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Abstract—In this paper, we study tradeoff policies between
efficiency and the Jain’s fairness index of the benefits received
by M users in general resource allocation scenarios. Analyzing
the commonly-used α-fair tradeoff policy, it is shown that, except
for the case of M = 2 users, this policy does not necessarily
achieve the optimal Efficiency-Jain tradeoff. In particular, it is
shown that, when the number of users M > 2, the gap between
the efficiency achieved by the α-fair and the optimal Efficiency-
Jain tradeoff policy can be unbounded, for the same Jain’s
index. Finding the optimal Efficiency-Jain tradeoff for arbitrary
set of admissible benefits is generally difficult. To alleviate this
difficulty, we derive sufficient conditions, which, when satisfied
by the set of admissible benefits, lead to efficiently computable
optimal tradeoff and benefit vectors. Numerical results for a
typical communication network scenario are provided to confirm
analytical findings.

I. INTRODUCTION

In several systems, including wireless communication ones,
certain services, which are referred to as benefits, are provided
to multiple users based on the allocation of shared resources
that are typically scarce. The allocation of these resources
typically encounters conflicting goals. For instance, favouring
a certain class of users may increase the system’s efficiency,
but would result in the dissatisfaction of other classes of users.
In contrast, providing equal benefits to all users may result in
higher fairness, but will potentially result in low efficiency. To
control the emphasis placed on various goals, the provider uses
a tradeoff policy, which, unless properly chosen, can result in
wasteful allocation of resources. In particular, an unoptimal
tradeoff policy can be less efficient and, at the same time, less
fair to the users [1]–[3].

In the downlink of wireless communication systems, the
benefits can be defined as the rates of the data delivered to the
users. These rates are controlled by appropriate allocation of
radio resources at the transmitters. For instance, the transmitter
may allocate its resources in such a way that maximizes the
sum of the rates delivered to the users. This allocation favours
users that are geographically closer to the transmitter, but
“starves” farther users, and although more efficient from the
system’s perspective, such an allocation is unfair to the users
at less advantageous locations. A fairer allocation is one in
which the minimum rate received by the users is maximized.
However, this allocation can result in unacceptable system
efficiency; i.e., low sum rate. Hence, it is desirable to find an
optimal tradeoff policy whereby the system provider allocates

its resources in such a way that no other allocations can
provide a strictly higher efficiency and at the same time be
fairer to the users. The focus of this paper is to provide a
technique for obtaining the optimal efficiency-fairness tradeoff
and to derive sufficient conditions, which, when satisfied by
the set of admissible benefits, lead to efficiently computable
optimal tradeoff and benefit vectors.

Although our analysis is performed with communication-
related frameworks in mind, it applies to a wider scope of
frameworks, including social and economics ones [2], [4], [5].

To study the tradeoff between efficiency and fairness, these
quantities must be defined in a mathematically precise way.
While efficiency is usually well-defined depending on the con-
text, several definitions are used to quantify fairness, including,
e.g., min-max ratio and entropy-based indices [2]. Among
these definitions is the so-called Jain’s index [6]. This index
is a bounded continuous function in the benefits and a metric
that conforms with standard fairness benchmarks. For instance,
it was shown in [6] that the Jain’s index corresponding to a
situation in which p% of users receives equal benefits and
the remaining (100 − p)% receives zero is equal to p/100.
Motivated by these features, in this paper the Jain’s index will
be used as the basis for comparing fairness. A geometric inter-
pretation that commends its use will be provided hereinafter.

