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Abstract

We examine the existing methods for evaluating the distribution of the sum of lognormal random
variables, focusing on closed-form results. We find that there are no results in literature that are
both simple and accurate. We then derive a new closed-form expression for the lower tail of the
distribution, and use it to construct a new method using a power-lognormal distribution. We apply
both basic moment-matching and our new method the problem of the total interference power in a
cellular system. For both methods, we derive equations that find the interference distribution
essentially in closed form, using minimal numerical integration. We apply both methods to the
uplink and downlink in systems with and without power control, for various cellular layouts,
channel models and user activity probability. We compare distributions obtained by Monte-Carlo
simulation directly with those obtained by our method, and find very good matches in many

useful cases.

iii



Acknowledgements

Cok tesekkiir ederim and my warmest thanks to my supervisor, Dr. Halim Yamkomeroglu, for
your academic and scientific guidance, and most of all for your humanity: your kind words of
encouragement, your understanding, generosity, and patience. It has truly been a pleasure! My
gratitude goes towards my examination committee, Dr. Mohamed El-Tanany, Chair, Dr. Florence
Danilo-Lemoine, Dr. Fei Richard Yu, and my external examiner from the University of Ottawa,
Dr. Abbas Yongacoglu. Many thanks also go to Dr. David D. Falconer, Dr. Eman Fituri and Dr.
Shalini Periyalwar at Carleton University, and Dr. John Thompson at the University of Edinburg,
UK, for their help and suggestions in the materials that went towards this thesis. I also want to
thank all my colleagues, Ahmed Abdelsalam, Abdulkareem Adinoyi, Saad Al-Ahmadi,
Muhammad Al-Juaid, Fiiruzan Atay, Akram Bin Sediq, Feroz Bokhari, Yijia Richard Fan,
Youssouf Mouhamedou, Keivan Navaie, Mahmudur Rahman, and Mohamed Rashad for your
help, kind words and fruitful discussions, for the soccer matches, and the good times at lunches
and conferences. To good friends, Daniel, Jacek, Janek, Lukasz, Mark, Martin, Masoud, Michat
and all the rest for the great times, the chess, the music, the tennis, the jokes, the deep discussions,
the support, the fellowship, and for understanding that I cannot see you nearly as often as I would
like. You guys are gold! Most importantly, I want to thank my parents Barbara and Mieczystaw
for the miracle of life and for the even greater miracle of raising me. Everything that is good is
thanks to you. Everything that is bad is my fault alone and is left for me to fix on my own. I also
want to thank you, who are both Ph.D.’s in Mathematics, for instilling in me the love of
Mathematics for its own sake, which was the most practical thing you could do for my career.
Finally, I want to thank you, my wonderful little sister Joanna Katarzyna Dobrochna for all the
joy and laughter that you bring me, for cheering me up every time I was down and for

understanding when your brother was working late in the lab. I love you so much!

v



This work was supported in part by Wireless Technology Labs, Nortel Networks, Ottawa,
Canada, by a PGS M award from the Natural Sciences and Engineering Research Council

(NSERC) of Canada, and by Carleton University, Canada.



— Soli Deo Gloria —

vi



Table of Contents

Abstract iii
Acknowledgements iv
Table of Contents vii
List of Figures and Tables xii
List of Acronyms XV
List of Symbols xvii
Chapter 1 Introduction: Total Interference in a Cellular Network 1
1.1 Motivation fOr thisS WOFK ...........cccccccieiiiiiiiiiiieiieeete ettt s st 1
1.1.1 Some Previous Analytical Work on INterference ...........ccccoceeeeerieiiiiiiiinicniiieeceeeeeee e 2

1.1.2 Purpose and Motivation for a Closed-Form SOIUtiOn ............cccoeieiiiiiiiiniiniiieieceeeeeeeeeeee e 3

1.1.3 Goals and Philosophy of this WOTK ........c.ccooiiiiiiiiiiiiiieece e e 4

1.2 PRYSICAL MOGEL............ooceeeeieeeieeeiieeie e eee et ett e et e s vt e st e siteesate e s s beesabeesssaessseessbeassseesssaensseesssaensseesssaenssenns 5
1.2.1 Wireless CRAnmEl.......cc.oouiiiiiiiiiiieiceeeet ettt ettt et e e et st bt e e e 6
L2011 FAQINE ettt ettt sttt ettt e a e e bt b e e bt et et e e sat e sae e bt e b 6

1.2.1.2 SHAAOWINEZ ...ttt ettt et sttt et et ea e e bt s bt e bt e bt e beeatesatesaeenaeenaeenee 7

L2, 1.3 PANLOSS ..ottt ettt et ettt et et e b et e a bt e s ab e e bt e st e e nateesabeenateas 7

1.2.2 WHTEIESS SYSTEIM ..cetiiuiiiiiiiiiieieete ettt ettt ettt e e s st s et e ae et e et eaaesanesbe e neeneennesanes 8
1.2.2.1 CellULar NEEWOTK ...ceeueiiiiiieiiieite ettt ettt ettt ettt et e st e sabe e bt e sabeesateesaaeenaeeas 8

1.2.2.2 POWET CONLIOL ...iiiiiiiiiiiieeiie ettt ettt ettt et e sb e e st esat e e st e e bt e e sabeesateesaaeenneeas 8

1.2.2.3 TUSEE ACHIVIEY teuveenteeiiieiieiitenttente ettt ettt ettt ettt sat e sbee st e bt eat e eateeb b e s bt e bt e bt embeeabesatesueenaeenbeenee 9

1.3 MR CORTIDUTIONS ...ttt ettt et st ht et e bt et et e et sbte s bt e s bt e bt eneeeaeesaeenae 9

Chapter 2 Known Methods for Approximating the Distribution of the Sum of Lognormal Random
Variables 11

2.1 Properties of the SLN DiSIIDULION ............cc..ccceecuieiuiiiuiniiiniieiiteiieeet ettt 11

vii



2 B B B T 511715 (o) s O RSOOSR PRSPPIt 11

2. 1.2 PIOPRITIES ..ttt ettt ettt ettt st st b ettt ea e eb b e e bt e s bt e bt e bt et e st sat e sbeenbe e bt et eateeanens 12
2.1.2.1 Analytically SMOOth......ccooiiiiiiiiiii et 12
2.1.2.2 Possibly Unimodal ...........cocoooiiiiiiiiiiiiiiieetee ettt e 12
2.1.2.3 Heavy-Tailed and Sub-EXponential ............c.cccocceoiiiiiiiiiiiinienieieeeeeee e 13

2.1.3 Location in @ FUNCHON SPACE ......cceeiuieiiiiiiiiiiieiieiteit ettt ettt 14

2.1.4 Lognormal Probability Paper...........cccceiiiiiiiiiiiiiiiiiiiieieteeeeteteste ettt 16
2.1.4.1 A Bijective Transformation..........coeeveeriiiieiiintenienieeieeteeitesit ettt et sttt et et e sanens 16
2.1.4.2 Order CONSEIVALION ......ccueruieuieiieiieieienie sttt ettt ettt re sttt et et eaeste b saeeseeatesse s esaessesaeenesueenie 16
2.1.4.3 COMCAVILY ettt ettt ettt ettt st a ettt et ea e s bt e s bt e bt e bt eabeeabesbeesbeenbee bt enteentesanens 17
2.1.4.4 ASYIMPLOLES.....cuviimiieuiieiiieiieeit ettt ettt et sttt et ettt e e st e st et e st s anesanesaee s et e st esneeneeaneeanesneeas 18

2.2 CLOSEA-FOTI METROCS. ........ccueeeeieiiiiieeie ettt ettt ettt ettt et e s e e s bt e s st e sabeesateesabeesaneens 19

2.2.1 Positive Moment-MatChing .........c...coieriiiiiiiiiiiiieiieiieit ettt saeens 19

2.2.2 ASYIMPLOTICS .euvteutieritieeieeette et et e bt e st e et e st eeabee s bt e eabeesabeesabeesabeesabee s bt esabeesabeeeabeesabeesabeesabeeeaseesas 21

2.2 3 BOUNAS ...oeiiiieiieiieietite ettt s st s a e sttt sa e s ene 22
2.2.3.1 Tighter, Non-Parametric APProXimation ...........ccecceveerieerierienienieneenieeieeeesieesieeseeenieeneeenesnnens 22
2.2.3.2 Arithmetic-Geometric Mean INequality ..........c.ccooveeriiiiiniiiniinienienieeeece et 23

2.3 NUMETICAL MEINOAS ...ttt ettt sttt ettt sttt ettt et st esbaesbeeas 25

2.3.1 Parametric METROAS .....ccueiiiiiiiiiiiieeiee ettt ettt sttt st e st e sabe e st e s be e et e e 25
2.3.1.1 Logarithmic Moment-Matching: SChwartz — Yeh........ccoccoeviiiiiiiiiiiiiicccceeeee 25
2.3.1.2 Log-Shifted Gamma Function: Le-Ngoc — Lam .........cccccceeiiiiiiiiiiiiiiiicceccceeeeeeene 26
2.3.1.3 Pearson Type IV Function: Zhang — SONG .........ccoceeriiriiriiiniinieniieneeieeieeteste st 27
2.3.1.4 Negative Moment-MatChing ........cccceviiriiiiiiiiiiieiceieeteeet ettt 27
2.3.1.5 Flexible Lognormal Approximation: Wu — Mehta — Zhang..........ccccceveevernenienienceneeneeniennns 27

2.3.2 Characteristic Function Evaluation............ccccceoiiiiiiiiiiiiiiiiicccceee e 28

2.4 CUIVE-FIHHNG METROAS ........ooeeeeieiiiiiiieeie ettt ettt ettt ettt e s e st e s bt e sab e e sabeesateesabeenaseens 28

2.4.1 Minimax Lognormal Fitting: Beaulieu — XI€ .........cccceoiiiiiriiiiiiniinieeeecie e 29

2.4.2 Three-Parameter Function: Beaulieu — Rajwani.........c..cccoeciiiiiiniiiiiniiiiiicicccccceeceeeene 29

2.4.3 Three-Parameter Function: Zhao — DINg ..........cccoceoiiiiiiiiiiiiiiiinieieccecre e 29

2.5 Validation Of MEtROGS ..........ccc.oovueiiuiiiiiiiiiiitit ettt sttt sttt ettt st 30

2.5.1 Comparisons iN LAEBIATULE .......ceuertiriieriieieeieeie sttt ettt ettt ettt st bt e b e b et eatesanens 30

2.5.2 Comparison and Classification of MethodsS...........ccoccerieriiniiiiiniinienieeceecc e 30

2.5.3 Monte-Carlo Simulation AIGOTIthmm........ccoeiriiiiiiiiiiiiiieieeeeete ettt 33

viii



Chapter 3 Towards a Good, Simple, Closed-Form Approximation of the Distribution of the Sum of

Lognormal Random Variables 35
3.1 Best Lognormal Fit 10 ETther TQIL.............coocoouieimiiiiiiieiieeieeeite ettt ettt ettt ettt et e s e 35
I B B D) 31 1L (o) DO OO OO OO eSO P O UPRRPPRRUPRRTPONt 35
3.1.2 Best Lognormal Fit in the Linear DOMain..........coccoiiiiiiiiiiiiiinieieceece e 36
3.1.3 Lower Tail (for Independent SUMMANAS) .........c.eeerueiriiieriieiiiieniee ettt sttt st e e 38
3.1.3.1 Discrete Convolution APProXimMatiOn .........c.cceceereerieerieenierienieneenteenieeteetesieesieesteesseeseeresanens 39
3.1.3.2 Scaled Lognormal APProXimation ..........cocueeuereereenieenieeienieniteneenieenieeieetesseesieeseeesseenseensesanens 40
3.1.3.3 Best Lognormal Fil........oc.ooiiiiiiiiiiiiiiici sttt st 40
3.1.3.4 Difficulties in Approximating the Lower Tail........cccccooeeviiriiniiniiniiniiieniceeececeeeeeeae 41
3.1.3.5 Simulation of IoWer tail VaAlUES.........cooouiiiiiiiiiiiiieeeeee ettt 41
3.1.3.6 Comparison with Simulations and Recent Methods...........c..cccceerieiiiiiiiiniiniinicicieceeeeeene 43
314 UPPEE Tl ettt ettt e e sttt a e e 46
3.2 Potential Functions for Approximating the SLN DiSIrIDULION ............cccccoeevuiecuirieinieinienieieeieereeeeneenes 46
3.2.1 Inadequacy of Existing Functions in the TailS..........cceceerirriiriiniinienieneeecccee e 46
3.2.1.1 Log-Shifted Gamma Function: Le-Ngoc — Lam (LL) ....ccccoceriiniiniinineniciicneencenceeeieeene 47
3.2.1.2 Three-Parameter Function: Beaulieu — Rajwani (BR)........cccccoceniiniininniniiececeee 48
3.2.1.3 Three-Parameter Function: Zhao — Ding (ZD).......cocceeviiriiiriinienieniieneeieeeeee e 49
3.2.1.4 Pearson Type IV Function: Zhang — SONZ (ZS) ......ccveuiriiriinieieieiieeee et 50
3.2.2 Potential FUNction Candidates ...........ceeouierieeiiiieniee ittt st etee st e sttt sabeesbeesabeesbeesbee e 51
3.2.2.1 Power Lognormal..........cc.ooiiiiiiiiiiiiiiiic ittt e 51
3.2.2.2 A Four-Parameter FUNCLION...........ccoiiiiiiiiiiiiciciciieccccecee e 53

3.3 Obtaining the Parameters of the ApproxXimating FURCHONS ...........c.ccoveereeneenenseinienienieenieeieeresee e 54
3.3.1 Power Lognormal DistribUtION ........cc.ceiiiiiiiiiiiiniiiiiicieicicietee ettt 54
3.3.1.1 Matching the Tail SIOPES........ccuecuiiiriiiiiiiiiieiecee et 55
3.3.1.2 Moment-MatChing........cccuiiiiiiiiieiiec ettt e 55
3.3.2 Four-Parameter FUNCHOM .......ccc.eiiiiiiiiiiiiiiiec ettt sttt sttt s e st e e 58
3.3.3 Evaluation of Closed-Form Methods against SImulations............coceeveerreeniricniieneenieneeeeeeeeeeneens 58
Chapter 4 Statistical Analysis of Total Interference Power 62
4.1 STUIATION ALGOTIIAI ..ottt ettt ste s te e st e e st e e s abeesabeessbeessbeessseessseessseessseensseesssaensseens 62
4.2 Distribution of the Interference Power from ORe INTETferer...........uuuvuivvuieciiiiiieniieiiiiieecieesieeecaeesveenneens 66
4.2.1 Separating the Pathloss from all Other Factors...........cccceviiriiniiiiiiiiniiiecceeee e 66
4.2.2 Statistical Moments of the Inverse Pathloss ..........ccccceviviniiiniiiiiiiiiiccccee e 67

1X



4.2.3 Statistical Moments Of all Other FACLOIS ........cooiiiiiiiiiiiieiiieeie e et e e e eeaaeees 69

4.2.4 The Special Case of Uplink with POWer COntrol............c.ccovieriiniiriiinienienieneecec e 72
4.2.5 Bernoulli Lognormal Approximation to Single Interferer Power Distribution............ccccceeeeveenenee. 72
4.2.5.1 SUppOrt iN LILETATUTE .....coeiiiiiiiiiiiieiietceteeeest ettt ettt et 73
4.2.5.2 TheoretiCal BaASIS ....c..coouiiiiiiiiieieiieie ettt sttt et e s e e 73
4.2.5.3 Fitting the Distribution by Moment-Matching ............cccccociriiiiiininiiniiieeeeeccee e, 74
4.2.5.4 Validation through SImUlation .........ccceoiiriiriiiiiiiiieeeeeee ettt 74

4.3 Statistical Moments of Total INTETFETENCEe POWET .........ccc.uoccueeecuieiiiieeiiesieesieesieesreesseesseesseesseesseessseens 79
4301 FATSE MOIMBNL ..ottt st sttt s ettt a e besaeebesaeenie 79
4.3.1.1 Uplink without Power Control, and Downlink...........ccocceveeviriiniiinieniiniienicieceniceeeeene 79
4.3.1.2 Uplink with POWer CONtrol .......c...ccooiiiiiiiiiiiiiiieieceeece et e 79
4.3.2 SECONA MOMENL .....c.eiiiiiiiiiiiieie ettt ettt ettt st st e bt eae et e saesanesaeesbeeneenneenneeanes 80
4.3.2.1 Uplink without POWer CONtrol ..........c..cocioiiiiiiiinieieiceeec ettt e 80
4.3.2.2 Uplink with POWer CONtrol .......c...cccooiiiiiiiiiiiiiieiceece et 80
4.3.2.3 DOWNIINK ..ottt sttt st sttt et ae e saeene e 80
4.3.3 A Simple ApproxXimation t0 MOIMENLS. ........cceerierirriiiierienieente oottt et este et et st bt esaeenteeareeanens 81
4.4 Modeling the Total Interference Power as Bernoulli LOGNOTIMAL..............ccccveveuieeceiiciieniiienieeeiieesieenneens 82
4.4.1 Arguments for the Choice Of DIStrIDULION .......ccueeviiriiiiiiiiiniiceieeeetee et 82
4.4.2 MOmMEeNt-MAtCRINE .....oc.eiiiiiiiiiiiiice ettt ettt e 83
4.4.3 Simple Approximations to the Distribution Parameters .............c.cccoccovieniiiiiiiniiniinicccceeee. 83
4.5 Modeling the Total Interference Power as Bernoulli Power Lognormal....................ccccoccceveeviencaccncncnne 84
4.5.1 Arguments for the Choice Of DIStrIDULION .......ccueeririiiiiiiiiniiieeieeeeteet ettt 84
4.5.2 Matching the Upper Tail SIOPE........cocueeiiriiiiiniiieieite ettt ettt 84
4.5.2.1 Uplink without Power Control, and DownlinK...........ccccceveeviriiiniiinienieniienicieceneeeeieeeeae 85
4.5.2.2 Uplink with POWEr CONLIOL ......cocuiiiiiiiiiiiiiiiiiciie ettt sttt 85
4.5.3 Matching the Lower Tail SIOPE ........cocoooiiiiiiiiiiieeecce e 86
4.5.3.1 A Simple Approximation for All Cases ...........cecuerierieriiiiiirieiiereeeet et e 86
4.5.3.2 Uplink without Power Control, and Downlink............cccccociriiiiiniiniiniiiiiineeecceeceee. 86
4.5.3.3 Uplink with POWer CONtrol ...........cccoooiiiiiiiiiiiiiieieteece et 87
4.5.4 MOMENE-MALCRINE ....eontiiiiiiiiiiiieeee ettt ettt et b et e e et st bt e b et et e eanens 87
4.5.4.1 Uplink without Power Control, and Downlink...........ccccceveeviriiiniiinieniiniincniciecenceeeeene 87
4.5.4.2 Uplink with POWEr CONLIOL ......cocuiiiiriiriiiiiiieiicite ettt st s 88

4.6 Comparison of Simulation, BLN and BPLN MetNOAS ...............ccccooccevuimoiiniiniiniiasienienieseeneenieenee e 88
4.6.1 Cellular Layouts and their COETFICIENES ........c..cocuiriiriiiiiiiiiceee e 88
4.6.2 Simulated and Analytical Parameters and Graphs..........cccccocceeiriiiiinienienieieiecreeeeeee e 91

X



4.6.3 Discussion 0N ODSEIVEd RESUILS........ccooviuiiiiiiiiiiiieiie et eeeear e e e e e eeaareeeeeeeeenaes 104

Chapter 5 Conclusion and Future Work 106
5.1 Achievements Of TRIS TRESIS ..........cc.coceocueiiiniiiiiiieet ettt ettt et et ae e 106
5.1.1 Tails of Sum of Independent Lognormals ..............cccoociriiiiiiiiiiiiniiiiece e 106
5.1.2 Simple Expressions for Moments of Total Interference POwer ............c.ccocooiviiniiniinincnnncnne. 106
5.1.3 Approximate Interference Distributions: Two Methods............cc.cooiiiiiiniiniiiiniincceeee. 107

5.2 Ideas for Continuation Of this WOTK.........cc.cecueeiiieiieeieeeiiesieesite et e st e et e sbeesaeeseseesseesaseessseessseensseens 107
5.2.1 Improving the SLN and Interference ApProXimations ..........coceeceereerierriereeneeneenieeieneeneeneeneennes 107
5.2.2 Correlated SNAAOWIINZ .....co.veriiriiiiieiieieete ettt ettt ettt st sttt et ettt sbtesbeenbe e beenaes 109
5.2.3 More Realistic User DiStriDULION ........cc.eciiiiiiiiiiiiciiieietceecectee et 110
5.2.4 Calculating the SIR, SINR and Outage Probability ...........cccccocieviiiiiiiiiiniiniiiieeeeeeeeeeeee 111
5.2.5 Application to Fixed Relay NEtWOIKS ........c..cocieviiiiiiiiiiiiiieiccccec e 112
5.2.5.1 IrregUIar GEOMEIIY .......ccuviiiiiieiiiie ittt ettt ettt e s st sa e e s e s e e e eneeaneeanes 113

5.2.5.2 Lower Probability of Activity per Sub-cell.........ccccociiiiiiiiiiiiiieceeeeeee e 113

5.2.5.3 Some Simulation RESUILS........cccccuiiiiriiiiiiiiiiiici e s 114

5.2.6 Evolution of Interference in TIme .........ccccoieiriiiiiiiiiiiiiicieeeectee e 116
5.2.77 CDMA SYSEEINIS ...cuveeutieutieiieeitenttenttete et ettt estte bt eteeatesttesbte bt e bt esbeestesatesbeesbeenteenteeatesbtesbeenbeenbeenses 116
Bibliography 117

X1



List of Figures and Tables

Figure 2-1 Locus of successive convolutions of LN pdf’s in a function space. Taken from [18]................

