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Abstract 

We examine the existing methods for evaluating the distribution of the sum of lognormal random 

variables, focusing on closed-form results. We find that there are no results in literature that are 

both simple and accurate. We then derive a new closed-form expression for the lower tail of the 

distribution, and use it to construct a new method using a power-lognormal distribution. We apply 

both basic moment-matching and our new method the problem of the total interference power in a 

cellular system. For both methods, we derive equations that find the interference distribution 

essentially in closed form, using minimal numerical integration. We apply both methods to the 

uplink and downlink in systems with and without power control, for various cellular layouts, 

channel models and user activity probability. We compare distributions obtained by Monte-Carlo 

simulation directly with those obtained by our method, and find very good matches in many 

useful cases.  
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Chapter 1 

Introduction: Total Interference in a Cellular Network 

1.1 Motivation for this Work 

While the problem of analysis of interference in cellular systems is at least as old as the first 

systems themselves, the topic still attracts much interest. This is essentially because the problem 

is not really solved yet, though there exist many methods that solve particular problems, with 

varying levels of complexity (numerical or closed-form), and various levels of accuracy. There 

does not seem to be a well-established systematic method to analyse this class of problems, and 

several papers [1]–[16] work on very similar problems without there being much incremental 

knowledge. Indeed, these papers have a substantial portion of overlap, particularly when it 

concerns two essential mathematical problems: calculating the effect of the mobile user’s (MU) 

random distribution in space, and evaluating the sum of lognormal (SLN) random variables (RV). 

In this thesis we propose to make a synthesis of the common points of the work in these papers. 

We do this first by creating a mathematical and simulation model that is sufficiently detailed to 

encompass many particular problems, but simple enough for analytical tractability. We then 

evaluate the existing methods for calculating the SLN distribution, and develop our own method 

based on a synthesis of several known results. Finally we apply this method to the interference 

distribution problem, and obtain simple expressions to calculate an approximation to this 

distribution as a function of the parameters of a particular problem. In particular, we can separate 

the geometry of the cellular layout (equivalently, the user distribution) from the rest of the 

problem, which means that some geometrical parameters can be calculated once and for all and 

tabulated for future use. We believe that the method we propose is flexible enough to 
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accommodate many classical problems while retaining its simplicity, and also can be modified 

to solve new problems in emerging wireless systems. 

The main underlying mathematical problem is the SLN distribution, which appears not only in 

wireless communications, but also in electronics [17], physics [18], optics [19], economics [20], 

and is of interest to statistical mathematicians [21], [22]. This versatility makes the problem even 

more important to solve. 

Knowing the distribution of the interference in a system is the next best thing to actually 

knowing the interference at any given moment. Indeed, unless one uses adaptive channel 

mechanisms [1], [2] or cognitive radio techniques, one has to allocate scarce radio resources 

(spectrum, power) based on statistical knowledge. A precise knowledge of the interference 

cumulative distribution function (cdf) is necessary for optimal design: if the interference is 

overestimated, radio resources are wasted in trying to avoid outage situations that almost never 

happen, while if it is underestimated, the quality of service suffers from too frequent outages. In 

past years, not only cellular, but many other wireless technologies have been emerging (WiFi, 

WiMax, Bluetooth, UWB, …), and much research is currently being done in ad-hoc, mesh and 

sensor networks. All these often use shared, unlicensed bands. As so many wireless technologies 

come to share the same spectrum, the systems become interference-limited. While it is not the 

purpose of this thesis to explore the interference between such systems, simply understanding the 

statistical behaviour of interference becomes more important than ever.  

1.1.1 Some Previous Analytical Work on Interference 

In this section we touch on two previous papers that analyse interference, we show why they are 

important and also what is lacking in them. It is these lacks that we want to fill in this thesis.  We 

borrow the mathematical models in order to formulate the problem in Section 1.2. 
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Reference [3] is the work that is closest to ours and has inspired many of the points in this 

thesis. First of all, it is one of the rare papers that introduce the concept of geometrical 

coefficients, integrals that can be calculated independently of other system considerations, and 

tabulated for reference. Thus a particular cellular layout may be described by a collection of 

numbers. These can be substituted into closed-form expressions in order to obtain the interference 

statistics in a particular cellular system. A weakness of this paper is that many of the stochastic 

quantities have been replaced by their expected value, which is an over-simplification. 

Reference [1] uses a numerical method by Schwartz and Yeh (SY) (see Section 2.3.1.1). The 

disadvantage of this paper is its heavy use of numerical integration at all stages of the process. 

We intend to show in our work that much of it is unnecessary, and that a tractable solution exists. 

Both papers study interference in the uplink (UL). In [3], the downlink (DL) is also examined, 

but there is little analysis done and the method becomes mostly numerical. We intend to show 

that we may find closed-form expressions not only for the UL, but for the DL as well. The DL, 

though more challenging analytically, must be well understood because of the heavy traffic 

asymmetry leaning towards the DL in future systems [23]. The greatest weakness of both papers 

is the lack of a direct comparison between simulation results and the theoretically derived 

distributions. In fact, it is rare to find a comparison between a simulated and calculated 

distribution curve of the interference statistics. We will always support our theoretical results with 

Monte-Carlo simulations in this thesis. 

1.1.2 Purpose and Motivation for a Closed-Form Solution 

Reference [24] suggests that knowing the statistics of the interference coming from just one 

interferer is not enough, and that knowledge of the sum interference power is necessary for 

accurate interference modeling. We consider a cellular system with known layout, a propagation 
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model, user behaviour statistics, and potentially a power control (PC) mechanism. We can 

simulate interference to a particular desired mobile user (DMU) in such a system according to the 

model described in Section 1.2, using Monte-Carlo Simulation. This thesis has one main goal: to 

reproduce the Monte-Carlo interference cdf as closely as possible using, as much as possible, only 

analytical, closed-form expressions, with minimal numerical integration. This is useful for the 

following reasons: 

1. Monte-Carlo simulations can be very time-consuming, while numerical integrations, if 

well-behaved, are substantially faster. Also, analytical expressions programmed into a 

computer execute almost instantaneously. 

2. A simple closed-form solution to a problem is always desirable: we try to aim for 

expressions that can be evaluated using a scientific calculator and that could be included 

in textbooks on basic wireless communications. Such a method is much more likely to 

gain popularity than one which takes a significant time to learn and implement. 

3. A closed-form method to a simple problem forms a basis for further analysis of more 

complex ones, such as those in emerging next-generation wireless systems.  

4. Closed-from expressions are useful in order to understand the exact effect of every system 

parameter on the final performance of the system. We can for example take derivatives 

with respect to the parameters and see how sensitive the system is to them.   

