< J⋆

σ1
.

We next prove the theorem for the remaining case of σ2 > σ1 > σ⋆.
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For this case, we will consider the line segment, yθ, connecting x⋆
σ2

with x⋆
σ⋆
, i.e.,

yθ = θx⋆
σ⋆

+ (1 − θ)x⋆
σ2
, θ ∈ [0, 1]. The convexity assumption implies that yθ ∈ C.

Substituting for yθ in (2.1), it can be verified that, for any x⋆
σ2

and yθ such that

‖x⋆
σ2
‖‖yθ‖ > 0,

J(yθ)− J(x⋆
σ2
) =

θ2(σ⋆2‖x⋆
σ2
‖2 − σ2

2‖x
⋆
σ⋆
‖2) + 2θ(1− θ)σ2(σ

⋆‖x⋆
σ2
‖2 − σ2x

⋆
σ⋆

Tx⋆
σ2
)

M‖x⋆
σ2
‖2‖yθ‖2

.

(2.24)

We will now use this equality to show that J(yθ) > J(x⋆
σ2
). For the first term in

the numerator, we note that, since by assumption σ2 > σ⋆, we have J⋆
σ2

< J⋆
σ⋆ . This

implies that σ⋆2‖x⋆
σ2
‖2 − σ2

2‖x
⋆
σ⋆
‖2 > 0. For the second term, we note that, by the

Cauchy-Schwartz inequality,

σ⋆‖x⋆
σ2
‖2 − σ2x

⋆
σ⋆

Tx⋆
σ2
≥ ‖x⋆

σ2
‖(σ⋆‖x⋆

σ2
‖ − σ2‖x

⋆
σ⋆‖) > 0.

The strict positivity follows from the fact that J⋆
σ2

< J⋆
σ⋆ . Hence, we have shown that

J(yθ) > J(x⋆
σ2
) for any θ ∈ (0, 1).

We next show that there exists a θ0 ∈ (0, 1) such that η(yθ0) = σ1. In particular,

setting θ0 = σ2−σ1

σ2−σ⋆ yields this efficiency, where θ0 ∈ (0, 1) by the assumption that

σ1 > σ⋆. Since J⋆
σ1

is the maximum Jain’s index corresponding to η(x) = σ1, we

must have J⋆
σ1
≥ J(yθ0), which implies that J⋆

σ1
> J⋆

σ2
and completes the proof of the

theorem.

To provide a graphical illustration of Theorem 1, in Fig. 2.2(a) we show a feasible

set C satisfying the conditions of the theorem with xmin = 0 for a case with M = 2

users. The EJT corresponding to the set in Fig. 2.2(a) is shown in Fig. 2.2(b).

To show how Fig. 2.2(b) is obtained, we begin by noting that, in Fig 2.2(a),

the maximum Jain’s fairness line x1 = x2 passes through C and yields J(x) = 1.

The regular-weight dashed lines in this figure represent the constant efficiency levels,
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η(x) = σ, at different values of σ. For σ ≤ 5.33, the points at which the dashed

lines intersect the x1 = x2 line lie inside C. In this case, the maximal Jain’s index,

J⋆
σ = 1. For σ > 5.33, the dashed lines representing the η(x) = σ levels intersect

the x1 = x2 line at points outside C. For these efficiency levels, the maximal Jain’s

indices are strictly less than 1 and correspond to the points at which the dashed lines

intersect with the boundary of C. The set of optimal EJT benefit vectors is shown by

the thick dashed line on the boundary of C. The variation of J⋆
σ with σ is depicted in

Fig. 2.2(b).

It can be seen from this figure that, in agreement with Theorem 1, the set C

satisfies the monotonic tradeoff property in Definition 3 with σ⋆ = 5.33. In this

figure, the optimal EJT corresponding to the thick dashed line on the boundary of C

in Fig. 2.2(a) is represented by the thick dashed line to the right of σ⋆.

Although necessary conditions are not available, the sufficient conditions provided

in Theorem 1 are relatively sharp. To illustrate that, we consider the optimal EJT for

the set C shown in Fig. 2.3(a). This set satisfies the first condition of Theorem 1, but

does not satisfy the second and third conditions. In other words, C is convex, but there

is no xmin such that xmin1M ∈ C and x � xmin1M , ∀x ∈ C. We will now demonstrate

that this set does not possess the monotonic tradeoff property in Definition 3.

For the set shown in Fig. 2.3(a), the maximum Jain’s fairness line x1 = x2 inter-

sects C at one point, viz., x1 = x2 = 6. At this point, the efficiency, σ = 12 and

Jain’s index, J(x) = 1. At any other point in C, Jain’s index is strictly less than 1.

To see why this implies that C does not possess the monotonic tradeoff property, we

note that, for each dashed line representing constant σ ∈ [3.6, 12) and σ ∈ (12, 16] the

maximal Jain’s index, J⋆
σ, corresponds to the intersection of the dashed line with the

non-vertical part of the boundary of C. For σ ∈ [3.6, 12), J⋆
σ is strictly monotonically

increasing in σ, and for σ ∈ (12, 16], J⋆
σ, is strictly monotonically decreasing in σ.5

5For this C, σ < 3.6 and σ > 16 are not feasible.
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Figure 2.2: The monotonic tradeoff property: An illustrative example.
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Hence, it can be seen that, for σ < 12, the tradeoff is not meaningful, since, in that

region, both η(x) and J⋆
σ(x) can be increased at the same time. The optimal EJT

benefit vectors are shown by the thick dashed line on the boundary of C.

The variation of J⋆
σ with σ is depicted in Fig. 2.3(b). As we pointed out, J⋆

σ is

strictly increasing for σ < 12, implying that C does not satisfy the monotonic tradeoff

property in Definition 3. For σ ∈ (12, 16], the optimal EJT corresponding to the thick

dashed line on the boundary of C in Fig. 2.3(a) is represented by the thick dashed

line to the right of σ⋆.

2.4.4 Geometric Interpretation of the Optimal EJT

When C satisfies the sufficient conditions given in Theorem 1, optimal EJT benefit

vectors {x⋆
σ} have an interesting geometric interpretation. To see that, we use (2.21)

to write

x⋆
σ = arg min

η(x)=σ, x∈C

M
∑

m=1

x2
m

= arg min
η(x)=σ, x∈C

M
∑

m=1

(

x2
m − 2

σ

M
η(x) +

σ2

M2

)

= arg min
η(x)=σ, x∈C

∥

∥

∥
x−

σ

M
1M

∥

∥

∥

2

. (2.25)

The last equality states that x⋆
σ is the unique Euclidean projection [17, p. 397] of

the equal allocation vector σ
M
1M onto the set {x|η(x) = σ, x ∈ C}. In other words,

a benefit vector x⋆
σ achieves the optimal EJT if there is no feasible benefit vector

y 6= x⋆
σ such that η(y) = σ is closer to the fairest solution σ

M
1M . This interpretation

commends the use of Jain’s index as a fairness measure and is illustrated in Fig. 2.4.

It also complements the interpretation given in [22] that Jain’s index represents the

angular deviation from a scaled all-one vector.
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Figure 2.3: An example of a set that does not posses the monotonic tradeoff prop-
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32



x 1
=
· ·
· =

xM

C

Projection

in
(2.25)

η(x) =
σ

σ
M
1M

x⋆
σ

β1M

P
ro
jection

in
(2.26)

Figure 2.4: The optimal EJT benefit vector, x⋆
σ, is the unique projection of the

fairest vector σ
M
1M onto the set {x|η(x) = σ, x ∈ C}. Projection of β1M onto

C is also shown.

2.4.5 An Alternate Formulation

In Section 2.4.2 it was shown that, if the set C possesses the monotonic tradeoff

property, the optimal EJT benefit vectors can be obtained by solving the optimization

problem in (2.21) for each σ. As such, the solution of (2.21) can be viewed as being

parameterized by σ.

Although the form in (2.21) is convenient for providing an explicit characteriza-

tion of the optimal EJT, the equality constraint therein renders it difficult to utilize

in some applications. An instance of these applications is considered in the next sec-

tion, wherein the instantaneous allocations of radio resources are to be updated for

optimizing long-term average rates.

One approach to address the aforementioned difficulty is to incorporate the equal-

ity constraint into the objective by eliminating one of the variables [17, pp. 523–524].

However, this approach can be shown to result in complicating the computation of
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gradient vectors necessary for the development of effective procedures for updating

resource allocations. To alleviate this difficulty, we now provide an alternate formu-

lation for (2.21). In this formulation, the efficiency σ is implicitly accounted for by

a non-negative parameter β in the objective, and the benefit vectors are only con-

strained to lie in C. In particular, when the conditions of Theorem 1 are satisfied, we

have that for any σ = η(x), the formulation in (2.21) is equivalent to

min
x∈C
‖x‖2 − 2βη(x), (2.26)

for some β ∈ [0,∞). To see this, we let σ be the efficiency corresponding to the solu-

tion of (2.26) for a given β ∈ [0,∞); letting β = 0 corresponds to σmin, the minimum

feasible efficiency, and letting β →∞ corresponds to σ → σmax, the maximum feasi-

ble efficiency. To show the equivalence for intermediate values of β, we first show that

the efficiency generated by (2.26) is strictly increasing in β in the following Lemma.

Lemma 3. Let x⋆
β = argmin

x∈C
‖x‖2 − 2βη(x), where the set C satisfies the conditions

of Theorem 1 and β ∈ [0,∞). Then, η(x⋆
β) is strictly increasing in β.

Proof. We will proceed by showing that for all β1, β2 ∈ [0,∞), such that β1 > β2,

we have η(x⋆
β1
) > η(x⋆

β2
). From the definition of x⋆

β1
, x⋆

β2
, we can write the following

strict inequalities:

‖x⋆
β1
‖2 − 2β1η(x

⋆
β1
) < ‖x⋆

β2
‖2 − 2β1η(x

⋆
β2
), (2.27)

‖x⋆
β2
‖2 − 2β2η(x

⋆
β2
) < ‖x⋆

β1
‖2 − 2β2η(x

⋆
β1
). (2.28)

The strict inequalities (2.27) and (2.28) follow from the unique optimality of x⋆
β1

and

x⋆
β2
, respectively, where uniqueness is due to the strict convexity of the objective

function and convexity of C as per the conditions of Theorem 1. By adding (2.27)
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and (2.28), we get following strict inequalities:

2(β2 − β1)η(x
⋆
β1
) < 2(β2 − β1)η(x

⋆
β2
)⇒ η(x⋆

β1
) > η(x⋆

β2
), (2.29)

where the last inequality follows since β1 > β2.

Since η(x⋆
β) is strictly increasing in β according to Lemma 3, then the EJT ob-

tained by letting β span the interval [0,∞) in (2.26) is the same as that obtained by

letting σ span the interval [σmin, σmax) in (2.21).

Similar to the observation made in the previous section, the objective in (2.26)

can be equivalently expressed as ‖x−β1M‖2. Hence, the optimum EJT benefit vector

generated by (2.26) is the Euclidean projection of the benefit vector β1M onto the

feasible set C. A subtle difference between the objectives in (2.26) and (2.25) is that,

the projection in (2.26) is onto C, whereas that in (2.25) is onto the intersection of C

with the hyperplane η(x) = σ; cf. Fig. 2.4.

To obtain further insight into the role of β, we note that, because of the monotonic

tradeoff property, the solution of (2.21) remains unchanged if the equality constraint

is replaced by the inequality η(x) ≥ σ. Hence, 2β can be regarded as the Lagrange

multiplier corresponding to this constraint and is, therefore, non-negative.

2.5 Conclusions

In this chapter, we considered multiuser resource allocations that achieve the

optimal tradeoff between efficiency and fairness from the Jain’s index perspective. We

showed that, in general, the commonly-used α-fair policy does not yield the optimal

EJTs except for the two-user case. To achieve the optimal EJTs in the general case,

we developed two procedures. In the first procedure, the set of feasible benefits is

arbitrary, but finding the allocations that achieve the optimal EJTs involves solving
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potentially difficult optimization problems. In contrast, in the second procedure, the

set of feasible benefits is assumed to have a monotonic property that arises in many

practical scenarios. This property is exploited to facilitate the search for allocations

that achieve the optimal EJTs. Our analysis is supported by illustrations, geometric

interpretations, and numerical examples. Applications of the theoretical analysis

presented in this chapter will be provided in the following chapter.
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Chapter 3

Optimal Tradeoff between Sum-Rate

Efficiency and Jain’s Fairness Index in

Resource Allocation: Applications

© 2013 IEEE. Parts of this chapter are reprinted, with permission, from:

A. Bin Sediq, R. H. Gohary, R. Schoenen, and H. Yanıkömeroḡlu, “Optimal

tradeoff between sum-rate efficiency and Jain’s fairness index in resource allo-

cation,” IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp.

3496–3509, July 2013.

3.1 Introduction

The sufficient conditions given in Theorem 1 in Chapter 2 are quite general and can

be applied to scenarios beyond those considered hereinafter. Indeed, these conditions

are applicable, not only to communication systems, but also to other fields including

social and economics ones.

In this chapter, we demonstrate that the conditions in Theorem 1 are naturally

satisfied in various resource allocation problems in communication networks. We start

by demonstrating the applicability of these conditions in congestion control problems
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in Section 3.2.

Another application that we study in more depth in this chapter is the scheduling

of radio resources to multiple users in the downlink of a cellular network that uses

orthogonal frequency division multiplexing (OFDM). Resources are divided into N

(time-frequency) resource blocks (RBs) [23], and the goal is to allocate these RBs to

M users in a way that is both “efficient and fair”. To facilitate the analysis, a full-

buffer traffic model is used, i.e., the users are assumed to have an infinite backlog,

whereupon data is always available for transmissions. In this Chapter, we assume

that each BS makes its scheduling decisions independent of other BSs in the network,

i.e., we do not consider ICIC. A thorough treatment of using ICIC for efficient and

fair multi-cell radio resource allocation will be provided in Chapter 4. We consider

the cases of both quasi-static and ergodic time-varying channels.

We analyze the case of scheduling in quasi-static channels in Section 3.3. For

quasi-static channels, we consider scheduling with and without time-sharing. In the

case of time-sharing, the scheduling variables are continuous and the corresponding

set of feasible benefit vectors, C, satisfies the conditions of Theorem 1. In contrast,

in the case without time-sharing, the scheduling variables are discrete and C does

not satisfy the conditions of Theorem 1. The analysis of the case of scheduling in

quasi-static channels is supported by numerical results in Section 3.4.

In Section 3.5, we analyze the case of scheduling in ergodic time-varying channels.

In this case, time-sharing is not plausible and the scheduling variables are discrete.

In spite of that, the corresponding set of feasible benefit vectors, C, can be shown to

satisfy the conditions of Theorem 1. We support our analysis of the case of scheduling

in time-varying channels by simulation results in Section 3.6.
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Figure 3.1: A linear network that consists of L links and L + 1 users. User m,
1 ≤ m ≤ L, uses only the mth link, while user L+ 1 uses all the L links.

3.2 Congestion Control

In congestion control in elastic traffic communication networks [3, 13], M users

share L finite-capacity links and the goal is to obtain an efficient and fair benefit

vector x, which represents the users’ rates. The set of feasible rates in this case is

given by C = {x|Ax � c, 0M � x}, where the ℓ-th entry of c ∈ R
L
+ is the capacity

of link ℓ, for ℓ = 1, . . . , L, and A is a matrix with binary entries that represent the

assignments of users to links. In this case, the set C is a convex polyhedron [17, p.

31] containing 0M , and thereby satisfying the conditions of Theorem 1 with xmin = 0.

Hence, C satisfies the monotonic tradeoff property and Procedure 2 can be efficiently

used to find all the optimal EJT rate vectors.

3.2.1 Special Case: Linear Networks

Consider a network with L links, each with a capacity of cℓ. These L links are

shared by M = L + 1 users. User m, 1 ≤ m ≤ L, uses only the mth link, while user

L + 1 uses all the L links. This linear network is depicted in Fig. 3.1. The feasible

set of rates is given by

C = {x|xm + xL+1 ≤ cm, 1 ≤ m ≤ L; xm ≥ 0, 1 ≤ m ≤ L+ 1}. (3.1)

A linear network with uniform capacity is one which has equal capacities of one

unit, i.e., cℓ = 1, ∀ℓ ∈ [1, L] [24].
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In the following, we investigate the relationship between the α-fair policy and the

optimal EJT for a linear network with uniform capacity. The main result in this case

is stated in the following proposition:

Proposition 2. Given a linear network with uniform capacity and L links, the α-fair

rate vector x⋆
α generated by (2.2) achieves the optimal EJT, for any α ∈ [0,∞).

Proof. As shown in [24, 25], the α-fair rate vector for the considered linear network

with uniform capacity assumes the following form:

x⋆
α,m =



















L
1
α

1 + L
1
α

, 1 ≤ m ≤ L,

1

1 + L
1
α

, m = L+ 1.

(3.2)

In the following, we show that the α-fair rate vector achieves the optimal EJT. To

do so, we start by noting that the set C is a convex polyhedron [17, p. 31] containing

0M , and thereby satisfying the conditions of Theorem 1 with xmin = 0. Hence, C

satisfies the monotonic tradeoff property and Procedure 2 can be used to find all the

optimal EJT rate vectors. According to Procedure 2, to prove that the rate vector

x⋆
α given by (3.2) is an optimal EJT rate vector, it suffices to show that x⋆

α is also the

optimum solution of the following optimization problem:

min
η(x)= 1+L

1+ 1
α

1+L
1
α

, x∈C

‖x‖2 (3.3)

In order to solve the optimization problem given by (3.3), we begin by noting that

it is a convex optimization problem since it involves minimizing a convex function over

a convex set. Moreover, since the constraints are linear inequalities, Slater’s condition

is satisfied as long as the problem is feasible, which is always the case [17, p. 227]. As

a result, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for
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optimality. To express the KKT conditions, we define the Lagrangian corresponding

to the optimization problem (3.3) as

L(x, λ,v, u) = ‖x‖2+
L
∑

m=1

λm(xm+xL+1−1)−
L+1
∑

m=1

vmxm+u
(

η(x)−
1 + L1+ 1

α

1 + L
1
α

)

, (3.4)

where λm is the Lagrange multiplier associated with the mth inequality constraint,

xm+xL+1 ≤ 1, vm is Lagrange multiplier associated with mth nonnegativity inequality

constraint, xm ≥ 0, and u is the Lagrange multipliers associated with the efficiency

equality constraint, η(x) = 1+L1+ 1
α

1+L
1
α

. The optimal solution of (3.3), x⋆, and the optimal

Lagrange multipliers λ⋆,v⋆, and u⋆ are characterized by the KKT conditions given

below

Stationarity: ∂
∂xm

L(x, λ,v, u) =



















2x⋆
m + λ⋆

m − v⋆m + u⋆ = 0, 1 ≤ m ≤ L,

2x⋆
L+1 +

∑L
m=1 λ

⋆
m − v⋆L+1 + u⋆ = 0, m = L+ 1.

Primal feasibility: x⋆ ∈ C, η(x) = 1+L1+ 1
α

1+L
1
α

.

Dual feasibility: λ⋆
m ≥ 0, 1 ≤ m ≤ L,

v⋆m ≥ 0, 1 ≤ m ≤ L+ 1.

Complimentray slackness: λ⋆
m(x

⋆
m + x⋆

L+1 − 1) = 0, 1 ≤ m ≤ L,

v⋆mx
⋆
m = 0, 1 ≤ m ≤ L+ 1.

(3.5)

By solving the equations given in (3.5), it can be shown that optimal primal and dual
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solutions assume the following form:

Primal optimal solution: x⋆
m = x⋆

α,m =



















L
1
α

1 + L
1
α

, 1 ≤ m ≤ L,

1

1 + L
1
α

, m = L+ 1.

Dual optimal solution: λ⋆
m = 2

−1 + L
1
α

(1 + L
1
α )(L− 1)

,

v⋆m = 0,

u⋆ = −2
−1 + L1+ 1

α

(1 + L
1
α )(L− 1)

.

(3.6)

Thus, x⋆
α achieves the optimal EJT.

Unlike Proposition 1 provided in Chapter 2, where we proved that the α-fair

tradeoff policy yields the optimal EJT for an arbitrary set C and M = 2 users,

Proposition 2 shows that for a linear network with L links, M = L + 1 users, and

uniform capacity, the α-fair policy yields the optimal EJT. However, this result does

not necessarily carry over to linear networks with nonuniform capacity. To show this,

we consider linear networks with uniform and nonuniform capacity. In both cases, the

considered networks consist of L = 6 links and M = L+1 = 7 users. For the uniform

case, the capacity of the links are given by cℓ = 1 Mb/s ∀ℓ ∈ [1, L]. To introduce

nonuniformity among the capacities of the links, we only change the capacity of the

first link to 3 Mb/s, i.e., the capacity of the ℓ-th link for the nonuniform case is given

by

cℓ =



















3 Mb/s, ℓ = 1,

1 Mb/s, 2 ≤ ℓ ≤ L.

The comparisons between the optimal EJT and the EJT achieved by the α-fair

policy for the considered linear networks with uniform and nonuniform capacity are
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Figure 3.2: A comparison between the EJTs achieved by the optimal and α-fair
policies in a linear network.

shown in Fig. 3.2(a) and Fig. 3.2(b), respectively. The optimal EJT was obtained

using Procedure 2 and the EJT achieved by the α-fair policy was obtained by solv-

ing (2.2). The convex optimization problems underlying Procedure 2 and the α-fair

policy were solved using ‘fmincon’, which is available in the MATLAB optimization

toolbox. In agreement with Proposition 2, Fig. 3.2(a) shows that the α-fair tradeoff

policy achieves the optimal EJT for the case of uniform capacity. However, for the

case of nonuniform capacity depicted in Fig. 3.2(b), it can be seen that the tradeoff

generated by the α-fair tradeoff policy is far from the one generated by the optimal

EJT policy. Indeed, this example reiterates the fact that increasing α improves the

fairness from α-fairness perspective but can result in strict decrease in Jain’s fairness

index, as shown in Fig. 3.2(b).1 This example also demonstrates that, unlike the

optimal EJT policy, the α-fair tradeoff policy guarantees Pareto optimality in the

user rates but it does not guarantee Pareto optimality in efficiency and Jain’s fairness

index.

1In this example, the set of feasible rates does not satisfy the solidarity property (cf. [22, Section
IV]), hence the max-min fair allocation, achieved by setting α → ∞, is not guaranteed to result in
equal rates for all users.
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3.3 Radio Resource Allocations in Quasi-Static

Channels: Analysis

To elaborate on the motivation for considering quasi-static channels, we note

that these channels are frequently encountered in various practical communication

scenarios. We mention two examples for brevity:

a. Digital Subscriber Line (DSL) wireline communications: In these systems, the

quality of channels depends on electromagnetic coupling between lines and on

the distance from the central office to subscribing units. Such channels remain

constant for numerous time slots and can be assumed quasi-static for essentially

all practical considerations.

b. Relay assisted cellular systems: In these systems, the base station (BS) commu-

nicates with the user terminal (UT) in two hops: one hop from the BS to a fixed

relay and one hop from the relay to the UT. When the relay is close to the UT, the

BS-UT communication is constrained by the channel from the BS to the relay. Be-

cause both the BS and the relay are fixed, the channel between them is dominated

by pathloss and shadowing. Hence, this channel remains constant for numerous

time slots and can be assumed quasi-static for many practical considerations.