A common approach to trading off efficiency with fairness
in wireless networks, is to allocate the resources in a way
that maximizes the network efficiency while ensuring that the
minimum rates achieved by the users exceed some prescribed
bounds, e.g., [3], [5]. Varying these bounds over the set of
admissible rates provides a means for controlling fairness [3].
One extreme corresponds to maximum efficiency, whereas
the other extreme corresponds to the so-called max-min fair-
ness [3]. Another approach is to allocate the resources in a way
that maximizes a parametric utility, whereby one, or multiple,
parameters are used to control the emphasis on efficiency and
fairness. A commonly used policy is the α-fair one (also
known as the α-fair utility) [1], wherein various settings
of a parameter α yield allocations that achieve established
efficiency-fairness tradeoffs. For instance, setting α = 0 yields
maximum efficiency, setting α = 1 yields proportionally fair
allocations [7], and setting α =∞ yields allocations that are
fair in the max-min sense [1]. Motivations for using the α-fair
policy are provided in [2]. Generally speaking, increasing α
results in allocations that are fairer [2] in a sense, that does not
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necessarily conform to the Jain’s index one, as will be shown
hereinafter. Other parametric utilities for trading off efficiency
and fairness are considered in [8], [9], and a comparison
between multiple tradeoff criteria is provided in [10].

As mentioned earlier and highlighted in [6], compared
with other measures, Jain’s index provides a fairness criterion
that takes into consideration all the users of the system, not
only those users that are assigned minimal resources. Hence,
maximizing this index while avoiding wasteful allocation of
resources requires the determination of the optimal tradeoff
between efficiency and this index. A question that arises in
this case is whether maximizing the well-studied α-fair policy
yields such an optimal tradeoff. To address this question,
we begin in this paper by showing that α-fair allocations
are not guaranteed to achieve the optimal tradeoff between
efficiency and Jain’s index except for the case of M = 2 users.
To overcome this drawback, we develop a generic technique
for obtaining allocations that are optimal from a tradeoff
perspective. Unfortunately, solving the set of optimization
problems that underlie this technique is generally difficult.
To alleviate this difficulty, we derive sufficient conditions that
enable us to identify sets of admissible benefits for which these
problems are relatively easy to solve. Interestingly, it is shown
that these sufficient conditions are satisfied by a wide range
of resource allocation problems in communications networks.
Numerical results are provided for confirming our theoretical
findings and for demonstrating the advantage of the optimal
tradeoff provided by our technique over the α-fair one.

II. PRELIMINARIES

Let x ∈ C ⊆ R
M
+ denote a length-M vector of non-negative

real entries {xi}
M
i=1, where xi denotes the benefit received by

user i and C is the set of admissible benefit vectors. Generally,
the benefits {xi} and the set C depend on the application and
the resources allocated to each user [6, Sec. 5]. For example,
in the downlink of wireless communication systems, xi can
be the rate of user i resulting from a particular allocation of
the radio resources, and C is the set of all achievable rates.

In this paper, the efficiency, η(x), of a resource allocation
is defined to be the sum of the resulting benefits (i.e., η(x) =∑M

i=1 xi), and its fairness is defined to be the Jain’s index
defined below.

Definition 1 (Jain’s Index). For a given vector x ∈ R
M
+ , the

Jain’s fairness index J : RM
+ → R+ is given by [6]

J(x) =

(
M∑
i=1

xi

)2

M
M∑
i=1

x2
i

. (1)

�

From this definition it can be readily verified that J(x) is
continuous and that its range is the interval

[
1
M
, 1

]
. In this

interval, J = 1
M

corresponds to the least fair allocation in
which only one user receives a non-zero benefit, and J = 1

corresponds to the fairest allocation in which all users receive
the same benefit.

In many cases, depending on the set C, there is an inherent
tradeoff between η(x) and J(x). Hence, to ensure efficient
utilization of resources, we seek the optimal tradeoff, which
is defined next.

Definition 2 (Optimal Efficiency-Jain tradeoff). A tradeoff is
said to be optimal if it results in a benefit vector x∗ such that
there is no x ∈ C for which: 1) η(x) > η(x∗) and at the same
time J(x) ≥ J(x∗); or 2) η(x) ≥ η(x∗) and at the same time
J(x) > J(x∗). �

This definition will be used in the next section to deter-
mine whether the α-fair tradeoff policy achieves the optimal
Efficiency-Jain tradeoff.

III. DOES α-FAIR ACHIEVE THE OPTIMAL

EFFICIENCY-JAIN TRADEOFF?

