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Abstract—Unprecedented bandwidth-intensive, ultra-low
latency multi-media services and applications are expected
to be delivered through the fifth generation (5G) network.
Thus, efficient radio resource management will continue to
play an important role as the network service providers
strive to provide rich media contents to their users.
Therefore, in this work, we consider a cross-layer based
framework for efficient allocation of network resources for
the transmission of HEVC encoded video streams over 5G-
aligned V2X application in mmWave environments. We
adopt application and physical layer models, and formulate
a multi-vehicle resource allocation problem taking into
account the abstracted information of the two correspond-
ing layers. Such a framework is compared with three
other standard resource allocation schemes using computed
Mean Opinion Score (MOS). Numerical results show that
our proposed radio resource management scheme offers
a significant improvement of viewer-perceived quality of
service compared to the reference approaches.

Keywords. HEVC (High Efficiency Video Coding), 5G

New Radio, mmWave (millimeter wave), V2X (Vehicle-

to-everything), radio resource management (RRM).

I. INTRODUCTION

The exciting developments in market tendencies for

Internet-of-Things (IoT) and connected vehicles, among

other IoT business verticals, create a shift towards

more responsive, smart and service-oriented transporta-

tion systems. It is expected that Vehicle-to-Everything

(V2X) communications, a part of the 5G use cases,

will play a significant role in ushering the next thrust

of applications and services. Thus, these developments

provide interesting scenarios of focus for researchers and

other stakeholders to understand the performance of the

5G network, challenges, and opportunities, especially for

video streaming and multi-media communications.

Standardization bodies are already doing their part.

For instance, V2X is being treated as an important

component of 5G networks design in 3GPP Release

15, which is saddled with the responsibility to provide

enhancements, not only in terms of the large connectivity

requirements, but also for the data rates, latency, and

reliability for V2X environment [1]. In numerical terms

Fig. 1. Example of V2X deployment, transport options and services
offering [Note: Here X represents V for vehicle, or N for Network, I
for Infrastructure].

for example, the goal is to deliver 1000 times more

data throughput, serve 10 to 100 times more devices and

reduce the minimum latency by a factor of 5 compared

to the existing 3GPP LTE networks [2]. To achieve

such ambitious performance targets, a large amount of

spectrum will be required to facilitate the delivery of

ultra-high definition videos. This serves as a motivation

in the study for video transmission in the mmWave

bands. Fig. 1 demonstrates the proposed design of the

future 5G network for providing V2X services that can

be supported by different integrated communication sub-

systems, such as IEEE 802.11p, Vehicular Visible Light

Communication (VVLC) [3].

Furthermore, on the motivation, we emphasize on the

critical role of radio resource management for a 5G-

aligned connected cars system and propose a cross-

layer scheduling algorithm for an efficient utilization

of the available radio spectrum. It is known that RRM

algorithms are designed to exploit the dynamism in



Fig. 2. Typical network-centric scenario and high-level system archi-
tecture.

wireless channels by adaptively distributing communica-

tion resources towards maximizing or minimizing some

important key performance metrics for network perfor-

mance [4]. In view of the above, this paper considers

the application layer modeling of the video streams

that are encoded using the bandwidth efficient HEVC

mechanism, considering the mmWave channel model

and LTE numerology as the key aspects for a realistic

evaluation of the performance of V2X in 5G networks.

The proposed optimization framework takes information

from the application layer, resident at the application

server, and the physical layer, transmitted from the 5G

base station.

Figure 2 shows an illustration for the V2N scenario.

The vehicles are directly served by a 5G network in-

frastructure. In this case a number of streams are served

to the vehicles through a 5G antenna beam using a

high-quality HEVC encoded video that is resident at the

application server. The resource allocation is embedded

in the antenna beam, which is a direct consequence of

the massive MIMO/antenna configuration of the 5G. The

Traffic Controller (TC) module acts as an optimizer for

downlink resource allocation, taking into account the

video utility function from the application server, the

physical layer information related to the vehicles from

the 5G base station, and the objective function. The

utility function is either stored at the TC in advance

during the session establishment or sent along with the

video streams. To optimally distribute resources among

the vehicles, the instructions from the TC to the resource

allocator (e.g., base station) are transmitted using an

enhanced interface in the network system.