1.1.3 Goals and Philosophy of this Work 

Throughout our work, we have kept in mind the following criteria that our method should fulfill:  

1. As much as possible, obtain closed-form expressions.  

2. As much as possible, use only standard functions found on a scientific calculator.   
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3. Obtain analytical cdf curves that are close (within 1dB) to the simulated interference cdf 

at all points of the curve.   

4. As much as possible, simplify the expressions: if removing a term does not increase the 

error between the analytical and simulated curves by a significant percentage, then that 

term should be omitted.  

5. As much as possible, avoid numerical methods.  

6. When numerical integration is necessary, let the integral be separable as much as possible 

from the closed-form part.  

7. When numerical integration is necessary, let it be easily converging using Riemann sums 

with a moderate number of steps. 

8. As much as possible, let the numerical integrations be general enough that they can be 

tabulated and later plugged into closed-form expressions.  

9. The final distribution should be an analytical function with a fixed form and described by a 

few parameters. This way, only a few real numbers are sufficient to entirely describe the 

curve. Piecewise, implicit, or recursive solutions are undesirable.  

1.2 Physical Model 

We would like to propose a system model that is as general as possible, while retaining enough 

simplicity for analytical tractability. Our model is based closely on those used in [1]–[3], which 

apply to flat-fading channels, and is thus well suited for frequency-hopping spread-spectrum (FH-

SS), as well as orthogonal frequency division multiple access (OFDMA). The wireless system is 

divided into cells, each served by a base station (BS). However, we may also study a wireless 

system with fixed relays [2], where each relay station (RS) defines a sub-cell around itself, and 
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the MU connects to the nearest RS or BS. In order to encompass both conventional and relayed 

networks, we call a BS or RS by the common name of fixed station (FS), the exact nature of 

which is irrelevant to the analysis at this level. We study systems where there can be at most one 

other user per FS using the same frequency channel at the same time, thus one interferer per FS. 

The various interfering signals can be considered incoherent amongst themselves, thus the total 

interference power received can be written as:  

  ∑∑
==

==
N

i
iiiii

N

i
i PRII

1

2

1

αχζ .                                                   (1.1)                        

Here there are N potential interferers (equivalently, N FS’s), and Ii is the interference due to FS i. 

In the UL, there are N interfering mobile users (IMU), each transmitting to their own FS a signal 

that is also received as interference by the desired FS. In the DL, it is the interfering fixed stations 

(IFS) that transmit to their own MU’s a signal that is also received as interference by the DMU. Ri 

is the average path gain (inverse of pathloss) to the interferer. ζi and αi
2 

represent shadowing and 

fading respectively between the interferer i and the receiver. χi is the Bernoulli-distributed 

indicator function that is unity when there is an active user in interfering cell Ci on the channel 

under consideration, otherwise zero. Pi is the (normalised) transmit power coming from the 

interferer in cell Ci. 

1.2.1 Wireless Channel 

1.2.1.1 Fading 

We consider a system such as OFDMA or FH-SS where flat fading occurs over any single 

channel. There are several fading models in existence. We consider a Rician model with 

parameter K. When K = 0, the model becomes Rayleigh, and the fading power factor is 

exponentially distributed with parameter λ = 1 such that [ ] 12 =iE α . When K = ∞, there is no 
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fading in the model. In general, for Rician fading, such that [ ] 12 =iE α , we have the following 

probability density function (pdf) [25]:  

( ) ( ) ( )( ) ( ) 0,21exp12 2

0

2 >+−+−+= xKKxIKKxKxxf
iα ,              (1.2)                           

where I0 is the modified Bessel function of the first kind. The fading power multiplied by 2(K+1) 

follows a non-central χ
2
 distribution with 2 degrees of freedom and non-centrality parameter 2K: 

( )( )
( ) ( )

( ) ( ) .0,2exp

12122

1
12

02
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2
1
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>−−=
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











++
=<+

∂

∂

xxKIKx

K

x
f

Kx
xKP

x ii αα
                         (1.3)                  

1.2.1.2 Shadowing 

The interfering signal also suffers long-term shadowing, which follows a lognormal (LN) law, 

with σ(dB) = 6 to 12dB spread. All paths are assumed to be independently faded and shadowed. 

In this thesis, we use the natural base for LN RV’s. Thus we convert from decibel units (typically 

used for shadowing) to natural units by multiplying by a factor of λ = ln(10)/10 ≈ 0.23. In natural 

units, σ = λσ(dB).  

1.2.1.3 Pathloss 

The average distance-dependent pathloss model is [2]: 

ββ π
i

i

r
c

fr
r

R

2

0
0

41








= − ,                                              (1.4)                  

where r0 is the close-in reference distance, f the carrier frequency, c the speed of light, β is the 

propagation exponent and ri is the distance between the transmitter and receiver. Without loss of 

generality, we can ignore the constant factor, in which case Ri is equal to β−
ir , where ri is the 
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physical normalised distance between the interferer i and the receiver. In general, Ri’s have 

different distributions, and are not independent for different i when considering the DL. 

1.2.2 Wireless System 

We use the indicator kDL to specify whether we are looking at the UL or the DL. In the UL (kDL = 

0), the desired FS can receive interference signals from MU’s in other cells. In the DL (kDL = 1), it 

is the MU under analysis, located in C0, that receives interference from other FS's, which are 

transmitting to their own MU's. The marginal distribution of the interference power from a given 

cell Ci is identical for UL and DL. However, only for the UL are the pathlosses independent for 

each interferer. 

1.2.2.1 Cellular Network 

We assume that all the cells are identical regular hexagons of unit side length, each with its FS in 

the center. A MU is assumed to be connected to its nearest FS, i.e., it lies in the corresponding 

hexagon. The position of the MU is assumed random, uniformly distributed over the cell. We call 

the cell under consideration C0, and all potentially interfering cells Ci. 

Although we assume all cells to be hexagons, there is nothing in the analysis that prevents us 

from considering, for example, square cells in a Manhattan-style grid. The integrals and 

distributions that involve the cell geometry would need to be modified.  

1.2.2.2 Power Control 

We use the indicator kPC to specify whether we are looking at a system with or without PC. 

Without loss of generality, we assume that, without PC (kPC = 0), all interferers are transmitting at 

unit power. Under PC (kPC = 1), the power Pi transmitted by the i
th
 interferer has identical 

statistics for UL and DL. The PC mechanism is such that it attempts to compensate for shadowing 
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and pathloss is such a way that a FS receives the same power from each of its MU’s, within 

some error margin [1], [3]. The transmit power Pi depends on the pathloss between the IMU and 

its IFS, the LN shadowing with spread σ and the PC LN error with spread σe(dB) = 0 to 1dB. The 

PC mechanism is assumed slow: it does not compensate for signal fading. 