Under quasi-static channel conditions and given modulation and coding schemes,

the data rate of each userm ∈M , {1, . . . ,M} on RB n ∈ N , {1, . . . , N}, which we

denote by rm,n, is a deterministic quantity known to the transmitter. The objective of

the transmitter is to determine a fair RB allocation that ensures efficient communica-

tion of data to the users. To achieve this goal, let ρm,n ∈ [0, 1] be a scheduling variable

that assigns RB n to user m for a fraction ρm,n of the signalling interval [26]. At each

time instant, each RB is used by at most one user, and thus
∑M

m=1 ρm,n ≤ 1. The

total data rate (benefit) of user m is given by xm =
∑N

n=1 ρm,nrm,n and the efficiency
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of the network is given by the total sum-rate, which is given by η(x) =
∑M

m=1 xm.

The set of achievable rates (benefits) of the users is given by

C =
{

x|xm =

N
∑

n=1

ρm,nrm,n,

M
∑

m=1

ρm,n ≤ 1, ρm,n ∈ [0, 1], xm ≥ xmin, m ∈M, n ∈ N
}

,

(3.7)

where xmin ≥ 0 represents a feasible threshold on the minimum rate that must be

delivered to each user. Using this description, the goal of the transmitter can be cast

as to determine the set {ρm,n} that results in rate vectors x that span the optimal

EJT. This goal can be achieved by invoking the results of Theorem 1. In particular,

we note that the set C in (3.7) is convex and contains the vector xmin1M . Hence, the

conditions of Theorem 1 are satisfied and C possesses the monotonic tradeoff property.

Based on this observation, Procedure 2 will be used in Section 3.4 to obtain {ρm,n}

that achieve every point on the optimal EJT.

When the RBs are not time-shared, {ρm,n} assume binary values (i.e., ρm,n ∈ {0,

1}), resulting in the set C being non-convex. In this case, C may not possess the

monotonic tradeoff property and Procedure 1 can be used to obtain the optimal

{ρm,n}. Procedure 1 is significantly more computationally-demanding in compari-

son with Procedure 2, which is used when time-sharing is allowed and {ρmn} are

continuous.

For the sake of presentation, the optimal EJT scheduler is defined as the sched-

uler that finds the scheduling variables, {ρm,n}, based on the optimal EJT policy.

Similarly, the α-fair scheduler is defined as the scheduler that finds the scheduling

variables, {ρm,n}, based on the α-fair tradeoff policy.

45



3.3.1 Special Case: Scheduling in Frequency-Flat Fading

with Time-Sharing

In the following, we analyze the performance of the α-fair scheduler and the op-

timal EJT scheduler in quasi-static frequency-flat fading channels with time-sharing.

In particular, for both schedulers, closed-form expressions of the data rate delivered

to each user are derived and useful insights are drawn from these expressions. In

frequency-flat fading channels, the data rate of each user is the same on all RBs, i.e.,

rm,n = rmñ = rm, ∀n, ñ ∈ N , ∀m ∈M.

α-fair Based Scheduling

In quasi-static frequency-flat fading channel, the α-fair rate vector, x⋆
α, assumes

the following form [27]

x⋆
α,m =

r
1
α
m

∑M
m=1 r

1−α
α

m

N (3.8)

In the following, we examine an important special case of α-fair scheduling,

which is proportional-fair scheduling that corresponds to α = 1. In this case, the

proportional-fair rates are given by

x⋆
α=1,m =

N

M
rm. (3.9)

According to (3.9), a proportional-fair scheduler is a resource-fair scheduler, i.e.,

it allocates equal resources to all users regardless of the rates they can achieve in each

RB, {rm} [27, 28]. This implies that the resulted efficiency and resulted Jain’s index

are given by η(x⋆
α=1) = N

M

∑M
m=1 rm and J(x⋆

α=1) =

(∑M
m=1 rm

)2

M
∑M

m=1 r
2
m

, respectively. As a

result, the EJT achieved by the proportional-fair scheduler is highly dependant on

the users’ rates {rm}. To elaborate, we consider two extreme cases, where in the first

case, the proportional-fair scheduler achieves the best efficiency and fairness, while in
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the second case, it achieves asymptotically the least fair and only 1
M

of the maximum

achievable efficiency.

Consider the case where all users have the same rates, i.e., rm = r, ∀m ∈ M. In

this case, the most efficient and most fair solution is to allocate resources equally to

all users, which is achieved by the proportional-fair scheduler. On the contrary, the

proportional-fair scheduler does not perform as good when users’ rates vary signifi-

cantly. To illustrate this, we consider the case where the users’ rates are given by a

geometric sequence as {rm = ǫm−1, m ∈ M}, where ǫ is an arbitrarily small positive

number, i.e., 0 < ǫ << 1. In this case, the resulted efficiency and Jain’s index are

given by

η(x⋆
α=1) =

N

M

M
∑

m=1

rm =
N

M

M
∑

m=1

ǫm−1 =
1− ǫM

1− ǫ

ǫ→0
≈

N

M
, (3.10)

J(x⋆
α=1) =

(

M
∑

m=1

rm

)2

M
M
∑

m=1

r2m

=

(

M
∑

m=1

ǫm−1
)2

M
M
∑

m=1

ǫ2(m−1)

=

(1−ǫM )2

(1−ǫ)2

M 1−ǫ2M

1−ǫ2

=
(1− ǫM)(1 + ǫ)

M(1 + ǫM )(1− ǫ)

ǫ→0
≈

1

M
.

(3.11)

Examining the asymptotic expressions given by (3.10) and (3.11) reveals that

proportional-fair scheduling leads to the least-fair solution as measured by the Jain’s

index (recall that J(x⋆
α=1) ∈ [ 1

M
, 1]). Moreover, the efficiency achieved by such alloca-

tion is only 1
M

of the maximum feasible efficiency achieved by assigning all resources

to the best user, which is user 1 in this case. Hence, in this particular user configu-

ration, the proportional-fair scheduler is not a good choice from EJT perspective as

it yields both low efficiency and low fairness.

Optimal EJT Scheduling

As discussed earlier, Procedure 2 can be used to find allocations that yield the

optimal EJT. In this procedure, the optimization problem in (2.21) is solved for
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various choices of σ. For each value of σ, the problem in (2.21) involves a constraint

on the sum-rate efficiency. Unfortunately, such a constraint complicates the derivation

of a closed-form solution. To circumvent this difficulty, we use the equivalent alternate

formulation of (2.21) given in (2.26). Using this formulation, the optimal EJT rate

vector, for a given β, is given by

x⋆
β = min

x∈C
‖x‖2 − 2βη(x), (3.12)

where

C =
{

x
∣

∣xT r−1 ≤ N,x � xmin1M , m ∈M
}

, (3.13)

and r−1 is a length-M vector given by r−1 = [r−1
1 , . . . , r−1

M ]T .

In order to solve the optimization problem given by (3.12), we begin by noting

that (3.12) is a convex optimization problem since both the objective function and

the feasible set are convex. Moreover, since the constraints that define C are linear in-

equalities, Slater’s condition is satisfied for non-empty C [17, p. 227]. As a result, the

KKT conditions are necessary and sufficient for optimality. To express the KKT con-

ditions, we define the Lagrangian corresponding to the optimization problem (3.12)

as

L(x, λ,v) = ‖x‖2 − 2βη(x) + λ(xT r−1 −N)− vT (x− xmin1M), (3.14)

where λ and v are the Lagrange multipliers associated with the constraints xT r−1 ≤ N

and x � 0, respectively. For a given β, the optimal solution to (3.12), x⋆
β , and the

optimal Lagrange multipliers, λ⋆
β and v⋆

β , are characterized by the KKT conditions

48



given below

Stationarity: ∇xL(x
⋆
β , λ

⋆
β,v

⋆
β) = 2x⋆

β − 2β1M + λ⋆
βr

−1 − v⋆
β = 0.

Primal feasibility: x⋆
β
T r−1 ≤ N,x � xmin1M .

Dual feasibility: λ⋆
β ≥ 0,v⋆

β � 0M .

Complimentray slackness: λ⋆
β(x

⋆
β
T r−1 −N) = 0, v⋆β,m(x

⋆
β,m − xmin) = 0.

(3.15)

Using the stationarity and complimentary slackness conditions, it is not difficult

to show that the solution to the KKT conditions in (3.15) is given by

x⋆
β,m = max(xmin, β − 0.5λ⋆

βr
−1
m ), (3.16)

v⋆β,m = 2x⋆
β,m − 2β + λ⋆

βr
−1
m . (3.17)

To compute λ⋆
β, we note that x⋆

β
T r−1 ≤ N is satisfied with equality since x⋆

β is an

optimal EJT rate vector. As a result, λ⋆
β can be computed by solving the following

equation
M
∑

m=1

r−1
m max(xmin, β − 0.5λ⋆

βr
−1
m ) = N. (3.18)

To facilitate solving (3.18), we define M̂β as the set of users who receives exactly the

minimum rate requirement, i.e., M̂β = {m|x⋆
β,m = xmin}. Using the definition of M̂β,

it can be readily verified that the solution to (3.18) assumes the following form

λ⋆
β = 2

(

(η(r−1)− η(r̂−1
β ))xmin + η(r̂−1

β )β −N
)

M
J(r̂−1

β )

η2(r̂−1
β )

(3.19)
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where r̂−1
β is a vector of non-negative real entries {r̂−1

β,m}
M
m=1 given by

r̂−1
β,m =



















r−1
m , m /∈ M̂β,

0, m ∈ M̂β.

(3.20)

Thus, obtaining λ⋆
β requires calculating M̂β. In order to compute M̂β, we note that

the left-hand side of (3.18) is monotonically decreasing in the cardinality of M̂β.

Moreover, the largest decrease in the left-hand side of (3.18) occurs by including the

user with highest r−1
m (i.e., smallest rm) in M̂β. Based on these observations, we

devise Algorithm 3 to compute M̂β. It is not difficult to show that Algorithm 3 given

below has a worst-case complexity of O(M2).

Algorithm 3 Finding M̂β = {m|x⋆
β,m = xmin}

Input: r−1 and M
Output: M̂β

1: Initialize M̂β = Φ
2: for p = 1 : M − 1 do
3: Calculate r̂−1

β using (3.20) and λ⋆
β using (3.19).

4: if
∑M

m=1 r
−1
m max(xmin, β − 0.5λ⋆

βr
−1
m ) = N and λ⋆

β > 0 then

5: return M̂β.
6: else
7: M̂β = M̂β

⋃

m̂, where m̂ = arg min
m/∈M̂β

rm

8: end if
9: end for
10: return M̂β.

Once M̂β is computed using Algorithm 3, λ⋆
β can be calculated using (3.19).

Substituting (3.19) in (3.16), the optimal solution x⋆
β,m can be expressed as

x⋆
β,m = max

(

xmin, β−
(

(η(r−1)−η(r̂−1
β ))xmin+η(r̂−1

β )β−M
)

M
J(r̂−1

β )

η2(r̂−1
β )

r−1
m

)

, (3.21)
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An important insight that can be drawn from the structure of the optimum so-

lution given by (3.21) is how the optimal EJT scheduler handles potentially disad-

vantageous users. In particular, in the following we show that increasing β increases

the resulting efficiency by increasing the number of users in M̂β who are served with

just the minimum rate requirement xmin and allocating the remaining resources fairly

among the more advantageous users. To show that, let mmin denote the index of the

user with the lowest rm and it is not included in M̂β, i.e., mmin ∈ arg min
m/∈M̂β

rm. We

show that x⋆
β+∆,mmin

≤ x⋆
β,mmin

for sufficiently small ∆ > 0. For sufficiently small

∆ > 0, M̂β+∆ = M̂β. Hence, using (3.21), we can write

x⋆
β+∆,mmin

− x⋆
β,mmin

= ∆
(

1−M
J(r̂−1

β
)

η(r̂−1
β

)
r−1
mmin

)

≤ ∆
(

1−
Mr−1

mmin

η(r̂−1
β

)

)

≤ 0, (3.22)

where the first inequality follows from the fact that J(r̂−1
β ) ≤ 1 and the second

inequality follows from the fact that r−1
mmin

≥ r−1
m , ∀m /∈ M̂β. Note that the inequality

in (3.22) holds with equality if and only if r−1
mmin

= r−1
m , ∀m /∈ M̂β. Hence, we proved

that as β increases, x⋆
β,mmin

decreases until x⋆
β,mmin

= xmin. Thus, increasing β can

potentially increase the cardinality of M̂β.

On the other hand, a similar proof can be constructed to show that as the param-

eter β decreases, less and less users are included in M̂β. This leads to fairer solutions

as more and more users are served with rates that are strictly higher than xmin.

3.4 Radio Resource Allocations in Quasi-Static

Channels: Numerical Results

In this section, we compare the EJT achieved by the optimal EJT scheduler and

the α-fair one in quasi-static channels through numerical examples. We start by

considering a special case of frequency-flat fading and then we consider the general

51



case of frequency-selective fading.

3.4.1 Frequency-Flat Fading

We consider one realization of a quasi-static frequency-flat channel in a network

with M = 4 users and N = 5 RBs. As an example, we assume that the rate matrix

is given by a geometric sequence as r = [rm,n = 1000× 0.1m−1 Kb/s], i.e.,

r =





























1000 1000 1000 1000 1000

100 100 100 100 100

10 10 10 10 10

1 1 1 1 1





























. (3.23)

For simplicity, we assume there is no minimum rate guarantee, i.e., xmin = 0, and

we consider only the case of time-sharing. The comparison between the optimal EJT

and the EJT achieved by the α-fair scheduler for the considered example is shown

in Fig. 3.3. The optimal EJT was obtained using Procedure 2 and the EJT trade-

off achieved by the α-fair scheduler was obtained by solving (2.2). The solutions

of the convex optimization problems underlying Procedure 2 are obtained using the

closed-form expression given in (3.21) while the solutions of the convex optimization

problems underlying the α-fair scheduler were obtained using the closed-form expres-

sion given in (3.8) which was derived in [27]. From this figure, it can be seen that the

EJT generated by the optimal EJT scheduler is significantly better than that gener-

ated by the α-fair one. In particular, compared to the proportional-fair case (α = 1),

the optimal EJT scheduler can provide a gain of 88% in efficiency for the same Jain’s

index or a gain of 35% in Jain’s index for the same efficiency. Such large gains agree

with the insights drawn from the analysis of proportional-fairness in Section 3.3.1.
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To gain further insights on the difference between the optimal EJT scheduler and

the α-fair one, we plot in Fig. 3.4 the users’ rates at an efficiency of 1 Mb/s for

both schedulers. It can be seen that for the case of the α-fair scheduler, all users

have non-zero rates, although there are large variations between these rates. Such

large variations result in a low Jain’s fairness index of 0.32. On the other hand,

for the case of the optimal EJT scheduler, only two users have non-zero rates with

very close values. This results in the maximum Jain’s index that can be achieved at

an efficiency of 1 Mb/s for the considered example, which is 0.49. This comparison

shows a fundamental difference between the α-fair scheduler and the optimal EJT

one on the way they achieve high efficiency while serving a mixture of advantageous

user, i.e., users with large rm,n, and disadvantageous users, i.e., users with small rm,n.

At high efficiencies, the α-fair scheduler tends to provide disadvantageous users with

very small non-zero rates and advantageous users with large rates. On the other

hand, the optimal EJT scheduler tends to provide the disadvantageous users with

just the minimum required rate (xmin) and allocate the remaining resources fairly to

the advantageous users. This observation agrees with the insights drawn from the

analysis of the optimal EJT in frequency-flat fading in Section 3.3.1. Indeed, we will

demonstrate in 3.6 that this observation also holds for the case of resource allocation

in ergodic time-varying frequency-selective channels.
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Figure 3.3: A comparison between the EJTs achieved by the optimal and α-fair
schedulers in frequency-flat channels with time-sharing.

3.4.2 Frequency-Selective Fading

We consider one realization of a quasi-static network with M = 4 users and N = 5

RBs. As an example, we assume that the rate matrix r = [rm,n] is given by

r =





























544 648 807 544 722

388 92 223 388 56

35 544 35 722 56

35 56 35 92 35





























. (3.24)

The rates in this matrix are given in Kb/s and were obtained from simulating a

practical scenario based on the Long Term Evolution (LTE) standard [29]. In the

considered scenario, users 1 and 2 are closer to the BS than users 3 and 4, and the
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Figure 3.4: A comparison between the users’ rates achieved by the optimal EJT and
α-fair schedulers in frequency-flat channels with time-sharing at an efficiency of
1 Mb/s.

wireless channels are quasi-static frequency-flat and Rayleigh fading on each RB.

The comparisons between the optimal EJT and the tradeoff achieved by the α-fair

scheduler for the case when the RBs can be time-shared among users are shown in

Fig. 3.5(a) and Fig. 3.5(b). In Fig. 3.5(a), it is assumed that there is no minimum rate

guarantee, i.e., xmin = 0, while in Fig. 3.5(b) the minimum rate guarantee is assumed

to be 50 Kb/s, i.e., xmin = 50 Kb/s. Procedure 2 was used to obtain the optimal

EJT, and the tradeoff achieved by the α-fair scheduler was obtained by solving (2.2).

The convex optimization problems underlying Procedure 2 and the α-fair scheduler

were solved using ‘fmincon’, which is available in the MATLAB optimization toolbox.

From both figures, it can be seen that, while these tradeoffs are close to each other

for small and large values of α, for intermediate values, the tradeoff generated by the

optimal EJT scheduler is significantly better than that generated by the α-fair one.
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Figure 3.5: A comparison between the EJTs achieved by the optimal and α-fair
schedulers with time-sharing.

For example, for a Jain’s index of 0.7, the optimal EJT scheduler provides 33% gain

in efficiency as compared to the α-fair scheduler for the case of xmin = 0 Kb/s and

21% gain in efficiency for the case of xmin = 50 Kb/s.

In Figs. 3.6(a) and 3.6(b) we present the counterparts of Figs. 3.5(a) and 3.5(b),

but for the case when the RBs are not time-shared by the users. In Fig. 3.6(a), xmin =

0, while in Fig. 3.6(b) xmin = 50 Kb/s. Since the set C in this case is not convex and

hence does not satisfy the sufficient conditions for possessing the monotonic tradeoff

property, Procedure 1 was used to obtain the optimal EJT; cf. Section 3.3. The

non-convex optimization problems underlying Procedure 1 and the α-fair scheduler

were solved using exhaustive search. Similar to the case of time-sharing considered in

Figs. 3.5(a) and 3.5(b), it can be seen from Figs. 3.6(a) and 3.6(b) that, in this case

too, the optimal EJT scheduler provides tradeoffs that are significantly better than

those provided by the α-fair scheduler when xmin = 0 and when xmin = 50 Kb/s.
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Figure 3.6: A comparison between the EJTs achieved by the optimal and α-fair
schedulers without time-sharing.

3.5 Radio Resource Allocations in Ergodic Time-

Varying Channels: Analysis

We now consider the problem of determining the radio resource allocations that

span the optimal EJT when the channels are ergodic and time-varying. Before pro-

viding the mathematical framework for this case, we begin by noting that, from a

practical perspective, one is typically interested in average, rather than instantaneous,

rates [23,30]. In those cases, one might be tempted to apply the same approach in the

previous section on instantaneous realizations of the channels. Although this would

guarantee optimal tradeoff between efficiency and fairness in every time instant, it

suffers from a major drawback that was alluded to in [23]. In particular, applying

that instantaneous strategy does not necessarily lead to long-term average rates that

are optimal from an EJT perspective.

For ergodic time-varying channels considered in this section, the channel gains

assume random values in every sub-frame t. These gains are assumed to be avail-

able at the transmitter and the receivers, and the instantaneous data rate that can

be achieved by each user m ∈ M on each RB n ∈ N is denoted by rm,n(t). To
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achieve various points on the long-term average optimal EJT, we define scheduling

variables, similar to Section 3.3. However, in the current case of time-varying chan-

nels, these variables are binary, indexed by t, and denoted by {ρm,n(t)}. The reason

that {ρm,n(t)} are assumed to be binary is that the channel gains take on different

values in each sub-frame, rendering time-sharing implausible. In other words, for each

channel realization, the role of {ρm,n(t)} is to assign each RB to a particular user.

Updating {ρm,n(t)} to achieve points on the long-term average optimal EJT will be

accomplished using the gradient scheduling algorithm, which we describe next.

3.5.1 The Gradient Scheduling Algorithm

The gradient scheduling algorithm is a particular instance of adaptive algorithms

that enable efficient solving of stochastic optimization problems in which the utilities

to be maximized involve long-term averaging over an ergodic process; see e.g., [23,31].

The key idea that underlies such an algorithm is to use gradient-based steps to update

the optimization variables sequentially using current and previous observations of the

process. In addition to its relative simplicity, variants of the gradient scheduling

algorithm were shown in [23] and [31] to yield the optimal solution of the stochastic

optimization problem as the number of observations becomes sufficiently large.

To apply this algorithm to the current framework, let Rm(t) be the data rate

scheduled to user m at sub-frame t, i.e., Rm(t) =
N
∑

n=1

ρm,n(t)rm,n(t). Maximizing the

standard average rate of user m directly results in spurious behaviour [32], which can

be alleviated by using the exponentially-weighted moving average instead. To do so,

let µ ∈ (0, 1) be a small positive scalar [31] and define Wm(t) to be

58



Wm(t) = µ

t
∑

i=0

(1− µ)i−tRm(i)

= (1− µ)Wm(t− 1) + µRm(t).
2 (3.25)

For notational convenience, let W(t) = [W1(t), . . . ,WM(t)]T and R(t) = [R1(t), . . . ,

RM(t)]T . Since our goal is to optimize long-term (i.e., steady-state) average rates,

the benefit vector of the M users can be defined to be x = limt→∞W(t).

Using the above notation, the idea behind gradient scheduling algorithm can be

described as follows: Given the exponentially-weighted average rates at sub-frame

t − 1, W(t− 1), and the instantaneous rates, {rm,n(t)}, the task of the scheduler is

to determine the instantaneous scheduling variables, {ρm,n(t)}, in such a way that

maximizes a given system utility U(x) : RM → R. We will later show how U(·) can

be chosen to account for various tradeoff criteria. Since at sub-frame t the scheduler

knows the previous values of W(t), but not future ones, its instantaneous decisions,

{ρm,n(t)}, can only depend on W(t − 1) and {rm,n(t)}. In the gradient scheduling

algorithm, the scheduler generates these decisions using the first order Taylor’s series

expansion of U(W(t)) around W(t−1). In particular, using (3.25) with a sufficiently

small µ, we can write U(W(t)) ≈ U(W(t−1))+µ∇U(W(t−1))T (R(t)−W(t−1)).