Given an α ∈ [0,∞), the benefit vector x�
α generated by

the α-fair tradeoff policy maximizes the α-fair utility [1], i.e.,

x�
α = argmax

x∈C
Uα(x), (2)

where

Uα(x) =

⎧⎪⎪⎨
⎪⎪⎩

M∑
i=1

log xi, α = 1,

1
1−α

M∑
i=1

x1−α
i , α ≥ 0, α �= 1.

(3)

The α-fair policy thus described was considered in [2]. It
was shown therein that, for α �= 1, x�

α generated by (2) is the
same as that generated by

x�
α = argmax

x∈C

(∣∣∣ α

1− α

∣∣∣L(Hα(x)
)
+ L

(
η(x)

))
, (4)

where

Hα(x) = sgn(1− α) α

√√√√ M∑
i=1

( xi

η(x)

)1−α

, (5)

and L(·) � sgn(·) log(| · |). This equivalent formulation of the
α-fair policy provides insight into the role of α. In particular,
it can be seen that L(·) is monotonically increasing and that,
for any α �= 1, Hα(x) provides a homogeneous fairness
measure [2]. Hence, it can be seen that increasing α places
more emphasis on fairness at the expense of efficiency.

Using the above observations, it was argued in [2] that
solving (4) yields a benefit vector that achieves the optimal
tradeoff between Hα(x) and η(x). Although this explana-
tion offers a better understanding, it presents the fairness
component of the α-fair policy as being parametrized by
α. Hence, according to this explanation, varying α not only
controls the emphasis placed on fairness, but also changes
the fairness measure. A question that arises is whether the
α-fair policy achieves optimal efficiency-fairness tradeoffs in
practical resource allocation scenarios wherein the fairness
measure does not depend on extrinsic parameters like α.
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To address this question, in this section we will investigate
the relationship between the α-fair policy and the optimal
tradeoff between efficiency and Jain’s index. We begin by
studying the case of M = 2 users. The main result in this
case is stated in the following theorem:

Theorem 1. Let C be an arbitrary set, possibly discrete, and
let M = 2. Then, for any α ∈ (0,∞), the α-fair benefit
vector x�

α generated by (2) achieves the optimal Efficiency-
Jain tradeoff.

Before proving this result, we note that, in contrast with the
explanation in [2], in Theorem 1, the α-fair policy is shown
to yield optimal tradeoffs with respect to Jain’s index, which
is a fairness measure that does not depend on α.

Proof: We will proceed by contradiction. Let α ∈ (0,∞)
be given and suppose that x�

α does not achieve the optimal
Efficiency-Jain tradeoff, that is, there exists a non α-fair
optimal vector x such that either 1) η(x) > η (x�

α) and
J(x) ≥ J (x�

α); or 2) η(x) ≥ η (x�
α) and J(x) > J (x�

α). We
will show that such a vector x results in Uα(x) > Uα(x

�
α),

which contradicts the definition of α-fair benefit vectors;
cf. (2). We will focus on the first case. The proof for the
second case follows similar lines and is omitted for brevity.

Since M = 2, we can define a parameter β = maxx

minx
. Using

this β, we have J(x) = (1+β)2

2(1+β2) . Now, dJ
dβ

= − β2−1
(β2+1)2 . Since,

by definition, β ≥ 1, it can be seen that J is monotonically
decreasing in β. This with the fact that in the considered case
J(x) ≥ J (x�

α) implies that

maxx

minx
≤

maxx�
α

minx�
α

. (6)

Since in this case we also have η(x) > η(x�
α), it follows that

minx + maxx > minx�
α + maxx�

α, which is equivalent to(
1 + maxx

minx

)
minx >

(
1 +

maxx
�

α

minx
�

α

)
minx�

α. This inequality
implies that

minx >

(
1 +

maxx
�

α

minx
�

α

)
(
1 + maxx

minx

) minx�
α. (7)