To the best of the authors’ knowledge, this work is the

first to investigate the assignment of optimized resources

for 5G-aligned connected cars engaged in video stream-

ing. Previously, resource management techniques have

been studied for LTE/LTE-A based V2X systems such

as [5], but the assignments are based on a single layer

information (i.e., throughput or channel quality). They

do not take into account the viewers’ perceived quality.

In other works, resource allocation has been studied

either for massive machine-type communication, such as

in [6] or for heterogeneous but non-V2X environment,

such as [7], [8], and [9].

The rest of the paper is organized as follows. In the

next section, the application layer model including the

video quality metric and the utility curves for each qual-

ity scalable HEVC encoded video is presented. Insights

into the physical layer model are also provided. Section

III describes the proposed radio resource management

framework over the downlink. Section IV presents the

simulation results comparing the proposed scheme with

some other standard resource allocation approaches, and

finally in Section V, we draw some conclusions from the

results presented in the paper.

II. SYSTEM MODEL

Below, we discuss the application and physical layer

models as adopted in this paper to enable the formulation

of the multi-vehicle resource allocation problem for a

V2N scenario considering the abstracted information of

the two corresponding layers.

A. Application Layer Model

For streaming video applications, especially those in

which compression is implemented due to limited band-

width and challenging 5G air interface, a video quality

metric provides a numerical indication of the quality

of experience from the viewers perspective, of received

media, after compression and/or transmission. Therefore,

for our application layer model, we use the concept of

utility function and evaluate the viewer perception by

using spatio-temporal video quality metric as proposed

in [10]. This metric, evaluated on the scale of 0 to 100,

is based on peak signal-to-noise ratio (PSNR), frame

rate as well as spatial and temporal activity that are

obtained from the videos. Furthermore, it is appeal-

ing for dynamic optimization and assessing multimedia

transmission because it is content-independent.

Because the physical layer provides a retransmission

mechanism, we neglect the impact of packet loss. There-

fore, the utility function can be expressed as a function

of application data rate, defined as follows:

U = f(Rapp), (1)

where Rapp is the set of possible encoded rates of

application, and U = [0; 100] with U : 0 reflecting an

unacceptable application quality and U : 100 referring to

the best possible quality experienced by the viewer. This

value is mapped onto MOS by using the ITU-adopted

expression [11], given as:

MOS =











1, U < 0;
1 + 0.035U + 7U(U − 60)
×(100− U)10−6, 0 ≤ U ≤ 100;
4.5, U > 100.

(2)

Fig. 3 shows an example of perceived video quality

curves as a function of the encoded bitrate for four differ-

ent test videos, encoded with the quality scalable HEVC

codec [12] at 30 fps for 2K resolution (2, 048 × 1, 080
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Fig. 3. Four utility curves versus the encoded bit rate.

pixels), comprising of ten layers each that include one

base layer and nine enhancement layers. These utility

curves are used as an application layer model for for-

mulating the proposed radio resource management.

B. Physical Layer Model

1) Channel Model: An important step in the design

of the physical layer is to identify the role of an

adequate and appropriate channel model, one that is

suitable for the V2X application. To design a 5G V2X

system that can serve the challenging V2N use-case, we

need to select the channel model carefully. As many

of the existing channel models are either developed for

specific frequency scenario outside the mmWave bands

and for limited vehicle speeds, usually low speeds. In

terms of the V2X channel generation process, we can

distinguish four main steps. The first is the need to

select the link type (e.g., V2V, V2I, V2N, and V2P)

and scenario (e.g., highway, urban, rural). The second

is to assign propagation condition to the link. The third

is calculating the path loss and shadowing; and the last

to calculate small scale parameters (such as multi-path

delays, arrival and departure angles, etc.). In this work,

we have considered V2N, the urban macro cellular and

only path loss and shadow fading phenomena since the

small-scale part of fading can easily be averaged out.