Figure 2-2 cdf on LN paper of the i.i.d. SLN with ¢ = 12 dB. Taken from [35]

Table 2-1 Summary of properties of SLN methods.

Figure 2-3 Comparison of SLN methods by complexity and precision.

Figure 2-4 Algorithm that simulates the SLN cdf.

Figure 3-1 Algorithm that efficiently simulates the far lower tail of the SLN cdf.

Table 3-1 Simulation parameters for SLN cdf’s in the lower tail

Figure 3-2 The cdf of the sum of two i.i.d. LN RV’s — A: ¢ = 6dB and B: o = 12dB.

Figure 3-3 The cdf of the sum of lognormals with different variances.

Figure 3-4 The cdf of the sum of lognormals with different means

Table 3-2 Analytical and numerical calculations of moments of the PLN distribution when the power

is t = 2, with differences underlined.

Table 3-3 Simulation parameters for sums of lognormals.

Figure 3-5 The cdf of the sum of 6 i.i.d. lognormals, and closed-form methods.

Figure 3-6 The cdf of the sum of 30 i.i.d. lognormals, and closed-form methods.

Figure 3-7 The cdf of the sum of 12 lognormals with different means, and closed-form methods............

Figure 3-8 The cdf of the sum of 36 lognormals with different means and variances, and closed-form

methods.

X1i

18

32

33

34

42

44

44

45

45

57

59

60

60

61

61



Figure 4-1 Normalised MU and F'S positions in a complex plane.

Figure 4-2 Algorithm for simulating interference in cellular systems.

Figure 4-3 Algorithm to calculate I;.

Figure 4-4 Three tiers of cells with five different cell positions (classes A-E).

Table 4-1 K ( Ji] ) function tabulated for all cell classes and pathloss exponents.

Table 4-2 K (2 B ) function tabulated for all cell classes and pathloss exponents.

Table 4-3 &, ( Ji] ) function tabulated for all cell classes and pathloss exponents.

Table 4-4 X, (2 B ) function tabulated for all cell classes and pathloss exponents.

Table 4-5 Simulation parameters for single interferer power.

Figure 4-5 Single nearby interferer, Rayleigh fading, without power control.

Figure 4-6 Single nearby interferer, no fading, downlink with power control.

Figure 4-7 Single nearby interferer, Rician fading, uplink with power control.

Figure 4-8 Single distant interferer, no fading, without power control.

Figure 4-9 Single distant interferer, Rician fading, downlink with power control.

Figure 4-10 Single distant interferer, Rayleigh fading, uplink with power control

Table 4-6 Geometry parameters for various cellular layouts.

Table 4-7 Simulation and analytical parameters for BLN and BPLN methods.

Xiii

63

64

65

67

68

68

71

71

75

76

76

77

77

78

78

89

92



Figure 4-11 Interference in three-tier cellular network with variable activity in the downlink without

power control. 95

Figure 4-12 Comparison of interference from one and three tiers in the downlink with power control....96

Figure 4-13 Effect of varying the shadowing parameter on interference from first tier in the uplink

without power control. 97

Figure 4-14 Interference in a reuse 7 cellular network in the uplink without power control...................... 98

Figure 4-15 Interference in reuse 3 cellular network with variable activity level in the downlink with

power control. 99

Figure 4-16 Interference from first tier with Rayleigh, Rician and no fading in the downlink with

power control. 100

Figure 4-17 Interference from first tier while varying propagation exponent, shadowing and fading

in the uplink with power control. 101

Figure 4-18 Interference in reuse 3 cellular network with variable activity level in the uplink with

power control. 102
Figure 4-19 Interference from a random layout of cells in the uplink with power control.............ccccece.. 103
Figure 5-1 Interfering cells (in gray) in a two-hop fixed relay network. 112
Table 5-1 Geometry parameters for three tiers of sub-cells in a two-hop fixed relay network................. 113
Table 5-2 Simulation and analytical parameters for a two-hop fixed relay network. 114
Figure 5-2 Interference from a fixed relay network in the downlink with power control. ...........c.ccceuee.. 115

X1V



AG

bif
BLN
BPLN
BR

BS

BX
cdf
CDMA

DL
DMU
FH-SS
FS
Fw
h.t.
iid.
in.id.
IFS
IMU
LL
LN
LSG
MU
OFDMA
PC
pdf
PLN
RS
RV

s.e.

List of Acronyms

Arithmetic-Geometric mean inequality method [46]

Best lognormal fit

Bernoulli (times) Lognormal

Bernoulli (times) Power Lognormal

Beaulieu — Rajwani (distribution function) [27]

Base Station

Beaulieu — Xie (method for analysing the SLN problem) [35]
Cumulative distribution function

Code-Division Multiple Access

Characteristic Function (of a RV)

Downlink

Desired Mobile User (MU under analysis)

Frequency Hopping (Spread Spectrum technique)

Fixed Station (i.e., a BS or RS)

Fenton — Wilkinson (method for analysing the SLN problem) [1]
Heavy-Tailed (property of distributions)

Independent, identically distributed (random variables)

Independent, but not necessarily identically distributed (random variables)
Interfering Fixed Station

Interfering Mobile User (MU whose link causes interference to the DMU)
Le-Ngoc — Lam (distribution function) [27]

Lognormal

Log-Shifted Gamma (Distribution function used in the LL. method) [27]
Mobile User/Unit

Orthogonal Frequency-Division Multiple Access

Power Control

Probability density function

Power Lognormal

(fixed) Relay Station

Random Variable

Sub-Exponential (property of distributions)

XV



SINR
SIR
SLN
SY
UL
WMZ
ZD
ZS

Signal to Interference and Noise (Power) Ratio

Signal to Interference (Power) Ratio

Sum of Lognormal (Random Variables)

Schwartz and Yeh (method for analysing the SLN problem) [37],[47]
Uplink

Wu-Mehta-Zhang (method for analysing the SLN problem) [35]
Zhao — Ding (distribution function) [28]

Zhang— Song (distribution function) [28]

XVi



#{o}
ajp

An, Apr A,

E[2]
Fq(x)

Sa(x)

~

List of Symbols

Cardinality of set &
u-parameter of the BLN approximation to £ (x)

A-coefficients describe the pathloss statistics for a given cellular layout.

o-parameter of the BLN approximation to F/ (x)

n™ statistical moment of any Q;

n™ statistical moment of any 0. / L

Cell of interest

A nearest interfering cell
Interfering cell

Expected value of RV &
cdf of RV &

pdfof RV &

F (x) transformed under T’

RV: Total received interference power

Index of interfering cell or lognormal summand

RV: Received interference power coming from cell C;

Rician fading K-factor in linear scale: 0 — Rayleigh fading, oo — no fading
Downlink option indicator: 0 — UL, 1 — DL

Power control option indicator: 0 — no PC, 1 — PC

+00 or —oo: indicates the upper and lower tail respectively on lognormal paper
RYV: Pathloss between FS; and MU;

u-parameter of the PLN distribution

u-parameter of the BPLN approximation to F, (x)

Number of interfering cells or number of terms in a sum of lognormals
n™ statistical moment
Probability of activity of an interferer from any given cell

Probability of event &

RV: Normalised transmit power of interferer from cell C; due to power control;

Xvil



Py
O

ri

S7

T

t

I

X

Xi Vi
Y;

2

o

B
. @)
I(x)
P(x)
G

RaX!

KL

Ky

A(x, y)
Hi
AL
Hu

without power control: constant = 1

Probability of activity of at least one interferer

RV: Product of all factors affecting the received power from cell C;, except pathloss
RV: Inverse pathloss suffered by interfering signal from cell C;

RV: Physical (normalised) distance from interferer in cell C;

o-parameter of the PLN distribution

o-parameter of the BPLN approximation to F) (x)

Transformation (mapping) from linear to lognormal probability paper

Power parameter of the PLN distribution

Power parameter of the BPLN approximation to £ (x)

RV: sum of lognormal RV’s ¥;

Cartesian coordinates of FS; (equivalently, the centre of cell C))

RV: lognormal, with parameters y;, o;

Auxiliary term in calculating the BPLN parameters to approximate F, (x)

RV: Instantaneous fading envelope amplitude in linear scale of signal from cell C;
Pathloss exponent

Incomplete (lower) gamma function
Gamma function
Standard normal cdf

RV: Lognormal-distributed shadowing in linear scale suffered by interfering signal
from cell C;

Pathloss statistics for received power from cell C;

Pathloss statistics for received power from cell C; in the case of uplink, power control
Constant factor multiplying the bif to the lower tail of the SLN distribution

Constant factor multiplying the bif to the upper tail of the SLN distribution

Constant = lnlO/ 10 = 0.23, used to convert between dB and natural units

Integral used to find the moments of the PLN distribution
u-parameter of lognormal RV Y;

u-parameter of the blf to the lower tail of the SLN distribution
u-parameter of blf to the upper tail of the SLN distribution

Constant = 0.915, radius of circle that approximates well a unit hexagon

Xviil



Pij Correlation coefficient between two Gaussian RV’s with indices i, j

o Shadowing variance in natural units

o, Power control error lognormal variance in natural units

o; g-parameter of lognormal RV Y;

oL g-parameter of the blf to the lower tail of the SLN distribution

oy o-parameter of blf to the upper tail of the SLN distribution

Xi RV: Bernoulli-distributed indicator of activity of interferer from cell C;

Many other symbols are used locally within sub-sections, sometimes overriding the above

definitions. Hopefully, this will always be clear from context.

XIX



Chapter 1
Introduction: Total Interference in a Cellular Network

1.1 Motivation for this Work

While the problem of analysis of interference in cellular systems is at least as old as the first
systems themselves, the topic still attracts much interest. This is essentially because the problem
is not really solved yet, though there exist many methods that solve particular problems, with
varying levels of complexity (numerical or closed-form), and various levels of accuracy. There
does not seem to be a well-established systematic method to analyse this class of problems, and
several papers [1]-[16] work on very similar problems without there being much incremental
knowledge. Indeed, these papers have a substantial portion of overlap, particularly when it
concerns two essential mathematical problems: calculating the effect of the mobile user’s (MU)
random distribution in space, and evaluating the sum of lognormal (SLN) random variables (RV).
In this thesis we propose to make a synthesis of the common points of the work in these papers.
We do this first by creating a mathematical and simulation model that is sufficiently detailed to
encompass many particular problems, but simple enough for analytical tractability. We then
evaluate the existing methods for calculating the SLN distribution, and develop our own method
based on a synthesis of several known results. Finally we apply this method to the interference
distribution problem, and obtain simple expressions to calculate an approximation to this
distribution as a function of the parameters of a particular problem. In particular, we can separate
the geometry of the cellular layout (equivalently, the user distribution) from the rest of the
problem, which means that some geometrical parameters can be calculated once and for all and

tabulated for future use. We believe that the method we propose is flexible enough to
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accommodate many classical problems while retaining its simplicity, and also can be modified

to solve new problems in emerging wireless systems.

The main underlying mathematical problem is the SLN distribution, which appears not only in
wireless communications, but also in electronics [17], physics [18], optics [19], economics [20],
and is of interest to statistical mathematicians [21], [22]. This versatility makes the problem even

more important to solve.

Knowing the distribution of the interference in a system is the next best thing to actually
knowing the interference at any given moment. Indeed, unless one uses adaptive channel
mechanisms [1], [2] or cognitive radio techniques, one has to allocate scarce radio resources
(spectrum, power) based on statistical knowledge. A precise knowledge of the interference
cumulative distribution function (cdf) is necessary for optimal design: if the interference is
overestimated, radio resources are wasted in trying to avoid outage situations that almost never
happen, while if it is underestimated, the quality of service suffers from too frequent outages. In
past years, not only cellular, but many other wireless technologies have been emerging (WiFi,
WiMax, Bluetooth, UWB, ...), and much research is currently being done in ad-hoc, mesh and
sensor networks. All these often use shared, unlicensed bands. As so many wireless technologies
come to share the same spectrum, the systems become interference-limited. While it is not the
purpose of this thesis to explore the interference between such systems, simply understanding the

statistical behaviour of interference becomes more important than ever.

1.1.1 Some Previous Analytical Work on Interference

In this section we touch on two previous papers that analyse interference, we show why they are
important and also what is lacking in them. It is these lacks that we want to fill in this thesis. We

borrow the mathematical models in order to formulate the problem in Section 1.2.
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Reference [3] is the work that is closest to ours and has inspired many of the points in this
thesis. First of all, it is one of the rare papers that introduce the concept of geometrical
coefficients, integrals that can be calculated independently of other system considerations, and
tabulated for reference. Thus a particular cellular layout may be described by a collection of
numbers. These can be substituted into closed-form expressions in order to obtain the interference
statistics in a particular cellular system. A weakness of this paper is that many of the stochastic

quantities have been replaced by their expected value, which is an over-simplification.

Reference [1] uses a numerical method by Schwartz and Yeh (SY) (see Section 2.3.1.1). The
disadvantage of this paper is its heavy use of numerical integration at all stages of the process.

We intend to show in our work that much of it is unnecessary, and that a tractable solution exists.

Both papers study interference in the uplink (UL). In [3], the downlink (DL) is also examined,
but there is little analysis done and the method becomes mostly numerical. We intend to show
that we may find closed-form expressions not only for the UL, but for the DL as well. The DL,
though more challenging analytically, must be well understood because of the heavy traffic
asymmetry leaning towards the DL in future systems [23]. The greatest weakness of both papers
is the lack of a direct comparison between simulation results and the theoretically derived
distributions. In fact, it is rare to find a comparison between a simulated and calculated
distribution curve of the interference statistics. We will always support our theoretical results with

Monte-Carlo simulations in this thesis.

1.1.2 Purpose and Motivation for a Closed-Form Solution

Reference [24] suggests that knowing the statistics of the interference coming from just one
interferer is not enough, and that knowledge of the sum interference power is necessary for

accurate interference modeling. We consider a cellular system with known layout, a propagation
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model, user behaviour statistics, and potentially a power control (PC) mechanism. We can

simulate interference to a particular desired mobile user (DMU) in such a system according to the

model described in Section 1.2, using Monte-Carlo Simulation. This thesis has one main goal: to

reproduce the Monte-Carlo interference cdf as closely as possible using, as much as possible, only

analytical, closed-form expressions, with minimal numerical integration. This is useful for the

following reasons:

Monte-Carlo simulations can be very time-consuming, while numerical integrations, if
well-behaved, are substantially faster. Also, analytical expressions programmed into a

computer execute almost instantaneously.

A simple closed-form solution to a problem is always desirable: we try to aim for
expressions that can be evaluated using a scientific calculator and that could be included
in textbooks on basic wireless communications. Such a method is much more likely to

gain popularity than one which takes a significant time to learn and implement.

A closed-form method to a simple problem forms a basis for further analysis of more

complex ones, such as those in emerging next-generation wireless systems.

Closed-from expressions are useful in order to understand the exact effect of every system
parameter on the final performance of the system. We can for example take derivatives

with respect to the parameters and see how sensitive the system is to them.

1.1.3 Goals and Philosophy of this Work

Throughout our work, we have kept in mind the following criteria that our method should fulfill:

1.

As much as possible, obtain closed-form expressions.

2. As much as possible, use only standard functions found on a scientific calculator.
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3. Obtain analytical cdf curves that are close (within 1dB) to the simulated interference cdf

at all points of the curve.

4. As much as possible, simplify the expressions: if removing a term does not increase the
error between the analytical and simulated curves by a significant percentage, then that

term should be omitted.
5. As much as possible, avoid numerical methods.

6. When numerical integration is necessary, let the integral be separable as much as possible

from the closed-form part.

7. When numerical integration is necessary, let it be easily converging using Riemann sums

with a moderate number of steps.

8. As much as possible, let the numerical integrations be general enough that they can be

tabulated and later plugged into closed-form expressions.

9. The final distribution should be an analytical function with a fixed form and described by a
few parameters. This way, only a few real numbers are sufficient to entirely describe the

curve. Piecewise, implicit, or recursive solutions are undesirable.

1.2 Physical Model

We would like to propose a system model that is as general as possible, while retaining enough
simplicity for analytical tractability. Our model is based closely on those used in [1]-[3], which
apply to flat-fading channels, and is thus well suited for frequency-hopping spread-spectrum (FH-
SS), as well as orthogonal frequency division multiple access (OFDMA). The wireless system is
divided into cells, each served by a base station (BS). However, we may also study a wireless

system with fixed relays [2], where each relay station (RS) defines a sub-cell around itself, and
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the MU connects to the nearest RS or BS. In order to encompass both conventional and relayed

networks, we call a BS or RS by the common name of fixed station (FS), the exact nature of
which is irrelevant to the analysis at this level. We study systems where there can be at most one
other user per FS using the same frequency channel at the same time, thus one interferer per FS.
The various interfering signals can be considered incoherent amongst themselves, thus the total

interference power received can be written as:

M=

N
[=31 =

=1 i

RE 0P, (L1)

1l
—_

Here there are N potential interferers (equivalently, N FS’s), and ; is the interference due to FS i.
In the UL, there are N interfering mobile users (IMU), each transmitting to their own FS a signal
that is also received as interference by the desired FS. In the DL, it is the interfering fixed stations
(IFS) that transmit to their own MU’s a signal that is also received as interference by the DMU. R;
is the average path gain (inverse of pathloss) to the interferer. (; and o,” represent shadowing and
fading respectively between the interferer i and the receiver. y; is the Bernoulli-distributed
indicator function that is unity when there is an active user in interfering cell C; on the channel
under consideration, otherwise zero. P; is the (normalised) transmit power coming from the

interferer in cell C,.