Invoking (6) implies that the fraction on the right hand side
is greater than 1, which further implies that we can write
minx = minx�

α + ε1, with ε1 > 0. Since x is not α-fair,
we must have

Uα(x) < Uα(x
�
α). (8)

We now observe that Uα(x) is strictly increasing in each
xi, i = 1, 2. This observation and (8) imply that maxx =
maxx�

α − ε2, with ε2 > 0. Combining this with the fact that
minx = minx�

α + ε1 and the fact that in the current case
η(x) > η (x�

α) yields ε1 > ε2. Using this notation, it can be
readily verified that

∇Uα(x)
T (x�

α − x) = −ε1(minx)−α

(
1−

ε2
ε1

(maxx

minx

)−α
)

< 0,

where the last inequality follows because ε1 > ε2.

Now, direct computation of the Hessian of Uα(x) shows
that Uα is concave for any α ∈ (0,∞). Thus [11, p. 69],
Uα(x

�
α) ≤ Uα(x) +∇Uα(x)

T (x�
α − x), which yields

Uα(x
�
α) < Uα(x). (9)

This with (8) establish the desired contradiction.
Theorem 1 shows that for an arbitrary set C, the α-fair policy

yields tradeoffs that are optimal from Jain’s index perspective.
However, this result does not necessarily carry over to cases
with M > 2 users. To show this, we constructed counter
examples for M = 3 and M = 4. The case of M = 4 yields
deeper insight and will be explained in more detail.

Example 1. Let C contain two benefit vectors, i.e., C = {x,y},
where x = [8, 8, 90, 90] and y = [7, 14, 27, 86].

For α = 2, maximizing the α-fair utility yields y because
U2(y) > U2(x). However, η(x) = 196, η(y) = 134, J(x) =
0.59 and J(y) = 0.54, that is, η(x) > η(y) and J(x) > J(y),
which implies that x is the optimal Efficiency-Jain tradeoff
benefit vector. This agrees with intuition since, by inspection,
x offers 75% of the users higher benefits than y. �

Drawing more insight from the above example, we will
show that the gap between the benefit vectors generated by the
optimal Efficiency-Jain tradeoff and those generated by the α-
fair one can be unbounded. To show that, let x̂ = cx and ŷ =
cy, where c > 0 is some constant, be two other benefit vectors
in C. In this case, it can be easily verified that ŷ is the α-fair
benefit vector. Furthermore, because Jain’s index is invariant
under scaling, J(x̂) = J(x) > J(ŷ) = J(y). However, direct
computation reveals that η(x̂) − η(ŷ) = c

(
η(x) − η(y)

)
.

Hence, an unbounded c, results in an unbounded difference
in efficiency. The existence of such c depends, of course, on
C. In fact, it will be shown later that the structure of C is
intimately related to the optimal Efficiency-Jain tradeoff.

Another insight that can be drawn from the above example
is that the α-fair benefit vector corresponding to α = 0 is
x, which, from the Jain’s perspective, is fairer than the α-
fair benefit vector corresponding to α = 2. This shows that,
although increasing α results in benefit vectors that are fairer
in the senses considered in [1] and [2], it does not necessarily
improve fairness in the Jain’s index sense.

Many applications, including wireless communications
ones, involve the tradeoff between the benefit vectors received
by more than two users. Since in these cases, maximizing
α-fair utilities does not necessarily yield benefit vectors that
achieve the optimal Efficiency-Jain tradeoff (cf. Theorem 1
and Example 1), in the next section we will develop another
technique for achieving this tradeoff.

IV. OPTIMAL EFFICIENCY-JAIN TRADEOFF POLICY

In this section, we develop a generic technique for obtaining
the optimal Efficiency-Jain tradeoff for an arbitrary set C. To
enable practical implementation of this technique, we identify
conditions, which, when satisfied by the set C, renders the
underlying optimization problems easy to solve. We will then
provide instances in which these conditions are satisfied in
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practice, and finally, we will conclude this section by providing
a geometric interpretation that commends the use of Jain’s
index as a fairness measure.