Noting that, at sub-frame t, U(W(t−1)) is constant, it can be seen that only the term

containing R(t) depends on {ρm,n(t)}. Hence, maximizing U(W(t)) is approximately

equivalent to solving

max
{ρm,n(t)}∈S

∇U(W(t− 1))TR(t), (3.26)

2It can be seen from (3.25) that the change in Wm(t) in every sub-frame t is given by Wm(t) −
Wm(t − 1) = µ(Rm(t) −Wm(t − 1)). Since Rm(t) is a random process, Wm(t) may oscillate and
the amount of oscillation is proportional to µ. Intuitively, to reduce (or possibly eliminate) the
oscillation and improve the convergence of Wm(t), it is necessarily to choose µ to be sufficiently
small, as we will discuss shortly.

59



where S ,
{

{ρm,n}
∣

∣

∑M
m=1 ρm,n ≤ 1, ρm,n ∈ {0, 1}, ∀m ∈ M, n ∈ N

}

.

Invoking the definition of R(t), the solution of (3.26) can be expressed as

ρm,n(t) =



































1, if m = arg max
m∈M

∂U(W(t−1))
∂Wm(t−1)

rm,n(t),

and max
m∈M

∂U(W(t−1))
∂Wm(t−1)

≥ 0,

0, otherwise.

(3.27)

It is shown in [23, 31, 32] that, when the rate processes {rm,n(t)} are ergodic and the

utility U(·) is concave, the scheduling variables obtained by the gradient scheduling

algorithm in (3.27) yield a long-term average rate vector x that maximizes U(x),

asymptotically as µ→ 0.

3.5.2 Application of Gradient Scheduling to Efficiency-

Fairness Utilities

With a proper choice of U(·) in (3.27), the gradient scheduling algorithm can

be made to yield instantaneous schedules that attain long-term optimal efficiency-

fairness tradeoffs for various fairness measures. To show this, we consider the case in

which the set C contains the long-term average rate benefit vectors corresponding to

all possible choices of the scheduling variables {ρm,n(t)}, i.e.,

C =
⋃

{ρm,n(t)}∈S, ∀t

{

x
∣

∣xm = lim
t→∞

µ

t
∑

i=0

N
∑

n=1

(1− µ)i−t ρm,n(i)rm,n(i)
}

. (3.28)

This definition implies that the instantaneous scheduling variables generated by (3.27)

yield long-term average rate benefit vectors that lie in C.
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Achieving α-Fairness

When the fairness measure is given by the α-fair utility, the function U(·) in (3.27)

is replaced with the utility Uα(x) in (2.3). Since this utility is concave for all α ∈

[0,∞), the gradient scheduling algorithm with µ → 0 can be used to obtain the

instantaneous schedules that yield the corresponding long-term optimal average rate

vectors. In this case, these schedules are given by

ρm,n(t) =



















1, if m = arg max
m∈M

(Wm(t− 1))−αrm,n(t),

0, otherwise.

(3.29)

Achieving the Optimal EJT

We now show how to use the gradient scheduling algorithm to obtain the optimal

EJT. For simplicity we restrict our attention to the case of xmin = 0. To consider this

case, we note that, with xmin = 0, the set of feasible benefit vectors defined in (3.28)

satisfies the conditions of Theorem 1. In particular, this set is convex and contains

the all-zero vector, 0M . To see that C is convex in x, we note that, for any two

long-term average rate benefit vectors x1,x2 ∈ C and any θ ∈ [0, 1], the line segment

θx1 + (1− θ)x2 is also in C [23]. That 0M ∈ C follows from the fact that setting the

scheduling variables ρm,n(t) = 0 for all m, n and t is feasible, i.e., the all-zero M ×N

matrix, 0MN ∈ S.

Now that the conditions of Theorem 1 are satisfied, we know that C possesses

the monotonic tradeoff property in Definition 3, and Procedure 2 can be used to

find the optimal EJT long-term average rates. In this procedure, the optimization

problem in (2.21) is solved for various choices of σ. For each value of σ, the problem

in (2.21) involves a constraint on the sum of the long-term average rates. Unfortu-

nately, incorporating such a constraint in the gradient scheduling algorithm is not
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straightforward and hence, this algorithm cannot be used directly to solve (2.21) in

the current stochastic framework. To circumvent this difficulty, we use the alternate

formulation of (2.21) given in (2.26). Using that formulation, the gradient scheduling

algorithm can be applied with the utility U(·) in (3.27) replaced with

Uβ(x) = −‖x‖
2 + 2βη(x), (3.30)

where, as explained in Section 2.4.5, β ∈ [0,∞).

Using the utility in (3.30), the instantaneous schedules that yield the optimal EJT

long-term average rate vectors, for a given β, are given by

ρm,n(t) =



































1, if m = arg max
m∈M

(β −Wm(t− 1))rm,n(t),

and max
m∈M

(β −Wm(t− 1)) ≥ 0,

0, otherwise.

(3.31)

Achieving α-Fairness and Optimum EJT with Minimum Rate Guarantee

To ensure that the long-term average rate of each user exceeds a given threshold,

xmin, both the α-fair and the optimal EJT schedulers can be modified to incorporate

the token-based procedure developed in [33]. This procedure can be used to maximize

any concave utility in the long-term average rate while satisfying minimum average

rates constraints. By applying this procedure to maximize the α-fair utility given

in (2.3) and to maximize the optimal EJT utility given in (3.30), we get the following

α-fair and optimal EJT schedulers, with minimum rate guarantee:

ρm,n(t) =



















1, if m = arg max
m∈M
{eaκm(t)(β −Wm(t− 1))rm,n(t)},

0, otherwise,

(3.32)
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ρm,n(t) =



































1, if m = arg max
m∈M
{eaκm(t)(Wm(t− 1))−αrm,n(t)},

and max
m∈M

(β −Wm(t− 1)) ≥ 0,

0, otherwise,

(3.33)

where a is a multiplicative step-size that must be properly adjusted and κm(t) is

updated as follows

κm(t) = max{0, κm(t− 1) + xmin −Rm(t− 1)}, (3.34)

where κm(0) = 0 for all m ∈M, and Rm(t) is the instantaneous data rate scheduled

to user m at sub-frame t. Intuitively, κm(t−1) plays the role of increasing the weight

of the users that did not meet the rate requirement at sub-frame t− 1 and decreases

the weight of the users that exceeds the requirement at sub-frame t− 1. Optimality

proof and further details about this procedure can be found in [33].

We note, however, that this procedure requires intricate tuning of several operation

parameters, including a multiplicative step-size a and a practical operation margin

on xmin. Hence, although this technique offers a means for enforcing a minimum rate

requirement, it does that indirectly and its effectiveness depends, to a large extent,

on the precision with which the operation parameters are tuned. As indicated in [33],

if the user long-term average rates converge, then they converge to the optimal long-

term average rates that maximize the desired utility while meeting the minimum rate

guarantee; however, convergence itself is not guaranteed and it depends on parameter

tuning.

An important special case of the scheduler given by (3.33) is the maximum-

throughput with minimum-rate (MTMR) scheduler proposed in [33], which corre-

sponds to the case of α = 0. The goal of the MTMR scheduler is to maximize the

sum-rate efficiency while satisfying the minimum rate requirement, xmin, and it is
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given by

ρm,n(t) =



















1, if m = arg max
m∈M
{eaκm(t)rm,n(t)},

0, otherwise.

(3.35)

The scheduler given by (3.35) is parameterized by xmin and it can also be used in

trading off efficiency with fairness by varying the parameter xmin.

Now that we have shown how the gradient scheduling algorithm can be used to

yield α-fair and optimal EJT long-term average rate vectors, in the next section we

will investigate the performance of this algorithm in practical wireless communication

scenarios.

3.6 Radio Resource Allocations in Ergodic Time-

Varying Channels: Simulation Results

We now compare the performance of the α-fair scheduler in (3.29) and the MTMR

scheduler in (3.35) with the proposed optimal EJT in (3.31), in ergodic time-varying

channels. To do so, we start by providing the simulation setup and parameters

in Section 3.6.1. We then discuss the steps taken to validate the accuracy of our

simulator in Section 3.6.2, and we conclude this section by providing comparison

results in Section 3.6.3.

3.6.1 Simulation Setup and Parameters

We consider a cellular network based on the International Mobile Telecommunica-

tions-Advanced (IMT-Advanced) guidelines for the Urban Macro (UMa) scenario [34].

As per these guidelines, a hexagonal layout with wrapround is considered with 57

hexagonal sectors and 10 UTs per sector. These sectors are served by 19 BSs, each
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with a tri-sector antenna to serve a 3-sector cell-site. The users are uniformly dropped

in the 57 sectors, and Monte Carlo simulations are carried over 104 sub-frames and

averaged over 10 independent drops. The users are assumed to be associated with the

sector with the highest received average power. This power depends on large channel

variations, which are mainly due to non-uniform antenna patterns (cf. [34, pp. 17–

18]) and distance-dependent path-loss and correlated shadowing. To incorporate these

variations in our simulations, we considered the line-of-sight (LOS) and non-line of-

sight (NLOS) users as in [34, pp. 17–33]. For the LOS users, the path-loss exponent

is set to be 2.2 and the shadowing is assumed log-normal with standard deviation of

4 dB. For the NLOS users, the path-loss exponent is set to be 3.9 and the log-normal

shadowing standard deviation is set to be 6 dB. The system parameters are based on

the LTE standard, whereby each RB is composed of a time slot of 7 OFDM symbols

and 12 subcarriers [29]. The simulation parameters are given in Table 3.1.

In addition to large variations, the received signal power is subject to small-scale

variations due to time-varying multipath fading. Variations of the received signal

power due to fading within each RB is negligible and hence, the channels can be

assumed fixed over each RB. For other RBs the channels take on different values

depending on the spectro-temporal correlation of the IMT-Advanced model for the

UMa scenario [35].

At sub-frame t, each user m ∈ M calculates its received signal-to-interference-

plus-noise ratios (SINRs) on all the RBs, and subsequently determines rm,n(t), the

data rate that can be reliably communicated on every RB n ∈ N using the adaptive

modulation and coding (AMC) scheme given in Table 3.23. This AMC table was

devised using the AMC strategy given in [36]. The set of all the rates at sub-frame

3In LTE, a sub-frame spans 1 ms and consists of two time slots, i.e., there are 2N RBs to be
scheduled per sub-frame; however, based on the current simulation parameters, the channel stays
the same for both time slots in the sub-frame (coherence time is 3 ms). Thus, it suffices to consider
only N RBs for determining the scheduling decisions.
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t, {rm,n(t)} are transmitted through feedback control channels to the BS, which sub-

sequently determines the appropriate scheduling variables, {ρm,n(t)}, depending on

previously scheduled rates and the adopted scheduling strategy. Finally, we assume

a reuse-1 scheme in which all radio resources are used in every sector4.

3.6.2 Validation of the Simulator

Wrap Around Implementation and Validation

Consider a network that consists of 57 hexagonal sectors as shown in Fig. 3.7.

Clearly, the interior sectors (sectors 1 to 3) are subject to higher interference than

the sectors at the boundary of the layout. An important metric to assess the effect

of interference is wideband SINR, which is defined as the ratio of the average power

received from the serving sector to the sum of the average power received from all

other sectors and the noise power at the UT (i.e., small scale fading is not included in

the calculation of the wideband SINR). To quantify the difference in interference levels

between the interior and the boundary sectors, we plot in Fig. 3.8 the wideband SINR

cumulative distribution function (CDF) for the interior and the boundary sectors, as

well as the wideband SINR CDF of all sectors. This figure shows that the boundary

sectors have significantly higher wideband SINR than the interior sectors; e.g., the

median wideband SINR for the boundary sectors is 4 dB higher than that of the

interior sectors. Since the wideband SINR CDF varies significantly across the sectors,

it is not meaningful to collect user rates from all sectors. A trivial solution to this

boundary-effect is to collect the rates from the users in the interior sectors only

and discard the rates from all other users. Unfortunately, such a solution is not

computationally-efficient as it discards 54
57

of the calculated rates.

A computationally-efficient solution to the boundary-effect problem is to use a

4The implications of relaxing this assumption to manage interference is investigated in depth in
Chapter 4.
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Table 3.1: Simulation parameters based on IMT-Advanced UMa scenario.

Parameter Assumption

Number of sectors 57 (wraparound)

Number of UTs per sector 10

Inter-site distance 500 m

BS’s height 25 m

Min. dist. between a UT and a BS 25 m

UT’s speed 30 km/h

Bandwidth (downlink) 10 MHz

Sub-carrier spacing 15 KHz

Number of RBs (N) 50

OFDM symbol duration 66.67 µs

Number of sub-carriers per RB 12

Number of OFDM symbols per RB 7

Number of drops 10

Number of sub-frames per drop 10000

Noise power per RB (Pn) -114.45 dBm

Carrier frequency 2.0 GHz

Total BS’s transmit power 46 dBm

Path loss and Shadowing Based on UMa scenario [34]

Smoothing factor (µ) 0.01

BS antenna gain (boresight) 17 dBi

User antenna gain 0 dBi

Feeder loss 2 dB

Channel estimation delay 4 ms

SINR estimation margin 6 dB

(to reduce the effect of outdated CSI)

BS’s antenna tilt (φt) 12◦ [37]

BS’s horizontal antenna pattern A(θ) = −min
[

12( θ
70◦

)2, 20 dB
]

[34]

BS’s elevation antenna pattern Ae(φ) = −min
[

12(φ−φt

15◦
)2, 20 dB

]

[34]

BS’s combined antenna pattern −min [− (A(θ) + Ae(φ)) , 20 dB] [34]

Small-scale fading model IMT-Advanced channel model [35]

Traffic model Full buffer
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Figure 3.7: A network layout that consists of 57 hexagonal sectors (without wrap
around).
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Figure 3.8: CDF of the wideband SINR for the network layout shown in Fig. 3.7.
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Table 3.2: The AMC table which is used to determine the achievable data rate on
each RB for each user based on the SINR. This table is based on the AMC
strategy given in [36].

SINR range on RB n for user m (dB) Data rate, rm,n, (kb/s)

(−∞ -6.1] 0

(-6.1, -4.1] 35.3

(-4.1, -2.0] 56.4

(-2.0, -0.2] 92.4

(-0.2, 1.9] 131.4

(1.9, 3.8] 177.4

(3.8, 5.8] 223.1

(5.8, 8.5] 291.6

(8.5, 9.9] 388.4

(9.5, 12.5] 418.3

(12.5, 14.8] 544.3

(14.8. 16.1] 648.1

(16.1, 17.8] 721.7

(17.8, ∞) 807.4

wrap around layout [38, Appendix G]. In a nutshell, the boundary-effect can be

significantly reduced by adding “virtual” 6 clusters around the original cluster of 57

hexagonal sectors, as shown in Fig. 3.9. As a result, both the interior and the bound-

ary sectors in the original cluster have the same number of neighboring interferers.

The details of constructing and using wrap around layout can be found in [38, Ap-

pendix G]. To examine the boundary-effect on the wrap around layout, we plot in

Fig. 3.10 the wideband SINR CDF for the interior and the boundary sectors, as well

as the wideband SINR CDF of all 57 sectors (sectors in the “virtual” 6 clusters are

ignored). It can be seen from this figure that the interior, the boundary, and all the

sectors have the same wideband SINR CDF, which means that the boundary-effect
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that we observed in Fig. 3.8 is illuminated. The agreement in the wideband SINR

CDF also validates the implementation of the wrap around layout. Hence, we can

now collect the rates from users in all 57 sectors; this results in a significant reduction

in the simulation time as compared to collecting the rates from the interior sectors

only.

Wideband SINR CDF Validation

System simulators are complex in nature which make them error-prone. As a

result, careful verification of the simulation results is imperative. Consequently, we

compare the results obtained by the MATLAB-based simulator we developed with

the ones produced by WINNER+ research partners using different simulation tools

for UMa scenario [37].

We start by highlighting an aspect in the simulation that has important effect on

assessing the performance of cellular systems. In particular, we demonstrate that the

way UTs are associated to sectors has a significant impact on the simulation results. In

the following, we explain three association strategies, namely, wideband SINR-based,

wideband SINR-based (excluding shadowing), and geographical-based association. In

wideband SINR-based association, each UT is associated with the antenna sector to

which it has the highest wideband SINR. This association strategy resembles reality

and provides the most favorable results in terms of wideband SINR. A consequence of

this strategy is that the coverage region of each sector is not hexagonal and it changes

from drop to drop due to the different shadowing realizations. Another consequence

is that a UT may not be associated to the closest sector antenna as it may experience

heavy shadowing to that sector antenna. A more convenient way of doing simulation

is to exclude shadowing in the calculation of the wideband SINR which leads to

fixed coverage region for each sector in all drops. Due to the directional antenna

patterns, the coverage regions of each sector is not hexagonal. In geographical-based
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Figure 3.9: A wrap around network layout that consists of a cluster of 57 hexagonal
sectors (the middle cluster) and 6 “virtual” clusters.
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Figure 3.10: CDF of the wideband SINR for the network layout shown in Fig. 3.9.

association, a UT is associated to a particular sector antenna if it resides inside the

hexagonal area of that sector. In this strategy, the coverage region of each sector is

hexagonal.

In Fig. 3.11, we plot the CDF of the wideband SINR using the three associa-

tion strategies. For calibration purposes, we also include a reference CDF that is

obtained by averaging the CDF results produced by seven WINNER+ partners using

different simulation tools [37]. It is clear from the figure that wideband SINR-based

association strategy produces a CDF that agree very well with the reference results;

however, the other two association strategies produce a heavy tail which would impact

the throughput of the users at the cell edge. The heavy tail is a direct consequence

of associating UTs to sectors in a suboptimal manner. As a result, these two associ-

ation strategies may not be suitable for assessing the performance, especially for the

interference-aware schemes that we will consider in Chapter 4, as these association
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strategies tend to exaggerate the gains achieved for UTs at the cell-edge. This is the

case because the cell-edge user throughput for these two association strategies is very

low. This makes any improvement in cell-edge user throughput to be large as com-

pared to the very low values of reuse-1. Consequently, we use wideband SINR-based

association strategy throughout the thesis.

Path Gain CDF Validation

In addition to checking the CDF of the wideband SINR, we also plot in Fig. 3.12

the distribution of the path gain, which is defined as the average difference between

received and transmitted power in dB. In this figure, error bars represent the range

of values obtained by seven WINNER+ partners [37]. It is clear that the distribution

produced by our simulator is within the range of values obtained by WINNER+

partners.

Throughput CDF Validation

Finally, we plot the distribution of the normalized time-average user throughput

using our simulator in Fig. 3.13 assuming a proportional-fair scheduler. Normalization

is performed by dividing the user throughput over the total downlink bandwidth,

which is 10 MHz. For the sake of comparison, we also present the throughput CDFs

obtained by WINNER+ partners in Fig. 3.14 (reprinted from [37, Fig. 23]). There

is slight discrepancy between the curves obtained by different industrial partners

in WINNER+. The CDF produced by our simulator is within the range of CDFs

obtained by WINNER+ partners.

After validating the CDF of wideband SINR, CDF of pathgain, and CDF of

average user throughput, we are ready to present the performance results in the next

section.
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Figure 3.11: CDF of the wideband SINR for different association strategies. Refer-
ence result (WINNER+) refers to a reference CDF that is obtained by averaging
the CDF results produced by seven WINNER+ partners [37].
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3.6.3 Comparison Results

To be consistent with the IMT-Advanced guidelines, we present the comparison

results in terms of normalized throughputs measured in (bit/sec/Hz), where the term

“normalized throughput” is defined as the long-term average rate divided by the

total bandwidth (10 MHz). Moreover, normalized efficiency is defined as the nor-

malized aggregate sector throughput which is obtained by summing the normalized

user throughput of all users in the network and dividing the result by the number of

sectors.

Efficiency-Jain Tradeoff Comparison

We plot in Fig. 3.15(a) the EJT curves assuming there is no minimum normal-

ized throughput guarantee, for the α-fair scheduler in (3.29), the MTMR scheduler

in (3.35), and the proposed optimal EJT scheduler in (3.31). Similarly, we plot in

Fig. 3.15(b) the EJT curves assuming the minimum normalized throughput guarantee

to be xmin = 0.02 bit/sec/Hz, for the modified α-fair scheduler in (3.33), the MTMR

scheduler in (3.35), and the modified optimal EJT scheduler in (3.32). From both

figures, it can be seen that the proposed optimal EJT scheduler achieves consistently

better tradeoffs, especially in the high fairness region. For example, for a Jain’s in-

dex of 0.94, the proposed optimal EJT scheduler provides 35% gain in efficiency as

compared to the α-fair scheduler. Moreover, the MTMR scheduler produces the least

favorable EJT as expected, since it accounts only for minimum-throughput users and

not necessarily accounts for fairness among all users. In addition, we also observe that

adding minimum throughput guarantee reduces the gap between the α-fair scheduler

and the optimal EJT one in the high efficiency region.
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Figure 3.15: A long-term average rates comparison between the EJTs achieved by
the α-fair, the MTMR, and the proposed optimal EJT schedulers.

User Satisfaction Comparison

To illustrate the advantage of using Jain’s index as a fairness measure, we compare

the number of satisfied users when the scheduling is performed using the optimal

EJT, α-fair, and the MTMR schedulers. In particular, we assume that a user is

satisfied if its normalized throughput exceeds a certain threshold. Generally, we are

interested in maximizing the number of satisfied users. A scheduler that achieves

such maximization would be one that solves the following cardinality maximization

problem:

maximize
x∈C

|χ| (3.36)

subject to χ = {xm ≥ xth, ∀m ∈M}, (3.37)

where xth is the satisfaction threshold and |χ| is the cardinality of the set χ which is

defined as the number of elements in χ. Unfortunately, solving (3.36) is difficult and

might incur NP-hardness, depending on the feasible set C. One way, to alleviate this

difficulty is to maximize |χ| indirectly using an auxiliary scheduling objective. A nat-

ural candidate of such schedulers would be one that enables the allocation of resources
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in a way that combines both efficiency and fairness. In our work, we have studied

three such schedulers, namely, the α-fair, the MTMR, and the proposed optimal EJT

schedulers. Seeing as the objective of the optimal EJT scheduler is effectively the

projection of the all-equal throughput vector on C, it can be suspected that, in com-

parison with the α-fair scheduler and MTMR, it enables a larger percentage of users

to be satisfied.

To perform a concrete comparison, for the α-fair, the MTMR, and the optimal

EJT schedulers, the parameters α, xmin, and β, respectively, are chosen to maximize

the percentage of users for which the rates obtained by these schedulers exceed a given

threshold. Unfortunately, obtaining closed-form expressions for the optimal α, β, and

xmin as functions of rate thresholds has proved intractable. As an alternative, for each

threshold we performed an exhaustive search to find the optimal α, β, and xmin that

maximize the number of satisfied users in each scheduler. In practice, the optimal

α, β, and xmin can be determined through a pre-communication learning phase that

enables the BSs to evaluate user satisfactions for tentative values of α, β, and xmin.