1.2.1 Wireless Channel

1.2.1.1 Fading

We consider a system such as OFDMA or FH-SS where flat fading occurs over any single
channel. There are several fading models in existence. We consider a Rician model with

parameter K. When K = 0, the model becomes Rayleigh, and the fading power factor is

exponentially distributed with parameter 4 = 1 such that £ [af] =1. When K = oo, there is no
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fading in the model. In general, for Rician fading, such that £ [aiz] =1, we have the following

probability density function (pdf) [25]:
fa, (x) = 2x(K + l)exp(— xz(K + 1) - K)IO(ZX\/KZ + K), x>0, (1.2)

where [, is the modified Bessel function of the first kind. The fading power multiplied by 2(K+1)

follows a non-central y* distribution with 2 degrees of freedom and non-centrality parameter 2K:

d 5 B 1 X
a_xP(ai 20k +1) < 1)= 22x(K +1) f””{ 2(K+1)J

= Lexp(- L x - K)I, (V22K ) x > 0.

(1.3)

1.2.1.2 Shadowing

The interfering signal also suffers long-term shadowing, which follows a lognormal (LN) law,
with o(dB) = 6 to 12dB spread. All paths are assumed to be independently faded and shadowed.
In this thesis, we use the natural base for LN RV’s. Thus we convert from decibel units (typically
used for shadowing) to natural units by multiplying by a factor of 4 = In(10)/10 = 0.23. In natural

units, o = Ao(dB).

1.2.1.3 Pathloss

The average distance-dependent pathloss model is [2]:

2
L (—4’”0f j s (1.4)
R, c

where ry is the close-in reference distance, f the carrier frequency, c¢ the speed of light, § is the

propagation exponent and r; is the distance between the transmitter and receiver. Without loss of

generality, we can ignore the constant factor, in which case R; is equal to ri_ﬁ , where r; is the
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physical normalised distance between the interferer i and the receiver. In general, R;’s have

different distributions, and are not independent for different i when considering the DL.

1.2.2 Wireless System

We use the indicator kp; to specify whether we are looking at the UL or the DL. In the UL (kp, =
0), the desired FS can receive interference signals from MU’s in other cells. In the DL (kp, = 1), it
is the MU under analysis, located in Cy, that receives interference from other FS's, which are
transmitting to their own MU's. The marginal distribution of the interference power from a given
cell C; is identical for UL and DL. However, only for the UL are the pathlosses independent for

each interferer.

1.2.2.1 Cellular Network

We assume that all the cells are identical regular hexagons of unit side length, each with its FS in
the center. A MU is assumed to be connected to its nearest FS, i.e., it lies in the corresponding
hexagon. The position of the MU is assumed random, uniformly distributed over the cell. We call

the cell under consideration Cy, and all potentially interfering cells C:.

Although we assume all cells to be hexagons, there is nothing in the analysis that prevents us
from considering, for example, square cells in a Manhattan-style grid. The integrals and

distributions that involve the cell geometry would need to be modified.

1.2.2.2 Power Control

We use the indicator kpc to specify whether we are looking at a system with or without PC.
Without loss of generality, we assume that, without PC (kpc = 0), all interferers are transmitting at
unit power. Under PC (kpc = 1), the power P; transmitted by the i" interferer has identical

statistics for UL and DL. The PC mechanism is such that it attempts to compensate for shadowing
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and pathloss is such a way that a FS receives the same power from each of its MU’s, within
some error margin [1], [3]. The transmit power P; depends on the pathloss between the IMU and
its IFS, the LN shadowing with spread ¢ and the PC LN error with spread ¢,(dB) = 0 to 1dB. The

PC mechanism is assumed slow: it does not compensate for signal fading.

1.2.2.3 User Activity

We assume that each MU within a cell uses an orthogonal channel. Consequently, there is only
intercellular interference, and there can be at most one interferer in each cell C;. Thus, the
presence of interference from a particular cell C; can be modeled by a Bernoulli RV with
parameter p (collision probability), which is a function of loading, number of channels, channel
reuse, DTX [1], etc. It is an appropriate model for any channel in a FH-SS or OFDMA system,
where there may or may not be activity on each given carrier, and the frequencies are assigned

orthogonally within each cell.

We assume that the Bernoulli RV that models the activity is independent of all other quantities.
In reality, the activity is generally dependent on the interference at a given point in time, because
a new user may be admitted to the channel based on the activity level of other users on that

channel. However, we do not model this effect here.

1.3 Main Contributions

The main analytical contributions of this thesis are:

1. A closed-form expression for the lower tail asymptote to the SLN distribution. It is given

by (3.9), (3.11), (3.12).

2. Building on ideas from [3], and based on the Fenton-Wilkinson (FW) [26] method for SLN

analysis, a closed-form expression (4.39), (4.40), (4.34), (4.35), for the interference in the
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model described in Section 1.2. Our expression separates the cellular layout from other
parameters, and we provide a lookup table from which the parameters describing the layout
can be obtained. This method performs well in the body and tail, for lower probabilities of

activity.

3. Using the two previous points, a novel method for solving the SLN problem using a power-
lognormal (PLN) distribution. This method is described by (3.35), (3.48)-(3.51). We apply
this method to obtain simple forms for the distribution parameters (4.41)-(4.46), (4.52),
(4.54). Only one simple numerical integral is required (3.50). This method performs well

over the entire range of values for high activity levels.

Furthermore, this thesis contains:

4. A survey of various properties of the SLN distribution.

5. A thorough survey of methods to solve the SLN problem, including the most recent

findings (end of 2006).

6. A formal framework to study the tails of the SLN distribution, and a study of the tails of

several recent SLN methods [27]-[30].

7. A four-parameter function that approximates the SLN cdf with reasonable accuracy over

the entire range of values, and whose parameters are found in closed-form.

8. Several ideas for the continuation of this work with suggested approaches.
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Chapter 2
Known Methods for Approximating the Distribution of the Sum
of Lognormal Random Variables

The fundamental mathematical problem that lies behind the interference analysis is calculating
the distribution of the SLN. Although the SLN distribution is not known in closed form, there are
nevertheless many things that we do know about it. We give an overview of the properties of the

SLN distribution, and of the methods used in literature to approximate it.

2.1 Properties of the SLN Distribution

2.1.1 Definition

The problem can be mathematically stated as follows: Let

X=YY. @2.1)

N
i=1

We assume in this thesis that the summands Y; are independent. The pdf of each summand is LN:

o In x—g; :
P e
Vo et o) = m—e 7 ) x>0, 22)
2rxo;
Its moments are:
EY" =""% ne R, (2.3)

The cdfis:



12

Fxu,o0,)= q)(hm——,ulj x>0, (2.4)
o.

1

where @(x) is the standard normal cdf. Then

X ~ flx)= a%F(x), x>0 (2.5)

follows the SLN distribution, with no known closed form. When the summands Y; are

independent, f(x) is the convolution of all fi(x):

fx)= £i(x)® £,(x)® - ® fy(x). (2.6)

Again, a closed-form method for performing even one of these convolutions is not known.

2.1.2 Properties

2.1.2.1 Analytically Smooth

By smooth we mean that all derivatives of the SLN pdf exist everywhere. This can be proved.

From (2.5):

(%j £ = Kaa—xj f (x)] ® £,(1)® - ® £, (x). ex)

Since the LN pdf fi(x) has all derivatives, so does the SLN pdf. We would like the function

approximating the SLN to also have this property, if possible.

2.1.2.2 Possibly Unimodal

It is not evident that the SLN pdf is always unimodal. In fact, a convolution of unimodal functions

needs not be unimodal [31]. However, various researchers have worked on trying to estimate the
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mode of the SLN pdf [18], [32]; and simulation results [27], [28] seem to confirm that the SLN

pdf is indeed unimodal.

2.1.2.3 Heavy-Tailed and Sub-Exponential

Heavy-tailed (h.t.) and sub-exponential (s.e.) distributions are defined in [33]. The LN

distribution is said to be /.z., which is formally defined as follows:
The distribution F; is A.t. if and only if:

im 1- Fi(x+y)

=1,Yy > 0. 2.8
) y 2.8)

Furthermore, a subclass of A.t. cdf’s is the set of s.e. cdf’s. A distribution is said to be s.e., if

and only if:

lim 1= F )
MR

l

- (2.9)

where *n indicates the n-fold auto-convolution. By L’Hopital’s rule, we may write this in terms

of pdf’s:

£ _ n (2.10)

Now a set of s.e. distributions is not closed under convolution [33]. However, we can show
that the SLN for independent terms, or equivalently, the convolution of N LN pdf’s is s.e., and

thus A.t..

Proof:
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It is enough to show that the convolution of any two LN pdf’s is s.e., since Theorem 3 in
[34] says that if all pair-wise convolutions of a set of pdf’s are s.e., then all manifold convolutions

on this set are also s.e..
If two LN pdfs are identical, then their convolution is s.e., by Proposition 2.8 in [33].
If two LN pdf's are different, then let us call them fl(x; 7 0'1) and fz(x; M, 0'2), such that

o, > 0,;or,if 0, = 0,, such that g > u, . Then:

EACIAr

lim ————= = lim
BRI
2 2
= lim —texp|—4 %—Lz In® x + ’u—i—’u—lz Inx-1 ,U_zz_ﬂ_lz (2.11)
Fore 0, o, O o, O o, 0
lim x* :O,K—'u2 _z'ul <0, o =0,
X —>+o0 o;

lim iexp[Kln2 x]:O,K :—l[L—LJ <0, o5 >0,

x>+ 0, 2 0-22 0-12

From Proposition 2.7 in [33], we find that the convolution f; ® f,is s.e..

This proves that the SLN is s.e. for independent summands. In [21], it was proved that the tail
behaviour is the same for correlated summands. Thus, in general, the SLN distribution is sub-

exponential, and thus heavy-tailed.

2.1.3 Location in a Function Space

The location of the SLN pdf in a function space is considered in [18]. The LN distribution has

two parameters,o > 0, ¢, and as such can be considered to generate a half-plane in a function

space, as shown in Figure 2-1. A LN pdf with small (0'2 << l)Variance is nearly Gaussian,

because the two distributions are related by exponential function, which can be seen as locally
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linear when small variances are involved. Also, since the LN distribution has finite moments
(2.3), the Central Limit Theorem applies, and the successive convolutions of LN pdf’s, properly

normalised, converges to a Gaussian distribution. However, this convergence will be extremely

slow for higherO'2 >>1, which is our case of interest in cellular communications:

0 2 6dB =1.38 in linear scale. For these higher variances, the moments (2.3) are very large
(EY;?> >> E*Y,), which makes convergence slow. This can also be seen as a consequence of the

SLN distribution being heavy-tailed (see Section 2.1.2.3): because the Gaussian distribution is not
h.t., while the sum of any number of LN RV’s is, the SLN will not converge to a Gaussian
distribution for any finite number N of summands. Several SLN methods, [26], [35]-[37] assume
that the trajectory of successive convolutions lies near to the LN half-plane, effectively meaning
that the SLN is approximately LN. However, this has proven not to be the case in many
situations, and more recent work [27]-[30] suggests that new cdf forms need to be developed for

approximating the SLN.

lognormal half plane

(b) o’<l .f\

dLN(].LZ, c,)

/ / el quasi-Gaussian

u

Figure 2-1 Locus of successive convolutions of LN pdfs in a function space.
Taken from [18].
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2.1.4 Lognormal Probability Paper

2.1.4.1 A Bijective Transformation

It is convenient to look at the cdf of the SLN on lognormal probability paper [35], where LN

distributions are mapped onto straight lines by the following transformation 7
T:F(x) > F(x) = o' (Fle*)). 2.12)

Indeed this transformation maps:

T:q>(lnx_”"]}—>x_”", (2.13)
o. o.

L 1

which is a straight line of strictly positive slope. Conversely, each line of strictly positive slope

corresponds to a unique LN distribution.

2.1.4.2 Order Conservation

Lemma 1:

For any supports /, J, such thatx € I < ¢* € J we have:

vie L F(x)> 2% o wre 1, F(x) > cl{lnx—_”j, (2.14)
o (o}
and
Vx e I,ﬁ(x)<x_ﬂ & Vxe J,F(x)<d>(lnx—_’u} (2.15)
c c

Proof:
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Letg(x):ﬁ(x)—x_ﬂ>0 and
o

+g (X) Since

T:@(lnx—_‘u+g(lnx)J= F(x)— F(x)z

X— U
o o

Vxe I,g(x)>0 e Vxe J,glnx)>0 and &(x) is strictly increasing, we have:

Vxe J,F(x) > q)(lnx——,uJ , which proves (2.14). The proof is analogous for (2.15).
o

2.1.4.3 Concavity

Based on the all the simulation and numerical curves in literature, it would seem that the SLN cdf
is always concave down on LN paper. This assumption is made in [35]. However, we are not

aware of any proof of this.

Because it is concave, the transformed cdf is no longer linear, and in fact becomes less and less
so as the number of summands N increases, as seen in Figure 2-2 for independent, identically
distributed (i.i.d.) RV’s. This means that a LN distribution cannot, in general, be a good

approximation to the SLN.



1-(1e-6)
1-(1e-5)
0.99499

0.999

0.99

0.9

0.8
0.7
0.6

CDF Probability P{w <7)

o cooo
= MR,

0.01

T

T

T

T

T

0.001

le-4
le-5r

Y (dB)

Figure 2-2 cdf on LN paper of the i.i.d. SLN with o = 12 dB. Taken from [35].

2.1.4.4 Asymptotes

Again, looking at all the simulation and numerical curves in literature, it would appear that, on
LN paper, the cdf has linear asymptotes at both limits. This would mean that the SLN distribution
could be well-approximated by two (different) LN distributions at each tail. This fact is
theoretically asserted for the upper tail [21], but there has been no mathematical evidence for
there being an asymptote in the lower tail. Also, until now, most SLN methods have completely

ignored the nature of the tails of the cdf. We explore these asymptotes formally in Chapter 3.
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2.2 Closed-Form Methods

We are interested primarily in developing a closed-form solution to our interference problem,

which means we are particularly interested in closed-form results on the SLN.

2.2.1 Positive Moment-Matching

The simplest approach to approximating the SLN is to assume that the SLN distribution is LN,
and match its first two positive moments. This is the first method for solving the SLN problem,
and is known as the Fenton-Wilkinson (FW) method [26]. The moments of a LN distribution are
known (2.3). Let us use the problem statement in Section 2.1.1, and let us approximate the sum of
the SLN RV X by a LN:

X ~ F(x) = cp(m) (2.16)

O rw
The first two moments of the SLN can be calculated as follows [38]:

N 2

N N 1
E[x]= E[Z Y:} =Y Elr] =2, (2.17)
i=1 i=1

i=1 i=

S Elr2]+ 2y Y Elry]

= (2.18)

i=1 i=1j>i

Elx?]- E{&Y” - E{iY +2y im,}

24, +202 + 2% i eﬂ,+ﬂ,»+%(6?+6?)+p,,d,6,»

M=

e

i=1 i=1j>i

Here pj; is the correlation coefficient between the Gaussian RV’s InY; and InY;. These moments

are then matched with those of (2.16):
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E[X] = o {ﬂm = 21n E[x] - 11n E[x?] 219

E[x?]= 2ot |02, = -2 E[x]+ I E[x?]

Matching higher moments has also been proposed [9], [26], [39]. In general, we find the
moments of order n and n+1 in a manner similar to (2.17), (2.18), then match the moments

according to:

E[Xn]:enﬂFW+%n26§W Hpy = n:L-lln E[Xn]_ n:L_llIl E[Xn+l] (2 20)
E[Xn+l] _ e(n+1)yFW +2(n+1)2 0y O'I%-W _ _2 In E[X"] N 2 In E Xn+1] . .
n n+1

Now matching higher and higher moments of positive RV’s tends to give much more weight to

the upper tail of the distribution. More specifically:

1. Moment-matching tends to approximate the upper tail much better than the body or the
lower tail [26], [35], [40], since moments essentially determine the tail of a distribution

[43].

2. By matching higher moments as in (2.20), the overall curve match to the body gets worse

and worse, and approximates the far upper tail more and more.

3. Based on the last point, it is possible to perform successive moment-matching for various
n and construct a piecewise-LN method [39], [40]. However, we dislike a piecewise

solution because it is cumbersome to use.

4. As the moment order n goes to infinity, the summand with the highest moments
dominates, and the moment-matching method converges to a LN asymptote determined

by the dominating term. This will be explored in more detail in Section 2.2.2.
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In conclusion, moment-matching is a simple-closed form solution to the SLN problem. There

exist known expressions for bounds on the error of this method [41].

2.2.2 Asymptotics

The behaviour of the SLN distribution F(x)as x — +oo has been previously studied [21], [42]. It

was shown in [42] that the moments E [X "]of a SLN are dominated by the heaviest summand(s)

as n increases. In [40], it is suggested that matching higher and higher moments of the sum to
those of a LN distribution gives a better and better LN asymptote to the upper tail behaviour. In
[43], it is argued that moments of positive RV’s (as is our case) determine the upper tail. All this
information suggests that looking at the heaviest summand(s) alone will give us a good

approximation of the tail.
Reference [21] gives a simple procedure to find the upper tail asymptote:
Choose the summands with the highest logarithmic standard deviation:

Oy = max o;. (2.21)

Among these summands, chose those with the highest logarithmic mean:

My = max 4. (2.22)

i:o;=0y
Count the number of these “heaviest” summands:

Ky =# {(:ui > O-i) = OlU » Oy )} ’ (2.23)
where #{S} is the cardinality of set S.

The tail distribution is then that of the heaviest summand(s), multiplied by the number of these

heaviest summands:
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1 Inx—uy, ¥
x—j—oo _ Ky _E[ oy j 294
flx) ~ £, () N (2.24)
Fl) 2 R () = m(“‘xa;ﬂvj fl-x,). 2.25)
U

Note that [21] proves that this result is also valid when the summands with the same marginal

distributions are correlated.

2.2.3 Bounds

2.2.3.1 Tighter, Non-Parametric Approximation

It is argued in [21] that if a summand is not heaviest, but nearly so, it also contributes
significantly to the tail for large but bounded x. In [44] are given bounds that are tight in the upper

tail. Thus, a better asymptote is the distribution of the maximum of the summands:

. o . ) (2.26)
P(iz Y, < xj =F(x) ~ Ful)=]] cl{lnx—”’) - P(miax Y, < x) > F(x)

Indeed, when we take the sum of positive terms that have high variance, in most outcomes there
will be one term that is much larger than the others, and the maximum of the RV’s is a good
lower bound to their sum. In the i.i.d. case this bound becomes a PLN distribution, which is called

Farley’s method in literature [45]:
Flx) ~ @N(m—_”} [, 0] =[u o] Vi. (2.27)
o

We also have:
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N
> Y, < N max

i=1 !

Inx—InN - g,

l

j _ P(N max ¥, < x)S F(x)

1

(2.28)

Equations (2.26) and (2.28) are upper and lower bounds respectively to the SLN cdf, which are
called lower and upper bounds respectively in [44], since they are used to refer either to the

complementary cdf or to the value of the RV itself.

2.2.3.2 Arithmetic-Geometric Mean Inequality

While the sum of LN RV’s is difficult to find, the product of LN is very simple. Let

Z- ﬁ Y. (2.29)

i=1

Then Z is simply a LN RV with parameters:
N N
My =Dty O, =) 07 (2.30)
i=1 i=1

assuming Yi are independent.

The method proposed in [46] uses the geometric-arithmetic (AG) mean inequality: for any

positive quantities, their geometric mean is always upper-bounded by their arithmetic mean:

1 N N N
VV‘V ={x > O}fil :—in > (Hxi] . (2.31)

In our SLN case,



24
N N % 1
X=Y2N[]v| =nz", (2.32)

from which we obtain a bound on the SLN distribution:

1 N
F(x):P(X<x)SP(NZN<xj:P(Z<(%j ]:@(Nlnx_”Z_NlnNJ. (2.33)
GZ

Now let us examine the inequality (2.31) with some numerical examples. Take V = {4,5,6},
where all the terms are of the same order of magnitude. Then the arithmetic mean is 5, and the
geometric mean is 4.932.... Not only is the bound correct, it is also very tight in this case. Let us
take another example:V = {1,10,100}, with different orders of magnitude. Then the arithmetic

mean is 37, and the geometric mean is 10, which is a very loose lower bound.