A. A Technique for Obtaining The Optimal Efficiency-Jain
Tradeoff for an Arbitrary C

Let σ be a threshold on the minimum efficiency, and let Xσ

be the set of all benefit vectors that yield an efficiency greater
than σ and, at the same time, maximize Jain’s index, that is

Xσ �

{
x
∣∣x = arg max

η(x)≥σ, x∈C
J(x)

}
. (10)

We note that the cardinality of Xσ depends on C. Fur-
thermore, some elements in Xσ may satisfy the condition
η(x) ≥ σ in (10) with a strict inequality. Since we are seeking
the benefit vectors that achieve the optimal Efficiency-Jain
tradeoff, we pick those vectors in Xσ that yield the maximum
efficiency. In particular, let x�

σ be a benefit vector that achieves
the optimal Efficiency-Jain tradeoff corresponding to σ. Then,

x�
σ = arg max

x∈Xσ

η(x). (11)

From (10) and (11), it can be seen that x�
σ achieves the

optimal Efficiency-Jain tradeoff in Definition 2. The set of
all benefit vectors that achieve the optimal Efficiency-Jain
tradeoff can be obtained by varying σ from σmax = max

x∈C
η(x)

to σmin = min
x∈C

η(x), and solving the optimization problems

in (10) and (11). This policy is presented formally in Proce-
dure 1 below.

Procedure 1 Optimal Efficiency-Jain tradeoff policy for arbi-
trary C

Input: Arbitrary set C, step size δ > 0, σmin = min
x∈C

η(x) and

σmax = max
x∈C

η(x)

Output: x�
σ

1: Initialize σ ← σmax.
2: while σ ≥ σmin do
3: Find Xσ in (10).
4: x�

σ ← arg max
x∈Xσ

η(x).

5: σ ← σ − δ.
6: end while

Inspection of the above procedure reveals that the main
difficulty in obtaining x�

σ lies in finding a solution of the
optimization problem in (10), let alone finding the entire
set Xσ . This difficulty arises because J(x) is a nonconcave
function, even when C is a convex set. This motivates us
to seek conditions, which, when satisfied by C, this problem
becomes tractable.

B. A Property for Ensuring Tractability

In order to render the optimization problems underlying (10)
easy to solve, we begin by identifying a class of sets C
which satisfy what we refer to as the “monotonic tradeoff

property”. To do so, let J�
σ denote the maximum Jain’s index

corresponding to an efficiency η(x) = σ, that is,

J�
σ = max

η(x)=σ, x∈C
J(x). (12)

Using (12), we are now ready to provide our definition of
the monotonic tradeoff property.

Definition 3 (Monotonic Tradeoff Property). A set C satisfies
the monotonic tradeoff property if J�

σ is strictly decreasing
in σ, for σ greater than or equal to some efficiency σ�, and
constant otherwise. �

This definition implies that

J�
σ� = max

η(x)=σ�, x∈C
J(x) = max

x∈C
J(x). (13)

This definition states that a set that satisfies the monotonic
tradeoff property is one in which any decrease in efficiency
results in a strict increase in the Jain’s index, until σ� is
reached. Decreasing efficiency beyond σ� maintains Jain’s
index at its maximum. An instance in which C satisfies the
monotonic tradeoff property is shown in Fig. 1(a) and the
corresponding Efficiency-Jain tradeoff is shown in Fig. 1(b).
These figures will be discussed in detail in the next section.
Instances in which C does not satisfy this property have been
omitted for space considerations.

We will now show how the monotonic tradeoff property
facilitates finding the benefit vectors that achieve the optimal
Efficiency-Jain tradeoff. When this property is satisfied, the
inequality η(x) ≥ σ in (10) is satisfied with equality when
σ > σ� because J�

σ is strictly decreasing in σ. In this case,
the optimization in (10) is equivalent to that in (12). Moreover,
it can be readily verified that, with η(x) = σ, the optimization
in (12) can be cast in the following form

min
η(x)=σ, x∈C

‖x‖2, (14)

where ‖ · ‖ is the Euclidean norm.
In contrast with (10), the objective in (14) is convex.