The comparison between the percentage of satisfied users at given normalized

throughput thresholds is plotted in Fig. 3.16. As can be expected, the number of

satisfied users is monotonically decreasing with the threshold for all schedulers. How-

ever, the optimal EJT scheduler is consistently better than the α-fair and the MTMR

schedulers as it enables significantly more users to be satisfied. For instance, for the

considered scenario when the threshold is set to be 0.1 bit/sec/Hz, the scheduler

based on the optimal EJT satisfies 10% and 18% more users than those satisfied by

the α-fair and the MTMR schedulers, respectively. Hence, from a service provider’s

perspective, using the scheduler based on the optimal EJT yields a valuable increase

in the ability of the system to satisfy users with throughput requirements.
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Figure 3.16: Percentage of satisfied users for different thresholds.

Efficiency-Median Tradeoff Comparison

In addition to Jain’s index, an important metric that is related to fairness among

users is the median, which is defined as the 50th percentile of the normalized through-

put distribution (see e.g., [39]). In Fig. 3.17, we plot the Efficiency-Median Tradeoff

curve for the α-fair, the MTMR, and the proposed optimal EJT scheduler. It can

be seen from this figure that the Efficiency-Median Tradeoff achieved by the optimal

EJT scheduler is significantly better than those provided by the α-fair and the MTMR

schedulers. For example, for an efficiency of 1 bit/sec/Hz, the optimal EJT scheduler

provides 24% and 97% gains in the median as compared to the α-fair and the MTMR

schedulers, respectively. Similar to the EJT curves presented in Fig. 3.15, the MTMR

scheduler produces the least favorable Efficiency-Median Tradeoff since it accounts

only for minimum-throughput users and not necessarily accounts for fairness among

all users.
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Figure 3.17: A long-term average rates comparison of the Efficiency-Median Trade-
off achieved by the α-fair, the MTMR, and the proposed optimal EJT sched-
ulers.

Efficiency-Cell-edge Tradeoff Comparison

We conclude the performance results in this section by presenting the Efficiency-

Cell-edge Tradeoff curves for the α-fair, the MTMR, and the proposed optimal EJT

schedulers in Fig. 3.18(a) and Fig. 3.18(b) for xmin = 0 and xmin = 0.02 bit/sec/Hz,

respectively. Normalized cell-edge user throughput is defined as the 5th percentile

of the normalized throughput distribution. It can be seen form Fig. 3.18(a) that

the MTMR scheduler provides consistently the best tradeoff. For instance, for a

cell-edge normalized throughput of 0.02 bit/sec/Hz, the MTMR scheduler provides

28% and 62% gains in efficiency as compared to the α-fair and the proposed optimal

EJT schedulers, respectively. However, these large gains achieved by the MTMR

scheduler come at the expense of reduced Jain’s index, percentage of satisfied users,

and the median normalized throughput, as demonstrated in Fig.s 3.15, 3.16, and 3.17,
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Figure 3.18: A long-term average rates comparison of the Efficiency-Cell-edge
Tradeoff achieved by the α-fair, the MTMR, and the proposed optimal EJT
schedulers.

respectively. Moreover, the behaviour of the optimal EJT scheduler for cell-edge

users in time-varying channels agrees with the insight drawn from the closed-form

expression of the optimal EJT rate vectors in quasi-static frequency-flat channels

given by (3.21).

One way to improve the cell-edge performance of the α-fair and the optimal EJT

schedulers is to impose a minimum throughput guarantee that is strictly greater than

0, as shown in Fig. 3.18(b). As it can be seen from this figure, all three sched-

ulers achieve cell-edge throughputs that is strictly greater than 0.02 bit/sec/Hz, as

expected. While the MTMR still outperforms both the α-fair and optimal EJT sched-

ulers in the low efficiency region, the gap between the tradeoff curve achieved by the

MTMR and the ones achieved by the α-fair and the optimal EJT schedulers are sig-

nificantly reduced in the high efficiency region. Hence, it is imperative to impose a

minimum throughput guarantee that is strictly greater than 0 for both the α-fair and

the optimal EJT schedulers to strike a balance between efficiency, Jain’s index, and

cell-edge throughput.
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3.7 Conclusions

In this chapter, we demonstrated that the conditions in Theorem 1 are natu-

rally satisfied in various resource allocation problems in communication networks. In

such problems, allocations that achieve the optimal EJT can be efficiently computed.

An instance of these problems is congestion control in elastic traffic communication

networks. For this problem, we proved that the α-fair tradeoff policy achieves the

optimal EJT for the special case of linear networks with uniform capacity. However,

we also illustrated that the α-fair tradeoff policy does not achieves the optimal EJT

for general networks.

The conditions in Theorem 1 is also shown to be satisfied in the problem of radio

resource allocation in the downlink of cellular networks. This enables us to devise

computationally-efficient schedulers that achieve the optimal EJT in quasi-static and

ergodic time-varying communication scenarios. Through analysis and extensive simu-

lations, we compared the performance of the proposed optimal EJT scheduler, α-fair

scheduler, and MTMR scheduler. We found that the proposed optimal EJT scheduler

outperforms both α-fair and MTMR schedulers, in EJT, Efficiency-Median Tradeoff,

and user satisfaction. On the other hand, the MTMR scheduler outperforms both

the proposed optimal EJT and the α-fair schedulers in Efficiency-Cell-edge Trade-

off; however, the MTMR scheduler incurs significant loss in EJT, Efficiency-Median

Tradeoff, and user satisfaction.
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Chapter 4

Optimized Distributed Inter-cell

Interference Coordination Scheme using

Projected Subgradient and Network Flow

Optimization

© 2011 IEEE. Parts of this chapter are reprinted, with permission, from:

A. Bin Sediq, R. Schoenen, H. Yanıkömeroḡlu, G. Senarath, and Z. Chao, “A

novel distributed inter-cell interference coordination scheme based on projected

subgradient and network flow optimizations,” in Proc. IEEE International

Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),

pp. 1595–1600, September 2011.

4.1 Introduction

In order to achieve extremely high data rates in 4th generation (4G) and beyond-

4G cellular networks, aggressive frequency reuse is inevitable due to the scarcity of

the radio resources. Reuse-1, in which all radio resources are used in every sector,

is an example of such an aggressive frequency reuse scheme (cf. Fig. 4.1(a)). While
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(b) Reuse-3.

Figure 4.1: Illustrations of reuse-1 and reuse-3.

reuse-1 can potentially achieve high aggregate system throughput, it jeopardizes the

throughput experienced by users close to the cell1-edge, due to the excessive interfer-

ence experienced by these users. Therefore, it is vital for the network to use robust

and efficient interference mitigation techniques.

Conventionally, interference is mitigated by static resource partitioning and fre-

quency/sector planning, where close-by sectors are assigned orthogonal resources

(clustering). A common example is reuse-3 (cluster size = 3 sectors) [40, Section

2.5], where adjacent sectors are assigned orthogonal channels, i.e., there is no inter-

cell interference between adjacent sectors (cf. Fig. 4.1(b)). Although such techniques

can reduce inter-cell interference and improve cell-edge user throughput, they suffer

from two major drawbacks. First of all, the aggregate network throughput is signifi-

cantly reduced since each sector has only a fraction of the available resources, which is

equal to the reciprocal of the reuse factor. Secondly, conventional frequency/sector-

planning may not be possible in emerging wireless networks where new multi-tier

network elements (such as relays, femto-/pico-BSs, distributed antenna ports) are ex-

pected to be installed in an ad hoc manner in self-organizing networks (SON), without

prior planning.

In order to reduce the effect of the first drawback, fractional frequency reuse

1The terms “cell” and “sector” are used interchangeably in this work.
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Figure 4.2: Illustration of PFR, which is proposed in [42].

(FFR) schemes have been proposed. The key idea in FFR is to assign lower reuse

factor for users near the cell-center and higher reuse factor for users at the cell-edge.

The motivation behind such a scheme is that cell-edge users are more vulnerable to

inter-cell interference than cell-center users. Soft Frequency Reuse (SFR) [41] and

Partial Frequency Reuse (PFR) [42] (cf. Fig. 4.2) are two variations of FFR. A

comparative study between reuse-1, reuse-3, PFR, and SFR is provided in [43, 44].

While FFR schemes recover some of the throughput loss due to partitioning, they

require frequency/sector planning a priori, which is not desirable in future cellular

networks as mentioned earlier. As a result, developing efficient dynamic ICIC schemes

is vital to the success of future cellular networks.

One approach to tackle the ICIC problem is to devise adaptive FFR or SFR

schemes. In [45], an adaptive FFR scheme is proposed where each BS chooses one

of several reuse modes. A dynamic and centralized FFR scheme is proposed in [46]

that outperforms conventional FFR schemes in terms of the total system throughput.

In [47], the authors propose softer frequency reuse, which is a heuristic algorithm

based on modifying the proportional fair algorithm and the SFR scheme. In [48], a

heuristic algorithm based on adaptive SFR is proposed for the uplink. In [49], the

authors propose gradient-based distributed schemes that create SFR patterns, in an
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effort to achieve local maximization of the network utility.

Another approach to tackle the ICIC problem is to remove the limitations im-

posed by the FFR schemes and view the ICIC problem as a multi-cell scheduling

problem. In [50], the authors propose suboptimal semi-distributed radio resource

control scheme where a radio network controller is assumed to be connected to all

BSs. The authors conclude that the problem is NP-hard and they resort to heuristics

that show improvement in the performance. In [51], a graph-theoretic approach is

taken to develop an ICIC scheme in which information about the interference ex-

perienced by each user terminal (UT) is inferred from the diversity set of that UT.

In [52], a game-theoretic approach is pursued and a decentralized algorithm is de-

veloped. The proposed algorithm converges to a Nash equilibrium in a simplified

cellular system. Nevertheless, a significant gap is observed between the proposed al-

gorithm and the globally optimum one, which is computationally demanding. In [53],

a partly distributed two-level ICIC scheme is proposed where a centralized entity is

required to solve a binary linear optimization problem, which is generally not solvable

in polynomial time.

The focus of this chapter is to overcome the drawbacks of the existing schemes

mentioned above and the main contributions can be summarized as follows:

1. A novel ICIC algorithm is proposed. The proposed algorithm can be distin-

guished from the existing algorithms in literature as follows. Unlike the partly

centralized algorithms proposed in [50,53–57], our algorithm is fully distributed

and it does not require a central controller. Moreover, the proposed algorithm

can be used with any AMC scheme, including discrete-rate AMC schemes, un-

like the schemes in [49,54] which require the AMC function to be differentiable.

While there are distributed algorithms and can be used with any AMC, such as

those in [58–61], such algorithms are developed based on heuristics and intuition.

Hence, it is unclear how close these heuristics to the optimum algorithm. Also,
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heuristics provide little insight on the problem dynamics. We acknowledge the

difficulty of solving the ICIC problem optimally; indeed, the optimization prob-

lem that we consider herein is strongly NP-hard. However, rather than pursuing

a heuristic approach, we carefully approximate the problem, and through rigor-

ous mathematical derivations, we devise a polynomial-time distributed scheme.

Although the scheme is developed solely based on mathematical derivations,

it has simple and intuitive interpretation which would shed light on how dis-

tributed ICIC schemes can be designed. Simulation results show that the pro-

posed scheme achieves a performance that is close to the optimal one achieved by

exhaustive search, which validates our approximation. Furthermore, extensive

simulation results show that the proposed scheme achieves significantly higher

cell-edge throughput, higher aggregate throughput, and lower outage proba-

bility as compared to the baseline static and dynamic schemes. Although the

proposed scheme is presented herein in the context of a homogeneous network,

where the access network consists of macro-BSs, it can also work as an enhanced

ICIC (eICIC) scheme [62] in the context of a heterogeneous network, where the

access network consists of macro-BSs, pico-BSs, femto-BSs, and relays, as we

will show in Chapter 5.

2. We realize that the devised optimization problem has a minimum cost network

flow structure. This is an important insight to the ICIC optimization prob-

lem because by exploiting such structure, we can use network-based algorithms

which have significantly reduced complexity as compared to the general-purpose

convex or linear optimization algorithms [4, p. 402].
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Figure 4.3: The considered network layout which consists of 19 cell sites and 3
sectors per site.

4.2 System Model

We consider the network model described by the IMT-Advanced evaluation guide-

lines [34]. Based on these guidelines, the considered network consists of K sectors

served by K/3 BSs as shown in Fig. 4.3. Each BS is equipped with a tri-sector

antenna to serve a cell-site that consists of 3 sectors. Each BS can communicate

with its neighboring BSs; this is supported in most cellular network standards, e.g.,

using the R8 interface in IEEE 802.16m standard and the X2 interface in LTE and

LTE-advanced standards. Hexagonal sectors are considered herein according to IMT-

Advanced guidelines; nevertheless, the proposed scheme works also for arbitrary sector

shapes. We focus on the downlink scenario in this thesis.

Orthogonal Frequency Division Multiple Access (OFDMA) is used as the multi-

ple access scheme, since it is adopted in most of the contemporary cellular standards.
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Among the advantages offered by OFDMA is its scheduling flexibility, since users can

be scheduled in both time and frequency, which can be exploited to gain time, fre-

quency, and multi-user diversity. The time and frequency radio resources are grouped

into time-frequency resource blocks (RBs). RB is the smallest radio resource block

that can be scheduled to a UT and it consists of Ns OFDM symbols in the time

dimension and Nf sub-carriers in the frequency dimension. The total number of RBs

is denoted by N . The number of UTs in sector k is denoted by M (k). Both the BSs

and the UTs are assumed to have single antenna each. Similar to [53], we assume

that each UT estimates and reports to its serving BS the channel from its serving

sector’s antenna and from the first-tier interfering sectors. The SINR observed by UT

m ∈M(k) , {1, . . . ,M (k)} in sector k ∈ K , {1, . . . , K} on RB n ∈ N , {1, . . . , N}

is given by [53]

Γ(k)
m,n =

PCH
(k,k)
m,n

PC

K
∑

k̃=1,k̃ 6=k

(

1− I
(k̃)
n

)

H
(k,k̃)
m,n + PN

, (4.1)

where PC represents the transmitted power per RB, PN represents the thermal noise

power per RB, I
(k)
n is a binary variable indicating whether RB n is restricted in sector

k (I
(k)
n = 1) or not (I

(k)
n = 0), and H

(k,k̃)
m,n represents the channel gain from sector k̃ on

RB n to UT m served by sector k. Large scale channel variations (due to distance-

dependant attenuation and shadowing), antenna gains, and multipath fading are all

captured in H
(k,k̃)
m,n . The achievable rate on RB n of UT m in sector k is given by

R(k)
m,n = f

(

Γ(k)
m,n

)

(bit/sec), (4.2)

where f(·) is the AMC function that maps SINR to rate. The function f(·) is assumed

to be nondecreasing, possibly discontinuous, which is the case for all practical AMC

schemes.
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4.3 Problem Statement

The ICIC problem can be considered as network-wide joint scheduling and power

control problem. In the following, we start by reviewing the literature on power con-

trol in Section 4.3.1. Based on the literature survey, we find that on-off power control,

where each RB is either transmitted with a total power of PC or not transmitted at

all, is an attractive option from both tractability point of view and from practical

implementation. As a result, we formulate the ICIC problem as a network-wide joint

scheduling and binary power control in Section 4.3.2.

4.3.1 Power Control

For single-cell case, power allocation2 is well-understood. For a single user, the

well-known water-filing algorithm is an efficient algorithm to maximize the total

throughput by allocating the total power over the RBs [63]. For single-cell multiuser

case, power allocation and scheduling can be optimized jointly [12, 64–66]. In [67],

it is proven that, under total power constraints, the sum throughput is maximized

when each RB is assigned to only the user which has the best channel on that RB.

Optimum power can be solved using conventional water-filling per user. It is shown

that optimum power distribution provides only marginal gain as compared to equal

power scheme. As a result, equal-power allocation is widely used in single-cell case.

For the multi-cell case, power control is more complex than the case of a single-cell

since interference has to be taken into account. The resulted optimization problem

in this case is not convex, and in general, hard to solve. In [68, 69], maximizing the

weighted-sum rate for single-carrier system and single-user per cell was formulated as

a geometric programming problem based on high SINR approximations. Such formu-

lation can be readily transformed into an equivalent convex optimization problem and

2It is common in the literature to use the term “power allocation” for the single-cell case and the
term “power control” for the multi-cell case.
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as a result, the globally optimum solution based on the high SINR approximation can

be efficiently computed in distributed manner. In the low to medium SINR regime, a

heuristic based on successive convex optimization techniques was developed, without

guarantee on the global optimality. The authors in [70] proposed a very simple dis-

tributed scheme that solve the same high-SINR problem in [68,69], much faster than

using geometric programming. The key idea is to use the fixed-point theorem and

the technique of standard interference function that was provided in the seminal work

of Yates in [71] (see also [72] for a through treatment of the standard interference

function). The solution given in [68,69] is only accurate in the high-SINR regime [73].

Indeed, as observed in [74], the high-SINR approximation may lead to solutions that

are far from optimum. High SINR approximation also doesn’t allow the BS to turn

off the power completely, which may again lead to solutions away from the optimum

solution [75]. In [74], maximizing total throughput is formulated as linear multi-

plicative fractional programming. Although global optimal power allocation can be

achieved in a general SINR regime, polynomial-time convergence is not guaranteed.

In [76, 77], solving the power control in multi-cell multi-carrier system and single

user per cell, under sum power constraint, is tackled by maximizing the weighted-sum

rate in the dual domain. In [76], a sufficient condition, called time-sharing condition,

is presented and when it is satisfied, then the duality gap is zero, i.e., both the dual

and primal optimization problem have the same optimal value. It is also shown that

this time-sharing property is satisfied as the number of RBs go to infinity. In [78],

it is shown that this condition is also satisfied for multiple users per cell. While the

dual optimization problem is convex and can be solved efficiently using subgradient

method, constructing the dual problem itself requires exhaustive search which has

exponential complexity. Moreover, only centralized algorithms are presented in [78]

and they are not necessarily globally optimum as they depend on the initial starting

point.
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In [79], the computational complexity of maximizing different utilities is studied,

for different number of RBs and different number of cells. An important result in this

work is that maximizing the weighted sum-rate is strongly NP-hard even for single

RB and single user per cell, meaning that it not only hard to solve, but also hard to

obtain approximate optimal solution with guaranteed optimality gap. This explains

the reasons why all the existing algorithms that find the global optimum solution that

maximize weighted sum-rate, even for the simplest case of single RB and single user

per cell, have worst-case exponential complexity, see e.g. [80–83].

To simplify the distributed implementation of power control, binary power control

(including on-off power control), i.e., either transmitting with the minimum power

or the maximum power, is considered in [84–88]. Intuitively, binary power control is

a special case of continuous power control and thus it is expected to be suboptimal.

Interestingly, binary power control is shown to be optimal or near-optimal in special

scenarios. For instance, in [84, 85], it is shown that the optimal power allocation

for the case of two sectors is binary power control (including on-off power control).

For more than two sectors, it is shown in [73] that binary power control is no longer

optimum in general, although simulation results for a small number of sectors hints

that it is near-optimum. Moreover, binary power control is optimum in the low-SINR

regime or when the all SINRs are equal, for any number of sectors. Moreover, it

was shown in [86] that binary power control is optimum for a symmetric interference

channel, where all direct channel gains are assumed to be equal to some value and

all cross channel gains are assumed to be equal to another value. In [87, 88], binary

power control is also shown to be optimal for the uplink power control for a single

cell, multi-users, and single RB. Motivated by the simplicity of implementing on-off

power control, we consider on-off power control hereinafter. In particular, we assume

each RB can be either used with full power or not used at all in each cell.
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4.3.2 Problem Formulation

Let us consider a generic scheduler implemented in sector k, without ICIC, such

that it maximizes the weighted sum of the UTs’ rates in sector k. This scheduler is

implemented by solving the following optimization problem for each RB n in every

sub-frame t:

maximize
{ρ

(k)
m,n}

M (k)
∑

m=1

w(k)
m (t)ρ(k)m,n(t)R

(k)
m,n(t) (4.3a)

subject to
M (k)
∑

m=1

ρ(k)m,n(t) = 1, (4.3b)

ρ(k)m,n(t) ∈ {0, 1}, ∀m ∈M(k), (4.3c)

where w
(k)
m (t) is the weight of UT m in sector k, {ρ(k)m,n(t)} are the binary decision

variables such that ρ
(k)
m,n(t) = 1 when RB n is assigned to UT m in sector k, and

ρ
(k)
m,n(t) = 0 otherwise. Constraint (4.3b) ensures that each RB is assigned to only

one user in sector k.

The scheduler described above can be used to control the desired fairness-

throughput tradeoff in the long-term average rates by updating the weights {w(k)
m (t)}

in every sub-frame using the gradient scheduling algorithm explained in Section 3.5.

For instance, for the α-fair and optimal EJT scheduling, {w(k)
m (t)} can be calculated

as

w(k)
m (t) =



















(

W
(k)
m (t− 1)

)−α
, α-fairness,

β −W
(k)
m (t− 1), Optimal EJT,

(4.4)

where α and β are tradeoff parameters as explained in Chapters 2 and 3, and

W
(k)
m (t) denotes the average rate of user m in sector k in sub-frame t, averaged using
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exponentially-weighted moving average with a small smoothing factor µ ∈ (0, 1), i.e.,

W (k)
m (t) = µ

t
∑

i=0

(1− µ)i−t
N
∑

n=1

ρ(k)m,n(i)R
(k)
m,n(i)

= (1− µ)W (k)
m (t− 1) + µ

N
∑

n=1

ρ(k)m,n(t)R
(k)
m,n(t). (4.5)

Another approach to vary the degree of fairness-throughput tradeoff is by imposing

a minimum long-term average rate
(

R̄min

)

, varying R̄min [6], and updating {w(k)
m (t)}

according to the algorithm proposed in [33] (see also Section 3.5.1). We investigate

all these approaches in this Chapter.

It can be shown that the solution to (4.3) is given by

ρ
⋆(k)
m,n(t) =







































1, m = arg max
m∈M(k)

w
(k)
m (t)R

(k)
m,n(t),

and max
m∈M(k)

w
(k)
m (t)R

(k)
m,n(t) ≥ 0,

0, otherwise.

(4.6)

To simplify the notation, we drop the sub-frame index (t) hereinafter.

In order to improve the performance of the above mentioned scheduler, we seek

an ICIC scheme that coordinates the scheduling in all sectors in order to maximize

the weighted sum of the rates of all users in the network. The optimization problem

for each RB n to attain this goal can be formulated as

maximize
{ρ

(k)
m,n}, {I

(k)
n }

K
∑

k=1

M (k)
∑

m=1

w(k)
m ρ(k)m,nR

(k)
m,n (4.7a)

subject to
M (k)
∑

m=1

ρ(k)m,n = 1− I(k)n , ∀k ∈ K, (4.7b)

ρ(k)m,n, I
(k)
n ∈ {0, 1}, ∀k ∈ K, m ∈M(k) , (4.7c)
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where the binary variables {I(k)n } are introduced such that I
(k)
n = 1 when the use of

RB n is restricted in sector k and I
(k)
n = 0 otherwise. Constraint (4.7b) ensures that

each RB n is assigned to only one UT in sector k, given that RB n is not restricted

in sector k.