From this we come to the conclusion that if our LN summands are of different 4, or of higho;,,

they will take values of very different orders of magnitude. This is indeed the case in our
problem, where there are interferers located both near and far, and the LN shadowing is of at least

6dB. Hence the bound in (2.33) will be very loose, and essentially useless.

This bound is however very useful in solving another problem: calculating the total
interference power from in-cell users in a power-controlled Code Division Multiple Access
(CDMA) system. In this case, all receive powers are essentially the same, but vary slightly in a
LN manner, say by 1dB, due to imperfect PC. In this case the method, which was only tested for

up to 4dB, is good for 4dB and excellent for 1dB [46].
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2.3 Numerical Methods

The methods in this class consist in calculating numerical integrals, perhaps iteratively, and

perhaps in several dimensions.

2.3.1 Parametric Methods

Here are methods that use numerical integration in order to find the parameters of some function

that approximates the SLN cdf.

2.3.1.1 Logarithmic Moment-Matching: Schwartz — Yeh

This is one of the earliest and most important methods, originally published in [37], it was used in
[1], [47] to analyse outage probability in cellular systems. The method is described in [38], so we

only give a brief description here:

The SY method approximates the SLN by a LN distribution. Moment-matching is performed in
the logarithmic, instead of the linear, domain. The sum of the first two LN RV’s is approximated

by a partial sum X,, which is LN with parameters /£, , 0y which are found by solving:
Elln X,] = uy, = E[In(¥, +1,)] (2.34)
Elin x3)= 1} + 03, = Elm*(v, + v,)] (2.35)

Equation (2.34) is reformulated as follows:
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ty, = E[lny,]+ E{ln(l + %H
1

1 1 hlx—(/lz_/ul)

= "Il
H +.[0 1’1( +x) \/EX(O'IZ N O'zz)exp 2 ,—0_12 N 0_22

2 (2.36)
dx

This formulation is due to the fact that Y,/Y; is also LN. The integral cannot be calculated in

closed form and is thus left to numerical integration. A similar formulation is used to find oy .

Once the sum of two LN RV’s has been approximated by another LN, we proceed iteratively

by solving in the same manner:

Ellnx,]=p, =En(x, +7,)]. (2.37)

Elinx2|= 42 +0% =En*(x,, +v,)] . (2.38)

This is a recursive method with respect to the number of summands. In total we perform N — 1
iterations, each involving a numerical integral. In order to calculate this integral more efficiently

and accurately, modified methods have been proposed [48], [49].

2.3.1.2 Log-Shifted Gamma Function: Le-Ngoc — Lam
The LL method was proposed in [27], and is inspired by the SY method. A three-parameter

function: a log-shifted Gamma (LSG) function (see Section 3.2.1.1), is used as an approximating
cdf. The sum of two LN RV’s is approximated by a LSG, after which each successive partial sum
is computed as the sum of a LN and a LSG RV. The three parameters of each successive LSG
distribution are found through matching the first two logarithmic moments of the sum (as in SY),
and also the first linear moment (as in FW). This method also requires N — 1 iterations, and
numerical integrations at every step. The method is expanded to include the sum of correlated LN

RV’s in [50].
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2.3.1.3 Pearson Type |V Function: Zhang — Song

A four-parameter Pearson Type IV (see Section 3.2.1.4) cdf is used by Zhang — Song (ZS) in [28]
as an approximating distribution to the logarithm of a SLN. These parameters are found by

matching for the first four moments of the logarithm of a sum of LN RV’s, given by:
N
Elnx"|=E 1n"(2 Y,) n=1234. (2.39)
i=1

It is not specified how these moments are calculated, but it is probably through numerical

integration.

2.3.1.4 Negative Moment-Matching

Rather than matching positive moments of the SLN as in Section 2.2.1, [21] proposed to match
the first two negative moments (powers —2 and —1). The advantage of this method is that it gives
less weight to the higher tails, and more to the lower portion of the cdf. The disadvantage is that
there is no closed-form expression for the negative moments of a sum of RV’s, and an N-

dimensional numerical integration is necessary.

This method was extended in [40] so as to use (2.20) for both positive and negative n except 0
and —1. This gives us a piecewise solution that is accurate in both tails, but again requires
numerical integration for negative n, which give the lower tail. The method does not yield a very

exact match in the body (centre) of the cdf though, and produces a piecewise solution.

2.3.1.5 Flexible Lognormal Approximation: Wu — Mehta — Zhang
The WMZ method presented in [36] approximates the SLN cdf by a LN. However, the LN cdf

can be matched to any part of the SLN curve, by selecting parameters correctly. The method uses

the LN distribution’s moment-generating function. Since its closed form is not known, a short
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Gauss-Hermite expansion of less than 20 terms is used. This method has the advantages of
providing a piecewise LN solution of arbitrarily good accuracy given enough pieces, and this

without recursion. However a non-linear equation still needs to be solved numerically.

The method is expanded in [51] to include correlated LN and LN-Rice RV’s.

2.3.2 Characteristic Function Evaluation

Another numerical approach to the SLN problem for independent summands is to take (2.6) and
consider it in the Fourier domain: the characteristic function (cf) of a sum of independent RV’s is
the product of their individual ¢f’s. Now the cf of a LN RV is not known in closed form, but can
be found numerically. This results in an integral with a very long oscillating tail, and the integral
converges very slowly. The first numerical study of the LN cf seems to be [19]. The modified
Clenshaw-Curtis method is used in [35], while [52] uses a new method where the integral is
transformed so that in no longer oscillates. Reference [53] proposes yet another integral. The cf
method is also treated mathematically in [22], where it is shown that the SLN cdf for independent

terms can be expressed as a sum of products of LN terms.

2.4 Curve-Fitting Methods

The following methods could be called “empirical”, because they consist in already knowing the
SLN cdf as a vector of values, and then fitting the best possible analytical curve to it. The SLN
cdf is obtained numerically by methods from Section 2.3.2. These methods essentially correspond
to a tabulation of curve parameters against the input parameters of the summed LN RV’s. The

weakness of this approach is that there exists an almost infinite variety of cases for the set of
input parameters {,u[, o; }fil Thus these methods only examine i.i.d. cases, where there are only

two parameters: N and o, while u can be set to zero without loss of generality.
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2.4.1 Minimax Lognormal Fitting: Beaulieu — Xie

After using the modified Clenshaw-Curtis method to find the cf, the BX method [35] assumes that
the SLN cdf is concave on LN paper (see Section 2.1.4.3), and fits the best possible straight line
on the LN paper to the SLN cdf using the minimax criterion over the range [10°, 1-10°] of
probabilities. The result is a LN approximation to the SLN distribution that does not privilege any

particular region of the curve.

2.4.2 Three-Parameter Function: Beaulieu — Rajwani

The previous method (or any other method approximating the SLN by a LN) cannot be accurate
everywhere, because in most cases the SLN cdf is not approximately LN (see Section 2.1.4.3).
Another cdf is proposed by Beaulieu — Rajwani [30] (BR), which will be analysed in detail in
Section 3.2.1.2. Here we will only say that the distribution has three parameters, which are found
by a non-linear least-squares fit to the cdf obtained numerically. These parameters are tabulated

for N =2 to 20, and ¢ = 6dB and 12dB.

2.4.3 Three-Parameter Function: Zhao — Ding

Another approach, similar to the previous one, uses also a three-parameter cdf that is parabolic
under the transformation 7. This is the ZD method [29], whose cdf will be examined in detail in
Section 3.2.1.3. Beaulieu and Rajwani mention that they have also tried and discarded a parabolic
function [30]. Our simulation results in Figure 3-2 show that the BR method greatly outperforms
the ZD method. However, the ZD method has the advantage of being defined for a whole range

of N and o.
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2.5 Validation of Methods

Given so many methods to choose from, we would like to analyse and compare them in order to

choose the ones most suited to our purpose.

2.5.1 Comparisons in Literature

There are several papers in literature dealing with comparing FW and SY methods: [45] argues
that FW is better in several cases, while [38] prefers SY. In fact which method is better depends
on the choice of LN parameters [48]. Also, FW tends to approximate the upper tail better, while
SY approximates the body, or middle portion of the cdf, as can be seen in [27], [35], [45]. Also
Farley’s method is always asymptotic to the SLN cdf in the upper tail, but is not very good in the

lower tail, sometimes better and sometimes worse than FW [27], [35], [45].

2.5.2 Comparison and Classification of Methods

There exist various approximate solutions to the SLN, which generally consist of two distinct
parts: choosing a general form for the SLN distribution, and obtaining its parameters for
particular cases. One approach has been to approximate the SLN distribution by a LN, and
various methods were used to find the best-fitting parameters: FW [26], BX [35], WMZ [36], SY
[37], negative moment-matching [40], [54], and LN bound [46]. However, it has become clear
that as the number of summands increases, the SLN distribution appears less and less LN (see
Figure 2-2). There also exist other methods, which use more complex distribution functions with
three or more free parameters: LL [27], ZS [28], ZD [29], and BR [30]. Nonparametric solutions
have also been proposed: piecewise-lognormal [26], [39], [40], or product-of-lognormal (Farley’s
method [45], other bounds [44]). Each of these methods has its drawbacks: the first class of
methods, where a LN approximation is used, cannot possibly be accurate over the entire range of

x. Many methods require numerical integration to find the required parameters: [27], [28], [37],
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[40], [54]. While the behaviour of the upper tail, i.e., as x — oo is known [21], [42], that of the

lower tail, i.e., as x — 0 has no simple expression. Some methods have only been verified for the
case of i.i.d. summands [29], [30]. Also, we will show that methods that match the body of the
distribution well [27]-[30], are not necessarily accurate in the far tails. On the other hand, the
piecewise-lognormal method proposed in [40] does give a good behaviour at the tails, but again
requires numerical integration in N dimensions and does not perform as well in the body. Hence,
there is no single method that really gives a complete solution to the problem, and there is no

closed form for the lower tail.

Figure 2-3 shows the various methods compared according to both accuracy (precision) of the
approximation (which is not entirely an objective measure, as different parts of the curve may be
better approximated by different methods, and for different parameter choices.) and also by
complexity. Complexity is again a partly subjective measure. We tried to estimate the difficulty
of understanding and implementing a specific method, while also considering the level of
integration required (iterative, multi-variate?). We also included our two new methods, PLN and
4P, introduced in Chapter 3, for comparison. We have indicated by an arrow that the
advantageous region for a SLN method is both high precision and low complexity. As can be
seen from the Figure, there are no known methods in that region, which indicates that the SLN

problem remains essentially open.

Table 2-1 shows a history of the principal developments in the field of the SLN problem in the
electrical engineering community. Some methods only apply to i.i.d. or independent but not
necessarily identically distributed (i.n.i.d.) RV’s. It does not include work on ¢f’s or comparative

work.



Method Form Statistics Matched Complexity Scope
FW (°60) [26] LN E[x]. E[x?] Closed-form  any
Cumulants:
Schleher (°76) [39] Piece-LN . Closed-form i.id.
£l(x - £lx]r]
Num. integrals,
SY (82) [371, [38] IN  E[nx] En? x] , any
N-1 recursion
N
Farley (?) [45] PLN max Y, <)Y, Closed-form any
i=1
N
Product max Y, <3,
Bounds (°01) [44] i=1 Closed-form in.id.
of LN <N ma Yz
Numerically
BX (°04) [35] LN Minimax fit any
computed cdf
, Lo (Y
AG (C04) [46] LN — z [H y,j Closed-form any
N o _t
Non-linear Numerically
BR (°04) [30] (3p.) i.i.d.
least-squares fit computed cdf
E[X]’ E[ln X] , Num. integrals,
LL (05) [27], [50] LSG (3p.) any
E [ln2 X ] N-1 recursion
Moment-generating ~ Num. equations,
WMZ (05) [36], [51] LN any
function Non-recursive
Negative Moment n n+l Num. integrals
s piccern  EX"LEX™]. & in.id.
Match. (‘05) [40], [54] n=..-3-2123.. in N dimensions
Quadratic Numerically
ZD (C06) [29] (3p.) L.
least-squares fit computed cdf
Pearson n — .
7S (06) [28] Epor x| =1, Closed-form*  any
IV (4p.)

* It is not explained how the moments of the logarithm of the SLN are found. Once these are found, the method is closed-form.

Table 2-1 Summary of properties of SLN methods.
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Preci;/on'
€ AG (04) 3% Bounds ('01)
4P (06)
Closed Form % Positive Moment-Matching: FW (‘60)
Simple Numerical Methods | 2 PN ORI croracterstic

function (76-06)
3% wzM ('05)

3% sy (82)

Iterative Numerical Methods

Compkxity %3% Negative Moment-Matching ('05)

Figure 2-3 Comparison of SLN methods by complexity and precision.

2.5.3 Monte-Carlo Simulation Algorithm

Though various numerical methods exist to find the exact SLN cdf (see Section 2.3.2), we
preferred to use Monte-Carlo simulations due to its simplicity in concept and implementation.
The algorithm flowchart is given in Figure 2-4. The strongest drawback of this method is the long

computational time. We mitigate this problem by letting the simulations run overnight.

We use the simulated curve as a benchmark for evaluating existing SLN methods, or, in
Chapter 3, methods of our own device. We will also give an algorithm that efficiently simulates

the far lower tail of the SLN cdf in Section 3.1.3.5.
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Figure 2-4 Algorithm that simulates the SLN cdf.
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Chapter 3
Towards a Good, Simple, Closed-Form Approximation of the
Distribution of the Sum of Lognormal Random Variables

In Chapter 2, we have made a thorough search of existing SLN methods and found that there is
still no closed-form method that approximates the SLN cdf well. In particular, the closed-form
methods gave us some good results in the upper tail, but failed in the lower tail. In this chapter,
we develop a closed-form approximation to the lower tail, and combine it with other closed-form

results to produce new, more exact closed-form or nearly-closed-form methods.

While it can be argued that knowledge of the tails of the distribution is less important than that
of the body, we will show that theoretical results on the tails provide information on the body
shape also, because the distribution is smooth (see section 2.1.2.1). Also, in order to apply
moment matching on positive RV’s, it is important to understand the upper tail [43], since a small

error in the distribution at high values may translate into a large error in the moment.

3.1 Best Lognormal Fit to Either Tail

In Section 2.1.4.4 we have seen that, on lognormal paper, the tails of the SLN distribution seem to
have linear asymptotes, which would indicate that the distribution is approximately LN in either
tail. We will now examine this formally by defining a property of tails of distributions, the best
lognormal fit (blf), and showing what it means in terms of convergence. We then examine the

properties of both tail of the SLN distribution using this framework.

3.1.1 Definition

x —
o

Let T : F(x) - F (x). Then H is an asymptote to F (x) at I = *eo if and only if:
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lim F(x)- 2= # — 9. G.1)

Inx—u

We say that F(x) has a best lognormal fit q)(
o

J at ¢’. At any given tail, a cdf may have at

most one blf.

3.1.2 Best Lognormal Fit in the Linear Domain

We show that if, on lognormal paper, a line L is not the blf to a curve C at the limit /, then the
corresponding distributions have tails in the corresponding limit ¢’ that are not comparable at any
order of magnitude, i.e., their ratio will diverge. In other words, a necessary (but not sufficient)
condition for approximating a distribution by a LN at a given tail is that the two distributions be

asymptotes to each other on lognormal paper.

Lemma 2:

If lim F (x) _XTH # 0or does not exist, then limi = 0,+o0 or does not exist.
X—>—o0 o x—0 ln X — ,U
b ———
o
Likewise, if lim F (x)— A # Oor does not exist, then lim I F(x) = 0,4+ or
X —>-oo o X—>+oo Inx—u
- ———
o

does not exist.

Proof:

lim F(x) XA # 0 or does not exist

X—>—o0 O
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:>—|[ lim F(x)- 24 :oj @ﬁ(v‘e > 0,35, Vx < 5,‘ﬁ(x)—x_”

X —>—oo O

<e]

& Je>0,V8,3x < 5,‘ﬁ(x)- TH s .
(o}
@38>0,V5,Elx<5,F(x)zwvﬁ(x)s x—(/1+o'g)‘
(o}
(3.2)
Applying Lemma 1:
Je > 0,V3,3x < 8, F(x) 2 x=(u-oe)
(o}
o Je>0,V8,3Ix:0<x< e, F(x)2 cp(lnx‘—(/l‘af)j
o
o Inx = (u = o)
F(x) c

& Je>0,V8,Ax:0< x < €,

>
q)(lnx—,uj cb(lnx—uj
c c

cI)(ln x— (1 - 08))

F(x) < o
ol INx— 4 ol DX -4
S G

cb(lnx—(,u—ag)j acp(lnx—(,u—ag)j

& —{Ve>0,38,Vx:0< x < e’

= —{ Ve > 0,lim IF(X) < lim 1 o = lim 1 g
x q)(nx—yJ x cb[nx—,uj x aq)(nx—,uJ
o o o
& Ve >0, lim Flx) Zlimexp(—%gz—ewj:ﬁm:lim&=+m
o

x—=0 q)(]n X — lu)

x—=0 q)(]n X — 'UJ x—=0
(o3 (o3

(3.3)

Likewise:
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Je >0,V8,3x < 8, Fx) < x =t oe)
o

& Je>0,V0,3Ix < e‘s,F(x) < CID(M_—MJ

o

cI)(ln x—(u+ 08))

< lim o = lim exp(—%ez + gwj =0.
o

x—=0 cp(]nx—[uj x—0 cp(]nx—[uj x—=0
o o

(3.4)

Jde >0,V,3x < 0, ﬁ(x) < M = limL = 0 or does not exist. (3.5)
o x—0 @ Inx —u
o
p e = x—pu . . F (x) .
Thus, if lim F (x)— # Oor does not exist, then lim—————1is 0, +oo, or does not
X—>—00 o x—0 CI) 11’1 X — lu
o

exist. The proof forx — +oo is analogous. This proves Lemma 2.
Lemma 2 has several important implications:

1. If a distribution has no linear asymptote in the LN domain at limit /, then it cannot

possibly be approximated by a LN function in the linear domain at the corresponding tail.

2. If the ratio of two pdf’s converges to a non-zero constant at limit /, and one of the two

distributions has a blf, then the other must have the same blf.

3.1.3 Lower Tail (for Independent Summands)

To our knowledge, there is no work dealing directly with the lower tail behaviour of the SLN.

There is some literature on the lower tail of the distribution of the sum of positive RV’s, but it
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does not readily apply to the SLN. The polynomial conditions required in [55] are not fulfilled

by the LN distribution.

3.1.3.1 Discrete Convolution Approximation

In order to find the lower tail of the distribution of the sum of two independent LN RV’s with
pdf’s fi(x) and f»(x), we need to find the convolution near 0 of two LN pdf’s. We proceed as
follows: let us sample the cdf’s at O, x, 2x, ..., where x is small. Then, we perform a discrete

convolution and look at the first non-zero sample:

x—0
f2x) = o ()f(x). (3.6)
Proceeding likewise for N functions:
x—=0 N1 N
f(Nx) = 2T f) - (3.7)
i=1
550 1 z (ln x—/l/)z 1 VN | In2 xzfﬂn x; Hi g%

£lwe) = 2w Haell =2z [Joe . (33
x |

Let
N 71
o, = [Z—ZJ , 3.9)

then:
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N N 2
Ll n? v2mmxo2y #os o2y A ]

-N /N ‘%T(
f(Nx) = :l\/275 NHafle i mor e
X .