1.2.2.3 User Activity 

We assume that each MU within a cell uses an orthogonal channel. Consequently, there is only 

intercellular interference, and there can be at most one interferer in each cell Ci. Thus, the 

presence of interference from a particular cell Ci can be modeled by a Bernoulli RV with 

parameter p (collision probability), which is a function of loading, number of channels, channel 

reuse, DTX [1], etc. It is an appropriate model for any channel in a FH-SS or OFDMA system, 

where there may or may not be activity on each given carrier, and the frequencies are assigned 

orthogonally within each cell.  

We assume that the Bernoulli RV that models the activity is independent of all other quantities. 

In reality, the activity is generally dependent on the interference at a given point in time, because 

a new user may be admitted to the channel based on the activity level of other users on that 

channel. However, we do not model this effect here.   

1.3 Main Contributions  

The main analytical contributions of this thesis are:  

1. A closed-form expression for the lower tail asymptote to the SLN distribution. It is given 

by (3.9), (3.11), (3.12). 

2. Building on ideas from [3], and based on the Fenton-Wilkinson (FW) [26] method for SLN 

analysis, a closed-form expression (4.39), (4.40), (4.34), (4.35), for the interference in the 
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model described in Section 1.2. Our expression separates the cellular layout from other 

parameters, and we provide a lookup table from which the parameters describing the layout 

can be obtained. This method performs well in the body and tail, for lower probabilities of 

activity. 

3. Using the two previous points, a novel method for solving the SLN problem using a power-

lognormal (PLN) distribution. This method is described by (3.35), (3.48)-(3.51). We apply 

this method to obtain simple forms for the distribution parameters (4.41)-(4.46), (4.52), 

(4.54). Only one simple numerical integral is required (3.50). This method performs well 

over the entire range of values for high activity levels.  

Furthermore, this thesis contains: 

4. A survey of various properties of the SLN distribution. 

5. A thorough survey of methods to solve the SLN problem, including the most recent 

findings (end of 2006). 

6. A formal framework to study the tails of the SLN distribution, and a study of the tails of 

several recent SLN methods [27]–[30].   

7. A four-parameter function that approximates the SLN cdf with reasonable accuracy over 

the entire range of values, and whose parameters are found in closed-form. 

8. Several ideas for the continuation of this work with suggested approaches. 
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Chapter 2 

Known Methods for Approximating the Distribution of the Sum 

of Lognormal Random Variables 

The fundamental mathematical problem that lies behind the interference analysis is calculating 

the distribution of the SLN. Although the SLN distribution is not known in closed form, there are 

nevertheless many things that we do know about it. We give an overview of the properties of the 

SLN distribution, and of the methods used in literature to approximate it.   

2.1 Properties of the SLN Distribution  

2.1.1 Definition 

The problem can be mathematically stated as follows: Let 

           ∑
=

=
N

i
iYX

1

.                                                          (2.1)                  

We assume in this thesis that the summands Yi are independent. The pdf of each summand is LN: 
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Its moments are:                  
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The cdf is: 
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where Φ(x) is the standard normal cdf. Then 

( ) ( ) 0,~ >
∂

∂
= xxF

x
xfX                                                   (2.5)  

follows the SLN distribution, with no known closed form. When the summands Yi are 

independent, f(x) is the convolution of all fi(x): 

( ) ( ) ( ) ( )xfxfxfxf N⊗⊗⊗= L21 .                                                    (2.6)  

Again, a closed-form method for performing even one of these convolutions is not known. 

2.1.2 Properties 

2.1.2.1 Analytically Smooth 

By smooth we mean that all derivatives of the SLN pdf exist everywhere. This can be proved. 

From (2.5): 

 ( ) ( ) ( ) ( )xfxfxf
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Since the LN pdf f1(x) has all derivatives, so does the SLN pdf. We would like the function 

approximating the SLN to also have this property, if possible.   

2.1.2.2 Possibly Unimodal 

It is not evident that the SLN pdf is always unimodal. In fact, a convolution of unimodal functions 

needs not be unimodal [31]. However, various researchers have worked on trying to estimate the 
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mode of the SLN pdf [18], [32]; and simulation results [27], [28] seem to confirm that the SLN 

pdf is indeed unimodal. 

2.1.2.3 Heavy-Tailed and Sub-Exponential 

Heavy-tailed (h.t.) and sub-exponential (s.e.) distributions are defined in [33]. The LN 

distribution is said to be h.t., which is formally defined as follows: 

The distribution Fi is h.t. if and only if:  

( )
( )

0,1
1

1
lim >∀=
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+−
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xF

yxF

i

i

x
.                                          (2.8) 

Furthermore, a subclass of h.t. cdf’s is the set of s.e. cdf’s. A distribution is said to be s.e., if 

and only if: 
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*

,                                                 (2.9) 

where *n indicates the n-fold auto-convolution. By L’Hopital’s rule, we may write this in terms 

of pdf’s:  
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lim ,                                                 (2.10) 

 Now a set of s.e. distributions is not closed under convolution [33].  However, we can show 

that the SLN for independent terms, or equivalently, the convolution of N LN pdf’s is s.e., and 

thus h.t..  

Proof: 
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It is enough to show that the convolution of any two LN pdf’s is s.e., since Theorem 3 in 

[34] says that if all pair-wise convolutions of a set of pdf’s are s.e., then all manifold convolutions 

on this set are also s.e.. 

If two LN pdf’s are identical, then their convolution is s.e., by Proposition 2.8 in [33]. 

If two LN pdf’s are different, then let us call them ( )111 ,; σµxf  and ( )222 ,; σµxf , such that 

21 σσ > ; or, if 21 σσ = , such that 21 µµ > . Then: 
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            (2.11) 

From Proposition 2.7 in [33], we find that the convolution 21 ff ⊗ is s.e.. 

This proves that the SLN is s.e. for independent summands. In [21], it was proved that the tail 

behaviour is the same for correlated summands. Thus, in general, the SLN distribution is sub-

exponential, and thus heavy-tailed.   

2.1.3 Location in a Function Space 

The location of the SLN pdf in a function space is considered in [18]. The LN distribution has 

two parameters, µσ ,0> , and as such can be considered to generate a half-plane in a function 

space, as shown in Figure 2-1. A LN pdf with small ( )12 <<σ variance is nearly Gaussian, 

because the two distributions are related by exponential function, which can be seen as locally 
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linear when small variances are involved. Also, since the LN distribution has finite moments 

(2.3), the Central Limit Theorem applies, and the successive convolutions of LN pdf’s, properly 

normalised, converges to a Gaussian distribution. However, this convergence will be extremely 

slow for higher 12 >>σ , which is our case of interest in cellular communications: 

38.16 =≥ dBσ  in linear scale. For these higher variances, the moments (2.3) are very large 

( ii YEEY 22 >> ), which makes convergence slow. This can also be seen as a consequence of the 

SLN distribution being heavy-tailed (see Section 2.1.2.3): because the Gaussian distribution is not 

h.t., while the sum of any number of LN RV’s is, the SLN will not converge to a Gaussian 

distribution for any finite number N of summands. Several SLN methods, [26], [35]–[37] assume 

that the trajectory of successive convolutions lies near to the LN half-plane, effectively meaning 

that the SLN is approximately LN. However, this has proven not to be the case in many 

situations, and more recent work [27]–[30] suggests that new cdf forms need to be developed for 

approximating the SLN. 