The network-wide optimization problem in (4.7) is difficult to solve for the fol-

lowing reasons. First of all, this problem belongs to the class of non-linear binary

combinatorial optimization problems (R
(k)
m,n is a nonlinear function of I

(k)
n , cf. (4.1)

and (4.2)), which are generally difficult to solve in polynomial time. Indeed, (4.7) is

strongly NP-hard even for the case of a single user per sector [79]. This means that

not only (4.7) is hard to solve in polynomial time, but it is also hard to find an approx-

imation algorithm with guaranteed optimality gap. Moreover, the objective function

is dependant on the AMC strategy that is used. Hence, an optimal solution for a given

AMC strategy may not be optimal for another AMC strategy. Since AMC strategies

are operator dependant, it is desirable to develop an algorithm that is independent of

the chosen AMC strategy. Finally, it is desirable to solve (4.7) in a distributed manner

since most contemporary standards (such as LTE, LTE-Advanced, IEEE 802.16m) do

not support a central controller. The main contribution of this chapter is to circum-

vent these difficulties and develop an efficient algorithm that obtain a near-optimal

solution of (4.7). The development of such an algorithm is explained in the following

section.

4.4 Proposed Algorithm

In this section, we show the steps used to develop the proposed algorithm. We

start in Section 4.4.1 by introducing a bound and argue that this bound is a good

metric for optimization. Using the bound, we get a binary non-linear optimization

problem and we transform it into an equivalent binary linear optimization problem in
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Section 4.4.2. Next, we relax the resulted binary linear optimization problem into a

linear optimization problem in Section 4.4.3. Then, we devise a distributed algorithm

in Section 4.4.4 by decomposing the problem into a master problem and multiple

subproblems using the primal-decomposition method. To reduce the computational

complexity, we show in Section 4.4.5 that each subproblem is amenable to powerful

network flow optimization methods. We then present a pseudocode of the proposed

algorithm in Section 4.4.6 and discuss its complexity in Section 4.4.8. A block diagram

that shows the roadmap of this section is shown in Fig. 4.4.

4.4.1 Bound Optimization

The SINR expression in (4.1) can be lower-bounded as

Γ(k)
m,n ≥

PCH
(k,k)
m,n

PC

K
∑

k̃=1,k̃ 6=k

H
(k,k̃)
m,n − max

k̃∈K(k)
I
(k̃)
n PCH

(k,k̃)
m,n + PN

, (4.8)

where K(k) is the set of indices of the neighboring sectors of sector k, which are

considered in this work to be the 6 first-tier interfering sectors seen by sector k; e.g.,

in Fig. 4.3, K(3) = {1, 2, 13, 17, 16, 20}3. The bound in (4.8) is obtained by assuming

that RB n is used in all sectors, except at most one sector. When there are more than

one sector restricted from using RB n, only the most dominant restricted interferer

is considered4. This bound is exact if the number of restricted interferers is less or

equal to one and it is tight for small number of restricted interferers. This is a good

bound to be used for optimization (maximization) for the following reasons. First of

3We assume a wraparound layout so each sector has 6 first-tier interfering sectors; e.g., K(25) =
{26, 27, 23, 51, 50, 48}.

4Note that this bound considers the most dominant restricted interferer which is not necessarily
the most dominant interferer when the most dominant interferer is not restricted (i.e., when it is
not turned off). This differentiates (4.8) from the expression considered in [50], where the most
dominant interferer is considered.
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Difficult problem (4.7)
(strongly NP-hard)

Rate bound (4.12)

Binary non-linear
optimization (4.13)

Binary linear
optimization (4.18)

Relaxed linear

optimization

Primal decomposition

Master problem (4.25)

Sub-gradient method

Subproblem (4.30)

Minimum cost network flow

Proposed algorithm

Pseudocode in Sec. 4.4.6

Checking the approx.

Tables 4.1.a and 4.1.b

Figure 4.4: A block diagram that shows the steps used to develop the proposed
algorithm.
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all, if the bound is increased by ∆, then the exact expression given by (4.1) will also

increase by at least ∆, as provided in the following Lemma.

Lemma 4. The SINR bound given by (4.8) is tight in the following sense:

if the bound is increased by ∆, then the actual SINR will increase by at least ∆.

Proof. Let k̃⋆ = arg max
k̃∈K(k)

I
(k̃)
n H

(k,k̃)
m,n , then the exact SINR expression given by (4.1)

can be written as

Γ
(k)
m,n =

PCH
(k,k)
m,n

PC

(

K∑

k̃=1,k̃ 6=k

H
(k,k̃)
m,n −I k̃⋆n H

(k,k̃⋆)
m,n −

K∑

k̃=1,k̃ 6=k,k̃ 6=k̃⋆

I
(k̃)
n H

(k,k̃)
m,n

)

+PN

,

=
PCH

(k,k)
m,n

PC

(

K∑

k̃=1,k̃ 6=k

H
(k,k̃)
m,n −I k̃⋆n H

(k,k̃⋆)
m,n

)

+PN

×
(

1 +
PC

K∑

k̃=1,k̃ 6=k,k̃ 6=k̃⋆

I
(k̃)
n H

(k,k̃)
m,n

PC

K∑

k̃=1,k̃ 6=k

(

1−I
(k̃)
n

)

H
(k,k̃)
m,n +PN

)

,

≥ PCH
(k,k)
m,n

PC

(

K∑

k̃=1,k̃ 6=k

H
(k,k̃)
m,n −I k̃⋆n H

(k,k̃⋆)
m,n

)

+PN

,

(4.9)

where the right-hand side of the inequality is the bound given by (4.8). From the

previous expression, if the bound is increased by ∆, then Γ
(k)
m,n will increase by ∆ ×

(

1 +
PC

K∑

k̃=1,k̃ 6=k,k̃ 6=k̃⋆

I
(k̃)
n H

(k,k̃)
m,n

PC

K∑

k̃=1,k̃ 6=k

(

1−I
(k̃)
n

)

H
(k,k̃)
m,n +PN

)

, i.e., Γ
(k)
m,n will increase by at least ∆.

In addition to the tightness of the bound, it is already observed in the literature

that restricting more than two sectors from using a particular RB can degrade the

overall system performance (cf. [53]). Finally, and most importantly, based on this

bound, we can develop a distributed optimization framework that is applicable to a

wide range of schedulers and AMC strategies. This framework can be implemented

very efficiently, and can achieve near-optimal performance, as we will see later.

Using the SINR bound given in (4.8), we now construct a similar bound on the

rates, {R(k)
m,n}, given in (4.2). To do so, we define γ

(k)
m,n and r

(k)
m,n as the SINR and the

corresponding achievable rate on RB n of UT m in sector k, if all sectors use RB n,
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i.e.,

γ(k)
m,n =

PCH
k,k
m,n

PC

∑

k̃ 6=k

H
(k,k̃)
m,n + PN

, r(k)m,n = f
(

γ(k)
m,n

)

. (4.10)

Similarly, we define γ̃
(k,k̃)
m,n and r̃

(k,k̃)
m,n as the SINR and the achievable rate on RB n of

UT m in sector k, if only sector k̃ ∈ K(k) is restricted from using RB n, i.e.,

γ̃(k,k̃)
m,n =

PCH
(k,k)
m,n

PC

∑

k̂ 6=k

Hk,k̂
m,n − PCH

(k,k̃)
m,n + PN

, r̃(k,k̃)m,n = f
(

γ̃(k,k̃)
m,n

)

− r(k)m,n. (4.11)

Using (4.10) and (4.11), a bound on the rates, {R(k)
m,n}, given by (4.2) is constructed

based on the SINR bound given by (4.8) as

R(k)
m,n ≥ r(k)m,n + max

k̃∈K(k)
I(k̃)n r̃(k,k̃)m,n . (4.12)

By substituting (4.12) in (4.7), the optimization problem can be approximated as

maximize
{ρ

(k)
m,n}, {I

(k)
n }

K
∑

k=1

M (k)
∑

m=1

w(k)
m ρ(k)m,n

(

r(k)m,n + max
k̃∈K(k)

I(k̃)n r̃(k,k̃)m,n

)

(4.13a)

subject to

M (k)
∑

m=1

ρ(k)m,n = 1− I(k)n , ∀k ∈ K, (4.13b)

ρ(k)m,n, I
(k)
n ∈ {0, 1}, ∀k ∈ K, m ∈M(k). (4.13c)

The optimization problem (4.13) is a non-linear binary integer optimization problem,

which is in general, difficult to solve. As an intermediate step to reduce the complexity

of solving (4.13), we convert it to an equivalent binary linear optimization problem

in the following section.
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4.4.2 Transforming (4.13) Into an Equivalent Binary Linear

Optimization Problem

Our approach to tackle the binary non-linear optimization problem given by (4.13)

is to first transform it into an equivalent binary linear optimization problem. While

binary linear optimization problems are still not easy to solve in general, good ap-

proximate solutions can be computed efficiently by relaxing the constraints that the

variables have to be binary which allows using real variables instead. The challenge is

to construct an equivalent binary linear optimization problem that has a tight relax-

ation which means that the solution obtained by solving the relaxed version is very

close to the one obtained by solving the binary linear optimization problem. This

challenge is addressed in this section.

In order to convert the binary non-linear optimization problem given by (4.13)

into an equivalent binary linear optimization problem, we need to convert the term

ρ
(k)
m,n max

k̃∈K(k)
I
(k̃)
n r̃

(k,k̃)
m,n into a linear term. There are two sources of non-linearity in this

term: the point-wise maximum and the multiplication. The non-linear term can be

written as

ρ(k)m,n max
k̃∈K(k)

I(k̃)n r̃(k,k̃)m,n = max
ρ̃
(k,k̃)
m,n ∈S

∑

k̃∈K(k)

ρ̃(k,k̃)m,n r̃(k,k̃)m,n , (4.14)

where the variables {ρ̃(k,k̃)m,n } are introduced as auxiliary variables that facilitate the

conversion of the non-linear term into a linear term and
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S =
{

ρ̃
(k,k̃)
m,n :

∑

k̃∈K(k) ρ̃
(k,k̃)
m,n ≤ 1, ∀k ∈ K, m ∈M(k)

ρ̃
(k,k̃)
m,n ≤ ρ

(k)
m,n, ∀k ∈ K, k̃ ∈ K(k), m ∈M(k)

ρ̃
(k,k̃)
m,n ≤ I

(k̃)
n , ∀k ∈ K, k̃ ∈ K(k), m ∈M(k)

ρ̃
(k,k̃)
m,n ∈ {0, 1}, ∀k ∈ K, k̃ ∈ K(k), m ∈M(k)

}

.

(4.15)

To see the equivalence, we note that since all variables assume binary values,

then the point-wise maximum in the originally non-linear term is captured in the

objective function and the first inequality in (4.15). Moreover, the multiplication in

the originally non-linear term is captured in the second and the third inequalities

in (4.15).

By replacing the term ρ
(k)
m,n max

k̃∈K(k)
I
(k̃)
n r̃

(k,k̃)
m,n in (4.13a) with (4.14) and (4.15), we get

an equivalent binary linear optimization problem. Unfortunately, we found experi-

mentally that such an equivalent optimization problem leads to loose linear relaxation,

i.e., it results in solutions that are far from the binary optimal solutions. As a result,

we seek tighter equivalent formulations.

A general approach to get tighter relaxation is by adding additional constraints

that are called valid constraints [89, p. 585]. These valid constraints do not change the

set of feasible binary solutions; however, with proper choice of these valid constraints,

one can obtain tighter relaxations. Based on this approach, we construct a set S ′

that is equivalent to S for the considered binary optimization problem, by adding

two valid constraints:

∑

k̃∈K(k) ρ̃
(k,k̃)
m,n ≤ ρ

(k)
m,n, ∀k ∈ K, m ∈ M(k)

∑M (k̃)

m=1 ρ̃
(k,k̃)
m,n ≤ I

(k̃)
n , ∀k ∈ K, k̃ ∈ K(k).

(4.16)
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Hence, S ′ is given by

S ′ =
{

ρ̃
(k,k̃)
m,n :

∑

k̃∈K(k) ρ̃
(k,k̃)
m,n ≤ ρ

(k)
m,n, ∀k ∈ K, m ∈M(k)

∑M (k̃)

m=1 ρ̃
(k,k̃)
m,n ≤ I

(k̃)
n , ∀k ∈ K, k̃ ∈ K(k)

ρ̃
(k,k̃)
m,n ∈ {0, 1}, ∀k ∈ K, k̃ ∈ K(k), m ∈M(k)

}

.

(4.17)

Note that the constraints ρ̃
(k,k̃)
m,n ≤ ρ

(k)
m,n and ρ̃

(k,k̃)
m,n ≤ I

(k̃)
n , given originally in (4.15),

are omitted from the definition of S ′ given in (4.17) since these constraints define a

subset of the first two constraints given in (4.17). The equivalence of S and S ′ is

provided in the following Lemma.

Lemma 5. The sets S and S ′ given by (4.15) and (4.17), respectively, are equivalent.

Proof. We proceed by proving that S ⊆ S ′ and S ′ ⊆ S. To prove that S ⊆ S ′,

we assume that ρ̃
(k,k̃)
m,n ∈ S and deduce that ρ̃

(k,k̃)
m,n ∈ S ′. Since

∑

k̃∈K(k) ρ̃
(k,k̃)
m,n ≤ 1

and ρ̃
(k,k̃)
m,n ≤ ρ

(k)
m,n, then

∑

k̃∈K(k) ρ̃
(k,k̃)
m,n ≤ ρ

(k)
m,n. Moreover, since ρ̃

(k,k̃)
m,n ≤ ρ

(k)
m,n, then

∑M (k)

m=1 ρ̃
(k,k̃)
m,n ≤

∑M (k)

m=1 ρ
(k)
m,n ≤ 1. Since

∑M (k)

m=1 ρ̃
(k,k̃)
m,n ≤ 1, ρ̃

(k,k̃)
m,n ≤ I

(k̃)
n , and ρ̃

(k,k̃)
m,n ∈ {0,

1}, then
∑M (k)

m=1 ρ̃
(k,k̃)
m,n ≤ I

(k̃)
n . Consequently, ρ̃

(k,k̃)
m,n ∈ S ′, which means that S ⊆ S ′.

Similarly, to show that S ′ ⊆ S, we assume that ρ̃
(k,k̃)
m,n ∈ S ′ and deduce that

ρ̃
(k,k̃)
m,n ∈ S. Since

∑

k̃∈K(k) ρ̃
(k,k̃)
m,n ≤ ρ

(k)
m,n and ρ

(k)
m,n, ρ̃

(k,k̃)
m,n ∈ {0, 1}, then ρ̃

(k,k̃)
m,n ≤ ρ

(k)
m,n.

Moreover, since
∑M (k)

m=1 ρ̃
(k,k̃)
m,n ≤ I

(k̃)
n and I

(k)
n , ρ̃

(k,k̃)
m,n ∈ {0, 1}, then

∑M (k)

m=1 ρ̃
(k,k̃)
m,n ≤ 1

which means that ρ̃
(k,k̃)
m,n ≤ I

(k̃)
n . Hence, ρ̃

(k,k̃)
m,n ∈ S which means that S ′ ⊆ S.

By replacing the term ρ
(k)
m,nmax

k̃
I
(k̃)
n r̃

(k,k̃)
m,n in (4.13) with (4.14) and (4.17), we get

the following binary linear optimization problem:
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maximize
{ρ

(k)
m,n}, {ρ̃

(k,k̃)
m,n }, {I

(k)
n }

K
∑

k=1

M (k)
∑

m=1

w(k)
m

(

ρ(k)m,nr
(k)
m,n +

∑

k̃∈K(k)

ρ̃(k,k̃)m,n r̃(k,k̃)m,n

)

(4.18a)

subject to

M (k)
∑

m=1

ρ(k)m,n = 1− I(k)n , ∀k ∈ K, (4.18b)

∑

k̃∈K(k)

ρ̃(k,k̃)m,n ≤ ρ(k)m,n, ∀k ∈ K, m ∈M(k), (4.18c)

M (k)
∑

m=1

ρ̃(k,k̃)m,n ≤ I(k̃)n , ∀k ∈ K, k̃ ∈ K(k), (4.18d)

ρ(k)m,n, ρ̃
(k,k̃)
m,n , I(k)n ∈ {0, 1}, ∀k ∈ K, k̃ ∈ K(k), m ∈M(k).

(4.18e)

We finally remark that many other equivalent binary optimization problems can

be formulated, e.g., by replacing the term ρ
(k)
m,n max

k̃
I
(k̃)
n r̃

(k,k̃)
m,n in (4.13) with (4.14) and

(4.15). However, different equivalents will have different relaxations. Unlike many

other equivalent formulations, we found that the relaxed version of (4.18) has optimal

solution that is provably close to binary as we will show in Section 4.4.3. Moreover,

we show in Section 4.4.5 that the optimal solution of this relaxation can be obtained

efficiently using network flow optimization tools.

4.4.3 Linear Optimization Relaxation

An upper bound on the optimum value of (4.18) can be obtained by solving the

relaxed version of (4.18) which can be constructed by replacing (4.18e) with the

following constraints

ρ(k)m,n, ρ̃
(k,k̃)
m,n , I(k)n ∈ [0, 1], ∀k ∈ K, k̃ ∈ K(k), m ∈ M(k). (4.19)
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In particular, let p⋆Binary denote the optimal value of (4.18), let p⋆Relaxed denote the

optimal value of the relaxed version of (4.18), and let p̂⋆Relaxed denote the value of

the objective function evaluated at a rounded-solution of the relaxed problem, such

that the rounded solution is a feasible binary solution of (4.18). Then, we have the

following inequalities

p⋆Relaxed ≥ p⋆Binary ≥ p̂⋆Relaxed,
(4.20)

where the first inequality follows from the fact that the feasible set of the relaxed

version is always a superset of the original problem and the second equality follows

directly from the optimality of p⋆Binary. We define the optimality gap, ∆Opt, in per-

centage as

∆Opt = 100% ·
(

p⋆Binary − p̂⋆Relaxed

)

/p⋆Binary ≤ 100% ·
(

p⋆Relaxed − p̂⋆Relaxed

)

/p⋆Relaxed,

(4.21)

where the inequality follows from (4.20). Thus, one can compute an estimate on

the optimality gap in polynomial time by solving a linear optimization problem. As

we will show in Section 4.6.1 through extensive simulations, by solving the relaxed

problem and rounding the solution to the closest binary feasible solution, one can

obtain a solution to (4.18) that is near-optimal, i.e., with small ∆Opt.

In addition to the optimality gap given in (4.21), which can be computed in poly-

nomial time, we now provide a closed-form theoretical guarantee on the percentage

of optimal relaxed variables that assume binary values. This theoretical guarantee is

summarized in the following lemma.

Lemma 6. The percentage of optimal variables of the relaxed version of (4.18) that

assume binary values is greater than or equal to 6(M̄−1)

7M̄+1
·100%, where M̄ is the average

number of UTs per sector, i.e., M̄ = 1
K

∑K
k=1M

(k) .

Proof. We start by categorizing the constraints of the relaxed version of (4.18) into

104



two groups: non-bounding constraints, which are given by 4.18b, 4.18c, and 4.18d,

and bounding constraints, which are given by 4.19. It is easy to see that the number

of variables that assume optimal binary values is equal to the number of bounding

inequality constraints that are active at the optimal, i.e., inequalities that are satisfied

with equalities at the optimal.

We now note that the optimal solution of a linear program lies on one or more

vertices. For a linear program with Nvar variables, a vertex is characterized by Nvar

equalities or active inequalities. Let N⋆
non−bounding denote the number of non-bounding

equality or active inequality constraints at the optimum, and let N⋆
bounding denote the

number of active bounding inequality constraints at the optimum. Hence, we can

write the following:

Nvar = N⋆
bounding +N⋆

non−bounding ⇒

N⋆
bounding = Nvar −N⋆

non−bounding ⇒

N⋆
bounding ≥ Nvar − sup(N⋆

non−bounding)⇒

N⋆
bounding ≥ 7

∑K
k=1M

(k) +K − (K +
∑K

k=1M
(k) + 6K) = 6

∑K
k=1M

(k) − 6K,

(4.22)

where the supremum is found by assuming that all non-bounding constraints are

active. Thus, the percentage of optimal variables of the relaxed version of (4.18) that

assume binary values can be bounded as

Pbinary ≥
6
∑K

k=1M
(k) − 6K

7
∑K

k=1M
(k) +K

=
6(M̄ − 1)

7M̄ + 1
· 100%, (4.23)

where M̄ is the average number of UTs per sector, i.e., M̄ = 1
K

∑K
k=1M

(k).

For example, if M (k) = 10, ∀k, then using Lemma 6 we can deduce that the

percentage of optimal variables of the relaxed version of (4.18) that assume binary
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values is guaranteed to be greater than or equal to 76%.

Unfortunately, solving the relaxed version of (4.18) would require a central con-

troller to be connected to all the BSs in order to solve a large linear optimization

problem. Such a central controller is not supported in most contemporary cellular

network standards, such as LTE, LTE-Advanced and IEEE 802.16m. Consequently,

we seek a distributed optimization method to solve the relaxed version of problem

(4.18).

4.4.4 Primal Decomposition

The relaxed version of (4.18) has a special separable structure. In particular, for

any set of fixed {I(k)n , ∀k ∈ K}, it can be separated intoK optimization problems, each

can be solved separately in each sector. In this section, we show how this structure

is exploited to develop a distributed algorithm based on the primal-decomposition

method [90, pp. 3–5].

To exploit the separable structure, let φ(k)(I
(1)
n , . . . , I

(K)
n ) denote the optimal value

of the following optimization problem for given {I(1)n , . . . , I
(K)
n }:

maximize
{ρ

(k)
m,n}, {ρ̃

(k,k̃)
m,n }

M (k)
∑

m=1

w(k)
m

(

ρ(k)m,nr
(k)
m,n +

∑

k̃∈K(k)

ρ̃(k,k̃)m,n r̃(k,k̃)m,n

)

, (4.24a)

subject to
M (k)
∑

m=1

ρ(k)m,n = 1− I(k)n , (4.24b)

∑

k̃∈K(k)

ρ̃(k,k̃)m,n ≤ ρ(k)m,n, ∀m ∈M(k), (4.24c)

M (k)
∑

m=1

ρ̃(k,k̃)m,n ≤ I(k̃)n , ∀k̃ ∈ K(k), (4.24d)

ρ(k)m,n, ρ̃
(k,k̃)
m,n ,∈ [0, 1], ∀m ∈M(k), ∀k̃ ∈ K(k). (4.24e)

For reasons that will become apparent, we call (4.24) subproblem k. Using (4.24),
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the relaxed version of (4.18) is equivalent to

maximize
{I

(k)
n }

K
∑

k=1

φ(k)(I(1)n , . . . , I(K)
n ) (4.25a)

I(k)n ∈ [0, 1], ∀k ∈ K. (4.25b)

We call (4.25) the master problem. Therefore, the relaxed version of (4.18) has been

decomposed into a master problem, given by (4.25), and K subproblems, each is given

by (4.24) and can be solved separately in each sector.