In view of the above, the model presented in [13]

is a suitable one and therefore adopted in this work.

It recommends close-in (CI) path loss model obtained

through extensive measurement campaign and employ-

ing ray-tracing in the frequency band covering 2 GHz

to 73.5 GHz. The CI model is physically tied to the

transmitter power using a close-in free space reference,

and standardizes all measurements around an inherent

1 m free space reference distance. Furthermore, the CI

model has a very similar form compared to the existing

3GPP path loss model and it provides high accuracy

over a vast range of cm-wave and mmWave frequencies,

distances, and scenarios. The CI model is given in [14],

as:

PLCI(f, d)[dB] = FSPL(f, 1m)[dB]

+10n log
10
(d) + X CI

σ (3)

where n denotes the single model parameter, the path

loss exponent, d is the 3D T-R separation distance,

X CI
σ is the shadow fading standard deviation and

FSPL(f, 1m) denotes the free space path loss in dB at

a T-R separation distance of 1m at the carrier frequency

f :

FSPL(f, 1m)[dB] = 20 log
10

(

4πf

c

)

(4)

where c denotes the speed of light. The estimated value,

as given in [13], for n is 2.7 and for X CI
σ is 10 dB,

considering urban macro cellular cm-wave and mmWave

environments over a T-R distance of between 45 m to

1450 m.

2) Numerology: LTE deploys a rigid frame structure

with a fixed Transmission Time Interval (TTI) of 1 ms,

contributing to the end-to-end latency. Therefore, to meet

the strict latency requirements of V2X, the TTI may be

flexibly shortened for 5G as it is being proposed for the

5G New Radio (NR). This can be achieved by increas-

ing the sub-carrier spacing; hence reducing the symbol

duration. Furthermore, having a flexible numerology

offers an additional degree of freedom to adapt physical

layer transmission to various service requirements and

channel conditions. In this paper, we considered the

3GPP adapted LTE numerology for the 5G, where a

scaling factor of 2s (where s = 0, 1, 2, · · · , N ) is used

for implementing the 5G new radio, [15].

As a result, for a scaling factor 4 (i.e., s = 2), the

sub-carrier spacing of the self-contained frame structure

would be tuned to 2s× 15 KHz, i.e., 60 KHz, the

number of physical resource blocks (PRBs) would be

2s× (Num PRB LTE), the PRB size would be 2s×
(PRB Size LTE i.e., 180 KHz), a cyclic prefix of 1µs,

a guard period of 20.33µs and the allocated number of

symbols would be 12.

3) Spectral Throughput: The system spectral

throughput given by the modified Shannon capacity:

Thr = β log
2
(1 + SINR) (5)

indicates the achievable throughput per physical resource

block (PRB) in bps/Hz for a given signal-to-interference-

plus-noise ratio (SINR). The model approximates the

throughput over downlink, after considering link adap-

tation, hybrid automatic repeat request and coding rate,

with a loss β, due to the implementation constraints. The

spectral efficiency is taken into account to estimate the

maximum achievable rate for each vehicle in the system

over the downlink antenna beam.