 

Figure 2-1 Locus of successive convolutions of LN pdf’s in a function space. 
Taken from [18]. 
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2.1.4 Lognormal Probability Paper 

2.1.4.1 A Bijective Transformation 

It is convenient to look at the cdf of the SLN on lognormal probability paper [35], where LN 

distributions are mapped onto straight lines by the following transformation T: 

                    ( ) ( ) ( )( )xeFxFxFT 1~
: −Φ=a .                                                 (2.12)                          

Indeed this transformation maps: 
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which is a straight line of strictly positive slope. Conversely, each line of strictly positive slope 

corresponds to a unique LN distribution.  

2.1.4.2 Order Conservation 

Lemma 1:  

For any supports I, J, such that JeIx x ∈⇔∈ we have: 
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and  
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Proof: 
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σ

µx
xFJx

ln
)(, , which proves (2.14). The proof is analogous for (2.15). 

2.1.4.3 Concavity 

Based on the all the simulation and numerical curves in literature, it would seem that the SLN cdf 

is always concave down on LN paper. This assumption is made in [35]. However, we are not 

aware of any proof of this.  

Because it is concave, the transformed cdf is no longer linear, and in fact becomes less and less 

so as the number of summands N increases, as seen in Figure 2-2 for independent, identically 

distributed (i.i.d.) RV’s. This means that a LN distribution cannot, in general, be a good 

approximation to the SLN.  
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Figure 2-2 cdf on LN paper of the i.i.d. SLN with σ = 12 dB. Taken from [35]. 

 

2.1.4.4 Asymptotes 

Again, looking at all the simulation and numerical curves in literature, it would appear that, on 

LN paper, the cdf has linear asymptotes at both limits. This would mean that the SLN distribution 

could be well-approximated by two (different) LN distributions at each tail. This fact is 

theoretically asserted for the upper tail [21], but there has been no mathematical evidence for 

there being an asymptote in the lower tail. Also, until now, most SLN methods have completely 

ignored the nature of the tails of the cdf. We explore these asymptotes formally in Chapter 3. 



 

  

19 

2.2 Closed-Form Methods 

We are interested primarily in developing a closed-form solution to our interference problem, 

which means we are particularly interested in closed-form results on the SLN.  

2.2.1 Positive Moment-Matching 

The simplest approach to approximating the SLN is to assume that the SLN distribution is LN, 

and match its first two positive moments. This is the first method for solving the SLN problem, 

and is known as the Fenton-Wilkinson (FW) method [26]. The moments of a LN distribution are 

known (2.3). Let us use the problem statement in Section 2.1.1, and let us approximate the sum of 

the SLN RV X by a LN: 
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The first two moments of the SLN can be calculated as follows [38]: 
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Here ρij is the correlation coefficient between the Gaussian RV’s iYln  and jYln . These moments 

are then matched with those of (2.16): 
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Matching higher moments has also been proposed [9], [26], [39]. In general, we find the 

moments of order n and n+1 in a manner similar to (2.17), (2.18), then match the moments 

according to: 
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Now matching higher and higher moments of positive RV’s tends to give much more weight to 

the upper tail of the distribution. More specifically: 

1. Moment-matching tends to approximate the upper tail much better than the body or the 

lower tail [26], [35], [40], since moments essentially determine the tail of a distribution 

[43].  

2. By matching higher moments as in (2.20), the overall curve match to the body gets worse 

and worse, and approximates the far upper tail more and more. 

3. Based on the last point, it is possible to perform successive moment-matching for various 

n and construct a piecewise-LN method [39], [40]. However, we dislike a piecewise 

solution because it is cumbersome to use. 

4. As the moment order n goes to infinity, the summand with the highest moments 

dominates, and the moment-matching method converges to a LN asymptote determined 

by the dominating term. This will be explored in more detail in Section 2.2.2. 
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In conclusion, moment-matching is a simple-closed form solution to the SLN problem. There 

exist known expressions for bounds on the error of this method [41].     

2.2.2 Asymptotics 

The behaviour of the SLN distribution ( )xF as +∞→x  has been previously studied [21], [42]. It 

was shown in [42] that the moments [ ]nXE of a SLN are dominated by the heaviest summand(s) 

as n increases. In [40], it is suggested that matching higher and higher moments of the sum to 

those of a LN distribution gives a better and better LN asymptote to the upper tail behaviour. In 

[43], it is argued that moments of positive RV’s (as is our case) determine the upper tail. All this 

information suggests that looking at the heaviest summand(s) alone will give us a good 

approximation of the tail.  

Reference [21] gives a simple procedure to find the upper tail asymptote: 

Choose the summands with the highest logarithmic standard deviation: 

                         i
Ni

U σσ
,...,1

max
=

= .                                                                  (2.21)                          

Among these summands, chose those with the highest logarithmic mean: 

                                i
i

U
Ui

µµ
σσ =

=
:
max .                                                                  (2.22)                          

Count the number of these “heaviest” summands: 

                       ( ) ( ){ }UUiiU σµσµκ ,,# == ,                                                     (2.23)                          

where #{S} is the cardinality of set S.   

The tail distribution is then that of the heaviest summand(s), multiplied by the number of these 

heaviest summands: 
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Note that [21] proves that this result is also valid when the summands with the same marginal 

distributions are correlated.  

2.2.3 Bounds  

2.2.3.1 Tighter, Non-Parametric Approximation 

It is argued in [21] that if a summand is not heaviest, but nearly so, it also contributes 

significantly to the tail for large but bounded x. In [44] are given bounds that are tight in the upper 

tail. Thus, a better asymptote is the distribution of the maximum of the summands: 
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Indeed, when we take the sum of positive terms that have high variance, in most outcomes there 

will be one term that is much larger than the others, and the maximum of the RV’s is a good 

lower bound to their sum. In the i.i.d. case this bound becomes a PLN distribution, which is called 

Farley’s method in literature [45]: 
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 We also have: 
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Equations (2.26) and (2.28) are upper and lower bounds respectively to the SLN cdf, which are 

called lower and upper bounds respectively in [44], since they are used to refer either to the 

complementary cdf or to the value of the RV itself.                           