This renders the optimization problem in (14) easy to solve,
provided that the set C is convex. In addition, if C is not convex
and (14) has multiple solutions, then all these solutions will
achieve the same Efficiency-Jain tradeoff as they all have the
same efficiency, σ, and the same Jain’s index. This eliminates
the requirement for finding all solutions in (10) since any
solution of (14) achieves the optimal Efficiency-Jain tradeoff.
To summarize, if the monotonic tradeoff property is satisfied,
x�
σ can be found by solving (14), which is easier than solving

the optimization problems in (10) and (11) for an arbitrary C.
When C satisfies the monotonic tradeoff property, the benefit

vectors that achieve the optimal Efficiency-Jain tradeoff can
be obtained by varying σ from σmax to σmin. For each σ, we
find x�

σ by solving (14). This policy is presented formally in
Procedure 2 below.
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Procedure 2 Optimal Efficiency-Jain tradeoff policy for C
satisfying the monotonic tradeoff property
Input: A set C satisfying the monotonic tradeoff property,

step size δ > 0, σmin = min
x∈C

η(x) and σmax = max
x∈C

η(x)

Output: x�
σ

1: Initialize σ ← σmax, and σ� ← σmin.
2: while σ ≥ σmin do
3: x�

σ = arg min
η(x)=σ, x∈C

‖x‖2

4: if J(x�
σ) = J(x�

σ+δ) then
5: quit
6: end if
7: σ ← σ − δ.
8: end while

C. Sufficient Conditions for Satisfying the Monotonic Tradeoff
Property

In the previous section, we have shown that finding the set of
benefit vectors that achieve the optimal Efficiency-Jain tradeoff
vectors is significantly simplified when the set C satisfies the
monotonic tradeoff property. Hence, it is desirable to identify
conditions that ensure that a given set satisfies this property.
Such conditions are provided in Theorem 2 below.

Theorem 2. The set C satisfies the monotonic tradeoff property
if the following conditions are satisfied:

i. C is convex; and
ii. 0M ∈ C,

where 0M is the length-M all zero vector.

Proof: For space considerations, we will only provide a
sketch of the proof. The details thereof are provided in [12].

Let x�
σ1

and x�
σ2

be the benefit vectors obtained using (14)
with σ1 and σ2, respectively, where σmin ≤ σ1 < σ2 ≤ σmax.
To prove Theorem 2, it suffices to show that if conditions i
and ii are satisfied, then the following statements hold:

1) If J�
σ2

= J�
σ� , then J�

σ1
= J�

σ2
; and

2) If J�
σ2

< J�
σ� , then J�

σ1
> J�

σ2
,

where J�
σ and J�

σ� are given by (12) and (13), respectively.
The proof of the first statement is based on using the scaling

invariance of Jain’s index, the conditions of the theorem, and
the maximal property of J�

σ� in (13) to show that J�
σ is

decreasing in σ, but not strictly.
The proof of the second statement relies on showing that

Jain’s index increases along the line segment connecting x�
σ1

to x�
σ� . Invoking again the scaling invariance of Jain’s index

and the conditions of the theorem yields the second statement.

We now provide a graphical illustration of Theorem 2 for a
case with M = 2 users. Fig. 1(a) shows a set C that satisfies the
theorem’s conditions, and Fig. 1(b) shows the corresponding
Efficiency-Jain tradeoff.