The master problem given in (4.25) can be solved iteratively using the projected-

subgradient method [91, p. 16]. In each iteration, K subproblems are solved in

each sector in order to evaluate φ(k)(I
(1)
n , . . . , I

(K)
n ), ∀k ∈ K, and subgradients [Λ

⋆(1)
n ,

. . . ,Λ
⋆(K)
n ] ∈ ∂

∑K
k=1 φ

(k)(I
(1)
n , . . . , I

(K)
n ), where ∂f(x) is the subdifferential of f(·)

evaluated at x. A subgradient Λ
⋆(k)
n is calculated as [91]

Λ⋆(k)
n := −λ⋆(k)

n +
∑

k̃∈K(k)

λ⋆(k̃,k)
n , (4.26)

where λ
⋆(k)
n is an optimum Lagrange multiplier (dual variable) corresponding to con-

straint (4.24b) and λ
⋆(k,k̃)
n , k̃ ∈ K(k), are optimum Lagrange multipliers correspond-

ing to constraints (4.24d). In order for each sector k to calculate Λ
⋆(k)
n , it requires

the knowledge of λ
⋆(k)
n , which can be obtained locally by solving (4.24), and λ

⋆(k̃,k)
n ,

k̃ ∈ K(k), which can be exchanged from the neighboring sectors. In other words, each

sector k sends λ
(k,k̃)
n for all k̃ sectors that are in the neighborhood of sector k, for all

n. The master algorithm then updates its variables as

I(k)n := I(k)n + δΛ(k)
n , ∀k ∈ K, (4.27)

where δ is the step-size which can be chosen using any of the standard methods given
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in [91, pp. 3–4]. Then, each I
(k)
n is projected into the feasible set of [0, 1] as follows

I(k)n :=



































0, I
(k)
n ≤ 0,

I
(k)
n , 0 < I

(k)
n < 1,

1, I
(k)
n ≥ 1.

(4.28)

Each sector k exchanges I
(k)
n with its neighbors and the process is repeated for

Niter iterations. Then, each I
(k)
n is rounded to the nearest binary value which is

denoted by I
⋆(k)
n . Once {I⋆(k)n } are determined, local scheduling decisions can be done

in each sector k separately as follows. For every m ∈M(k), n ∈ N , R
(k)
m,n is calculated

using (4.2), (4.1), and I
⋆(k)
n . Finally, to ensure feasibility of the resulting solution to

problem (4.18), the scheduling decision variables are calculated as

ρ
⋆(k)
m,n =



















1, m = argmax
m

w
(k)
m R

(k)
m,n and I

⋆(k)
n = 0,

0, m 6= argmax
m

w
(k)
m R

(k)
m,n or I

⋆(k)
n = 1.

(4.29)

The sub-gradient algorithm is guaranteed to converge to the optimum solution

of the relaxed version of problem (4.18) as Niter → ∞ if δ is chosen properly [91, p.

6]. In this chapter, we choose δ to be square summable but not summable by setting

δ = c/p, where c > 0 is a constant and p is the iteration index. This choice guarantees

convergence to the optimal solution as Niter → ∞ [91, p. 6]. The constant c is a

parameter that can be tuned to improve the convergence time. Through extensive

simulations, we found that a good choice of the parameter c is mainly dependant

on the choice of the desired utility. Thus, for a given utility, the parameter c can

be tuned offline only once before executing the algorithm. In practise, however, the

algorithm must terminate after a finite number of iterations which raises the following
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question: How different is the value obtained using finite iterations as compared to

the true optimum obtained by solving (4.18)? We address this question in Section 4.6

and show that few iterations are sufficient to achieve near-optimality.

Clearly, the proposed algorithm relies heavily on solving the subproblem given

by (4.24). Hence, it is imperative to solve (4.24) as efficiently as possible. Interest-

ingly, the subproblem given by (4.24) has a special network flow structure which can

be exploited to devise efficient algorithms to solve it, as explained in the following

section.

4.4.5 Transforming (4.24) into an Equivalent Minimum Cost

Network Flow Problem

The optimization problem (4.24) is a linear optimization problem which can be

solved using generic simplex or interior-point methods. Nevertheless, we show in

this section that (4.24) has a special network structure which makes it amenable to

powerful network flow optimization methods that surpass conventional simplex and

interior-point methods. In particular, we show that (4.24) can be converted into an

equivalent minimum cost network flow optimization problem.

A minimum cost network flow optimization problem is defined as finding a least

cost way of sending certain amount of flow over a network that is specified by a

directed graph of v vertices and e edges. Such a problem has e variables, which

represent the amount of flow on each arc, and v linear equality constraints, which

represent the mass-balance in each vertex, such that every variable appears in exactly

two constraints: one with a coefficient of +1 and one with a coefficient of −1 [4, p.

5]. In addition to the mass-balance constraints, constraints on the lower and upper

bounds on the amount of flow on each arch are also specified. The objective function

is a weighted sum of the flows in each arc, where the weight is the cost per unit
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flow on that arc. Thanks to the network structure of these problems, highly efficient

combinatorial algorithms exist to solve such problems in strongly polynomial time [4,

Chapter 10]. These algorithms perform much faster than a generic linear optimization

solver based on conventional simplex or interior-point methods. For example, the

enhanced capacity scaling algorithm can solve a minimum cost network flow problem

with v vertices and e edges in O
(

e log v(e + v log v)
)

[4, p. 395].

By examining (4.24), we see that it is not a minimum cost network flow opti-

mization problem (in its current form) as it does not have mass-balance constraints.

Nevertheless, if we multiply both sides of constraint (4.24d) with −1, we obtain a

linear optimization problem with the following properties. Each variable appears in

at most one constraint with a coefficient of +1 and at most one constraint with a coef-

ficient of −1. According to Theorem 9.9 in [4, p. 315], a linear optimization problem

with such a structure can be transformed into an equivalent minimum cost network

flow optimization problem. To perform such transformation, we introduce the slack

variables {sm ≥ 0, ∀m ∈M(k)} and surplus variables {s̃(k̃) ≥ 0, ∀k̃ ∈ K(k)} to convert

the inequality constraints (4.24c) and (4.24d), respectively, into equality constraints.

To obtain the mass-balance constraints, we also introduce a redundant constraint by

summing constraints (4.30b)–(4.30d). In addition, we convert the maximization into

minimization by negating the objective function. Incorporating these transformation

into (4.24), we get the following minimum cost network flow optimization problem:

110



minimize
{ρ

(k)
m,n}, {ρ̃

(k,k̃)
m,n }, {sm}, {s̃(k̃)}

−
M (k)
∑

m=1

w(k)
m

(

ρ(k)m,nr
(k)
m,n +

∑

k̃∈K(k)

ρ̃(k,k̃)m,n r̃(k,k̃)m,n

)

(4.30a)

subject to

M (k)
∑

m=1

ρ(k)m,n = 1− I(k)n , (4.30b)

∑

k̃∈K(k)

ρ̃(k,k̃)m,n − ρ(k)m,n + sm = 0, ∀m ∈M(k), (4.30c)

−
M (k)
∑

m=1

ρ̃(k,k̃)m,n − s̃(k̃) = −I(k̃)n , ∀k̃ ∈ K(k), (4.30d)

−
M (k)
∑

m=1

sm +
∑

k̃∈K(k)

s̃(k̃) = −1 + I(k)n +
∑

k̃∈K(k)

I(k̃)n , (4.30e)

ρ(k)m,n, ρ̃
(k,k̃)
m,n , sm, s̃

(k̃) ∈ [0, 1], ∀m ∈M(k), k̃ ∈ K(k). (4.30f)

To see that (4.30) is indeed a minimum cost network flow optimization problem, we

note that the objective function is linear and the equality constraints (4.30b)-(4.30e)

represent mass-balance constraints because each variable appears in two constraints:

one with a coefficient of +1 and one with a coefficient of −1 [4, p. 5].

To illustrate graphically the minimum cost network flow structure of (4.30), we

consider a simple example of 4 sectors and 2 UTs per sector. For simplicity, we focus

on the optimization problem solved by sector 1. We also consider a single RB and thus

drop the RB index n. For the considered example, the optimization problem (4.30)

for sector 1 can be written as

111



minimize
{ρ

(1)
m }, {ρ̃

(1,k̃)
m },

{sm}, {s̃(k̃)}

−
2
∑

m=1

w(1)
m

(

ρ(1)m r(1)m +

4
∑

k̃=2

ρ̃(1,k̃)m r̃(k,k̃)m

)

(4.31a)

subject to
2
∑

m=1

ρ(1)m = 1− I(1), (4.31b)

4
∑

k̃=2

ρ̃
(1,k̃)
1 − ρ

(1)
1 + s1 = 0, (4.31c)

4
∑

k̃=2

ρ̃
(1,k̃)
2 − ρ

(1)
2 + s2 = 0, (4.31d)

−
2
∑

m=1

ρ̃(1,2)m − s̃(2) = −I(2), (4.31e)

−
2
∑

m=1

ρ̃(1,3)m − s̃(3) = −I(3), (4.31f)

−
2
∑

m=1

ρ̃(1,4)m − s̃(4) = −I(4), (4.31g)

−
2
∑

m=1

sm +
4
∑

k̃=2

s̃(k̃) = −1 + I(1) +
4
∑

k̃=2

I(k̃), (4.31h)

ρ(1)m , ρ̃(1,k̃)m , sm, s̃
(k̃) ∈ [0, 1], ∀m ∈ {1, 2}, k̃ ∈ {2, 3, 4}. (4.31i)

In Fig. 4.5, we provide an equivalent graph representation of the minimum cost

network flow problem given by (4.31). In this graph, each vertex represents a con-

straint in (4.31) and it is labeled according to the label of its corresponding constraint.

A vertex is called a supply vertex if its total outflow (i.e., flow emanating from it)

is greater than its total inflow (i.e., flows entering it), a demand vertex if its total

outflow is less than its total inflow, and it is called a transhipment vertex if its total

outflow is equal to its total inflow. Hence, vertex (4.31b) is a supply vertex, ver-

tices (4.31e)–(4.31g) are demand vertices, vertices (4.31c)–(4.31d) are transshipment

vertices, and vertex (4.31i) can be any of the above mentioned types depending on
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Figure 4.5: Equivalent graphical representation of the minimum cost network flow
problem given by (4.31). Vertices are labeled according to the label of their
corresponding constraints. All flows are restricted to be between 0 and 1.

the values of {I(k)}. Clearly, the constraints correspond to the vertices in this graph

are mass-balance constraints as the total outflow minus the total inflow is equal to the

supply or demand of these vertices. Similar to the vertices, each edge is labeled with

a flow, which represents the corresponding variable, and a cost per unit flow, which

represent the corresponding coefficient in the objective function. The flow in each

edge is restricted to be in the range [0, 1]. Based on the above, we conclude that the

optimization problem in (4.31) is equivalent to finding the least cost way of sending

1 − I(1) flow units from the supply vertex (4.31b) to the demand vertices (4.31e)–

(4.31g) in the graph shown in Fig. 4.5.
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4.4.6 Pseudocode

A pseudocode of the proposed algorithm to be executed in every sector k is given

below.

Algorithm 4 Proposed ICIC algorithm to be executed in every sector k

Input: H
(k,k̃)
m,n and w

(k)
m , ∀k̃ ∈ K(k), m ∈M, n ∈ N

Output: ρ
⋆(k)
m,n , I

⋆(k)
n , ∀m ∈ M, n ∈ N

1: Initialize I
(k)
n , ∀n ∈ N

2: for p = 1 to Niter do

3: Preprocessing: Obtain r
(k)
m,n and r̃

(k,k̃)
m,n using (4.10) and (4.11), ∀k̃ ∈ K(k),

m ∈M, n ∈ N .

4: Solve a subproblem: Obtain ρ
⋆(k)
m,n ,ρ̃

⋆(k,k̃)
m,n ,λ

⋆(k)
n , and λ

⋆(k,k̃)
n , ∀k̃ ∈ K(k), n ∈ N ,

by solving the minimum cost network flow optimization problem (4.30), ∀n ∈
N .

5: Exchange sub-gradients: Send λ
⋆(k,k̃)
n to sectors k̃ ∈ K(k), ∀n ∈ N .

6: Update I
(k)
n , ∀n ∈ N :

7: Λ
⋆(k)
n := −λ⋆(k)

n +
∑

k̃∈K(k) λ
⋆(k̃,k)
n .

8: Subgradient step: I
(k)
n := I

(k)
n + δΛ

⋆(k)
n

9: Projection: Project I
(k)
n into the feasible set (4.28).

10: Exchange I
(k)
n : Send I

(k)
n to sectors k̃ ∈ K(k), ∀n ∈ N .

11: end for
12: Round the solution: I

⋆(k)
n := ⌊I(k)n + 0.5⌋, ∀n ∈ N .

13: Local scheduling decisions:

14: ObtainR
(k)
m,n by substitutingH

(k,k̃)
m,n and I

⋆(k)
n in (4.1) and (4.2), ∀m ∈M, n ∈ N .

15: Obtain ρ
⋆(k)
m,n by substituting w

(k)
m and R

(k)
m,n in (4.29), ∀m ∈M, n ∈ N .

4.4.7 Intuitive Interpretation

The proposed algorithm, whose pseudocode is given in Algorithm 4, has the fol-

lowing intuitive interpretation. Each sector k estimates the benefit of shutting its

own power on RB n to neighboring sectors by
∑

k̃∈K(k) λ
⋆(k̃,k)
n and the benefit of using

RB n in sector k by λ
⋆(k)
n ; if the former is more (less) than the latter, then sector k

increases (decreases) its soft decision on I
(k)
n proportionally to the difference of these

benefits, and possibly set it to 1 (0).
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4.4.8 Complexity Analysis of the Proposed Algorithm

In the following, we show that the worst-case time complexity of the proposed

algorithm implemented in each sector k is polynomial. We start by analyzing the

complexity of solving the minimum cost network flow problem given by (4.30). A

graph that is equivalent to (4.30) is represented by 8+M (k) nodes, which is equal to the

number of mass-balance constrains, and 8M (k)+6 arcs, which is equal to the number of

variables. Thus, (4.30) can be solved using the enhanced capacity scaling algorithm in

O
((

M (k) logM (k)
)2)

[4, p. 395]. Since (4.30) is solved for each RB in Niter iterations,

then the complexity of the proposed algorithm is O
(

NiterN
(

M (k) logM (k)
)2)

. Since

Niter is a fixed constant, the complexity of the algorithm in sector k as a function of

M (k) and N is O
(

N
(

M (k) logM (k)
)2)

.

Having a polynomial algorithm is crucial for the scalability of the network. Indeed,

we observed through extensive simulations that the average simulation time grows as

MN , i.e., linearly in the number of RBs and the number of UTs.

To reduce the information exchange between sectors, low complexity variants of

the proposed algorithm can be implemented. One such implementation is to execute

the algorithm every τ sub-frames. Each sector has time to implement the algorithm

and calculate the {I(k)n } values during τ sub-frames and exchange them with neigh-

boring BSs. The design parameter τ can be adjusted to suit the practical limitations.

Also, a pipelined implementation is possible, where the algorithm is executed every

sub-frame but with a delayed decision of τ̃ sub-frames.

We now quantify the rate of message exchange required between any two neighbor-

ing sectors, in order to execute the proposed algorithm. For each iteration required

by the proposed algorithm, each sector sends to its neighboring sector N subgradients

values and N I values. Thus, assuming Ls bits is used to quantize the subgradients

and I values, then it is not difficult to see that the rate of message exchange (in b/s)
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is given by

Rexchange =
2NiterNLq

τ 1̇ms
(b/s). (4.32)

For example, for Niter = 5 iterations, N = 50 RBs, Lq = 8 bits, and τ = 10 sub-

frames, Rexchange = 400 Kb/s. Such data rate can be realized in practice through

either high-speed wired links or high-speed LOS wireless links since the locations of

the sectors are fixed.

4.5 Baseline Schemes

In this chapter, the following are used as the baseline schemes: reuse-1, reuse-3,

PFR [42], dynamic FFR [46], and optimum FFR [55]. While reuse-1, reuse-3, and

PFR are static schemes, dynamic and optimum FFR are implemented as dynamic

schemes.

In PFR, RBs are divided such as 30 RBs (inner band) are used in all sectors

(reuse-1) while 20 RBs (outer band) are shared among sites in a classical reuse-3

pattern. More details about this algorithm can be found in [42].

While dynamic FFR and optimum FFR were designed to maximize the sum-rate,

they can be easily modified to accommodate maximizing weighted sum-rates, and

they work with differentiable and non-differentiable AMC functions, which make them

good baseline schemes to be compared with the proposed scheme. For fair comparison,

we convert the constraint on instantaneous minimum rate (used in dynamic and

optimum FFR) to a constraint on average minimum rate, which can be implemented

by updating the weights in every sub-frame according to the procedure given in [33].

We finally remark that both dynamic FFR and optimum FFR are centralized schemes.

In dynamic FFR, a centralized controller is used to determine which RBs belong

to inner band (in reuse-1 pattern) and which RBs belong to outer bands (in reuse-3

pattern). The decision is made to maximize the total utility, assuming each RB is
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used by all the users in the region where this RB can be used, and summed for all

the sectors. This assumption is critical to the development of the algorithm. Then,

scheduling is done locally by each BS. More details about this algorithm can be found

in [46].

In optimum FFR, the number of RBs used in inner and outer bands, and the reuse

factor of the outer band are determined optimally using a centralized controller, with-

out considering channel fading. Without channel fading, all RBs seen by a particular

user have the same SINR. This makes the optimization problem tractable. However,

if channel fading is considered, then the computational complexity for optimum FFR

is exponential. More details about this algorithm can be found in [55].

It is common for FFR schemes (e.g., PFR and optimum FFR) to divide users into

two classes: inner (cell-center) users and outer (cell-edge) users, based on SINR or

distance from BS. Inner users are restricted to use inner band while outer users are

restricted to use outer band. We found such restriction degrades the performance

of FFR and as such, this restriction is removed to realize the full potential of FFR

schemes. This restriction is already removed from dynamic FFR [46] for the same

reason.

4.6 Simulation Results

In this Section, we present the simulation results of the proposed scheme as well

as the baseline schemes provided in Section 4.5. The simulation results were obtained

through Monte Carlo simulations that are carried over 103 sub-frames and averaged

over 10 independent drops. The simulation parameters and assumptions are based on

the IMT-Advanced UMa scenario [34] which were explained in detail in Section 3.6.1.

Validation of the simulator was presented in Section 3.6.2.
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4.6.1 Optimality Gaps

To develop an efficient algorithm to solve the difficult optimization problem given

by (4.13) in a distributed manner, two sources of sub-optimality were introduced,

namely, relaxing the integer constraints and solving the master optimization problem

in finite iterations. To understand the effect of these sources of sub-optimality, we

present in Table 4.1.a the mean and standard deviation of the upper-bound on the

optimality gap (4.21) for different number of iterations. For each number of iterations,

we simulated a total of 22,000 instances of the optimization problems for four IMT-

Advanced scenarios and different numbers of UTs [92]. In the first sub-frame, a

random initial point is used. In the subsequent sub-frames, the optimal solution of

the previous frame is used as an initial point. It is clear from Table 4.1.a that the

proposed algorithm converges quickly to a near-optimum solution. Hence, for the rest

of the simulations, the number of iterations is set to be 5, since this value results in

a small optimality gap.

The numbers in Table 4.1.a illustrate that our algorithm can solve the bound

optimization problem (4.13) in a near-optimum manner. A natural question to ask

is how different is the optimal value obtained by solving the bound optimization as

compared to the optimal value obtained by solving the original strongly NP-hard

problem (4.7) using exhaustive search? Due to the exponential computational com-

plexity of exhaustive search, simulating a system of 57 sectors is not feasible. As a

result, we only show the optimality gap for a system of 12 sectors in Table 4.1.b,

for proportional-fair scheduling, i.e., α-fair scheduling with α = 1, for the cases of

10, 20, and 30 UTs per sector. As we can see, the proposed scheme can achieve,

on average, about 96% of the optimum value achieved using exhaustive search, if it

is executed once (5 iterations). One can also reduce the optimality gap further by

executing the algorithm more than once. That is, after finding the optimum {I(k)n }
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Table 4.1: Mean and standard deviation of the optimality gap (%)

a. Compared to the optimal value of the bound optimization (4.13)

Number of iterations Mean (%) Standard deviation (%)

0 43.62 1.16

1 4.61 4.19

2 2.87 3.39

5 1.43 1.43

10 0.95 0.88

b. Compared to the optimal value of the original problem (4.7)

Number of runs Mean (%) Standard deviation (%)

1 3.8 1.7

2 2.4 0.8

in one run, the algorithm sets H
(k̃,k)
m,n = 0, ∀m,n, k, k̃|I(k)n = 1, and executes the

algorithm again. In this case, one can achieve about 97.6% of the optimum value

achieved using exhaustive search, i.e., an incremental gain, at the expense of more

computational complexity. This suggests that the bound optimization is indeed a

good method to achieve near-optimality and shows that most of the gain is already

captured by executing the algorithm only once.

We conclude the discussion on optimality gap by noting that, since the original

problem is strongly NP-hard (cf. [79]), there is no polynomial-time algorithm, includ-

ing the proposed algorithm, as of yet that can provide guarantee on the optimality

gap for the worst case scenario. However, we note that the optimality gap for the pro-

posed algorithm is small for the case when each UTs is mainly interfered by at most

one interferer. This is the case for BS deployment with highly directional antennas.
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4.6.2 Comparing the Proposed Scheme with the Baseline

Schemes

In this section, we compare the performance of the proposed scheme with the

baseline schemes presented in Section 4.5. Similar to Section 3.6.3, we present the

comparison results in terms of normalized throughputs measured in (bit/sec/Hz),

where the term “normalized throughput” is defined as the long-term average rate

divided by the total bandwidth (10 MHz). Moreover, normalized efficiency is defined

as the normalized aggregate sector throughput which is obtained by summing the

normalized user throughput of all users in the network and dividing the result by the

number of sectors.

Throughput CDF Comparison

In Fig. 4.6, we show the CDF of the normalized time-average UT throughput for

all schemes. In all schemes, α-fair scheduler is used with fairness exponent of α = 2

(cf. Section 4.3). To facilitate the comparison, we define the normalized cell-edge

and cell-center user throughputs as the 5th and the 95th percentiles of the normalized

user throughputs, respectively. It is clear from the figure that reuse-1 has the worst

cell-edge performance (0.0323 (bit/sec/Hz)) as compared to the other three schemes,

due to the excessive interference experienced at the cell-edge. Reuse-3, PFR, dynamic

FFR, and optimum FFR, and the proposed scheme achieve normalized cell-edge user

throughputs of 0.0391, 0.0417, 0.0412, 0.0435, and 0.0430 (bit/sec/Hz), respectively.