III. CROSS-LAYER RESOURCE ALLOCATION

The Traffic Controller (TC) as depicted in Fig. 2 is

the main entity that decides how to allocate resources

across more than one vehicles, requesting video streams

within a single antenna beam. The TC finds the most

appropriate allocation by taking into account the physical

layer information, the application-layer data and the

objective function. In this paper, we implement the

utility maximization as an example of the objective

function, which aims at maximizing the average utility

of all K viewers subject to the constrained network

resources. The resource-dependent optimization problem

for utility maximization is a convex function and defined

as follows:

α̃opt = argmax
α

(

1

K

K
∑

k=1

Uk(αk)

)

(6)

subject to:

K
∑

k=1

αk ≤ 1, (7)

where αk is the fraction of network radio resources given

to the vehicle k, and α is all possible sets of vectors

of network resources shared for each vehicle. α̃opt is

the optimal resource allocation tuple that achieves the

possible maximum of the objective function. Uk(αk) is

the utility function of the given resource share, αk of

vehicle k. The inequality in the defined constraint is

due to the limited number of scalable layers we have

generated for HEVC encoded video streams. Searching

for an optimal resource allocation can be done via a full

search algorithm, however, it is computationally expen-

sive and not feasible to appeal to practical and real-time

use, especially when there are many connected vehicles

in the system. Therefore, we apply the max slope-based

resource allocation framework, to solve the optimization

problem due to its low computational complexity and

short execution time [16]. This is particularly useful

for solving discrete resource allocation problems with

a linear resource constraint. In principle, as depicted in

Fig. 4, when the optimization cycle occurs, the proposed

algorithm determines the resource share of every vehicle

in the system, by first assigning the resources to all

vehicles that are enough to transmit the base layer

of the HEVC encoded video stream. Afterwards, in

order to send the enhancement layer, the algorithm then

assigns the resources to the vehicle whose video provides

the maximum gradient on the utility curve. Here, the

gradient is defined as the increase in utility with respect

to the amount of resources required for that increase.

The algorithm runs by assigning resources to the next

vehicle that has the maximum gradient on the utility

curve. It stops if: a) all resources are utilized, b) all

layers are transmitted or c) the remaining resources are

Fig. 4. The flowchart for assigning resources for base layer and
enhancement layers (EL).

not sufficient to transmit the next higher layer of any of

the videos.

We consider a radio layer model with resource al-

location period of one second, not taking into account

short-term channel variations. Rather, we adopt an av-

erage channel quality for each vehicle over the resource

allocation period. The current data rate Rk for vehicle

k is calculated depending on its resource share αk

(obtained from α̃opt), and the maximum achievable data

rate Rmax,k, calculated by using the spectral throughput

for this vehicle and for this resource allocation period

if all resources would be allocated to the vehicle k, is

given below as:

Rk = αkRmax,k, 0 ≤ αk ≤ 1 ∀k ∈ N. (8)

This achievable data rate Rk for vehicle k is used to

estimate the MOS using (1), as defined in Section II.

IV. NUMERICAL RESULTS

The results presented in this section of the paper

are based on the system model described in Fig. 2.

Since Network Function Virtualization (NFV) will be

a key enabler of 5G network, we assume that the core

network will not constitute congestion challenges for the

network. The main bottle-neck will be provided by the

air-interface constraints. Therefore, we have assumed in



TABLE I
SIMULATION PARAMETERS

Parameter Value

Carrier frequency 38 GHz

5G NR scaling factor 4

System bandwidth 320 MHz

Number of PRBs 400

PRB size 12 subcarriers

Sub-carrier spacing 60 KHz

Bandwidth per PRB 720 KHz

Sub-frame interval 0.25 ms

Number of vehicles 63

Vehicle speed 36 Kmph

T-R distance 50 m - 1450 m

Channel model Urban macro-cell

this investigation that the packets suffer no congestion

over the 5G core network. Furthermore, we consider a

single antenna beam and one array of elements serving

multiple vehicles. Along with that, the inter-beam han-

dover case is also left out. There are four different HEVC

encoded test videos being streamed by the vehicles as

an infotainment service. Table I provides a summary of

the simulation parameters employed in the performance

evaluation of the proposed set-up.