In Fig. 1(a), the maximum Jain’s fairness line x1 = x2

passes through C and yields J(x) = 1. The dashed lines in
this figure represent the constant efficiency levels, η(x) = σ,

0 1 2 3 4
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x
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1
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σ = η(x)

Ja
in

’s
In

de
x

Max Jain’s Index, J�
σ

Opt. Efficiency-Jain Tradeoff

σ�

(b)

Fig. 1. (a) A convex set that satisfies the conditions in Theorem 2 and (b)
its Efficiency-Jain curve.

at different values of σ. For σ ≤ 5.33, the points at which
the dashed lines intersect the x1 = x2 line lie inside C. In
this case, the maximal Jain’s index, J�

σ = 1. For σ > 5.33,
the dashed lines representing the η(x) = σ levels intersect
the x1 = x2 line at points outside C. For these efficiency
levels, the maximal Jain’s indices are strictly less than 1 and
correspond to the points at which the dashed lines intersect
with the boundary of C. The optimal tradeoff benefit vectors
are shown by the thick dashed line on the boundary of C.

The variation of J�
σ with σ is depicted in Fig. 1(b). It can be

seen from this figure, that in agreement with Theorem 2, the set
C satisfies the monotonic tradeoff property in Definition 3 with
σ� = 5.33. In this figure, the optimal tradeoff corresponding
to the thick dashed line on the boundary of C in Fig. 1(a) is
represented by the thick dashed line to the right of σ�.

To show that the conditions of Theorem 2 are relatively
sharp, we make the following remark:

Remark 1. If the lower left corner of C in Fig. 1(a) is shifted
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to (6, 0), the condition that 0M ∈ C in Theorem 2 is violated
and the monotonic tradeoff property is not satisfied. �

An illustration of this remark has been omitted for space
considerations. See [12] for details.

D. Practical Applications of Theorem 2

The sufficient conditions given in Theorem 2 are naturally
satisfied in various resources allocation problems in communi-
cation networks. For instance, in congestion control in elastic
traffic communication networks [1], [7] the users share finite-
capacity links and the goal is to assign the benefit vector x,
which represents the rates delivered to the users, in an efficient
and fair manner.

The set of feasible rates in this case is given by C =
{x|Ax � c,0M � x}, where the j-th entry of c ∈ R

M
+

is the capacity of link j, j = 1, . . . ,M , and A is a matrix
with binary entries that represents the assignment of users to
links, and � is the element-wise inequality.

In this case, the set C is a convex polyhedron [11, p.
31] containing 0M , and thereby satisfying the conditions of
Theorem 2. Hence, C satisfies the monotonic tradeoff property
and Procedure 2 can be used to find all the optimal Efficiency-
Jain tradeoff rate vectors.

Another example is the allocation of radio resources in the
downlink of cellular networks, which will be discussed in
Section V in more detail.

E. Geometric Interpretation of the Optimal Efficiency-Jain
Tradeoff

When C satisfies the sufficient conditions given in Theo-
rem 2, optimal Efficiency-Jain benefit vectors {x�

σ} have an
interesting geometric interpretation. To see that, we use (14)
to write

x�
σ = arg min

η(x)=σ, x∈C

M∑
i=1

x2
i (15)

= arg min
η(x)=σ, x∈C

M∑
i=1

(
x2
i − 2

σ

M
η(x) +

σ2

M2

)
(16)

= arg min
η(x)=σ, x∈C

∥∥∥x− σ

M
1M

∥∥∥2

. (17)

where 1M is the all one length-M vector. The last equality
states that x�

σ is the unique Euclidean projection [11, p. 397]
of the equal allocation vector σ

M
1M onto the set {x|η(x) =

σ, x ∈ C}. In other words, a benefit vector x�
σ achieves the

optimal Efficiency-Jain tradeoff if there is no other benefit
vector y such that η(y) = σ is closer to the fairest solution
σ
M
1M . This interpretation commends the use of Jain’s index

as a fairness measure and is illustrated in Fig. 2.