2 2
1 Ay Ny N u}
N -1 || mx-0i Y S| | ol Y EL | +or Y L
1 -N _1 o7 5 o 5 o 5 o
=—V2r J]oie (3.10)
X i=1
2
N
In x—ofz% 2 N
_1 =0 | 152 ii _Liﬂ
N ? oL 2t e 5o
-N
-1
=—V2r J]oi'e
X i=1

3.1.3.2 Scaled Lognormal Approximation

From the above approximation, it would seem that we can express the lower tail of the SLN

distribution as a LN times constant distribution:

g Inx—py
f(x)x:OLe 2[ o j F(x)x:OK-Lq) lnx—_'uL , (3.11)
N2rmo, x

where:

N . N -! - lz"z[ 2 ] X5
4, =InN + O'fzi’z, K, = NO'L(H o;j Vor' Ve \Fel) CEel (3.12)
i=1

i i=1

3.1.3.3 Best Lognormal Fit

Since the expression in (3.11) is a constant factor of a LN pdf, and assuming the development in

Section 3.1.3.1 is valid, we present the following important result:

Hypothesis:

In x —
The SLN has a bl f q{nx—,uLJ at 0, where the parameters are given by (3.9), (3.12).

o,
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3.1.3.4 Difficulties in Approximating the Lower Talil

It is important to note that, the LN distribution is very flat near zero; in fact,

lim q{—ln A
x—=0 axn o

j = 0Vn = 1,2,.... The convolution is thus difficult to analyse, as it does not
fit in the framework of [55], nor is there a guarantee that the discrete convolution approximation

performed in Section 3.1.3.1 is very good. Indeed, we find by simulations that the value

of x; does not improve the approximation much, as will be seen in the next section.

3.1.3.5 Simulation of lower tail values

We find that in order to validate our asymptote, it is necessary to simulate the SLN cdf at very
low values, which correspond to probabilities as low as 102" or 10, which would require an
inversely long simulation length, which is simply prohibitive. We can however make this
simulation much more efficient by noticing that the sum of positive RV’s is always larger than (or
equal to) any of the individual RV’s. In other words, we only need to generate low values of Y; in
order to obtain low values of the sum X. More specifically, to generate the portion of the cdf
below a value SimLowVal, we need only generate values of ¥; from the distribution F;, truncated
on the interval [0, SimLowVal] and rescaled properly. We can thus obtain the sum distribution
using conditional probabilities:

Fx) = P(IZJ_V:IY!' < xj = P(iY[ <xnfy, < xVi}j = P(g (v|r, < x)< xjff[l P(Y, < x) (3.13)

i=1

The algorithm for this simulation is presented as a flowchart in Figure 3-1. There is unfortunately

no such simple algorithm for simulating high values of X.

In Section 3.1.3.6, we perform some such simulations. The simulations can be done in

reasonable time if the number of summands N is not too high, which is why we focused on cases
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of N = 2, and cases where the summands have different distributions and thus one tends to

dominate. In Figures 3-2 — 3-4 we see broken pieces of a curve. Each piece corresponds to one
simulation with a different value of SimLowVal. Tail probabilities of the order of 10*° can be
obtained using only millions of TRIALS (compare with 10*°). However, as N increases (say for 6

i.i.d. terms), the algorithm is no longer very efficient.

@ ol 11+l i 0 X <<0 |

v

INITIALISATION: | Generate Random Trial:
1. t <~ 0 Counts the number of generated g U ~ Uniform[0, scale,].
realizations of X, up to TRIALS. +
2. Divide the range of values that X can take [ i+l
into bins, in a logarithmic fashion. The number v
of realizations that fall into each bin is counted | | X « X + CXP[,U; +0@7'(U )]

by H(b) « OVb.
3. SimLowVal is the highest value of X that we

want to observe.

4. scale; = CIJ(IH SimLowVal — [, }i =1.N

o.

1

=
_
S
N—
T
/N
—=
o)
Q
Q
~
N—
—
M=
=
—_
N—
A

Find bin b into which X falls.

v v

Plot the approximate cdf H(b) H(b) <« Hp)+1

under desired transformation.

@ Yes No

Figure 3-1 Algorithm that efficiently simulates the far lower tail of the SLN cdf.
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3.1.3.6 Comparison with Simulations and Recent Methods

Using the method described in Section 3.1.3.5, we perform Monte-Carlo simulations of the lower
tail of the SLN cdf curves, along with our theoretical asymptotes, and we also reproduce some
curves from the LL, ZD and BR methods. We plot all these on LN probability paper. The

simulations are done using values from Table 3-1 and are shown on Figures 3-2 — 3-4.

We use the values from Table I in [30] to obtain curves for the BR method for several i.i.d.
cases. For the LL curves, we used the values from Table I in [27]. Note that in the fifth row of
that Table, the log-variance should be 12dB, not 6dB. For the ZD curves, we used Equations
(18)—(20) in [29], which are applicable to i.i.d. cases only, and where o is in dB. The ZS curves
are difficult to reproduce because the cdf is not known in closed form [28].

We also plot the theoretical asymptotes: one straight asymptote, the bif CI{IHXO_—_’UUJ, and

U

one LN-times-constant asymptote for each tail (3.11).

We see that in all cases the BR and LL methods, and for most cases, the ZD method, give
accurate results in the body of the distribution. However, it is evident from the Figures that each
method gives a curve that tends to diverge from the blf of the SLN at either tail. We will show in
Section 3.2.1 that this must always be the case. In particular, with the LL method, it could already

be seen that there is this divergence in the tails, on LN paper [27].

The SLN converges instead to our proposed asymptotes. We see that the simulated curve tends

to be sandwiched between these two curves. By virtue of Lemma 1, this would imply that the

SLN cdf is bounded by q)(lnx——,uUJ from above and by (3.11) from below. Since these two
Oy



functions are constant multiples of each other,

K, , kK, <k, <1such that:
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it would imply that there exists

Inx—u,

lim—L cp(

=0 F(x)

(3.14)

-

o,

This would be a much stronger result than simply a blf. However, we cannot prove it.

Figure N u; (dB) o; (dB)
3-2(A) 2 0 6
3-2(B) 2 0 12
3-3 6 0 6,8,9,10,11, 12
34 6 -25,-15,-5,5, 15,25 12

Table 3-1 Simulation parameters for SLN cdfs in the lower tail.
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Figure 3-2 The cdf of the sum of two i.i.d. LN RV’s — A: 0 = 6dB and B: 0 = 12dB.
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Figure 3-4 The cdf of the sum of lognormals with different means.
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3.1.4 Upper Tail

Since the distribution in (2.24), (2.25) is a finite constant multiple of a LN, and Lemma 2 says

that if a function is not the blf at a given tail of another function, then the ratio at that tail of those

two functions must diverge. Consequently, the SLN distribution has bif CI{IHX—_'UUJ at +o0.
Oy

3.2 Potential Functions for Approximating the SLN Distribution

Having examined the existing methods for estimating the SLN distribution in Chapter 2, and in
light of the results on the tail behaviours of the SLN distribution from Section 3.1, we now show
that all the known parametric methods are inadequate in the sense that they necessarily diverge
from the true SLN distribution in the tails. We then show how we can construct functions that do

respect the tail constraints presented in Sections 3.1.3 and 3.1.4.

3.2.1 Inadequacy of Existing Functions in the Tails

Our simulation results suggest that the existing methods for finding the SLN distribution are not
accurate in the far tails. The SLN distribution is shown to have a blf in the upper tail, and
probably in the lower tail also. In this section, we prove that recent available methods all use
distribution functions that cannot have a blf at either tail (except perhaps in the trivial LN case).

Consequently, all these methods must inevitably give tail values that have infinite relative error.

We examine four distributions that have recently been proposed as approximations to the SLN.
For each of these we show that they cannot possibly give a good approximation at the tails. We

do this formally by showing for all four methods that for the proposed cdf Fyy (x),x >0, for

- i
o

. ~ X
anyo > 0, i, the result of the transformation 7 : Fy, (x)> F Yx (x) cannot have as an

asymptote at / = oo, except in some trivial cases when Fy, (x)is LN.
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We also show that only some of the proposed functions have the LN distribution as a special

case, which should be a characteristic of an SLN approximation.

We use the constant A = 0.11n 10 to convert from decibel units.

3.2.1.1 Log-Shifted Gamma Function: Le-Ngoc — Lam (LL)

This approximating cdf has three parameters (a, 8, 8) [27]:

1 In x o S
1
F, (x) = ( )y{ ,(Z}x>e ,B>0,a>0, (3.15)

where ¥(x, ) = _[; e”'t*'dt is the (lower) incomplete gamma function, andI'(a)is the gamma

function.

3 = _ on-l L x—0A
T:F,, (x) >F,;(x) =® [F(a) y{—/w ,aJJ,x > 0A. (3.16)

The function is not even defined for arbitrarily low values.

In the upper tail, we use an approximation of the incomplete gamma function [56]:

xX—>

I(@) - fx.a) ~ 21+ 0(x)), (3.17)

and an approximation to the inverse standard normal cdf [57]:

& (x) - = 2 In[Vzay= n2x)). (3.18)

Then:
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lim FLL(x)— M p-Ad — lim CID_I( 1 x"’_le_x}—ﬁx

X—>+o0 O O X—>+o0

(3.19)
= lim +2x _ﬁx_i_ﬂ——w = —
X—>+oo O O
Hence, the LL distribution does not have a blf at either tail.
3.2.1.2 Three-Parameter Function: Beaulieu — Rajwani (BR)
This approximating cdf has three parameters (ao, a,, az) [30]:
Fyp(x) = cl{ao - alx_ﬂ],x >0,a, > 0,4, > 0,a, >0, (3.20)
T: Fap(x) > Fop(x) =a, —aje * . (3.21)
Then:
lim Fp () = 2~ = gy + £ —limae * + -~ = too. (3.22)
x—l o (02 x—1 o

Hence, the BR distribution does not have a blf at either tail.

In [29] it is mentioned that this form does not include the LN distribution as a special case. We

can, however, obtain convergence of Fy;, (x) = CIJ(lnx—_’uij :
o

Let us consider i, o as constants, such that:

ﬂz%,az L (3.23)

aay

Then:



o

— 44 _ ([aT2-1 1-x7%2 ) _
FBR(x)=<IJ[ 1( 2 )}q{—( 2)-n J

Using an alternative definition of the natural logarithm:

—a
. - X
Inx = lim , x>0

a—0 a

we obtain:

Fipp () — %20 q{l“ - ”j, x>0,
o
Thus, in the limiting case:

a, = 0,4, = (0,0)",a, = a, - /0,

the BR distribution is LN.

3.2.1.3 Three-Parameter Function: Zhao — Ding (ZD)

This approximating cdf has three parameters (co, s cz) [29]:
In x Inx)
F,h(x) = ®| ¢ +6‘17+6‘2 — | ,x20,

T:F,(x)— I::ZD(x) = ¢, + 0+ 252

A ys

Then, ifc, # 0:

imF, () - —# —lime e e[a_ L A
EE}FZD(X) p —£1Lr}/12x +(/1 O_Jx+c0+o_—
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(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

Hence, the ZD distribution does not have a blf at either tail, except in the LN case ¢, = 0.
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3.2.1.4 Pearson Type IV Function: Zhang — Song (ZS)

The proposed distribution for the SLN in dB is Pearson type IV, which has four

parameters (1, m, d,v) [28]. Consequently, the pdf of the SLN in linear scale has distribution:

Szs(x) = (1 +y ) oV acuny

lnx |
= + m > >
ﬂd d’

(3.31)

y , x>0,

and £ is the constant chosen so that the pdf be valid and is found by numerical integration for each
particular case. It would seem that the cdf is not readily available in closed form. However, we

can still study its tail behaviour:

M oadm—1 — v— sgn(d)
Frs ) = K" 2 i o
~2m (3.32)
|ln X
=C, ,C, >0,
50 . |ln y|—2m |ln x|1—2m
Fp(x) ~ =) C———dy=C( (3.33)
y 2m -1
Again, using the result (3.18):
T Fu() s Fus(x) ¢“(L|x|l‘2’”]
2m -1
T Jam—2)mCx) = i Fyp(x) - (3.34)

=— lim 1/ dm -2 1lln

X—>—o0

+

A similar analysis applies for the upper tail.

Hence, the ZS distribution does not have a blf at either tail.
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3.2.2 Potential Function Candidates

If the existing methods use cdf’s that cannot behave properly in the tails, what then would
functions that do look like? We give here a collection of three functions that verify at least some

of the tail requirements given in Sections 3.1.3.2 and 2.2.2.

3.2.2.1 Power Lognormal

A PLN cdf has general form:

Fpopy(x) = cp’(lnx—_m}x >0 t>1s>0 (3.35)
N
It has pdf:
t 1{Inx—m g Inx—m
Fon (x) = exp| — —(—j CI)H(—J,)C >0 (3.36)
PLN( ) \/Exs p > p S
It has blf q{lnx——mj at +oo. Proof:
N
im L= Pl frun (%) = lim td)"l(lnx—_mj =1 (3.37)
N

X—>oo 11’1 X—m X—>+Foo 1 1(1n x—m 2 X—>+oo
A e
§ 27xs 2 s

By lemma 2, since the limit is finite (non-zero), the function is indeed the blf. This completes

the proof.
The lower tail poses more of a problem, because it does not have a blf unless ¢ = 1.
Proof:

Consider
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T Fopy(x) > Fopy(x) = ®—1£¢’[MD. (3.38)

e’ (3.39)

we find:

2
_L(X—"’)
o t, 20 s
~ x—> ] s'e s

Fppy(x) ~ (3.40)

We use the tail approximation (3.18) from [57]:

_ifx=mY’ _tfx=mY’
Fox) = = |-2n 2\/_¢ |22 )

V27 (m - x) V27 (m - x)

—2tln( \/_%J (x;mJ2+2tln(m—x)

_ZIn[\/—tln[ J;_nJ+tlnm )+ ;(x—smT]

, —tIn| 22— |+ ¢1n(m - x)
s xX—m 27 t(m - x)z(l_t)
+ 1 —In| +
27 s

(m - x)* 252
() e e e

Now if q)(ln XK j is the blf at 0, then the following equation must hold:
o

=-—|=2t ln(2
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2
34,30 : lim x_“+\/t[x_mj +2(t = 1)In(-x) =0

= xlimw[x;ﬂjz + t[x;mjz +2( = 1) In(= x) + 2[x ;”j\/t()‘ - mjz +2(-1)In(-x) =0
- xlinlo[x ;”]2 + t[’“‘s’"jz +2( = 1)In(- x) - 2%(’2“](’“?’"} -0

= lim Ax*> + Bx+ C + 2(t —1)In(- x) = 0.

X—>—00

(3.42)

This has no solutions, for any constants A, B, C, unless ¢ = 1. This proves that the PLN cdf does

not have a blf at —o. However the lower tail does have a limiting slope:

lim aiﬁ*’”v (x)= - lim i\/{x - ’"jz +2(¢ = 1)In(~ x)

x> - Jx x> —e Jx s
2t(x—mj 2(r —1) 2t(x—mj_2(t—l)
~ _ lim S\ S a = lim SN - (3.43)

3"

= lim ——2 2 = lim —> /=

X—>—00 _ 2 X—>—o0 m-—Xx Ky ’
2x ’(x mJ _Sﬁ( s j

SX

We are thus interested in the PLN distribution because it has a blf in the upper tail, and at least
a limiting slope in the lower tail. Also, [22] suggested that the SLN distribution could be written
as the sum of products of LN distributions. A PLN distribution is a particular case of this, which

makes it an interesting candidate.

3.2.2.2 A Four-Parameter Function

Since we have seen that the SLN has blf*s at both tails, it would be interesting to create a function

that also has the same blf*s at both tails. To do this, we first construct a function r(x), such that:
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1. r(x) is analytically smooth.

2. lim r(x)=0.

x—>—o0

3. lim r(x)-x=k.

X —>+oo0

One such function is:
r(x, k) = ln(l + ekex) (3.44)

Now, in order to construct an approximation to the SLN cdf, we construct the following four-

parameter (4P) function:
-~ d cxX
F4P(x)=ax—r(cx,zj—lnb :ax—ln(b+de ),a >c >0, (3.45)

which has tail behaviour:

X—>+oo X —>—00

F,o(x) =~ (a—c)x—Ind and F,,(x) = ax—1Inb. (3.46)
Consequently,
T :Iap(x)H F4P(x)=ax—r(cx,£j—lnb=® In| —> -[La>c>0 (3.47)
b b + dx°

is our proposed function 4P for approximating SLN. It has blf ®((a — ¢)In x —Ind) at +o, and

blf ®(aln x —Inb) at —o.

3.3 Obtaining the Parameters of the Approximating Functions

3.3.1 Power Lognormal Distribution

We wish to fit the PLN cdf to that of the SLN as well as possible. We know the blf of both the

upper and lower tail of the SLN, and we can also find its moments analytically, whereas the PLN
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distribution has three free parameters only. We choose to match the slopes of both tails first,

because an error in the slope of the tail asymptote will become infinitely more significant than an
error in the offset as we approach the limit. We also found that matching the first moment of the
PLN cdf with that of the SLN was a best-effort method to get a good curve match. It is fortunate
that we do not have to solve for all three parameters simultaneously, but rather we first find s,

then, using s, find #, finally we find m using a numerical integral involving s and ¢.

3.3.1.1 Matching the Tail Slopes

We first find the value of s. The upper tail slope is given by the blf at +oo (see Sections 3.1.4 and

(2.21)) and is matched with the blf at +oo of the PLN, given in Section 3.2.2.1 :

§ =0, =maxo; . (3.48)

From the value of s we can find ¢. The lower tail slope is given by the blf at —o (3.9) and is

matched with (3.43):
1 2
t t 1 N1 ) N y Max o;
iziz—z[z—zj St=0,>2—=>——5—2N, (3.49)
S oy (o} =1 0 i=l O i=1 O;

and ¢ = N if and only if all variances are equal.

3.3.1.2 Moment-Matching
The moments of the of the PLN distribution with pdf (3.36) are:
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[ ] t 1{Inx—m g Inx—m)dx
E|X"|=—["x"exp| - | ———— | || ———|=
V27rsj0 p[ 2( N )] ( s )x
t 1(x—m : xX—m
t xn - t—1 -
=——| eexpl—— P ( jdx
N27ms T { 2( s j} S

2
— t emn +°°exn eXp|:— l (ﬁj ]@t—l(ﬁjdx
27s o 2\s s

+oo  xsn—

e %XZCID'_l(x)dx,

(3.50)

where the integral A needs to be calculated numerically as a function of s and ¢ found in Section
3.3.1.1. This is essentially the same expression as found in [58], where the PLN distribution is
defined slightly differently. Notice that the parameter m comes out of the integral, which allows
us to solve for m, using the first moment:

N 1.2
m=nE[X]-InAls, 1) =InY "% —InAs,1) (3.51)

i=1

Although our method requires numerical integration at this point, it still remains much simpler

than other numerical methods, for the following reasons:

1. The integration needs only be performed once, not iteratively for all summands as in SY

[37] or LL [27].

2. The integral is very well-behaved and can be calculated directly using a Riemann sum,

unlike some of the numerical methods used in other SLN methods [35].
We calculate the integral by summing it over the interval [-25, 25] with step 0.01.