However, reuse-3, PFR, dynamic FFR, and optimum FFR improve the cell-edge

performance at the expense of reducing the overall throughput, especially for UTs

close to the cell-center. For example, the 95th percentile achieved by reuse-3, PFR,

dynamic FFR, and optimum FFR are 0.108, 0.136, 0.107, and 0.125 (bit/sec/Hz),

respectively, as compared to 0.156 and 0.154 (bit/sec/Hz) achieved by reuse-1 and
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Figure 4.6: CDF of the normalized user throughput of all UTs in the network for
α = 2 and R̄min = 0.

the proposed scheme, respectively. Interestingly, the proposed scheme combines the

advantages of all schemes, as it provides high cell-edge and cell-center throughputs

simultaneously. Indeed, the gain achieved by the proposed scheme increases for higher

fairness exponent, α, or higher R̄min, as we will see shortly.

Efficiency-Cell-edge Tradeoff Comparison

To further examine the performance of the different schemes, we show in Fig. 4.7

the normalized cell-edge user throughput and the normalized efficiency for all schemes

and for different minimum average rate requirements R̄min, assuming proportional-

fair scheduler, i.e., α = 1. As expected, the general trend for all schemes is that as

R̄min increases, the normalized efficiency decreases and the normalized cell-edge user

throughput increases. For high R̄min, we observe that reuse-3, PFR, optimum FFR,

dynamic FFR, and the proposed scheme have significantly higher normalized cell-edge
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Figure 4.7: Normalized cell-edge throughput versus normalized efficiency, for α = 1
and R̄min ∈ {0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}.

throughput than reuse-1. On the other hand, for small R̄min it is clear that reuse-

3, PFR, dynamic FFR, and optimum FFR incur significant loss in the normalized

efficiency as compared to reuse-1. Interestingly, the proposed scheme performs very

well in both the normalized cell-edge and the normalized efficiency as compared to all

other schemes for all values of R̄min. We also plot similar tradeoff curves in Fig. 4.8

by varying the fairness exponent α and fixing R̄min = 0, similar to [7]. Again, the

proposed scheme outperforms other schemes in both the normalized cell-edge and the

normalized efficiency.

In Fig.s 4.9 and 4.10, we take a closer look at the gains achieved by the different

schemes as compared to reuse-1. In Fig. 4.9, we plot the gains in normalized cell-edge

throughput achieved for a given normalized efficiency. The gain in normalized cell-

edge throughput for a particular scheme for a given normalized efficiency x is given

by Gainscheme(x) =
CellEdgescheme(x)−CellEdgereuse1(x)

CellEdgereuse1(x)
·100%, where CellEdgescheme(x) is the
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Figure 4.8: Normalized cell-edge throughput versus normalized efficiency for differ-
ent schemes, for R̄min = 0 and α ∈ {0, 0.25, 0.50, 0.75, 1, 2, 3, 4, 5}.

normalized cell-edge throughput achieved by a particular scheme at a normalized

efficiency of x, which can be obtained from the tradeoff curves given in Fig. 4.7. For a

wide range of normalized efficiencies, the proposed scheme achieves large gains (50%

to 60%). Dynamic FFR, optimum FFR, and the proposed scheme lose some of the

gain if it is executed every 10 sub-frames (as expected for any dynamic scheme);

however, the gains for the proposed scheme are consistently better than the other

schemes. Similarly, we plot the gains in normalized efficiency for a given normalized

cell-edge throughput in Fig. 4.10. The proposed scheme achieves consistently higher

gains in normalized efficiency than the other schemes, especially for high normalized

cell-edge throughput.

Efficiency-Jain Tradeoff Comparison

In this section, we compare the EJTs achieved by the proposed and the baseline

schemes. To do so, we consider the case of uniform and nonuniform UT distribution.
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Figure 4.11: Network layout with nonuniform user distributions, where each gray-
sector has 10 UTs and each white-sector has 2 UTs.

For the uniform UT distribution, each sector is assumed to have 10 UTs, as specified

by IMT-Advanced guidelines and explained in Section 3.6.1. For the nonuniform UT

distribution, we assume that one-third of the sectors are highly loaded with 10 UTs per

sector, while two-thirds of the sectors are lightly loaded with 2 UTs per sector. The

locations of the highly loaded and lightly loaded sectors are determined randomly

and the resulted nonuniform layout is shown in Fig. 4.11, where the gray-sectors

represent the highly loaded sectors and the white-sectors represent the lightly loaded

sectors. Despite the simplicity of the considered nonuniform UT distribution model,

it is sufficient to demonstrate the effectiveness of the proposed scheme in achieving

network-wide fairness for nonuniform UT distributions, as we will see shortly.

In Fig.s 4.12(a) and 4.12(b), we plot the EJTs for the cases of uniform and nonuni-

form distributions, respectively, for the proposed and the baseline schemes. For all

schemes, we use the optimal EJT scheduling policy that we proposed in Section 3.5.

125



For the case of uniform UT distribution depicted in Fig. 4.12(a), it can be seen that

reuse-3, PFR, dynamic FFR, optimum FFR, and the proposed scheme outperform

reuse-1 in the high fairness region. However, reuse-3, PFR, dynamic FFR, and op-

timum FFR fail to provide an efficiency that is comparable to reuse-1 in the high

efficiency region. Interestingly, the proposed scheme outperforms all the baseline

schemes in both the high efficiency and high fairness regions. For the case of nonuni-

form UT distribution depicted in Fig. 4.12(b), it can be seen that the proposed scheme

significantly outperforms all the baseline schemes in both the high efficiency and high

fairness regions. This demonstrates that proposed scheme can effectively achieve

network-wide fairness by coordinating resource allocations across multiple sectors.

To further examine the EJT achieved by the proposed and the baseline schemes,

we plot in Fig.s 4.13(a) and 4.13(b) the gains in normalized efficiency achieved by the

different schemes as compared to reuse-1, for the cases of uniform and nonuniform

UT distributions, respectively. Similar to Fig.s 4.9 and 4.10, the gain in normalized

efficiency for a particular scheme for a given Jain’s index x is given by Gainscheme(x) =

ηscheme(x)−ηreuse1(x)
ηreuse1(x)

· 100%, where ηscheme(x) is the normalized efficiency achieved by a

particular scheme at Jain’s index x, which can be obtained from the tradeoff curves

given in Fig.s 4.12(a) and 4.12(b). It can be seen from these figures that the proposed

scheme achieves consistently higher gains in normalized efficiency than the other

schemes, especially for higher values of Jain’s index. Moreover, the gains are more

substantial for the case of nonuniform UT distribution depicted in Fig. 4.13(b); e.g.,

for a Jain’s index of 0.9, the gain in normalized efficiency achieved by the proposed

scheme is 60%.

Similar to Fig.s 4.13(a) and 4.13(b), we plot in Fig.s 4.14(a) and 4.14(b) the

gains in Jain’s index achieved by the different schemes as compared to reuse-1, for

the cases of uniform and nonuniform UT distributions, respectively. For the case

of uniform UT distributions, we can see that the gains in Jain’s index are modest
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Figure 4.13: Gain (%) in normalized efficiency versus Jain’s index, as compared to
reuse-1.
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for the proposed scheme, while the baseline schemes incur losses, especially for high

normalized efficiency. On the other hand, for nonuniform UT distribution, the gains

achieved by the proposed scheme are substantial; e.g., for a normalized efficiency of

0.9 bit/sec/Hz, the gain in Jain’s index achieved by the proposed scheme is 43%.

Outage Comparison

In Fig. 4.15, we plot the outage probability, which is defined as the probability of

having the average UT throughput less than R̄min for different schemes. It is clear

from the figure that the proposed scheme achieves much lower outage probability as

compared to other schemes. For example, at R̄min = 0.05 bits/sec/Hz, the proposed

scheme has an outage probability that is at least 3.5 times less than those for PFR

and optimum FFR, and at least 6 times less than those for reuse-1, reuse-3, and

dynamic FFR.

4.6.3 Statistics of the Average Number of Restricted RBs

In Fig. 4.16, we plot the probability mass function of the average number of

restricted RBs per sector for different fairness exponents. The proposed scheme has

the flexibility to change the distribution of the restricted resources according to the

desired fairness level. As α increases, cell-edge users become more important and

thus more resources need to be restricted, and vice versa. The figure shows also that

the proposed scheme acts as reuse-1 (no restrictions) and reuse-3 (2/3 of RBs are

restricted) with very small probabilities.

4.7 Conclusions

In this chapter, we proposed a novel ICIC scheme that runs in polynomial time

and finds a near-optimum dynamic resource partitioning that maximizes a weighted
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Figure 4.14: Gain (%) in Jain’index versus normalized efficiency, as compared to
reuse-1.
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sum-rate in the entire network in a distributed manner. The proposed algorithm

can be used with any AMC scheme, including discrete-rate AMC schemes. The pro-

posed scheme is developed using primal-decomposition method, which is utilized to

decompose the problem into a master problem and multiple subproblems. The mas-

ter problem is solved iteratively using projected-subgradient method. We reveal that

each subproblem has a network flow structure which makes it amenable to powerful

minimum cost network flow algorithms and thus results in significant reduction in

the computational complexity. Simulation results show that the proposed scheme

achieves high gain in sum-rate efficiency, Jain’s fairness index, cell-edge throughput,

and outage probability, as compared to reuse-1, reuse-3, partial frequency reuse, dy-

namic fractional frequency reuse, and optimum fractional frequency reuse.
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Chapter 5

Inter-cell Interference Coordination in

Heterogeneous Networks

5.1 Introduction

As mentioned before, the demand for high-rate mobile data is expected to surge

in the coming years (cf. [1]). Given the scarcity of radio resources, this surge in

demand presents an unprecedented challenge to service providers. One approach

to tackle this challenge is to aggressively reuse these scarce resources by increasing

the density of conventional BSs, which are called macro-BSs herein. Unfortunately,

such an approach is not economically feasible due to the high cost of macro-BSs.

Moreover, increasing the density of macro-BSs in the same geographical region can

lead to intolerable interference. In addition, acquiring new sites for mounting macro-

BS’s tower can be very challenging [93]. To overcome the drawback of high cost of

dense deployment of macro-BSs, low-cost low-power BSs can be deployed in the same

geographical coverage region of macro-BSs.

A network that consists of macro-BSs and a mixture of low-power BSs with dif-

ferent transmission powers is widely referred to as a heterogeneous network (Het-

Net) [39, 93–98]. These low-power BSs can be classified into pico-BSs, femto-BSs,
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and relay stations, as shown in Fig. 5.1. A brief description of these low-power BSs

is given below.
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Figure 5.1: Illustration of a HetNet.

Pico-BS: Pico-BSs are deployed by the service provider in more or less ad-hoc

manner to cover coverage holes and/or to satisfy high demand in hot-spots [39]. It is

designed to be deployed both outdoor and indoor. An LTE pico-BS has a maximum

transmit power of 24 to 37 dBm [95, 99].

Femto-BS: Femto-BS (or Home BS) is a low-cost, low-power, plug-and-play BS

that can be installed in an indoor environments and it is usually purchased and

maintained by a subscriber. Due to the short distance, a femto-BS can provide high

throughput with low power, through the reuse of the licensed spectrum and it is an

excellent solution for indoor coverage problem, e.g. coverage inside buildings. These

femto-BSs are connected to the network through a broadband connection such as DSL.

Femto-BSs are expected to have a maximum transmit power of 20 to 24 dBm [95,99].

As explained in [100], there are three access methods for femto-BSs:
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� Open Access: all users have full access to the femto-BS.

� Closed Access: only subscribed users can access the femto-BS.

� Hybrid Access: subscribed users have full access to the femto-BS while non-

subscribed users have access to only limited resources offered by the femto-BS.

Open access strategy is the most efficient strategy from capacity and coverage point

of views, as it allows macro-cell users to use the femto-BS in coverage holes. However,

a major drawback of this strategy is that the owners of the femto-BSs will not have

incentives to let other non-subscribed users to use their femto-BSs without sharing

the revenue. Consequently, closed access will be most likely the most widely deployed

strategy.

Relay station: Unlike pico-BSs and femto-BSs, relay stations have wireless back-

haul connection that is provided by the macro-BS. In LTE, a relay station has a

maximum transmit power of 30 to 37 dBm [99].

HetNet is a paradigm shift in the way we perceive, design, and optimize cellular

networks. Seven fundamental differences between conventional (homogeneous) net-

works and HetNets are highlighted in [93]. In the following, we highlight the two

most important differences that are relevant to our work [93]:

� Topology: in analyzing and simulating homogeneous networks, conventional

macro-BSs are assumed to be placed in a hexagonal-grid. While this assumption

also holds for macro-BSs in HetNets, it does not hold for low-power BSs such

as pico-BSs, femto-BSs, and relay stations. This is because these low-power

BSs are deployed in almost ad-hoc manner without prior planning, in order

to eliminate coverage holes or to satisfy surge in demands in hot-zones [39,

96]. This results in irregular cell shapes, which raises challenges for semi-static

interference management schemes that depend on regular cell shapes such as

FFR schemes.
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� Cell association: conventionally, UTs are associated to the BS to which it has

the highest wideband SINR (cf. Section 3.6.2). However, since the transmit

power of low-power BSs is much lower than that of a macro-BS, the coverage

region of these low-power BSs can be very small in comparison to that of macro-

BSs. This results in associating most of the users to macro-BSs which defies the

purpose of low-power BSs. In order to balance the load across the BSs, range

extension is applied to low-power BSs through biasing. In particular, in the

process of associating UTs to BSs, a bias value (virtual) is added to the SINR

received from low-power BSs in order to make low-power BSs more preferable

to UTs [93, 97]. Range extension is effective since most low-power BSs are

lightly loaded; however, this can potentially results in very low SINRs for UTs

who are associated to low-power BSs. This raises the need for new interference

management schemes that can handel such high interference environment; this

is addressed in the following section.

To highlight the interference management aspect of HetNet, we consider only

HetNets that consist of macro-BSs and pico-BSs.

5.2 ICIC schemes in Heterogeneous Networks

In this section, we explain the baseline ICIC schemes that can be used in the

context of HetNets. We also discuss the application of the scheme we proposed in

Chapter 4 and its variants to HetNets.

5.2.1 Baseline schemes

The baseline schemes we explained in Section 4.5 can also be adopted in HetNets.

Reuse-1, in which all resources are used by all BSs, can be applied in straight-forward

manner for both macro-BSs and pico-BSs. On the other hand, reuse-3, PFR [42],
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dynamic FFR [46], and optimum FFR [55] can be applied only to macro-BSs while

reuse-1 is used for pico-BSs1. However, as alluded in [93,101], these schemes may not

be very effective in HetNets as we will also verify hereafter.

A scheme that is more powerful in mitigating interference in HetNets is to im-

plement ICIC in time-domain, which is referred to as enhanced ICIC (eICIC) in

3GPP [93,101]. An advantage of eICIC is that it provides interference-protection for

both data and control channels [97, 98, 101, 102]. This is implemented by periodi-

cally restricting macro-BSs from using particular sub-frames in order to reduce the

interference experienced by UTs that are associated with pico-BSs. These restricted

sub-frames are called almost-blank-sub-frames (ABS), where the word “almost” is

used since macro-BS may still transmit control messages in these sub-frames [39]. For

example, 1/4 ABS scheme means that one-sub-frame out of every four sub-frames is

blanked and reserved for pico-BSs.

5.2.2 Proposed schemes

In Chapter 4, we proposed a distributed ICIC scheme in the context of homo-

geneous network deployment, where the access network consists solely of macro BSs

that are equipped with a tri-sector antenna. In this section, we discuss the application

of the proposed ICIC scheme in HetNets. Since the proposed scheme is applicable

to any cell shapes and any type of access points, the proposed scheme can be used

in HetNets in straightforward manner, as long as communication is possible between

the different access points types, which can be realized in practice. For example, in

3GPP Release 10 (LTE-Advanced) [103], macro-pico BS communication is possible

through the X2 interface and macro-femto BS communication is possible through the

1It was observed through extensive simulations that applying reuse-3, PFR, dynamic FFR, and
optimum FFR for both macro-BSs and pico-BSs can degrade the performance significantly. Such
a degradation is a consequence of irregular shapes of pico-cells and the high disparity between the
loads on macro-BSs and pico-BSs. As a result, these schemes are applied only to macro-BSs herein.
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OAM (Operations, Administration, and Maintenance) interface [62]. The proposed

algorithm can be executed every τ sub-frames, where τ can be adjusted to suit the

practical limitations of X2 and OAM interfaces. However, there are two important

implications of applying the proposed ICIC scheme in HetNet:

1. Bound optimization: in homogeneous networks, it was argued and verified by

simulating a small network that bound optimization is a good approach in ap-

proaching near-optimality. This was mainly due to the fact that UTs (especially

cell-edge UTs) are mainly affected by the most dominant restricted interferers.

However, due to the dense deployment of BSs in HetNets, UTs are potentially

affected by more than one BS, which makes the bound optimization not neces-

sarily near-optimum.

2. Due to the ad-hoc nature of deploying pico-BSs, fast communication links be-

tween macro-BSs and pico-BSs may not be readily available which raises the

need for reducing the message exchange between BSs.

The first implication can be addressed by executing the algorithm more than once.

That is, after finding the optimum {I(k)n } in one run, the algorithm sets H
(k̃,k)
m,n = 0,

∀m,n, k, k̃|I(k)n = 1, and executes the algorithm again to handel the second most

dominate restricted interferer. For homogeneous networks, we observed that execut-

ing the algorithm more than once provides only an incremental gain, cf. Table 4.1.

As we will see later, executing the algorithm more than once provides substantial

gains in HetNets.

To address the second implication, we devise a variant of the proposed scheme

that is inspired by the ABS concept; we call this scheme the proposed dynamic ABS.
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5.2.3 Proposed Dynamic ABS Scheme

We changed the formulation of the ICIC scheme presented in Chapter 4 such that

it resembles an ABS scheme. This is achieved by assuming that the I value is the

same for all RBs in a particular sub-frame. In other words, in every sub-frame, either

all RBs are transmitted with full power or all RBs are muted. The optimization

problem can be formulated as follows:

maximize
{x

(k)
m,n}, {I(k)}

K
∑

k=1

M
∑

m=1

α(k)
m x(k)

m,nR
(k)
m,n (5.1a)

subject to

M
∑

m=1

x(k)
m,n = 1− I(k), ∀k, (5.1b)

x(k)
m,n, I

(k) ∈ {0, 1}, ∀m, k, (5.1c)

where the binary variables I(k) are introduced such that I(k) = 1 when the sub-frame

is muted in sector k and I(k) = 0 otherwise.

The only difference between this formulation and the one we considered in Chap-

ter 4 is that there is only one I(k) variable for each sector for each sub-frame (recall

that in Chapter 4 we had I
(k)
n for each RB, in each sector, in each sub-frame). With

this formulation, we can use the same derivation steps we used before, and the algo-

rithm stays the same with one important exception: Each BS exchanges the sum of

the lagrange multipliers over all RBs instead of exchanging all lagrange multipliers

for all RBs. This significantly reduces the information exchange between BSs by a

factor of N . However, dynamic ABS is expected to perform worse than muting RB-

by-RB as we loose the granularity and frequency diversity. This will be verified in

the simulation results in Section 5.4.

The proposed dynamic ABS scheme can be distinguished from the conventional

ABS scheme in the following ways. First of all, in the proposed scheme not all
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BSs have to be muted at the same sub-frame. Moreover, muting sub-frames in the

proposed scheme is not periodic and it changes as a function of the load and the

desired efficiency-fairness tradeoff. Finally, in the proposed scheme pico-BSs can also

be muted.

5.3 Simulation Setup

We consider a heterogeneous cellular network based on the 3GPP guidelines for

case 6.2 scenario [99]. As per these guidelines, a hexagonal layout with wrapround

is considered with 57 hexagonal macro sectors and 25 UTs per macro sector. These

macro sectors are served by 19 macro-BSs, each with a tri-sector antenna to serve a

3-sector cell-site. In each macro sector, Npico pico-BSs are randomly dropped, while

making sure that the minimum distance between pico-BSs and macro-BSs satisfy the

prescribed limits in [99]. The users are uniformly dropped in the 57 sectors, and Monte

Carlo simulations are carried over 103 sub-frames and averaged over 5 independent

drops.

The users are associated either to a macro-sector antenna or to a pico-BS based

on the average received power, taking into account a range extension margin of 6 dB

for pico-BSs as explained before. The average received power depends on large chan-

nel variations, which are mainly due to non-uniform antenna patterns and distance-

dependent path-loss and correlated shadowing. To incorporate these variations in

our simulations, we considered both LOS and NLOS users as in [99]. For the LOS

macro-UTs, the path-loss exponent is set to be 2.42 and the shadowing is assumed

log-normal with standard deviation of 4 dB. For the LOS pico-UTs, the path-loss

exponent is set to be 2.09 and the shadowing is assumed log-normal with standard

deviation of 10 dB. For the NLOS macro-UTs, the path-loss exponent is set to be 4.28

and the log-normal shadowing standard deviation is set to be 6 dB. For the NLOS
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pico-UTs, the path-loss exponent is set to be 3.75 and the log-normal shadowing

standard deviation is set to be 10 dB. The system parameters are based on the LTE

standard, whereby each RB is composed of a time slot of 7 OFDM symbols and 12

subcarriers [29]. The simulation parameters are given in Tables 5.1 and 5.2.

In addition to large variations, the received signal power is subject to small-scale

variations due to time-varying multipath fading. Variations of the received signal

power due to fading within each RB is negligible and hence, the channels can be

assumed fixed over each RB. For other RBs the channels take on different values

depending on the spectro-temporal correlation of the IMT-Advanced model for the

UMa scenario [35].

At sub-frame t, each user calculates its SINR on each RB, which involves the

calculation of the interference from all macro-BSs and pico-BSs that are using the

same RB. Based on the calculated SINRs, each user determines the data rate that can

be reliably communicated on every RB using the AMC Table 3.2. The set of all the

rates at sub-frame t are transmitted through feedback control channels to the serving

BS, which subsequently determines the appropriate scheduling variables, depending

on previously scheduled rates and the adopted scheduling strategy.

5.3.1 Wideband SINR CDF

Using the 3GPP case 6.2 model with the above parameter settings, we plot the

CDF of the wideband SINR experienced by macro-UTs and pico-UTs in Fig. 5.2 for

4 pico-BSs per macro-sector. From this figure, it is clear that the SINR for pico-UTs

is much less than their macro counterparts, mainly due to range extension and the

low transmitting power of pico-BSs.
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Table 5.1: Simulation parameters based on 3GPP heterogeneous network deploy-
ment Scenario 6.2.