V. NUMERICAL RESULTS

In this section we consider the problem of allocating the
radio resources in the downlink of wireless communication
networks. The available transmission bandwidth is divided into
N -subchannels, which are allocated by the transmitter to M
users. The date rate of user m on subchannel n is denoted

x 1
=
· ·
· =

xM

C

Projection

η(x) =
σ

σ
M
1M

x�
σ

Fig. 2. The optimal Efficiency-Jain tradeoff benefit vector, x�
σ , is the unique

projection of the fairest vector σ

M
1M onto the set {x|η(x) = σ, x ∈ C}.

by rmn, m = 1, . . . ,M , n = 1, . . . , N , where the values of
{rmn} depend on the channel conditions experienced by the
users. Let ρmn ∈ [0, 1] be a time-sharing variable that assigns
subchannel n to user m for a fraction ρmn of the signalling
interval [13]. At each time instant, each sub-channel is used
by at most one user, and thus

∑M
m=1 ρmn ≤ 1. The total data

rate (benefit) of user m is given by xm =
∑N

n=1 ρmnrmn and
the efficiency of the network is given by the total sum rate,
which is given by η(x) =

∑M
i=1 xm. The set of achievable

rates (benefits) for the users is given by

C =
{
x|xm =

N∑
n=1

ρmnrmn,

M∑
m=1

ρmn ≤ 1, ρmn ∈ [0, 1]
}
.

(18)
The goal is to determine ρmn that results in an efficient and
fair rate vector x. Since the α-fair policy is commonly used
to obtain different efficiency-fairness tradeoffs [14], we will
use it as a benchmark for comparing our results.

We consider the case of M = 4 users and N = 5
subchannels. For simplicity, we consider one realization of
a quasi static network in which the rate matrix R = [rmn] is
the one given below

R =

⎡
⎢⎢⎣

544 648 807 544 722
388 92 223 388 56
35 544 35 722 56
35 56 35 92 35

⎤
⎥⎥⎦ . (19)

The rates in this matrix are given in Kbit/sec and were obtained
from simulating a practical Long-Term Evolution (LTE) sys-
tem in which users 1 and 2 are closer to the transmitter than
users 3 and 4.

First, we note that the set C is convex and contains the
0M vector. Hence, the conditions of Theorem 2 are satisfied
and thus C satisfies the monotonic tradeoff property. Using
Procedure 2 we obtained the optimal Efficiency-Jain tradeoff
shown in Fig. 3. In this figure, we also plot the Efficiency-Jain
tradeoff achieved by the α-fair policy. From this figure, it can
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be seen that while these tradeoffs are close to each other for
small and large values of α, for intermediate values, the trade-
off generated by the optimal tradeoff policy is significantly
better than that generated by the α-fair policy. For example,
for a Jain’s index of 0.7, the optimal tradeoff policy provides
33% gain in efficiency as compared to the α-fair policy.
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0.5

0.6

0.7

0.8

0.9

1

 

 

α increases

Ja
in

’s
In

de
x

Sum Rate Efficiency, η(x), Mbit/s

α = 30

α = 0
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ΔJ = 20%

α-fair based Tradeoff
Opt. Tradeoff (Proc. 2)

Fig. 3. Optimal and α-fair Efficiency-Jain tradeoffs.

When the subchannels are not time-shared by the users,
i.e., ρmn ∈ {0, 1}, the corresponding set C is not convex
and does not satisfy the monotonic tradeoff property. In this
case, Procedure 1 can be used to obtain the optimal Efficiency-
Jain tradeoff. An example that considers this case is provided
in [12] and was omitted for space considerations.

VI. CONCLUSIONS

In this paper, we considered multiuser resource allocations
that achieve the optimal tradeoff between efficiency and fair-
ness from the Jain’s index perspective. We have shown that,
in general, the commonly-used α-fair policy does not yield
optimal Efficiency-Jain tradeoffs except for the two-user case.
To achieve the optimal Efficiency-Jain tradeoffs in the general
case, we developed two procedures. In the first procedure,
the set of admissible allocations is arbitrary, but finding the
allocations that achieve the optimal Efficiency-Jain tradeoffs
involves solving potentially difficult optimization problems.
In contrast, in the second procedure, the set of admissible
allocations is assumed to have a monotonic property that arises
in many practical scenarios. This property is exploited to fa-
cilitate the search for allocations achieving optimal Efficiency-
Jain tradeoffs. Our analysis is supported by illustrations,
geometric interpretations and numerical examples.
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