We can partially verify our method since we do have a closed-form expression for the moments

of the PLN distribution when t = 2:
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Alsn,2) = rw w3 (x)dx
V2 (3.52)
— i +°°eXSVl—%X2J' dl‘dx — _I+°°.[ xan—lzxz—lztz dl‘dx
21w - - '
Now make the change of variables:
‘= a+b ( )
a=x+t - dlx, 1
2 J = 1 Jl =41, 3.53
{b—x—t: t:a—b:> (a, b) s ==1 (3.53)
2
mn o000 a 2 a
E[X 2]— e’""A sn 2 _f je ) 2( +b)dbda
0 (3.54)
R e L e™ i SN\ mn+d?n?
= e 2dxle' 2 dx= 27 |e 2 dx =20 —
7 L { = B

We verify this by comparing with numerical values in Table 3-2, where we see that the Riemann
sum and the theoretical values coincide perfectly. However, we were not able to do a separation
of variables for ¢ higher than 2, so the general closed-form expression for the moments of a PLN

distribution is to our knowledge unknown.

sn E[x"i = 2,m = 0] = 2¢(%Je552"2 Numerical A(sn,2)
1.38155 4.34051634070834 4.34051634070832
2.76310 88.66140823458991 88.66140823458983
5.52620 8559626.655008020 8559626.65500801 1
11.0524 6.711355855174830-10%° 6.711355855174811-10%°
22.1048 2.536010695502967-10'% 2.531281918731208:10'"

Table 3-2 Analytical and numerical calculations of moments of the PLN
distribution when the power is t = 2, with differences underlined.
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3.3.2 Four-Parameter Function

Based on the bif’s given in Section 3.2.2.2, the system of equations for matching asymptotes is:

L Mg L oa Ay, (3.55)
Oy Oy )3 o

This is directly solvable:

L Hy
a=i, b=e, c=L—L, d=e (3.56)
o, o, o,

where the parameters are given by equations (2.21), (2.22), (3.9), and (3.12). After substitutions,

we obtain the following closed-form expression in terms of the parameters of the summands:

In x—py _ln X—py

1 —
DX qplige v o || (3.57)

Oy

F4P(x)=q)

3.3.3 Evaluation of Closed-Form Methods against Simulations

In this section, we evaluate the performance of the two SLN methods we developed against all

other known closed-form methods. The known closed-form methods are:

1. Moment-Matching by the FW method using (2.16)—(2.19). We only consider matching

the first and second moment, as these give the best results overall [40].
2. The lower bound expression in (2.26), which is an upper bound to the cdf.
3. The upper bound expression in (2.28), which is a lower bound to the cdf.
4. The AG method given by (2.30), (2.33).

We also plot our two new methods: PLN and 4P. While our PLN method is not strictly closed-
form, the numerical integration required is minimal (and there is hope that the numerical integral

in (3.50) can some day be found in closed form, at least for integer #). We run Monte-Carlo
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simulations to validate all these methods. We have chosen four cases, described in Table 3-3.

The results are plotted on LN paper in Figures 3-5 — 3-8.

Figure N H; (natural units) o; (dB)

3-5 6 0 12

3-6 30 0 6
0,1,2,3,4,5

3.7 12 8
6,7,8,9,10, 11
5,5,5,5,5,5, 12,12, 12,12, 12, 12,
4,4,4,4, 4,4, 11,11, 11,11, 11, 11,
3,3,3,3,3,3, 10, 10, 10, 10, 10, 10,

3-8 36
2,2,2,2,2,2, 9,9,9,9,9,9,
1,1,1, 1,1, 1, 8,8,8,8,8,8,
0,0,0,0,0,0 7,7,7,7,7,7

Table 3-3 Simulation parameters for sums of lognormals.

From the simulation results, we make the following observations:

1. The FW method performs well in approximating the upper tail.

2. The true SLN cdfis sandwiched by the two bounds (2.26) and (2.28).

3. The AG method gives a rather loose bound, as predicted in Section 2.2.3.2.

4. Our PLN method tends to perform better than all other methods, particularly in the
complicated case of Figure 3-8. In particular, it performs better than the upper and lower
bounds, which are also of the form of a product of N LN cdf’s.

5. Our 4P method does not give a very close match to the real SLN cdf, particularly in the
body. However, with additional degrees of freedom, we believe that we can make the
curve move in the body so as to fit the entire curve well. Also, we conjecture that the 4P
cdf is an upper bound to the SLN cdf.

In light of these observations, we choose both the FW method and our PLN method as

candidates to approximate the interference distribution. The FW method is commonly used in

similar interference analysis work [9], [13], [16], and is thus a good benchmark for

comparison. Both methods are simple to implement, as will be seen in Chapter 4.
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Figure 3-6 The cdf of the sum of 30 i.i.d. lognormals, and closed-form methods.
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Figure 3-7 The cdf of the sum of 12 lognormals with different means, and closed-
form methods.

[ s - i
R R i R— P S
Fledfonno —  — e e e
e
089 fremmmmmmm e AT T T
09— """""""""" ---------- / ----------- LEGEND
. ' : : : Monte Carlo S|mulat|on
EE i Sl B Lt At MR A ~Methods- from Irterature
> FW moment-matchlng
8.1 — --------------- ------------ B V'wLowerbound 1
Upper bound
om — --------------- ------------ AG method
A e """""""" ; """""" | Our new methods
[ B """""" 7 """"""""" ;';;'-"'P[_‘N“ﬁ‘ttin"' :
ol I V7 /M N B B 4p method
10 20 30 40 50 0

dB

Figure 3-8 The cdf of the sum of 36 lognormals with different means and

variances, and closed-form methods.



62
Chapter 4

Statistical Analysis of Total Interference Power

In cellular communications, the purpose of the mathematical problem of the SLN is to find the
distribution of the total interference power / experienced by the DMU. We would like to do this
without simulations, preferably with as little numerical methods as possible, ideally in simple
closed form. We will use two different methods to find this distribution: one is the well-known
FW moment-matching method [26], which is the simplest one and is entirely closed form. We
found that no other closed-from method really existed that we could use with good results, which
is the reason for our work in chapter 3. The second method we use is the PLN approximation,

where we apply the method developed in Section 3.3.1 to the cellular interference problem.

In this chapter, we first show that the interference /; coming from one cell can be well-modelled
by a Bernoulli Lognormal (BLN) RV. The sum of BLN is a more difficult problem, so we need to
modify our SLN methods slightly. For both methods, we devise an exact method that is a bit
long, as well as handy approximations that turn out to be good and can be essentially calculated
with a scientific calculator and the Tables provided in this chapter. In order to give credibility to
our results we verify our solutions by Monte-Carlo simulations, which is sometimes lacking in
literature [1], [3]. We find that our methods tend to predict the distribution well in most cases, but
not always, clearly indicating that more work needs to be done in the SLN problem. We believe
that a better method can be found by pursuing the direction of Sections 3.2.2 and 3.3, which looks

promising in that both tails could be fitted using closed-form equations.

4.1 Simulation Algorithm

Figures 4-2 and 4-3 give a flowchart of the algorithm that simulates interference in a cellular

system according to the model given above. We used this algorithm to create our simulated
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curves. It is necessary to generate MU positions (both DMU and IMU) according to a spatially

uniform distribution within a hexagonal cell of unit side. Also the positions of all the IFS’s are
needed. We can represent these as complex numbers, and then distances can be calculated as
magnitudes of differences of positions. Figure 4-1 gives an example of a layout with normalised

distances and mapped onto a complex plane.

Figure 4-1 Normalised MU and FS positions in a complex plane.



INITTALISATION:

1. t < 0 Counts the number of generated

realizations of /, up to TRIALS.

2. Divide the range of values that / can take into
bins, in a logarithmic fashion. The number of
realizations that fall into each bin is counted

by H(b) < OVb.

3. Simulation parameters: 5, K, p, o, 6.,, kpc, kpr,

N, {IF S, }l.N:lpositions of the interfering FS’s.

64

t—t+1 i« 0 1«0

> Generate Random Trial:

DMU ~ Unit Hexagon.

v

Generate Random Trial:

b

2. H (k)

H(b) «

A

TRIALS ;=

v

Plot the approximate cdf H(b)

under desired transformation.

¥, ~ Uniform[0, 1].

v

i< i+1

Yes

Algorithm to
Calculate I;
(Figure 1-2)
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Figure 4-2 Algorithm for simulating interference in cellular systems.
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4.2 Distribution of the Interference Power from One Interferer

We first want to see what is the (approximate) distribution of the individual terms /.

4.2.1 Separating the Pathloss from all Other Factors

An important insight is that the pathloss is independent of shadowing, fading, activity, and in the

DL, of transmit power due to PC. We can rewrite (1.1) as:
Q= CiliaizPi = 1= ZR;Qi . (4.1)

The case of UL — PC requires a slight modification, as the transmit power and pathloss both
depend simultaneously on the IMU position. Hence we can essentially separate the geometry of
the problem from all other considerations, and can tabulate coefficients that are a function only of
the location of the cell and the pathloss exponent. The coefficients are found by numerical
integration, and here is the beauty of the method, need not be recalculated ever again, and do not
change with other system parameters. This is the approach proposed in [3]. We found in literature
[1], [6], [7] that what is often attempted is to integrate the pathloss distribution together with
shadowing, fading, etc., but we feel this is “reinventing the wheel” at each time, if we only want
the moments of the resulting RV. It is much more convenient to be able to treat the geometry of
the problem separately, tabulate it, and then work on the problem at hand without going into any
layout considerations. This is a core idea of this chapter, and leads naturally to our goal of

obtaining simple, closed-form solutions to the interference distribution.

This separation of geometry is also important because all other factors: shadowing, fading,
transmit power and activity are i.i.d. across the cells, whereas the pathlosses are both statistically
different, and also, in DL, correlated. For all these reasons, we believe that the separation is a

judicious one.
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4.2.2 Statistical Moments of the Inverse Pathloss

The moments of the individual inverse pathlosses need to be calculated by numerical integration,

though analytical approximations exist [3], [S], [10]:

-nf
x0p) = ER = 2 [[Ja—x) w5y dudy. (42)

(x,y)e Cy

Here C)is the cell under consideration, enclosed by a unit hexagon centered at the origin, and (x;,
y;) are the coordinates of IFS i. Figure 4-1 illustrates a possible layout. We tabulate these values
for all cells in a traditional three-tier cellular layout (Figure 4-4). We see in the Figure that there
are five different classes of cells, where cells in the same class are located in the same manner
with respect to the cell under consideration Cy. Thus we need to calculate x coefficients for only

five different cells (Tables 4-1 and 4-2).

0008
ORGROS0
826°020
ORO-0R0

08080
(ogedeade!

Figure 4-4 Three tiers of cells with five different cell positions (classes A-E).



f ClassA ClassB ClassC  Class D Class E
3 02798 0.02609 0.04130 0.007384  0.01088
3.2 0.2645 0.02058 0.03365 0.005336  0.008072
34 0.2508 0.01624 0.02745 0.003858  0.005993
3.5 0.2446 0.01443 0.02480 0.003281 ' 0.005165
3.6 0.2387__0.01283. 0.02242, 0.002790 | 0.004452
3.8 02279/ 0.,01014 /0.01832 /0.002018 / 0.003308
4 02184 0.008023 | 0.01499 & 0.001461/ 0.002459
4.2 02099 0.006351 '0.01227 ' 0.001057 © 0.001829
44 02024 0.005031 0.01006 0.0007655 0.001361
4.5 0.1990 0.004479 0.009108 0.0006515 0.001174
4.6 0.1958 0.003988 0.008250 0.0005545 0.001013
4.8 0.1900 0.003164 0.006774 0.0004018 0.0007540
5 0.1849 0.002512 0.005567 0.0002912 0.0005617
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Table 4-1 «. () function tabulated for all cell classes and pathloss exponents.

p Class A Class B Class C Class D Class E

3 0.1680  0.0007999 0.002113 0.00005849 0.0001296
3.2 0.1645  0.0005084 0.001443 0.00003085 0.00007224
34 0.1624  0.0003240  0.0009882  0.00001629 0.00004035
3.5 0.1618  0.0002590  0:0008187  0.00001184 0.00003017
3.6 0.1616 0.0002070 / 0.0006788  0.000008608  0.00002257
3.8 0.1620  0.0001325/ /0.0004676 | 0.000004555  0.00001264
4 0.1634 0.00008508 ' 0.0003230 / 0.000002413  0.000007090
4.2 0.1659 0.00005473 '  0.0002237 / 0.000001280  0.000003982
44 0.1693 0.00003529 ' 0.0001553" '0.0000006796 0.000002240
4.5 0.1714 0.00002836  0.0001295 0.0000004954 0.000001681
4.6 0.1737 0.00002280 0.0001081 0.0000003612  0.000001262
48 0.1790 0.00001476 0.00007536 0.0000001922 0.0000007116
5 0.1853 0.000009576 0.00005267 0.0000001024 0.0000004019

Table 4-2 «.(2/3) function tabulated for all cell classes and pathloss exponents.
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4.2.3 Statistical Moments of all Other Factors

Since the components of Q; are independent, and all Q; are i.i.d., we may define the B-coefficients

as follows:

B, = E[Qin]: E[gin ]E[aizn]E[Zin ]E[Pzn] , Vi . 4.3)
If there isno PC: P. = 1, Vi .

With PC, the power transmitted will be proportional to the pathloss between the IMU i and its
FS. The position of the IMU has uniform distribution over its cell area C;. Now the cell area is a
regular hexagon of unit side, which it is conventional to approximate by a circle of radius p < 1.

We define the mean pathloss between an IMU i and its own IFS to be L;:

2

2
L= fin=sa” e ol (4.4)

2

E[L;’]= 2+nf

p" (4.5)

In [1], [3], p is assumed 1. We found, through numerical integration, that p = 0.915 gives a

good approximation for the first two moments and use this value in our analysis. A value of
3+ /\27 = 0.9094is used in [5] and [10].
The transmit power will also be affected by LN shadowing, for which the PC mechanism will

attempt to compensate. We model this by a LN variable with statistics (0,6 + 62), as done in [1].

Finally, with PC, the moments of the transmit power are:

Elpr]= > +2nﬂ p”ﬁeé("”"z) : (4.6)

Consequently:
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Koo
n 2 52 2 n ﬁcr2+0'e2 "
B, = pE[(){[2 ]ez [2_'_ Y p"Pe? ( )} . 4.7)

We normalise the fading power such that the power mean E [a'[z] =1. Then the second moment

of the power is known [59]:

Ela]=2-(+x")". 4.8)

Note that when there is no fading: K = oo, E[Otf]: 1. For Rayleigh fading,

K=0= E[a'f] = 2. We then obtain:

e
152 2 l(az +a?) "
B, = pe?’ | ——— pPe> ¢ , 4.9
1 =D {2+ﬂp } (4.9)
2 1 fre
B, = (2— el jewz L gt | 4.10
s=p(2-(+ k) Tyl (4.10)

We can write, for all cases except UL — PC, that the pathloss is independent of all other factors,

which leads to:

E[Iin] = E[RinQin] = E[Rin ]E[Qin] = K}(”,B)Bn [kDL’kPC] # [0’1] : (4.11)

However in the case of UL-PC, R; and Q; are not independent, and a modified method needs to be

developed.



f ClassA ClassB ClassC  Class D Class E
3 02799 0.02609 0.04130 0.007384  0.01088
3.2 0.2645 0.02058 0.03365 0.005336  0.008072
34 02508 0.01624 0.02745 0.003858  0.005993
3.5 0.2446 0.01443 ~ 0.02480 0.003281 ' 0.005165
3.6 0.2387 = 0.01283 | 0.02242 / 0.002790 | 0.004452
3.8 0.2279 /| 0.01014 0.01832 /0.002018 / 0.003308
4 0.2184/ 0.008023 ' 0.01499 ' 0.001461/ 0.002459
4.2 0.2099 0.006351 0.01227 ' 0.001057" 0.001829
44 0.2024 0.005031 0.01006  0.0007655 0.001361
4.5 0.1990 0.004479 0.009108 0.0006515 0.001174
4.6 0.1958 0.003988 0.008250 0.0005545 0.001013
4.8 0.1900 0.003164 0.006774 0.0004018 0.000754

5 0.1849 0.002512 0.005567 0.0002912 0.0005617
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Table 4-3 & () function tabulated for all cell classes and pathloss exponents.

p Class A Class B Class C Class D Class E

3 0.1680  0.0007999 0.002113 0.00005849 0.0001296
3.2 0.1645  0.0005084 0.001443 0.00003085 0.00007224
34 0.1624  0.0003240  0.0009882  0.00001629 0.00004035
3.5 0.1618  0.0002589  0.0008187 \ 0.00001184 0.00003017
3.6 0.1616  0.0002070. /0.0006788 ' 0.000008608  0.00002257
3.8 0.1620 0.0001325 |/ 0.0004676  0.000004555  0.00001264

4 0.1634 0.00008508 @ 0.0003230' | 0.000002413  0.00000709
4.2 0.1659 0.00005473 ' 0.0002237 | 0.00000128  0.000003982
44 0.1693 0.00003529 0.0001553/ 0.0000006796  0.00000224
4.5 0.1714 0.00002836  0.0001295 0.0000004954 0.000001681
4.6 0.1737 0.00002280 0.0001081 0.0000003612  0.000001262
48 0.1790 0.00001476 0.00007536 0.0000001922 0.0000007116

5 0.1853 0.000009576 0.00005267 0.0000001024 0.0000004019

Table 4-4 &.(2/3) function tabulated for all cell classes and pathloss exponents.
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4.2.4 The Special Case of Uplink with Power Control

In the UL — PC case, the pathloss between the IMU and the FS of cell Cy and the pathloss

between the IMU and its own FS are two correlated RV’s. We modify our method as follows:

g0p)= Elrin]= 2 [fa-x?+o-y e +v2) Tawy . @12

(x,y)eCy

Here the integral is performed in the same manner as (4.2). These values are tabulated in Tables

4-3 and 4-4. We also define:

B, = E{ Ql’n} = gl Ele |E[y ]E{PL}W. (4.13)

L; L;
B, = pEfa]pr b ) (4.14)
B, = pe” 2. 4.15)
B, = p(2 — i+ K—l)‘z)e“"“”f . 4.16)

Then the moments can be expressed as:

eyl o) el | < 50, fkd=lod

i

4.2.5 Bernoulli Lognormal Approximation to Single Interferer Power Distribution

The signal power coming from a single interferer, ;, can be modeled approximately by a BLN

RV, with cdf:
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F.(x) = cp(lnxb—_“"jp +(1=p)x>0. (4.18)

i

4.2.5.1 Support in Literature

We model the interference from one user as a product of a LN shadowing component, a fading
(Rayleigh, Rician or none) component, a pathloss component that assumes some spatial
distribution of the MU. Also, if there is PC, the transmit power is not constant, but follows a
distribution that is LN (compensating for shadowing and also because of LN PC error), multiplied
by a quantity proportional to the pathloss (so as to compensate for it) between a randomly located
IMU and its FS. The product of all these is approximated as a LN RV. Furthermore, user activity
is modelled as Bernoulli, thus the interference power from a given interferer is modelled as BLN.

This is the same approximation as in [1].

4.2.5.2 Theoretical Basis

It is not accidental that the distribution of the product of many RV’s approaches a LN
distribution, particularly if some of the terms are already LN, with high variance. First of all, the
product of LN RV’s is also LN. Secondly, by virtue of the Central Limit Theorem for products,
the (properly normalised) product of many RV’s with square-integrable pdf’s will approach a LN
RV in distribution [60]. The Bernoulli RV does not satisfy the condition and thus cannot be
absorbed in the LN approximation. Indeed, multiplying any number of Bernoulli RV’s can only
result in another Bernoulli RV. The Central Limit Theorem for products works quite well in our
case: though only a few RV’s are multiplied, there are already among them LN RV’s with high
variance: the shadowing (6-12 dB) and, if there is PC, another shadowing factor due to the power
compensation. Thus we expect the approximation to be good (and get better, with higher

shadowing).



74
4.2.5.3 Fitting the Distribution by Moment-Matching

The moments of /; can be matched with those of the approximating distribution F;(x):

Elir]= p-em s (4.19)
Inverting (4.19), we obtain:
a; =2 E[I,]- L E[l?|-2m p
2Inx,(8) - Linx,(28) - 2In p —%m(z— 1+ K’l)_zj
_ +kpe[BInp =2l +1 )+ L (1 + B)]  [kpy. kpe ] # (0] (4.20)
2In&(B)-1Ink (28)-2Inp —%m(z - (1 + K’l)_zj [k py s kpe ] =0.1],
b? = 2 E[1,]+ mE[I2]+ 1 p
o> 2k (B)+Ink (28)+1np + ln(2— 1+ K’l)_zj
_ thpelo? + o2 +2m+ L B)—n(1+ B)]  [kpy.kpe ] # [01] (4.21)

207 +6% —2In & (B) + In & (28) +In p + ln(2 (. K‘l)‘zj [k, koo ] = [0.1].