Parameter Assumption

Number of macro sectors 57 (wraparound)

Number of UTs per sector 25

Inter-site distance 500 m

Macro BS’s height 32 m

Min. distance between a UT and a macro-BS 35 m

Min. distance between a UT and a pico-BS 10 m

Min. distance between a pico-BS and a macro-BS 75 m

Min. distance between any two pico-BSs 40 m

UT’s speed 3 km/h

Bandwidth (downlink) 10 MHz

Sub-carrier spacing 15 KHz

Number of RBs (N) 50

OFDM symbol duration 66.67 µs

Number of sub-carriers per RB 12

Number of OFDM symbols per RB 7

Number of drops 5

Number of sub-frames per drop 1000

Noise power per RB (Pn) -114.45 dBm

Carrier frequency 2.0 GHz

Total macro-BS’s transmit power 46 dBm

Total pico-BS’s transmit power 24 dBm

Path loss for LOS macro-UTs (dB) 103.4 + 24.2 log10(d(km))

Path loss for NLOS macro-UTs (dB) 131.1 + 42.8 log10(d(km))

Path loss for LOS pico-UTs (dB) 103.8 + 20.9 log10(d(km))

Path loss for NLOS pico-UTs (dB) 145.4 + 37.5 log10(d(km))

Penetration loss 20 (dB)

Shadowing standard deviation for LOS macro-UTs 4 (dB)

Shadowing standard deviation for NLOS macro-UTs 6 (dB)

Shadowing standard deviation for LOS & NLOS pico-UTs 10 (dB)

Shadowing correlation distance 50 m

Smoothing factor (µ) 0.01
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Figure 5.2: CDF of the wideband SINR of macro-UTs and pico-UTs.

5.4 Simulation Results

We now present the performance results using the 3GPP case 6.2 model with the

above parameter settings assuming a proportional fair scheduler (i.e., α-fair scheduler

with α = 1). In this section, efficiency of macro-UTs (pico-UTs) is defined as the sum

of the long-term average rates of all macro-UTs (pico-UTs) in the network. Similarly,

efficiency of all UTs is defined as the sum of the long-term average rates of all UTs

(i.e., both macro-UTs and pico-UTs) in the network.

5.4.1 Fixed Number of Pico-BSs and Fixed Range Extension

Margin

In this section, we compare the performance of the proposed schemes with the

baseline schemes presented in Section 5.2.1, assuming 4 pico-BSs per macro sector and
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Table 5.2: Simulation parameters based on 3GPP heterogeneous network deploy-
ment Scenario 6.2 (cont’d).

Parameter Assumption

Channel estimation delay 4 sub-frames

SINR estimation margin 6 dB

Small-scale fading model IMT-Advanced channel model [35]

Traffic model Full buffer

Macro-BS’s antenna gain (boresight) 17 dBi

Pico-BS’s antenna gain (boresight) 5 dBi

User antenna gain 0 dBi

Macro-BS’s antenna tilt (φt) 15◦ [99]

Macro-BS’s horizontal antenna pattern A(θ) = −min
[

12( θ
70◦

)2, 25 dB
]

[99]

Macro-BS’s elevation antenna pattern Ae(φ) = −min
[

12(φ−φt

10◦
)2, 20 dB

]

[99]

Macro-BS’s combined antenna pattern −min [− (A(θ) + Ae(φ)) , 25 dB] [99]

Pico-BS’s combined antenna pattern A(θ, φ) = 0 dB

a range extension margin of 6 dB for pico-BSs. Based on these simulation parameters,

54.7% of the UTs are associated to macro-BSs while 45.3% of the UTs are associated

to pico-BSs, on average.

Efficiency Comparison

In Fig. 5.3, we plot the gains in efficiency of macro-UTs and pico-UTs, as compared

to reuse-1, for the proposed schemes and the baseline schemes. It can be seen from

this figure that, while the baseline schemes achieve high gains for pico-UTs, they incur

high losses for macro-UTs. For example, 1/4 ABS achieves a gain of 81% for pico-

UTs at the expense of a loss of 25% for macro-UTs. On the other hand, the proposed

schemes achieve high gains for pico-UTs at the expense of small or no loss for macro-

UTs. We can also observe from this figure that running the proposed algorithm twice

yield significant gains compared to running it once, unlike the case of homogeneous

networks that we addressed in Chapter 4. In addition, we note that the ABS versions
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of the proposed scheme performs worse than the proposed scheme in order to reduce

the complexity of message exchange.
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Figure 5.3: Gain (%) in efficiency of macro-UTs and pico-UTs, as compared to
reuse-1.

Cell-Edge Throughput Comparison

Similar to Chapter 4, the cell-edge throughput is defined as the 5th percentile of

the user throughput. In Fig. 5.4, we plot the gains in the cell-edge throughput for

the proposed schemes and the baseline schemes as compared to reuse-1, for macro-

UTs and pico-UTs. While 1/4 ABS achieves the highest gain for pico-UTs (%308),

this large gain comes at the expense of a loss of 25% for macro-UTs. On the other

hand, the proposed scheme (2 runs) achieve gains of 279% for pico-UTs and 36% for

macro-UTs.
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Median Throughput Comparison

In Fig. 5.5, we plot the gains in the median throughput for the proposed schemes

and the baseline schemes as compared to reuse-1, for macro-UTs and pico-UTs. It can

be seen from this figure that, while all schemes achieve high gains for pico-UTs, the

baseline schemes incur losses in the median throughput for macro-UTs. In particular,

1/8 ABS, 1/4 ABS, reuse-3, PFR, dynamic FFR, and optimum FFR incurs losses of

13%, 25%, 34%, 11%, 32%, and 24% for macro-UTs, respectively. On the contrary,

proposed, proposed (2 runs), proposed (ABS), and proposed (2 runs, ABS) achieve

gains of 12%, 15%, 1%, and 3% for macro-UTs.

Fairness Comparison

In Fig. 5.6, we plot the gains in Jain’s fairness index for the proposed schemes

and the baseline schemes as compared to reuse-1, for macro-UTs and pico-UTs. It

146



−20

0

20

40

60

80

100

120

G
a
in

 (
%

)

 

 

1/8 ABS

1/4 ABS

Reuse 3

PFR
Proposed

Proposed (2 runs)

Dynamic
FFR Optimum

FFR

Proposed 
(ABS)

Proposed 
(ABS, 2 runs)

Macro−UTs

Pico−UTs

Figure 5.5: Gain (%) in median throughput for macro-UTs and pico-UTs, as com-
pared to reuse-1.

can be seen from this figure that all schemes improve fairness as measured by Jain’s

index for pico-UTs. Moreover, except for 1/8 ABS and 1/4 ABS, all other schemes

improve fairness as measured by Jain’s index for macro-UTs.

5.4.2 Variable Number of Pico-BSs and Fixed Range Exten-

sion Margin

In this section, we examine the performance of the proposed and the baseline

schemes as a function of the number of pico-BSs. To do so, we vary the number of

pico-BSs per sector from 1 to 4, and for each case, we examine the gains achieved

by the proposed and the baseline schemes in efficiency, cell-edge throughput, median

throughput, and Jain’s fairness index. Unlike the previous section where we examined

macro-UTs and pico-UTs separately, in this section we examine the performance of

all UTs combined since the percentage of pico-UTs vary based on the number of
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pico-BSs per sector. In particular, based on the considered simulation parameters,

the percentages of pico-UTs are 16.4%, 27.2%, 37.5%, and 45.3% for 1, 2, 3, and 4

pico-UTs per sector, respectively. Since we found in the previous section that the

proposed schemes perform best if they are executed twice, we only include the results

of proposed (2 runs) and proposed (2 runs, ABS). Finally, we assume a fixed range

extension margin of 6 dB for pico-BSs.

Efficiency Comparison

In Fig. 5.7, we plot the gains in efficiency achieved by the baseline and the proposed

schemes as compared to reuse-1, for different number of pico-BSs per sector. The

general trend for all schemes is that as the number of pico-BSs per sector increases,

interference increases, which leads to an increase in the gain achieved by interference

management schemes. The highest gains are achieved by 1/4 ABS and proposed (2
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runs) schemes. However, as we will see shortly, the gains achieved by 1/4 ABS comes

at significant degradation in the cell-edge throughput. We also note that Reuse 3 and

dynamic FFR incur losses in the efficiency when the number of pico-BSs is 1 and 2.
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Figure 5.7: Gain (%) in efficiency of all UTs as compared to reuse-1 for different
number of pico-BSs.

Cell-Edge Throughput Comparison

In Fig. 5.8, we plot the gains in the cell-edge throughput for the proposed schemes

and the baseline schemes as compared to reuse-1. It can been seen from this figure

that 1/4 ABS has the worst cell-edge performance. This is a consequence of reduc-

ing the resources for macro-UTs by 25% which reduces the throughput of cell-edge

macro-UTs. Interestingly, proposed (2 runs) provides the highest gain in cell-edge

throughput while maintaining a high gain in efficiency (cf. Fig. 5.7). Proposed (2

runs, ABS) provides a good compromise between complexity and gains in efficiency

and cell-edge throughput.
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Median Throughput Comparison

In Fig. 5.9, we plot the gains in the median throughput for the proposed schemes

and the baseline schemes as compared to reuse-1. For the case of 1 pico-BS per sector,

it can be seen from this figure that all the baseline schemes either provide no gain or

incur losses in the median throughput as compared to reuse-1. Again, the proposed

schemes perform very well in the median throughput.

Fairness Comparison

In Fig. 5.10, we plot the gains in Jain’s fairness index for the proposed schemes and

the baseline schemes as compared to reuse-1. For the cases of 1 and 2 pico-BSs per

sector, it can be seen from this figure that all the baseline schemes incur significant

losses in fairness as compared to reuse-1. This comes as a consequence of reducing the

resources available for macro-UTs. On the other hand, proposed (2 runs) provides
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modest gains in fairness while proposed (2 runs, ABS) incur a small loss for the case

of 1 pico-BS per sector.

5.5 Conclusions

Inspired by the ICIC scheme we proposed in Chapter 4 for homogeneous networks,

we proposed variants of it in this chapter that are more suitable for HetNets. In one

variant, we proposed to execute the ICIC algorithm more than once, since in HetNets,

UTs are potentially affected by more than one BS, due to the dense deployment of

BSs. This allows us to handel more than one dominate restricted interferer. In

another variant, we proposed a dynamic ABS scheme in order to reduce the message

exchange between BSs. Unlike most of the existing schemes, we demonstrated that it

is possible to improve the performance of macro-UTs and pico-UTs, simultaneously, at
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the expense of fast message exchange, by executing the proposed ICIC algorithm more

than once. This includes improvement in sum-rate efficiency, cell-edge throughput,

median throughput, and Jain’s fairness index. We also showed that the proposed

dynamic ABS scheme is a low-complexity scheme that provides a good compromise

between complexity and gains in performance.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Contributions

In this thesis, we investigated efficiency-fairness tradeoff in interference-limited

cellular networks. The contributions of this thesis can be summarized as follows:

� We showed that, in general, the commonly-used α-fair policy [3] does not yield

the optimal EJTs except for the two-user case. In particular, when the number

of users is greater than two, it is shown that the gap between the efficiency

achieved by the α-fair policy and that achieved by the optimal EJT policy for

the same Jain’s index can be unbounded.

� We developed two procedures to achieve the optimal EJTs in the general case.

In the first procedure, the set of feasible benefits is arbitrary, but finding the

allocations that achieve the optimal EJTs involves solving potentially difficult

optimization problems. In contrast, in the second procedure, the set of feasible

benefits is assumed to have a monotonic tradeoff property that arises in many

practical scenarios. This property is exploited to facilitate the search for allo-

cations that achieve the optimal EJTs. We also provided sufficient conditions

which, when satisfied, ensure that a given set C possesses this property. These
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sufficient conditions are given below:

i. C is convex;

ii. xmin1M ∈ C; and

iii. every x ∈ C satisfies x � xmin1M ,

where xmin ≥ 0 provides a guarantee on the minimum benefit that each user

receives.

� Using the sufficient conditions, we demonstrated that the monotonic tradeoff

property arises naturally in various resource allocation problems, including the

allocation of radio resources in the downlink of cellular networks. By exploiting

this property, we devised computationally-efficient schedulers that achieve the

optimal EJT in quasi-static and ergodic time-varying communication scenarios.

� Through analysis and extensive simulations, we compared the performance of

the proposed optimal EJT scheduler, α-fair scheduler, and MTMR scheduler.

We found that the proposed optimal EJT scheduler outperforms both α-fair and

MTMR schedulers, in EJT, Efficiency-Median Tradeoff, and user satisfaction.

On the other hand, the MTMR scheduler outperforms both the proposed op-

timal EJT and the α-fair schedulers in Efficiency-Cell-edge Tradeoff; however,

the MTMR scheduler incurs significant loss in EJT, Efficiency-Median Tradeoff,

and user satisfaction.

� We proved that the only fairness function that is homogeneous of degree zero

and concave is the constant function. In other words, it is not possible to

construct a meaningful fairness function that is also concave.

� When the sufficient conditions are satisfied, optimal EJT benefit vectors were

shown to have an interesting geometric interpretation. An optimal EJT benefit
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vector, x⋆
σ, is the unique Euclidean projection of the equal allocation vector

σ
M
1M onto the set {x|η(x) = σ, x ∈ C}. In other words, a benefit vector x⋆

σ

achieves the optimal EJT if there is no feasible benefit vector y 6= x⋆
σ such that

η(y) = σ is closer to the fairest solution σ
M
1M .

� We showed that in some scenarios, where the sufficient conditions are not satis-

fied, the tradeoff between efficiency and Jain’s fairness index is not meaningful,

i.e., it is possible to increase both efficiency and Jain’s index at the same time.

� We demonstrated that the derived sufficient conditions are satisfied in the prob-

lem of congestion control in elastic traffic communication networks. Hence, the

optimal EJT rate vectors can be efficiently computed using Procedure 2. More-

over, we proved that the α-fair tradeoff policy achieves the optimal EJT for

the special case of linear networks with uniform capacity. However, we also

illustrated that the α-fair tradeoff policy does not achieves the optimal EJT for

general networks.

� We proposed a novel ICIC scheme that runs in polynomial time and finds a

near-optimum dynamic multi-cell resource allocations that maximize a weighted

sum-rate in the entire network in a distributed manner. The proposed algorithm

can be used with any AMC scheme, including discrete-rate AMC schemes. The

proposed scheme is developed using primal-decomposition method, which is uti-

lized to decompose the problem into a master problem and multiple subprob-

lems. We showed that each subproblem has a special network flow structure. By

exploiting such network structure, each sub-problem is solved using network-

based optimization methods, which have significantly reduced complexity in

comparison with general-purpose convex or linear optimization methods.

� Through extensive simulation results, we showed that the proposed ICIC scheme
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achieves high gain in aggregate throughout, Jain’s index, cell-edge throughput,

and outage probability, as compared to reuse-1, reuse-3, partial frequency reuse,

dynamic fractional frequency reuse, and optimum fractional frequency reuse.

� We demonstrated that the proposed ICIC scheme can significantly enhance the

EJT for nonuniform user distribution.

� We proposed ICIC schemes for HetNets. Unlike most of the existing schemes,

we demonstrated that it is possible to improve the performance of macro-UTs

and pico-UTs, simultaneously, at the expense of fast message exchange. We

also proposed low-complexity variants that provide a good compromise between

complexity and gains in performance.

6.2 Future Work

The work presented in this thesis raises some interesting questions for future

research.

� In this research, scarce radio resources are allocated in a way that optimizes ob-

jective measures based on delivered rates and can be extended to accommodate

for transmission delays. However, this approach does not necessarily optimize

the user’s experience as it does not distinguishes traffic that has less importance

from the users’ perspective (e.g., application updates) and traffic that has more

importance (e.g., driving navigation). Recently, context-aware resource allo-

cation is introduced as a recent paradigm shift that aims at optimizing users’

experience. This is accomplished by making resource allocation decisions based

on users’ context information such as their locations, preferences, currently run-

ning applications, buffer state, and/or urgency of communication [104]. By ex-

ploiting the context information, more efficient resource allocation can be made
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without sacrificing users’ experience. Towards this end, we envision that devel-

oping context-aware radio resource allocation schemes can be far more superior

to what is currently available.

There are a number of challenges associated with translating context-aware

resource allocation into a comprehensive optimization framework. The main

challenge is to convert the context information that governs users’ experience,

which are usually subjective quantities, into appropriate objective measures

that are indicative of users’ experience and suitable for optimization. Another

fundamental challenge is to incorporate the notion of fairness between users in

this context, since different users perceive their experience differently. Another

challenge is to devise low-complexity distributed interference/context-aware re-

source allocation through inter-cell coordination that solve the resulting opti-

mization problem.

� In this research, we developed optimal EJT schedulers and devised distributed

ICIC schemes for full-buffer traffic. An important extension of this work is to

study the case of different traffic classes with different delay requirements and

different burstiness levels. In such a case, Jain’s fairness index is not suitable

and hence it is interesting to devise a fundamentally different efficiency-fairness

tradeoff framework.

� We showed that the α-fair policy does not achieve the optimal EJT in general.

However, we also identified two special cases where the α-fair policy achieves the

optimal EJT, namely, the case of two users and the case of congestion control in

linear network with uniform capacity. This raises the following question: Under

what conditions does the α-fair policy achieve the optimal EJT? Answering this

question will allow us to identify broader class of resource allocation problems

where the α-fair policy achieves the optimal EJT.
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� We illustrated that one of the advantages of using Jain’s index as a fairness

measure in efficiency-fairness tradeoff optimization is that it improves the me-

dian rate and the satisfaction of the users as compared to the α-fair and MTMR

tradeoff policies. However, we have also observed that optimizing with respect

to Jain’s index can degrade the rate achieved by cell-edge users. In order to

reduce the effect of such degradation, a minimum rate constraint is imposed.

While this can potentially rectify the problem, it requires parameter-tuning for

the minimum rate bound. A promising approach for future research is to modify

Jain’s fairness index such that it implicitly accounts for cell-edge users.

� In this research, we assumed that all BSs have backhaul connections that can

carry all the traffic generated by the UTs. While this assumption holds true

for macro-BSs, it may not hold in next generation cellular HetNets where pico-

BSs and femto-BSs are massively deployed without prior planning. Indeed,

pico-BSs and femto-BSs are expected to have backhaul connections with lim-

ited capacities. For instance, femto-BSs can be deployed by consumers and

they may use DSL connections. An interesting extension to this research is

to develop efficiency-fairness framework for interference-limited HetNet with

capacity-limited backhaul connections.

� In HetNets, we demonstrated that it is possible to simultaneously improve the

performance of both macro-UTs and pico-UTs at the expense of fast message

exchange between BSs. In massive deployment of BSs, such fast exchange may

not be feasible between all BSs. Thus, we proposed low complexity variants

of the proposed ICIC schemes where the message exchange frequency can be

adjusted to suit the practical limitations. An interesting research problem is

to theoretically bound the performance degradation caused by limited (or no)

message exchange as compared to fast message exchange.
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Appendix A

Published Papers, Submitted

Manuscripts, and Patent Applications

The following is a list of the publications as well as the patent applications pro-

duced during the PhD program. I am the first author and the main contributor of

these publications and patent applications. Other publications in which I am not the

first author and/or my role was mainly supporting or supervising were not included

in this list.

A.1 Patents

� Akram Bin Sediq, Ramy H. Gohary, Halim Yanıkömeroḡlu, Gamini Sen-

erath, and Ho Ting Cheng, “System and method for Jain scheduling in wireless

networks,” U.S. Provisional Patent Application 61/720,230, filed by Huawei-

Canada, October 2012.

� Akram Bin Sediq, Rainer Schoenen, Halim Yanıkömeroḡlu, Gamini Senarath,

Zhijun Chao, Ho Ting Cheng, and Peiying Zhu, “Inter-cell interference co-

ordination for wireless communication systems,” U.S. Patent Application

13/438,624, filed by Huawei-Canada, April 2012.
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� Akram Bin Sediq, Jietao Zhang, Petar Djukic, and Halim Yanıkömeroḡlu,

“Data transmission method, system, intermediate node and source node in co-

operative relay network,” International Patent Application PCT/CN2011/071

286, filed by Huawei-China, April 20101.

A.2 Journal Papers

� Akram Bin Sediq, Ramy H. Gohary, Rainer Schoenen, and Halim

Yanıkömeroḡlu, “Optimal tradeoff between sum-rate efficiency and Jain’s fair-

ness index in resource allocation,” IEEE Transactions on Wireless Communi-

cations, vol. 12, no. 7, pp. 3496–3509, July 2013.

� Akram Bin Sediq, Rainer Schoenen, Halim Yanıkömeroḡlu, and Gamini

Senarath, “Optimized distributed inter-cell interference coordination scheme

using projected subgradient and network flow optimization,” under review in

IEEE Transactions on Communications (submission: 22 March 2013, 1st re-

sults: 10 June 2013).

� Akram Bin Sediq and Halim Yanıkömeroḡlu, “Selection combining of signals

with different modulation levels in Nakagami-m fading,” IEEE Communications

Letters, vol. 16, no. 5, pp. 752–755, May 20122.

� Akram Bin Sediq, Petar Djukic, Halim Yanıkömeroḡlu, and Jietao Zhang,

“Optimized non-uniform constellation rearrangement for cooperative relaying,”

IEEE Transactions on Vehicular Technology, vol. 60, no. 5, pp. 2340–2347,

June 20111.

1This work was conducted during the first two years of the PhD program. Due to coherence
issues, this work is not included in the PhD thesis.

2This work was conducted during the third year of the PhD program. Due to coherence issues,
this work is not included in the PhD thesis.
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A.3 Conference Papers

� Akram Bin Sediq, Ramy H. Gohary, and Halim Yanıkömeroḡlu, “Optimal

tradeoff between efficiency and Jains fairness index in resource allocation,”

IEEE International Symposium on Personal, Indoor and Mobile Communica-

tions (PIMRC 2012), 9–12 September 2012, Sydney, Australia.

� Akram Bin Sediq, Rainer Schoenen, Halim Yanıkömeroḡlu, Gamini Senarath,

and Zhijun Chao, “A novel distributed inter-cell interference coordination

scheme based on projected subgradient and network flow optimization,” IEEE

International Symposium on Personal, Indoor and Mobile Radio Communica-

tions (PIMRC 2011), 11–14 September 2011, Toronto, Canada.

� Akram Bin Sediq, Petar Djukic, Halim Yanıkömeroḡlu, and Jietao Zhang,

“Generalized constellation rearrangement in cooperative relaying,” IEEE Ve-

hicular Technology Conference (VTC2010-Spring), 16–19 May 2010, Taipei,

Taiwan1.

� Akram Bin Sediq, Petar Djukic, Halim Yanıkömeroḡlu, and Jietao Zhang,

“Near-optimal non-uniform constellation rearrangement for cooperative relay-

ing,” 25th Biennial Symposium on Communications (QBSC 2010), 12–14 May

2010, Queens University, Kingston, Ontario, Canada1.
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