2.2.3.2 Arithmetic-Geometric Mean Inequality 

While the sum of LN RV’s is difficult to find, the product of LN is very simple. Let 

∏
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=
N

i

iYZ
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.                                                                  (2.29)                           

Then Z is simply a LN RV with parameters: 

∑∑
==

==
N

i

iZ

N

i

iZ

1

22

1

, σσµµ                                                      (2.30) 

assuming Yi are independent. 

The method proposed in [46] uses the geometric-arithmetic (AG) mean inequality: for any 

positive quantities, their geometric mean is always upper-bounded by their arithmetic mean: 
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In our SLN case,  
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from which we obtain a bound on the SLN distribution: 
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Now let us examine the inequality (2.31) with some numerical examples. Take { }6,5,4=V , 

where all the terms are of the same order of magnitude. Then the arithmetic mean is 5, and the 

geometric mean is 4.932…. Not only is the bound correct, it is also very tight in this case. Let us 

take another example: { }100,10,1=V , with different orders of magnitude. Then the arithmetic 

mean is 37, and the geometric mean is 10, which is a very loose lower bound.  

From this we come to the conclusion that if our LN summands are of different iµ or of high iσ , 

they will take values of very different orders of magnitude. This is indeed the case in our 

problem, where there are interferers located both near and far, and the LN shadowing is of at least 

6dB. Hence the bound in (2.33) will be very loose, and essentially useless. 

This bound is however very useful in solving another problem: calculating the total 

interference power from in-cell users in a power-controlled Code Division Multiple Access 

(CDMA) system. In this case, all receive powers are essentially the same, but vary slightly in a 

LN manner, say by 1dB, due to imperfect PC. In this case the method, which was only tested for 

up to 4dB, is good for 4dB and excellent for 1dB [46]. 
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2.3 Numerical Methods 

The methods in this class consist in calculating numerical integrals, perhaps iteratively, and 

perhaps in several dimensions.  

2.3.1 Parametric Methods 

Here are methods that use numerical integration in order to find the parameters of some function 

that approximates the SLN cdf.  

2.3.1.1 Logarithmic Moment-Matching: Schwartz – Yeh 

This is one of the earliest and most important methods, originally published in [37], it was used in  

[1], [47] to analyse outage probability in cellular systems. The method is described in [38], so we 

only give a brief description here: 

The SY method approximates the SLN by a LN distribution. Moment-matching is performed in 

the logarithmic, instead of the linear, domain. The sum of the first two LN RV’s is approximated 

by a partial sum X2, which is LN with parameters
22

, XX σµ which are found by solving: 

[ ] ( )[ ]212 lnln
2

YYEXE X +== µ                                                (2.34) 

[ ] ( )[ ]21
2222

2 lnln
22

YYEXE XX +=+= σµ                                        (2.35) 

Equation (2.34) is reformulated as follows:  
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This formulation is due to the fact that Y2/Y1 is also LN. The integral cannot be calculated in 

closed form and is thus left to numerical integration. A similar formulation is used to find
2Xσ .  

Once the sum of two LN RV’s has been approximated by another LN, we proceed iteratively 

by solving in the same manner: 

[ ] ( )[ ]nnXn YXEXE
n

+== −1lnln µ  ,                                             (2.37) 

[ ] ( )[ ]nnXXn YXEXE
nn

+=+= −1
2222 lnln σµ .                                     (2.38) 

This is a recursive method with respect to the number of summands. In total we perform N – 1 

iterations, each involving a numerical integral. In order to calculate this integral more efficiently 

and accurately, modified methods have been proposed [48], [49]. 

2.3.1.2 Log-Shifted Gamma Function: Le-Ngoc – Lam 

The LL method was proposed in [27], and is inspired by the SY method. A three-parameter 

function: a log-shifted Gamma (LSG) function (see Section 3.2.1.1), is used as an approximating 

cdf. The sum of two LN RV’s is approximated by a LSG, after which each successive partial sum 

is computed as the sum of a LN and a LSG RV. The three parameters of each successive LSG 

distribution are found through matching the first two logarithmic moments of the sum (as in SY), 

and also the first linear moment (as in FW). This method also requires N – 1 iterations, and 

numerical integrations at every step. The method is expanded to include the sum of correlated LN 

RV’s in [50]. 
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2.3.1.3 Pearson Type IV Function: Zhang – Song 

A four-parameter Pearson Type IV (see Section 3.2.1.4) cdf is used by Zhang – Song (ZS) in [28] 

as an approximating distribution to the logarithm of a SLN. These parameters are found by 

matching for the first four moments of the logarithm of a sum of LN RV’s, given by: 
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It is not specified how these moments are calculated, but it is probably through numerical 

integration.  

2.3.1.4 Negative Moment-Matching 

Rather than matching positive moments of the SLN as in Section 2.2.1, [21] proposed to match 

the first two negative moments (powers –2 and –1). The advantage of this method is that it gives 

less weight to the higher tails, and more to the lower portion of the cdf. The disadvantage is that 

there is no closed-form expression for the negative moments of a sum of RV’s, and an N-

dimensional numerical integration is necessary. 

This method was extended in [40] so as to use (2.20) for both positive and negative n except 0 

and –1. This gives us a piecewise solution that is accurate in both tails, but again requires 

numerical integration for negative n, which give the lower tail. The method does not yield a very 

exact match in the body (centre) of the cdf though, and produces a piecewise solution. 

2.3.1.5 Flexible Lognormal Approximation: Wu – Mehta – Zhang 

The WMZ method presented in [36] approximates the SLN cdf by a LN. However, the LN cdf 

can be matched to any part of the SLN curve, by selecting parameters correctly. The method uses 

the LN distribution’s moment-generating function. Since its closed form is not known, a short 
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Gauss-Hermite expansion of less than 20 terms is used. This method has the advantages of 

providing a piecewise LN solution of arbitrarily good accuracy given enough pieces, and this 

without recursion. However a non-linear equation still needs to be solved numerically.  

The method is expanded in [51] to include correlated LN and LN-Rice RV’s. 

2.3.2 Characteristic Function Evaluation  

Another numerical approach to the SLN problem for independent summands is to take (2.6) and 

consider it in the Fourier domain: the characteristic function (cf) of a sum of independent RV’s is 

the product of their individual cf’s. Now the cf of a LN RV is not known in closed form, but can 

be found numerically. This results in an integral with a very long oscillating tail, and the integral 

converges very slowly. The first numerical study of the LN cf seems to be [19]. The modified 

Clenshaw-Curtis method is used in [35], while [52] uses a new method where the integral is 

transformed so that in no longer oscillates. Reference [53] proposes yet another integral. The cf 

method is also treated mathematically in [22], where it is shown that the SLN cdf for independent 

terms can be expressed as a sum of products of LN terms. 