4.2.5.4 Validation through Simulation

We simulate the distribution of the interference coming from one nearby interferer (class A), as
well as from a distant interferer (class D) and compare the results with the theoretical LN
distributions with parameters given by (4.20), (4.21). Note that we set p = 1, since the pdf of a
RV multiplied by a Bernoulli RV is just the scaled original pdf with additional mass at zero, and
there is no need to simulate this. Also, when there is no PC, both UL and DL interference are the

same for one user, and thus the simulated results apply equally to both cases.

The simulations are done according to the parameters in Table 4-5, while ¢, = 1dB = 0.23. The

results are plotted on Figures 4-5 to 4-10. We observe an excellent match in the higher values of
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the distributions, which can be expected, since moment-matching should give a good match to

the upper tail [43], but the lower tails tend to diverge in most cases. The lower tail is well-
matched only when there is no fading, and the interfering cell is far, meaning that the pathloss
will not vary overmuch, and the power is essentially LN (Figure 4-8). The results are not
encouraging in the lower tail. However, we will see in subsequent sections that although this
affects the results of the problem of many interferers, the error in the lower tail does not

necessarily accumulate, and may be in fact be quite small.

Figure 4-5 4-6 4-7
p 3 4 35
o [dB] 6 9 12 6 9 12 6 9 12
K 0 ) 10
Cell Class A
Link UL/DL DL UL
PC No Yes Yes
a; -2.002 -3.884 -3.567
b; 1.837 2400 3.017 2312 3.181 4.099 2290 3.165 4.086
Figure 4-8 4-9 4-10
p 3.5 3 4
o [dB] 6 9 12 6 9 12 6 9 12
K 0 10 0
Cell Class D
Link UL/DL DL UL
PC No Yes Yes
a; -5.767 -6.430 -8.685
b; 1416 2.095 2780 2.069 3.009 3967 2218 3.113 4.046

Table 4-5 Simulation parameters for single interferer power.
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4.3 Statistical Moments of Total Interference Power

Although the moments (of natural order) do not entirely characterise a distribution [43], they
nevertheless offer much useful information about it. In this section, we present both an exact
expression for the first two moments of the total interference power I, as well as good
approximations, which hold under the assumption that the shadowing variance is large enough,

which we find to be the case in realistic scenarios (6 — 12 dB).

4.3.1 First Moment

4.3.1.1 Uplink without Power Control, and Downlink

Let us define A, coefficients, which are a function of the cellular layout and the propagation

constant, as follows:
N N N
A, = [Z Rin} = ZE[R;‘ =D K (”ﬂ) . (4.22)

In the DL, the DMU receives interference from all FS’s. The power transmitted by these is
independent of the position of other users in the interfering cells. Similarly, in the UL — no PC
case, the transmit power of each IMU is independent of its position. We thus conclude that each

pathloss is independent of all other factors, and we may write:

Elr] = E[i R,Q,} - ﬁlE[Ri]E[QJ - E[i Rl}E[Q,»] —AB, [k k]2 01] . 423)

4.3.1.2 Uplink with Power Control
The method needs to be modified slightly for the UL — PC case. We define:



- g 3w |- S eln]- Srws).

Then:

ElI]= gE[RiLi ]E{%} = E{i R.L, }E{g} = AB, |ky . kpe]=101] .

4.3.2 Second Moment

4.3.2.1 Uplink without Power Control

E[Iz]:EH%IJ}:géE 1,]= ZE[I ]+ZUZE[I 1]

- s el ko]« 2 3 elrr Jelo Jelo, - a5 + 525 3 Elver ).

i=1j=1 i=1j=1
Jj#i Jj#i

In the UL, the pathlosses are independent, hence:

)= aom, o[ 33 ele el |- $ el

= A,B, +{(ZK( )jz Zx(zﬁ)J = A,B, + (A} — A))B}  ky, =kpe =0.

4.3.2.2 Uplink with Power Control

Analogically, we can find the moment in UL-PC:

E[Iz] = Azgz + (;112 - Az )512 [kDL’ ch] = [071] .

4.3.2.3 Downlink
Define:
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(4.24)

(4.25)

(4.26)

4.27)

(4.28)
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=S S ERR,]= EK%} Rijzl' (4.29)

i=1j=1

In the DL, the distances between the DMU and the IFS’s are not independent and Ap; cannot be

separated into a sum of terms, but must be integrated for the entire geometry as follows:

ﬂ 2
Ap, =——= ( Y —x) +(y -y’ jdxdy, (4.30)

3\/5 (x, ))GCO

where x;, y; and Cy are the same as in (4.2). Then:

N N N
E[IZ] =A,B, + (E[Z ZR,AR].} -> E[Riz ]JBE = AB, +(Ap, — A))B]  kp, =1. (4.31)
i=1j=1

4.3.3 A Simple Approximation to Moments

We found in our numerical examples that only the first term in the second moment expressions is

significant, and that the following approximation is usually exact to several digits:
E[1*] = A,B, k. Yk 4.32)
We conjecture that, in general,
E[l"]2AB, n=123. Vkp,. Yk 4.33)

We believe the reason for this is that since B, is dominated by a LN RV factor with high

variance, which has moments of the order of e" , therefore B, >>> B, . If write the

multinomial expansion of (4.33), we will find that there will be one term containing B, , which is

the one given by the equation, which will dominate.
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Notice that the expressions for the moments are then identical for UL and DL, which is

suggested by [47].

4.4 Modeling the Total Interference Power as Bernoulli Lognormal

We approximate I by a LN RV of parameters (a;, b”) multiplied by an independent Bernoulli RV

with parameter p,, giving a BLN distribution:

F,(x) = ‘I’(lnxb—l_al}’z +(-p,),x>0, (4.34)
p,=Pll=0]=1-1-p". (4.35)

4.4.1 Arguments for the Choice of Distribution

We have, according to the FW method, chosen to model a sum of (approximately) LN RV’s by
another LN RV. It is not self-evident that a linear combination of LN RV’s with random weights

(namely the Bernoulli RV’s y;), will again be LN. Nevertheless, in [1] this assumption is made.

N
We can argue that for any realisation of the vector y;, we have a sum of )_ y, interferers, which is
i=1

itself approximately LN. The resulting pdf is then the weighed sum of the pdf’s for each
realisation of the vector y;, with the weights being the probability associated with each realisation.
This is called a mixture of LN distributions; it is not known whether it is approximately LN.
However we do know that because the individual distributions are smooth (LN), their sum will
also be smooth, so a LN approximation to their sum is not inconceivable. We notice, however,
that if the probability of activity p is low, there is a chance of there being absolutely no

interference if all y; = 0. This creates a discontinuity in the cdf of I, which modifies the LN
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distribution into a BLN one in (4.34). In most cases, for many interferers and moderate to high

p,we have p, =1 and the model becomes LN as in [1].

4.4.2 Moment-Matching

We match the moments of the interference with those of the approximating distribution:

)= p, e (4.36)

Inverting (4.36), we obtain:
a; = 2mE[I]- Lt E[I’]- 3 p, (4.37)
b? = 2 E[l]+m E[I*]+np,. (4.38)

4.4.3 Simple Approximations to the Distribution Parameters

Applying the approximation (4.32) to equations (4.37) and (4.38), we obtain simple closed-form

equations that are applicable to all cases:

a, =2InAB -1lnA,B, - 1n(p,)

:2lnA1—%lnAz+%lni—%ln(2—(l+l(_l)_2j , (4.39)
Py

+kpe[BIn p—2I(1+1 B)+ L1n(1 + B)]
b} =—2InAB +InA,B, +Inp,
_ 2 14 -1)2
- —21nA1+lnA2—1n—+ln(2—(l+K ) j (4.40)
P
+kpe [02 +o2+2mn(l+18)-In(1+ ,B)]
For the UL — PC case, this approximation simply treats R; and L; as independent, but with the

same marginal distributions. We notice that the expressions are identical for UL and DL. A
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similar result was obtained in [47]. This is not entirely surprising, since the interfering power

from each individual cell has identical distribution in UL and DL. Only in the DL case, the
pathlosses R; are correlated. However, since these are further multiplied by i.i.d. LN RV’s with
high variance, the correlation between the individual powers becomes very small. In other words,
because every path suffers from independent shadowing with large variance, this effectively
“drowns out” the correlation between the pathlosses and makes them very nearly independent.
Also, in the UL — PC case, the independent shadowing terms make the correlation between R; and

L;insignificant.

4.5 Modeling the Total Interference Power as Bernoulli Power Lognormal

We approximate I by a PLN RV of parameters (m, s;°, t;) multiplied by an independent Bernoulli
RV with the same parameter p, as given by (4.35), resulting in a Bernoulli Power Lognormal

(BPLN) distribution:

Inx —m,

F,(x) = cp’f( Jpl +(1=p,x>0. (4.41)

Sy

4.5.1 Arguments for the Choice of Distribution

Following the same reasoning as in Section 4.4.1, we modify the PLN approximation to the SLN

by multiplying it by the same Bernoulli RV, resulting in the discontinuous model (4.41).

4.5.2 Matching the Upper Tail Slope

We have seen in Section 3.3.1.1 that we can match the slope of the upper tail (on LN paper) of
the SLN and the PLN distributions, by taking the slope of the component with the highest mean
from among the components of the highest variance. A few numerical examples can be used to

verify that interference from the nearest cells has not only the highest mean power in dB (which
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is natural), but also the highest dB spread. This is expected since the distance from a point in
cell Cy to a point in a faraway cell cannot vary overmuch for different points in the cells. The

variability is much stronger for nearby cells.

In order to match the upper tail slope, we find the cdf of the interference coming from one of
the nearest cells, given that the user activity is constant (p = 1), since the result is only valid for a
sum of LN RV’s, and not of BLN RV’s. For p < 1, we argue that a BLN cdf is just a scaled
version of a corresponding LN cdf in the upper tail, and thus, by Lemma 2, these have the same

blf, since their ratio is finite in the tail.

4.5.2.1 Uplink without Power Control, and Downlink

We first define the convenient intermediary quantity:

B B _
zy =ln=2 -2t =2 +ln[2—(l+K_l)2J
P P

+kpelo? + 0 +2ln(1+%,8)—ln(1+,8)].

(4.42)

We call C; a nearest cell to Cy, and we can find the logarithmic variance of the interference

component coming from this nearest cell by applying (4.21) to (3.48):

s} =br =Inx,2B8)-2Inx,(B)+z, |kp kpe]#[01]. (4.43)

4.5.2.2 Uplink with Power Control
Analogically, for UL — PC:
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~ ~

5= onBioos o emb -+ k). (4.44)
p p
s? =& Q2B)-2m&(B)+Z,  [kp.kpe]l=1[01] . (4.45)

4.5.3 Matching the Lower Tail Slope

4.5.3.1 A Simple Approximation for All Cases

If all components are i.i.d., the PLN approximation to the SLN uses N as its power parameter ,as
in [44]. Even if the components have different distribution, we find that this choice of parameter
gives a good fit to the lower tail slope. However, if the individual components are multiplied by
Bernoulli RV’s with parameter p, then there are, on average, only pN interferers, which is the idea

in [3]. We can thus write:
t, = pN, t, 2 pN. (4.46)

We proceed to show in the next section that this approximation is good.

4.5.3.2 Uplink without Power Control, and Downlink

A more exact approach to finding the power parameter of the PLN is to use (3.49), which equates

N
the power parameter Withbfzb%. By applying (4.21) and multiplying by p, as was done in
i=1

i

(4.46), we obtain:

N 1
t, = ps;y ks kpe ] 2 (0], (4.47)

Snk,(28)-2In &, (8)+ 2,
where s,2 is given by (4.43).

We rewrite (4.47) as
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N Ink,(28)-2In &,(B8) + z,

t, = ko kpe|# [0,1], 4.48
1 pgllnlq(Zﬁ)—Zani(ﬂ)+Z, [DL PC] [ ] ( )
and we observe, from numerical calculations, that:
Vi:lnx,(28)- 2k, (B8)<Inx,(28)-2Inx(B) << z,. (4.49)

Applying (4.49) to (4.48), we obtain the approximation in (4.46).

4.5.3.3 Uplink with Power Control

Likewise, for the UL — PC case, we have:

28 1
I, = ps; Zi In & ( [kDL’ ch] = [0’1]’ (4.50)

(28)-2m & (B) + Z,

where 512 is given by (4.45).

4.5.4 Moment-Matching

Having matched the slopes at both tails, we have only one more degree of freedom. We match the

first moment of the PLN approximation with that of the interference, given by (4.25).

4.5.4.1 Uplink without Power Control, and Downlink

Matching the moments gives:
El =e"Als,.t,)p, = AB,  lkp,. kpe ] [01], (4.51)

where, the A function is given by (3.50). We proceed as in Section 3.3.1.2 to find my:
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m, =InAB, —InA(s,,t,)p, =30> +In A —InAls,.1,)

4.52
+1npi+kpc[%o'2+%O‘f+ﬂlnp—ln(1+%ﬁ)] [kpr s kpe ] [0.1]. (32
x
4.5.4.2 Uplink with Power Control
Likewise, for UL — PC:
El = ¢" Als;,t;)p, = AB,  [kp,. kpe]=1[01] . (4.53)
m; =In Xlgl - lnA(s,,t, )pZ
(4.54)

ol +102 +n A —InAls,, 1)+ [k kpe] = [0].
Py

4.6 Comparison of Simulation, BLN and BPLN Methods

4.6.1 Cellular Layouts and their Coefficients

Tables 4-6 to 4-10 have the geometry coefficients tabulated against f for five different cellular
layouts: a single tier of nearest interferers (/7), three tiers of interferers in a reuse 1 cellular
network (37), a reuse 3 cellular network (R3), a reuse 7 cellular network (R7), and a random
layout (RD) to test the robustness of our method. Only the Ap, coefficients are really new
information, and need to be integrated as per (4.30). All other coefficients can be found from

Tables 4-1 to 4-4 by summing over the individual cells using (4.22) and (4.24).



B A A, Ap A A,

3 1.679 1.008 2.978 0.6042 0.3169
3.2 1.587 0.9868 2.701 0.5548 0.3107
34 1.505 0.9743 2474 0.5130 0.3079
3.5 1.467 0.9710 2.377 0.4945 0.3076
3.6 1.432 0.9695 2.289 0.4775 0.3079
3.8 1.368 0.9718 2.138 0.4473 0.3105

4 1.310 0.9805 2.016 0.4215 0.3153
4.2 1.260 0.9953 1.920 0.3994 0.3224
4.4 1.215 1.016 1.845 0.3805 0.3314
4.5 1.194 1.028 1.815 0.3721 0.3367
4.6 1.175 1.042 1.789 0.3643 0.3426
4.8 1.140 1.074 1.749 0.3504 0.3557

5 1.109 1.112 1.725 0.3386 0.3709
B A, A, Apy IZM ‘Z‘z

3 2.258 1.027 5.280 0.7874 0.3205
32 2.041 0.9995 4.370 0.6915 0.3130
34 1.862 0.9827 3.697 0.6155 0.3093
3.5 1.785 0.9779 3.427 0.5835 0.3087
3.6 1.714 0.9752 3.194 0.5548 0.3089
3.8 1.590 0.9756 2.814 0.5057 0.3111

4 1.487 0.9830 2.526 0.4659 0.3157
4.2 1.400 0.9970 2.307 0.4333 0.3226
4.4 1.326 1.017 2.142 0.4065 0.3316
4.5 1.294 1,029 2.076 0.3949 0.3369
4.6 1.264 1.043 2.018 0:3843 0.3427
4.8 1.211 1.075 1.928 0.3659 0.3558

5 1.166 1.112 1.865 0.3506 0.3710

Table 4-6 Geometry parameters for various cellular layouts.
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S A, A, / ADL Al ;&2

3 0.2921 001303 4 0.0855¢ 08559 s ~0,09301 0.002510
32 02339 (3--()-63-3-2;‘43 0 05497 o 07097 - 5_0.001626
3401879 0006027 003549° 0054417 0001062
35 0. 168\§_/0 004983_/0 02857\ 0 04773 \\J0008605
36 01512 () 004124 0 ms 0 041917 0.0006983
38 0. 1220 _________ fo 00283\3 ________ 001502 /0 03243, N 0: 0004621

4 0.09868 0 001952 QM@{/ a02519/ 0. 0003075
42 0. 079\97_\ 0. 00135@_\ 0. 00648\0)_;0 01965 " 0 0002057
44 0. 06494 N 0,0009358 - 0(1042&4 001533/ . 0. Q001382
45 0. 0585“6_/0 000779\9_/0 003489;_50 01363 \_0’0001 134
46 005283 0. 0006505 0)01123\4 0 01209 0.00009318
48  0.04305 0.0004533 {0.00;1895} ~0.009531 0.00006308

5 0.03515 0.0003166  0.001268 0.007537 0.00004284
s A, A, Ap A, A,

3 0.06525 0.0007766  0.004260 0,02032 0.0001320
32 0.04843 0.0004330  0.002347 0.01430 0.00006918
34 0.03595 0.0002417  0.001294 0.01009 0.00003643
3.5 0.03099 0.0001807  0.0009614  0.008480 0.00002648
36 0.02671 0.0001352  0.0007142  0.007132 0.00001927
3.8 0.01984  0.00007568  0.0003945  0.005053 0.00001024

4 001475  0.00004243 00002181  0.003587 . 0.000005467
42 0.01097__0.00002382 _0.0001207__ 0.002551 " 0.000002930
44 0008161  0.00001339  0.00006682  0.001818  0.000001576
4.5 0.007040..../0.00001005....0.00004974 0.001536 ".....0.000001157
4.6  0.006074  0.000007539 0.00003703 ; 0.001298  0.0000008505
4.8  0.004522  0.000004249 --0.00002054 0.0009281  0.0000004606

5 0.003368  0.000002397 0.00001141  0.0006648  0.0000002502

Table 4-6 (continued)
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B A, A, Apy ‘z‘l fz‘z

3 1.017 0.5087 1.196 0.3578 0.1593
3.2 0.9300 0.4964 1.043 0.3183 0.1559
34 0.8582 0.4891 0.9308 0.2867 0:1543
3.5 0.8268 0.4870 0.8862 0.2732 0:1540
3.6 0.7981 0.4860 0.8479 0.2611 0.1542
3.8 0.7476 0.4867 0.7871 0.2403 0.1554
4 0.7049 0.4908 0.7433 0.2231 0.1578
4.2 0.6686 0.4980 0.7127 0.2090 0.1612
4.4 0.6378 0.5082 0.6926 0.1973 0.1658
4.5 0.6241 0.5143 0.6860 0.1921 0.1684
4.6 0.6114 0.5212 0.6813 0.1875 0.1713
4.8 0.5888 0.5371 0.6773 0.1792 0.1779
5 0.5695 0.5559 0.6796 0.1724 0.1855

Table 4-6 (continued)

4.6.2 Simulated and Analytical Parameters and Graphs

We run simulations according to the algorithm in Figures 4-2 and 4-3. The input parameters are
given in Table 4-7 while o, = 1dB = 0.23. Figures 4-11 to 4-19 show the results of the

simulations, as well as the analytical approximations.

1. The exact BLN method uses (4.27), (4.28), or (4.31) in (4.37) and (4.38) to obtain the

exact LN parameters a; and b;.

2. The approximate BLN method uses (4.39) and (4.40) to obtain approximate values of

these parameters.

