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= Why do we need such an analysis depending on
arbitrary 2D constellation usage ?

= What does an upper BER bound expression bring as a
promise to current system scenarios ? 5
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= What is actually behind in this study ?
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Model
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Let's Quick Look System Model

= Convolutional Encoder
Model

= Transmitter Scale
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» Finding an good upper bound expression on BER depending on the
distances of symbol pairs yields

v' Constellation design opportunity for coded schemes

» Optimization variables: Location of the signal points

» Objective function: Error performance expression by utilizing
conventional error-state diagram for convolutional, TCM, turbo,
etc.

» Energy constraint: Fair comparison

v" SNR based constellation design framework

> There is no M-ary signal set that are optimum for M >/ overall
SNR values*

* M. Steiner, “The strong simplex conjecture is false,” IEEE Transactions on Information Theory, vol. 40, no. 3, pp. 721-731, 1994.
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“The determination of the optimal signal sets which maximize the probability of
detection remains in general unsolved as SNR - 0. Perhaps optimal designs can
be found for some partition of the SNR range [0, «) as a function of M [number of
signal points]”

M. Steiner, “The Strong Simplex Conjecture is False”, TIT-40, May’'94.
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= Constellation design has been already used under the divergent topics since 1970s.
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= Structured imposed constellations

Figure 6-30. Optimal hexagonal constellations. For the M = 16 constellation we have
shown the hexagonal decision regions. The outer decision regions are approximated as

hexagonal for uniformity.
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Figure 2: 32-APSK Constellation
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= High SNR Assumptions

Q function and approximation

» Minimum Euclidean distance between adjacent constellation points
determines the performance: Correct or incorrect?

High SNR: Correct
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Moderate and especially low SNR: Incorrect
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There is no single constellation which is optimal in all SNR levels
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Performance Curves & Constellations for SISO with coding (m=3)
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Joint modulation and coding: a good combination
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v" BER bound expression for n.i.d. Nakagami-m case
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It can be used for convolutional, trellis-coded modulation(TCM) and turbo
coding scenarios.
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Convoluational encoder for |6G-ary signalling.

Conventional 16—QAM (6=0)
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= Correlated channels

= Relevant constraints: PAPR

= Labeling

= Probabilistic signaling

= 2-D > N-D design

= Channel coding

= Source coding

= Non-coherent signaling (optimum signaling unknown even in AWGN)

= Non-coherent MIMO
Grassmannian signaling, Cayley signaling
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