2.4 Curve-Fitting Methods 

The following methods could be called “empirical”, because they consist in already knowing the 

SLN cdf as a vector of values, and then fitting the best possible analytical curve to it. The SLN 

cdf is obtained numerically by methods from Section 2.3.2. These methods essentially correspond 

to a tabulation of curve parameters against the input parameters of the summed LN RV’s. The 

weakness of this approach is that there exists an almost infinite variety of cases for the set of 

input parameters{ }N

iii 1
,

=
σµ . Thus these methods only examine i.i.d. cases, where there are only 

two parameters: N and σ, while µ can be set to zero without loss of generality. 
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2.4.1 Minimax Lognormal Fitting: Beaulieu – Xie 

After using the modified Clenshaw-Curtis method to find the cf, the BX method [35] assumes that 

the SLN cdf is concave on LN paper (see Section 2.1.4.3), and fits the best possible straight line 

on the LN paper to the SLN cdf using the minimax criterion over the range [10
-6

, 1-10
-6

] of 

probabilities. The result is a LN approximation to the SLN distribution that does not privilege any 

particular region of the curve.  

2.4.2 Three-Parameter Function: Beaulieu – Rajwani 

The previous method (or any other method approximating the SLN by a LN) cannot be accurate 

everywhere, because in most cases the SLN cdf is not approximately LN (see Section 2.1.4.3). 

Another cdf is proposed by Beaulieu – Rajwani [30] (BR), which will be analysed in detail in 

Section 3.2.1.2. Here we will only say that the distribution has three parameters, which are found 

by a non-linear least-squares fit to the cdf obtained numerically. These parameters are tabulated 

for N = 2 to 20, and σ = 6dB and 12dB. 

2.4.3 Three-Parameter Function: Zhao – Ding 

Another approach, similar to the previous one, uses also a three-parameter cdf that is parabolic 

under the transformation T. This is the ZD method [29], whose cdf will be examined in detail in 

Section 3.2.1.3. Beaulieu and Rajwani mention that they have also tried and discarded a parabolic 

function [30]. Our simulation results in Figure 3-2 show that the BR method greatly outperforms 

the ZD method. However, the ZD method has the advantage of being defined for a whole range 

of N and σ. 
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2.5 Validation of Methods 

Given so many methods to choose from, we would like to analyse and compare them in order to 

choose the ones most suited to our purpose.  

2.5.1 Comparisons in Literature  

There are several papers in literature dealing with comparing FW and SY methods: [45] argues 

that FW is better in several cases, while [38] prefers SY. In fact which method is better depends 

on the choice of LN parameters [48]. Also, FW tends to approximate the upper tail better, while 

SY approximates the body, or middle portion of the cdf, as can be seen in [27], [35], [45]. Also 

Farley’s method is always asymptotic to the SLN cdf in the upper tail, but is not very good in the 

lower tail, sometimes better and sometimes worse than FW [27], [35], [45].   

2.5.2 Comparison and Classification of Methods 

There exist various approximate solutions to the SLN, which generally consist of two distinct 

parts: choosing a general form for the SLN distribution, and obtaining its parameters for 

particular cases. One approach has been to approximate the SLN distribution by a LN, and 

various methods were used to find the best-fitting parameters: FW [26], BX [35], WMZ [36], SY 

[37], negative moment-matching [40], [54], and LN bound [46]. However, it has become clear 

that as the number of summands increases, the SLN distribution appears less and less LN (see 

Figure 2-2). There also exist other methods, which use more complex distribution functions with 

three or more free parameters: LL [27], ZS [28], ZD [29], and BR [30]. Nonparametric solutions 

have also been proposed: piecewise-lognormal [26], [39], [40], or product-of-lognormal (Farley’s 

method [45], other bounds [44]). Each of these methods has its drawbacks: the first class of 

methods, where a LN approximation is used, cannot possibly be accurate over the entire range of 

x. Many methods require numerical integration to find the required parameters: [27], [28], [37], 
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[40], [54]. While the behaviour of the upper tail, i.e., as ∞→x is known [21], [42], that of the 

lower tail, i.e., as 0→x  has no simple expression. Some methods have only been verified for the 

case of i.i.d. summands [29], [30]. Also, we will show that methods that match the body of the 

distribution well [27]–[30], are not necessarily accurate in the far tails. On the other hand, the 

piecewise-lognormal method proposed in [40] does give a good behaviour at the tails, but again 

requires numerical integration in N dimensions and does not perform as well in the body. Hence, 

there is no single method that really gives a complete solution to the problem, and there is no 

closed form for the lower tail.  

Figure 2-3 shows the various methods compared according to both accuracy (precision) of the 

approximation (which is not entirely an objective measure, as different parts of the curve may be 

better approximated by different methods, and for different parameter choices.) and also by 

complexity. Complexity is again a partly subjective measure. We tried to estimate the difficulty 

of understanding and implementing a specific method, while also considering the level of 

integration required (iterative, multi-variate?). We also included our two new methods, PLN and 

4P, introduced in Chapter 3, for comparison. We have indicated by an arrow that the 

advantageous region for a SLN method is both high precision and low complexity. As can be 

seen from the Figure, there are no known methods in that region, which indicates that the SLN 

problem remains essentially open.  

Table 2-1 shows a history of the principal developments in the field of the SLN problem in the 

electrical engineering community. Some methods only apply to i.i.d. or independent but not 

necessarily identically distributed (i.n.i.d.) RV’s.  It does not include work on cf’s or comparative 

work. 
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Method Form Statistics Matched Complexity Scope 

FW (’60) [26] LN [ ] [ ]2, XEXE  Closed-form any 

Schleher (’76) [39] Piece-LN 

Cumulants: 

[ ]( )[ ]n
XEXE −  

Closed-form i.i.d. 

SY (‘82) [37], [38] LN [ ] [ ]XEXE 2ln,ln  
Num. integrals, 

N–1 recursion 
any 

Farley (?) [45] PLN ∑
=

≤
N

i
ii

i
YY

1

max  Closed-form any 

Bounds (’01) [44] 
Product 

of LN 
i

i

N

i
ii

i

YN

YY

max

max
1

≤

≤ ∑
=  Closed-form i.n.i.d. 

BX (’04) [35] LN Minimax fit 
Numerically 

computed cdf 
any 

AG (’04) [46] LN 
NN

i
i

N

i
i YY

N

1

11

1








≥ ∏∑

==

 Closed-form any 

BR (’04) [30] (3p.) 
Non-linear 

least-squares fit 

Numerically 

computed cdf 
i.i.d. 