3. Both the exact and approximate BPLN methods use (4.42) and (4.43), or (4.44) and

(4.45) to find the first parameter s;.
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4. The approximate BPLN method uses (4.46) to find ¢;.

5. The exact BPLN method uses (4.42) and (4.47), or (4.44) and (4.50) to find .

6. Both the exact and approximate methods use (4.52) or (4.54) to find my;, where the

integral A(s s ) is calculated numerically as per (3.50).

Figure 4-11 4-12 4-13
B 4 4 3
2 [dB] 12 12 6 9 12
K 0 0 0
p 0.01 0.1 1 1 1
Layout 3T IT 3T IT
Link DL DL UL
PC No Yes No
Dy 0.304 0.977 1 1 1
a;= -4.665 -2965 0455 @ -1.542 -1.293  0.624  0.680  0.686
a = -4.665 -2965 0455 @ -1.542 -1.293 | 0.686 0.686  0.686
b, = 3.308 3.132 2.744 4.007 3.976 1.306 1995 2.703
b= 3.308 3.132 2.744 3.962 3.931 1.258 1992 2.703
my = NA -4.183 -4.026 @ -4.224 -5915 | -1.666 -1.837 -1.937
m;= NA -4.092 -3.942 4224 -5.866 | -1.666 -1.837 -1.937
S NA 3.094 4.225 1.837 2400 3.017
4= NA 3.960 39.60 6 37.83 6
H= NA 3.6 36 6 36 6

Table 4-7 Simulation and analytical parameters for BLN and BPLN methods.
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Figure 4-14 4-15 4-16
p 35 4 4
c [dB] 10 12 12
K 0 0 0 10 00
p 1 0.02 0.1 0.5 1 1
Layout R7 R3 iT
Link UL DL DL
PC No Yes Yes
Dy 1 0.215 0.718  0.99976 1 1
a,= 2991 | -7.171 -6.563 -4.646 -3.607 | -1.542  -1.276 -1.196
a;= 2986 = -7.171 -6.563 -4.646 -3.607  -1.542  -1.276 -1.196
b = 2.082 4.168 4.120 3.961 3.873 4.007 3.940 3.919
b= 2.080 4.126 4.076 3.916 3.827 3.962 3.894 3.874
my = -5.525 NA -6.752 -7.076 -7.068  -4.224  -3.956 -3.876
my = -5.525 NA -6.744 -7.068 -7.061 = -4.224  -3.956 -3.876
S 2.473 NA 4.119 4.225 4.161 4.142
4= 6 NA 1.209 6.043 12.09 6
4= 6 NA 1.2 6 12 6

Table 4-7 (continued)
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Figure 4-17 4-18 4-19
p 3 4 35 4
o [dB] 12 6 8 12
K 0 0 0 5
P 1 0.02 0.1 0.5 1 1
Layout 1T R3 RD
Link UL UL DL
PC Yes Yes PC
Dy 1 0.215 0.718  0.99975 1 1
a;= -0.394 -1.438 -6.431 -5.822 -3.906 -2.867 -2.224
a = -0.373 -1.542 -6.404 -5.795 -3.879 -2.839 -2.224
b, = 3.891 2.253 2.983 2914 2.686 2.554 4.022
b= 3.806 2.061 2.895 2.824 2.588 2.450 3.978
my = -3.073 -4.007 NA -6.041 -6.300 -6.244 -5.517
m= -3.073 -4.007 NA -6.024 -6.284 -6.228 -5.469
Sy 4.115 2.621 NA 2.922 2.922 2.922 4.174
= 6 NA 1.221 6.107 12.21 14.70
Hy= 6 NA 1.2 6 12 14

Table 4-7 (continued)
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Figure 4-11 Interference in three-tier cellular network with variable activity in the

downlink without power control.
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Figure 4-13 Effect of varying the shadowing parameter on interference from first

tier in the uplink without power control.
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the downlink with power control.
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downlink with power control.
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shadowing and fading in the uplink with power control.
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4.6.3 Discussion on Observed Results

Based on Figures 4-11 — 4-19, we are able to come to several important conclusions:

1.

In most cases, the difference between the approximate (green) and the corresponding
exact (blue) curves are negligible compared with the error to the simulated curve. This
leads us to the conclusion that the approximations that we have made are very good. Since
they are significantly simpler than the exact forms, this is a very valuable finding. We
note however, in Figures 4-17 and 4-18, where we considered UL — PC, that the exact
BLN curves perform much better in the upper tail than their approximate counterparts.
This is because, in the approximate expression, we assumed R; and L; to be independent.
We conclude that this independence assumption should not be made, and that the

modified method for the UL — PC case is the proper way to proceed.

For all cases where there is full activity (p = 1), we observe that the BPLN outperforms
the BLN method, particularly in the lower tail. This is to be expected: moment-matching
tends to match the higher values of the distribution [43], but the lower tail cannot be
simultaneously matched, because the SLN cdf bends on LN paper, whereas the BLN
method cannot. However, since the BPLN was designed to match the slope of the lower
tail of the SLN cdf, we observe that this indeed happens. When the BPLN does not match
the lower tail well, it nevertheless runs parallel to it. We would need more degrees of
freedom in the approximating cdf to always match the tail, not only in slope, but also in

offset.

For low activity ( p < 0.1), we observe that the BLN method performs very well, while
the BPLN method does not fit the lower tail properly. In the case when pN < 1, the BPLN

curve is not even defined. Incidentally, notice that in the lower tail, the probability does
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not go to 0, but tapers off to some value. This value is P(I = 0) =1-p,. We can
observe that multiplying our LN and PLN models by a Bernoulli RV was a judicious

move.

4. The conclusion is to use the BPLN method for p close to 1, and use the BLN method for p
for values around 0.1 and lower. For moderate values of p, the problem remains open, as
neither method works well in the lower tail. It would seem that in this case more work is
needed, analysing the problem of a sum of Bernoulli-times-lognormal RV’s separately
from the SLN problem. In the mean time, it would seem that the BLN and BPLN
methods give two bounds for the lower tail. Perhaps a weighed average of the two

approximating cdf s, with weights that are functions of p, would give good results.

5. In general, leaving p aside, the method works well for a wide variety of shadowing, fading
and propagation constants, in both UL and DL, with and without PC. It works for many
practical cellular layout scenarios, and seems to perform better for regular layouts than

irregular (Figure 4-19) ones. It is not clear why this is the case.

6. Observing Figures 4-16 and 4-17, we see that the performance in the lower tail degrades
as the fading model becomes more Rayleigh (K — 0). This could be anticipated from the
results in Section 4.2.5.4, where we found that fading causes the SLN cdf to bend
significantly in the lower tail. However, we are pleased that the effect does not seem to be
cumulative when we add several such RV. In fact, even with the unpromising results for

one interferer, the approximation to the sum of multiple interferers’ powers is quite good.

In conclusion, for low loading we suggest the BLN model, and for p = 1, the BPLN model.
Notice that the BPLN model dramatically outperforms the classical moment-matching approach

for constant activity and is perhaps the best known quasi-closed-form solution to the problem.
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Chapter 5

Conclusion and Future Work

We conclude with recalling the contributions that were made in this thesis, and propose several

ideas for improving our method, and applying it to more complicated problems.

5.1 Achievements of This Thesis

While we did not meet all the ambitious requirements that we set up for ourselves in Section
1.1.3, we were nevertheless able to develop a set of quite simple equations that approximate the
SLN distribution and the interference distribution with better precision than other known methods

of comparable complexity.

5.1.1 Tails of Sum of Independent Lognormals

We showed that the lower tail of the SLN distribution in the independent case can be
approximated by a LN distribution with parameters given by closed-form expressions. To our
knowledge, there has to date been no analytical study of the lower tail. We defined the best
lognormal fit in order to formally study whether the SLN cdf has LN tails, and also whether
proposed approximating cdf’s have this property. We propose the blf to be a design criterion for
future approximating cdf’s. This will ensure that the approximation remains good in the far tails,

and also that moment-matching can be used.

5.1.2 Simple Expressions for Moments of Total Interference Power

We gave exact closed-form expressions for the first two statistical moments of the total
interference power in a cellular system, not only for UL, but also for the correlated DL case.

These expressions contain geometrical coefficients that have been tabulated against the
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propagation constant and can be used directly in our expressions. We also showed that the

expression for the second moment can be significantly simplified without loss of precision.

5.1.3 Approximate Interference Distributions: Two Methods

We have found that applying the FW method to the interference problem using a BLN resulted in
simple closed-form expressions and gave excellent results for low probabilities of user activity
(p). For fully loaded systems with continuous interference (p = 1), we have found that using a
PLN function to approximate the interference distribution also gave good results, particularly in

the lower tail, which has often been neglected.

5.2 Ideas for Continuation of this Work

While working on the material presented in this thesis, we have encountered many other ideas
that follow the same general line of reasoning, and that could potentially give an even better
solution to the problems of the SLN and interference distributions. We also show that our
approach can be modified to solve for a more detailed interference model without altering the

fundamentals of our method.

Time did not permit us to follow all these ideas, so we only give a sketch of them here, with the

hope that we, or someone else, will develop them more fully.

5.2.1 Improving the SLN and Interference Approximations

We have developed two methods for analysing the interference distribution: a moment-matching
method using a BLN distribution, and a novel method using a BPLN distribution. We found that
the second method performs very well when p = 1, i.e., the distribution is PLN. The fit in the
upper tail and body is always excellent, but tends to somewhat diverge in the lower tail. There are

a few reasons for this:
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1. The distribution of the interference I; coming from just one cell is not quite well

approximated in the lower tail, as seen in Figures 4-5 — 4-10.

2. The PLN distribution does not have a blf in the lower tail, while the SLN distribution

does. Only the slopes are matched in the lower tail, as can be seen in Figures 4-11 — 4-19.

3.  The lower tail was calculated based on the assumption that all summands are
independent. However, in the DL, the individual interference components are slightly

correlated.

The second reason could be remedied by developing a better SLN method, one that matches both
tails’ blf, while also fitting the body. We have proposed such a method in Sections 3.2.2.2 and
3.3.2. However the initial results show a very poor match in the body of the distribution in
Figures 3-5 — 3-8. We believe that by introducing additional free parameters to the cdf it would be
possible to make the curve fit in the body while retaining the tail properties. The additional
parameters could be solved by moment-matching. The moments of the SLN are known in closed
form. However, the moments of the new approximating distribution will probably need to be
found by numerical integration. However, this integration can probably be performed simply by

using a Riemann sum on the transformed integral:
E[X”]z Lm x"f(x)dx = fmex("”)f (ex )dx . 5.1

Since f (x) is approximately LN in each tail, f (ex) will be approximately Gaussian in each tail,

- 2 . . . .
i.e., it will decay as e , and the integral can be truncated at moderate values in both limits.
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5.2.2 Correlated Shadowing

We have assumed that all wireless paths suffer from independent shadowing. However, the
shadowing paths are in fact correlated, with correlation coefficients depending on distance and
angular separation [61]. We will briefly show how our moment-matching method can be

expanded to include the correlated shadowing case.

We begin with a set of correlated LN RV’s {Yl}l]\il where {In Yl}f\il form a set of jointly

Gaussian RV’s. Then we may then write:

InY, Z,
InY z
EIESY (el (5.2)
InY, Zy

where M is a matrix and {Zi}fil are i.id. standard Gaussian RV’s. The first moment of

=z

X = ) Y is not affected by the correlation and can be found from (2.17). The second moment

1

1l
—_

can be calculated according to (2.18), where the correlation coefficient P * 0.

Now let us examine how we can incorporate this into our analysis of the interference moments.
For simplicity, let us consider a system with two interferers, no fast fading (K = o), constant

activit = 1), and no PC (Pi— 1) T'his can be modeled by a simplified version of (11)
y y p
I =R{ + R,{,. (5.3)

The second moment can then be calculated as
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elr]= (elr?]+ ElR2])Ele?] +2£lR RG]
= 4, 1 2E[R Ry ]
= AzeZGZ + 2E[R1R26(MHZI+M1222)+(M2]ZI+M2222)]
= Azezaz + 2E[R1R26(M|1+M21)Zl+(M12+M22)Zz] (5.4)
- Azezo'z + 2E[R1R26(M11+M12)(Zl+Zz)]
= Azezaz + 2E[R1Rze‘/§(Mn+M|2)Z|2:|
= Azez‘72 + ZE[Rlee‘FZM”Z”]E[eﬁM“Z” ]

Notice that, in this case, the matrix term M12 = M21 is itself a RV, correlated with R1 and R2,
while M11 = M22 is related to the shadowing variance, and Z12 is an independent standard

Gaussian RV.

Now in the case of a sum of correlated LN RV’s, the behaviour in the upper tail will be the
same as in the independent case [21], and so will the first moment. It is in the body and lower tail

that there might be a substantial difference.

5.2.3 More Realistic User Distribution

We have assumed in this work that the MU connects to the FS that is physically nearest. This is
not always a realistic assumption, as in most cellular systems the MU connects to the FS of which
it receives the strongest long-term power. In this case, while the distribution of the location of the
MU’s remains spatially uniform, the distribution of the location of an MU (conditioned upon
being) connected to a particular FS is no longer uniform within that cell’s area. Because of this,
the distribution functions of R; and L; are significantly different [62], and should be modified in
our analysis. It is important to note that, in that case, both the pathloss and the shadowing
combine together to decide to which FS an MU will connect, and the problem becomes more

challenging because the distributions of R; and L; are a function of the shadowing variance o.
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5.2.4 Calculating the SIR, SINR and Outage Probability

Our analysis has not included noise. This is because we have considered flat-fading systems,
which use narrowband channels (OFDMA, FH-SS). Narrowband systems are generally more
affected by interference than wideband systems [2]. Much of our analysis has focused on
studying the lower tail of the interference cdf. In fact, this lower tail would be affected by adding
a noise term. One could say that the analysis of the lower tail of the cdf is then of little interest.
However, the amount of noise added will vary from system to system, and it is not evident how
much of the lower tail is really needed. This is why a good knowledge of the lower tail is still
valuable. The calculation of the Signal-to-Interference Ratio (SIR) or Signal-to-Interference-and-

Noise Ratio (SINR) is a problem in itself:

1. In the case of DL, no PC, the signal pathloss affecting signal strength will be correlated
with the interference because the position of the MU affects both signal and interference

powers. New geometrical coefficients need to be devised.

2. We can model the signal strength as LN, due to the shadowing that the signal suffers, and
the other effects (fading, pathloss) can be incorporated into this LN RV similarly to what

was done in Section 4.1.

3. If the interference is modeled as a LN as in Section 4.4, the ratio of two LN RV’s is
simply a LN RV with log-variances added and log-means subtracted. The Bernoulli RV

does not affect this calculation.

4. If the interference is modeled as a PLN as in section 4.5, the ratio of a LN and a PLN RV

is not known. The integral involved in calculating the cdf of that ratio is:
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.[+o<v eB v—%Aycht—l (y)dy, (5.5

—oo

where A and B are two constants. It is almost identical to the integral (3.50), which gives the

moments of the PLN distribution. This makes the integral even more important to solve.

The outage probability in a system is simply found by calculating the probability that the SIR
or SINR is above a certain threshold, predetermined by the modulation and coding scheme. The

SIR/SINR is studied in [1], [3], [7]-[9], [12], [16], [59], [63].

5.2.5 Application to Fixed Relay Networks

We consider a two-hop fixed relaying scenario [2]. We define an augmented cell as the
combination of a central sub-cell containing a BS and its surrounding six sub-cells containing
RS’s. The six RS’s each have a
good orthogonal wireless link with
their BS. There is no
communication between
augmented cells, and we can
assume that the interference from
all sub-cells within the augmented

cell has been adequately managed

[2] and is negligible, while all ¥ Relay Station

+ Base Station
— Augmented Cell Border
. C,: Sub-cell under analysis

other sub-cells are considered as

interferers (see Figure 5-1).

Figure 5-1 Interfering cells (in gray) in a two-hop fixed relay network.
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5.2.5.1 Irregular Geometry

As a first approximation to the problem, we can describe the set of interfering sub-cells as having

the layout described by Figure 5-1, with geometry parameters given in Table 5-1.

B A A, Ap A A,
3 1.310 0.5184 2.044 0.4506 0.1611
3.2 1.160 0.5027 1.678 0.3874 0.1570
34 121039 0.4933 1.417 0.3384 0.1550
3.5 0.9868 0.4905 1.316 0.3180 0.1546
3.6 0.:9400 0.4888 1.230 0.3000 0.1546
3.8 0.8596 0.4886 1.093 0.2697 0.1557
4 0:7935 0.4921 0.9932 0.2455 0.1580
4.2 0.7389 0.4989 0.9208 0.2260 0.1614
4.4 0:6937 0.5088 0.8688 0.2103 0.1658
4.5 0.6739 0.5148 0.8490 0.2036 0.1685
4.6 0.6559 0:.5216 0.8327 0.1975 0.1714
4.8 0.6244 0.5374 0.8091 0.1870 0.1779
5 0.598 0.5561 07957 0.1784 0.1855

Table 5-1 Geometry parameters for three tiers of sub-cells in a two-hop fixed
relay network.

5.2.5.2 Lower Probability of Activity per Sub-cell

It can be argued that the probability of activity within any sub-cell will be substantially lower
than 1. Indeed, [2] defines loading for such a network to be 1 when there is one user per channel
per augmented cell. This corresponds to p = 0.14. A more aggressive reuse scheme can be used,

where each channel is used once per sub-cell, which corresponds to a loading of 7 and p = 1.

In the approach proposed in this section, we have assumed that there is no interference coming

from within the augmented cell. This corresponds to a scenario where the loading is 1 or less, and
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is only approximately true for higher loading. Thus we will be primarily interested in values
of p in the range [0, 0.14], where our methods perform well, as will be seen in the following

section.

5.2.5.3 Some Simulation Results

We simulate the interference in the fixed relay network in the same way as we did in Section 4.6,
except that the layout is different. The simulation parameters are summarized in Table 5-2, and

the results are shown in Figure 5-2.

Figure 5-2
B 4
o [dB] 12
K 0
p 0.035 0.14 0.5 1
Layout 3-Tier Two-Hop Relay
Link DL

PC Yes (o, = 1dB)

P, 0.6566 09892  1-9.3-10"° 1
ay= 6601  -5.136 -3.243 -2.203
ax 6601  -5.136 -3.243 -2.203
b= 4.394 4.281 4.131 4.046
b= 4.353 4.239 4.088 4.002
m= 5976 638098  -6.38056  -6.369
m=~ 5921 632710 632711  -6316

s1 4.225
t= 1.108 4.434 15.83 31.67
L= 1.05 4.2 15 30

Table 5-2 Simulation and analytical parameters for a two-hop fixed relay network.
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5.2.6 Evolution of Interference in Time

Throughout this work, we have investigated what is the distribution of the total interference
power at any given instant. However, in order to get useful knowledge about such performance
statistics as word or packet error rates, quality of service, etc., it is important to understand how
the total interference power evolves in time, which would require studying the interference as a
random process. This has already been done in various ways in literature [11]-[13]. We hope to
expand our method to include the evolution of interference in time, so as to obtain very precise

long-term performance statistics.

5.2.7 CDMA Systems

It would be interesting to apply our method to broadband CDMA networks; however there are

several necessary considerations:
1. The channel is no longer flat-fading.

2. The number of users in each cell is no longer one, but can be quite large. This has at least

two important consequences:

3. The number of summands in the SLN method needs to be large. Large values of N have
not typically been analysed. We are only aware of the LL method proving robust for as
much as 1000 summands (Figure 6 in [27]). Incidentally, our PLN method does not

perform very well for N = 1000 (we do not show the simulations here).

4. The correlation between shadowing paths needs to be studied. In the UL, many users will
be located within the same narrow angular sector, which implies high shadowing

correlation [61]. The independence assumption will no longer be acceptable.
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