Here, we evaluate the proposed scheme based on

maximizing the MOS (Max-MOS) and compare it with

some well-known resource allocation schemes, such as

the classical round robin (RR), the modified round robin

that takes SINR into account (Mod-RR) and the maxi-

mizing video encoding rate (Max-VER). The number

of optimization cycles is 100 and the total simulation

time is 100 seconds. For mmWave environments this

simulation time is enough to evaluate the performance

of the resource allocation schemes, as the vehicle is

expected to be handed over to another radio beam or

base station given the high speed that it will be moving.

Furthermore, to confirm our results for the vehicles that

remain connected to the same beam, we implement mul-

tiple simulation scenarios. The objective of maximizing

VER resource allocation is to determine the resource

share αk of each streaming vehicle k in such a way to

maximize the overall video encoding rate of the antenna

beam. Conversely, the modified RR allocation assigns

resources starting from the vehicle with maximum SINR

moving towards that with minimum SINR in a round

robin fashion. Next, we present the numerical results.

Fig. 5 represents the comparison between four differ-

ent resource management techniques in terms of average

MOS achieved for a single scenario. The red curve

shows the performance of the proposed scheme whereas

the green curve shows the average MOS achieved by

using Mod-RR allocation. The black curve shows the

average MOS of the viewers for RR scheduling and
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Fig. 5. The average MOS performance of the video streamers using
the proposed scheme and other reference resource allocation schemes.

the blue one shows the average MOS of the Max-VER

algorithm.

The results show the advantage in terms of viewers’

experience for our proposed framework in comparison

to the other three radio resource management schemes.

The figure shows that as the vehicles come to a halt

after 90 seconds the average MOS remains constant

there on. We can also observe that the RR allocation

outperforms the Max-VER framework that is due to the

large number of resources (PRBs) available to be fairly

distributed between the vehicles. This is because in RR

allocation, all the streamers get a high number of layers

therefore having a higher average MOS. Contrarily, in

Max-VER, to maximize the video encoding rate the

algorithm may provide a higher number of layers for

some viewers and no layers for some resulting in the

minimum MOS value of 1 for such viewers. In this

case, the resource distribution strategy is unfair and the

average MOS is severely degraded. Such impact can

be clearly seen in Fig. 6, in which we investigate the

number of vehicles perceiving minimal quality of MOS

1 over the simulation time. Here, we see that there are

many viewers with MOS 1 for the Max-VER scheme.

We expect the Max-VER to outperform RR if there

are much fewer resources available or very high video

encoded rates.

To gain further insight into the system performance,

we extend the simulation to cover different scenarios

(e.g., by changing the position and the mobility track of

each vehicle) and computing the Cumulative Distribution

Function (CDF) for the two system performance metrics,

namely: the average MOS of all streamers and the

number of streamers with MOS equal to 1, as depicted

in Fig. 7 and Fig. 8. Fig. 7 shows that the proposed

scheme provides a superior average MOS performance

over the reference schemes. An improvement of 0.5

or more in average MOS is obtained compared to the

other approaches for 80% of the time. Moreover, in

terms of the number of streamers with MOS of 1
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Fig. 8. The CDF of the number of viewers experiencing minimal
quality for the different resource allocation schemes.

(worst video quality), the proposed scheme also shows

a considerably superior performance advantage over the

reference schemes as observed in Fig. 8.

V. CONCLUSION

This paper presents a cross-layer based framework for

efficient allocation of network resources for the transmis-

sion of HEVC encoded video streams for connected-cars

in 5G networks operated in the mmWave regime. Using

a suitable application and physical layer models, we have

formulated a multi-vehicle resource allocation problem,

which has been solved using the max-slope algorithm.

We have compared the obtained numerical results with

three other standard resource allocation schemes using

computed mean opinion score, as a measure of the

level of viewers’ experience and satisfaction. We have

obtained an improvement that is greater than 0.5 in terms

of average MOS over all other reference approaches.

Furthermore, in terms of the number of streamers with

worst possible video quality, the proposed scheme also

demonstrates a substantial performance advantage over

the reference schemes.
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