LL (’05) [27], [50] LSG (3p.) 
[ ] [ ]

[ ]XE

XEXE

2ln

,ln,
 

Num. integrals, 

N–1 recursion 
any 

WMZ (’05) [36], [51] LN 
Moment-generating 

function 

Num. equations, 

Non-recursive 
any 

Negative Moment 

Match. (‘05) [40], [54] 
Piece-LN 

[ ] [ ]
,...3,2,1,2,3...

,,
1

−−=

+

n

XEXE
nn

 
Num. integrals 

in N dimensions 
i.n.i.d. 

ZD (’06) [29] (3p.) 
Quadratic 

least-squares fit 

Numerically 

computed cdf 
i.i.d. 

ZS (’06) [28] 
Pearson 

IV (4p.) 

[ ] 4,...,1,ln =nXE n

 
Closed-form 

* 
any 

* It is not explained how the moments of the logarithm of the SLN are found. Once these are found, the method is closed-form. 

 

Table 2-1 Summary of properties of SLN methods.  
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Precision

Complex ity

BR (’04)

AG (’04)

BX (’04)
LL (’05)

SY (’82)

Positive Moment-Matching: FW (’60)

Negative Moment-Matching (’05)

ZD (’06)

ZS (’06)

WZM (’05)

Bounds (’01)

Characteristic 
function (’76-’06)

PLN (’06)

4P (’06)

Closed Form

Simple Numerical Methods

Iterative Numerical Methods

Advanced Numerical Methods

 

Figure 2-3 Comparison of SLN methods by complexity and precision.  

 

2.5.3 Monte-Carlo Simulation Algorithm 

Though various numerical methods exist to find the exact SLN cdf (see Section 2.3.2), we 

preferred to use Monte-Carlo simulations due to its simplicity in concept and implementation. 

The algorithm flowchart is given in Figure 2-4. The strongest drawback of this method is the long 

computational time. We mitigate this problem by letting the simulations run overnight. 

We use the simulated curve as a benchmark for evaluating existing SLN methods, or, in 

Chapter 3, methods of our own device. We will also give an algorithm that efficiently simulates 

the far lower tail of the SLN cdf in Section 3.1.3.5. 
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Figure 2-4 Algorithm that simulates the SLN cdf. 
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INITIALISATION: 
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BEGIN 

  END 
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Chapter 3 

Towards a Good, Simple, Closed-Form Approximation of the 

Distribution of the Sum of Lognormal Random Variables 

In Chapter 2, we have made a thorough search of existing SLN methods and found that there is 

still no closed-form method that approximates the SLN cdf well. In particular, the closed-form 

methods gave us some good results in the upper tail, but failed in the lower tail. In this chapter, 

we develop a closed-form approximation to the lower tail, and combine it with other closed-form 

results to produce new, more exact closed-form or nearly-closed-form methods. 

While it can be argued that knowledge of the tails of the distribution is less important than that 

of the body, we will show that theoretical results on the tails provide information on the body 

shape also, because the distribution is smooth (see section 2.1.2.1). Also, in order to apply 

moment matching on positive RV’s, it is important to understand the upper tail [43], since a small 

error in the distribution at high values may translate into a large error in the moment.  

3.1 Best Lognormal Fit to Either Tail 

In Section 2.1.4.4 we have seen that, on lognormal paper, the tails of the SLN distribution seem to 

have linear asymptotes, which would indicate that the distribution is approximately LN in either 

tail. We will now examine this formally by defining a property of tails of distributions, the best 

lognormal fit (blf), and showing what it means in terms of convergence. We then examine the 

properties of both tail of the SLN distribution using this framework. 

3.1.1 Definition 

Let ( ) ( )xFxFT
~

: a . Then 
σ

µ−x
 is an asymptote to ( )xF

~
 at ±∞=l  if and only if:                      
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                             ( ) 0
~

lim =
−

−
→ σ

µx
xF

lx
.                                                      (3.1)                                                   

We say that ( )xF  has a best lognormal fit 






 −
Φ

σ

µxln
 at e

l
. At any given tail, a cdf may have at 

most one blf.   

3.1.2 Best Lognormal Fit in the Linear Domain 

We show that if, on lognormal paper, a line L is not the blf to a curve C at the limit l, then the 

corresponding distributions have tails in the corresponding limit e
l
 that are not comparable at any 

order of magnitude, i.e., their ratio will diverge. In other words, a necessary (but not sufficient) 

condition for approximating a distribution by a LN at a given tail is that the two distributions be 

asymptotes to each other on lognormal paper. 

Lemma 2: 

If ( ) 0
~

lim ≠
−

−
−∞→ σ

µx
xF

x
or does not exist, then 

( )
+∞=








 −
Φ

→
,0

ln
lim

0

σ

µx

xF

x
 or does not exist.    

Likewise, if ( ) 0
~

lim ≠
−

−
+∞→ σ

µx
xF

x
or does not exist, then

( )
+∞=








 −
Φ−

−

+∞→
,0

ln
1

1
lim

σ

µx

xF

x
 or 

does not exist.  

Proof: 

( ) 0
~

lim ≠
−

−
−∞→ σ

µx
xF

x
 or does not exist            
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(3.2)                

Applying Lemma 1:  
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 (3.3)                                                           

Likewise:     
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(3.4)                                                           

But
( )

0
ln

, ≥








 −
Φ

∀

σ

µx

xF
x , thus: 

         ( ) ( ) ( )
0

ln
lim

~
,,,0

0
=








 −
Φ

⇒
+−

<<∃∀>∃
→

σ

µσ

σεµ
δδε

x

xFx
xFx

x
or does not exist.  (3.5)                                 

Thus, if ( ) 0
~

lim ≠
−

−
−∞→ σ

µx
xF

x
or does not exist, then 

( )








 −
Φ

→

σ

µx

xF

x ln
lim

0
is 0, +∞, or does not 

exist. The proof for +∞→x  is analogous. This proves Lemma 2. 

Lemma 2 has several important implications: 

1. If a distribution has no linear asymptote in the LN domain at limit l, then it cannot 

possibly be approximated by a LN function in the linear domain at the corresponding tail. 

2. If the ratio of two pdf’s converges to a non-zero constant at limit l, and one of the two 

distributions has a blf, then the other must have the same blf.  

3.1.3 Lower Tail (for Independent Summands) 

To our knowledge, there is no work dealing directly with the lower tail behaviour of the SLN. 

There is some literature on the lower tail of the distribution of the sum of positive RV’s, but it 
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does not readily apply to the SLN. The polynomial conditions required in [55] are not fulfilled 

by the LN distribution.  

3.1.3.1 Discrete Convolution Approximation 

In order to find the lower tail of the distribution of the sum of two independent LN RV’s with 

pdf’s f1(x) and f2(x), we need to find the convolution near 0 of two LN pdf’s. We proceed as 

follows: let us sample the cdf’s at 0, x, 2x, …, where x is small. Then, we perform a discrete 

convolution and look at the first non-zero sample: 

                        ( ) ( ) ( )xfxxfxf
x

21

0

2
→

≈ .                                                        (3.6)                                                  

Proceeding likewise for N functions:  

( ) ( )∏
=

−
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i
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0

 .                                                    (3.7)                          
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Let  
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=
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
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
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
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i i
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then:  



 

  

40 

( )

.2
1

2
1

2
1

1
2

2

2

1

2

1
2

2

2

1

2

1
2

2

2

1

1
2

2
2

2

1
2

2

2

1
2

2

22

1

1
2

2
2

1
2

22

22

1

ln

1

1

ln
1

1

1

ln2ln
1

1

1
0

∑∑
∑

∑∑∑

∑∑

==

=

===

==

−













+




















−

−

=

−−














+














−














−−

=

−−














+−−

=

−−→

∏

∏

∏

=

=

=≈

N

i i

i
N

i i

i
L

L

N

i i

i
L

N

i i

i
L

N

i i

i
L

N

i i

i
L

L

N

i i

i
L

N

i i

i
L

L

x

N

i
i

N

x
N

i
i

N

xxN

i
i

Nx

e
x

e
x

e
x

Nxf

σ

µ

σ

µ
σ

σ

σ

µ
σ

σ

µ
σ

σ

µ
σ

σ

µ
σ

σ

σ

µ
σ

σ

µ
σ

σ

σπ

σπ

σπ

                    (3.10)                          

3.1.3.2 Scaled Lognormal Approximation 

From the above approximation, it would seem that we can express the lower tail of the SLN 

distribution as a LN times constant distribution: 
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3.1.3.3 Best Lognormal Fit 

Since the expression in (3.11) is a constant factor of a LN pdf, and assuming the development in 

Section 3.1.3.1 is valid, we present the following important result:  

Hypothesis: 

The SLN has a bl f 






 −
Φ

L

Lx

σ

µln
at 0, where the parameters are given by (3.9), (3.12). 
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3.1.3.4 Difficulties in Approximating the Lower Tail 

It is important to note that, the LN distribution is very flat near zero; in fact, 

,...2,10
ln

lim
0

=∀=






 −
Φ

∂

∂

→
n

x

xn

n

x σ

µ
. The convolution is thus difficult to analyse, as it does not 

fit in the framework of [55], nor is there a guarantee that the discrete convolution approximation 

performed in Section 3.1.3.1 is very good. Indeed, we find by simulations that the value 

of Lκ does not improve the approximation much, as will be seen in the next section. 

3.1.3.5 Simulation of lower tail values 

We find that in order to validate our asymptote, it is necessary to simulate the SLN cdf at very 

low values, which correspond to probabilities as low as 10
-20

 or 10
-30

, which would require an 

inversely long simulation length, which is simply prohibitive. We can however make this 

simulation much more efficient by noticing that the sum of positive RV’s is always larger than (or 

equal to) any of the individual RV’s. In other words, we only need to generate low values of Yi in 

order to obtain low values of the sum X. More specifically, to generate the portion of the cdf 

below a value SimLowVal, we need only generate values of Yi from the distribution Fi, truncated 

on the interval [0, SimLowVal] and rescaled properly. We can thus obtain the sum distribution 

using conditional probabilities:      
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  (3.13)                          

The algorithm for this simulation is presented as a flowchart in Figure 3-1. There is unfortunately 

no such simple algorithm for simulating high values of X.  

In Section 3.1.3.6, we perform some such simulations. The simulations can be done in 

reasonable time if the number of summands N is not too high, which is why we focused on cases 
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of N = 2, and cases where the summands have different distributions and thus one tends to 

dominate. In Figures 3-2 – 3-4 we see broken pieces of a curve. Each piece corresponds to one 

simulation with a different value of SimLowVal. Tail probabilities of the order of 10
-20

 can be 

obtained using only millions of TRIALS (compare with 10
20

). However, as N increases (say for 6 

i.i.d. terms), the algorithm is no longer very efficient.  

 

Figure 3-1 Algorithm that efficiently simulates the far lower tail of the SLN cdf. 
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3.1.3.6 Comparison with Simulations and Recent Methods 

Using the method described in Section 3.1.3.5, we perform Monte-Carlo simulations of the lower 

tail of the SLN cdf curves, along with our theoretical asymptotes, and we also reproduce some 

curves from the LL, ZD and BR methods. We plot all these on LN probability paper. The 

simulations are done using values from Table 3-1 and are shown on Figures 3-2 – 3-4. 

We use the values from Table I in [30] to obtain curves for the BR method for several i.i.d. 

cases. For the LL curves, we used the values from Table I in [27]. Note that in the fifth row of 

that Table, the log-variance should be 12dB, not 6dB. For the ZD curves, we used Equations 

(18)–(20) in [29], which are applicable to i.i.d. cases only, and where σ is in dB. The ZS curves 

are difficult to reproduce because the cdf is not known in closed form [28].  

We also plot the theoretical asymptotes: one straight asymptote, the blf 






 −
Φ

U

Ux

σ

µln
, and 

one LN-times-constant asymptote for each tail (3.11).  

We see that in all cases the BR and LL methods, and for most cases, the ZD method, give 

accurate results in the body of the distribution. However, it is evident from the Figures that each 

method gives a curve that tends to diverge from the blf of the SLN at either tail. We will show in 

Section 3.2.1 that this must always be the case. In particular, with the LL method, it could already 

be seen that there is this divergence in the tails, on LN paper [27].  

The SLN converges instead to our proposed asymptotes. We see that the simulated curve tends 

to be sandwiched between these two curves. By virtue of Lemma 1, this would imply that the 

SLN cdf is bounded by 






 −
Φ

U

Ux

σ

µln
 from above and by (3.11) from below. Since these two 
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functions are constant multiples of each other, it would imply that there exists 

1, ≤′≤′
LLL κκκ such that: 

( )
1

ln
lim

0
=







 −
Φ

′

→
L

LL

x

x

xF σ

µκ
.                                                (3.14)      

This would be a much stronger result than simply a blf. However, we cannot prove it.                     

 Figure N µi (dB) σi (dB) 

3-2 (A) 2 0 6 

3-2 (B) 2 0 12 

3-3 6 0 6, 8, 9, 10, 11, 12 

3-4 6 -25, -15, -5, 5, 15, 25 12 

Table 3-1 Simulation parameters for SLN cdf’s in the lower tail. 

 

 

Figure 3-2 The cdf of the sum of two i.i.d. LN RV’s – A: σ = 6dB and B: σ = 12dB. 

LEGEND 

 Monte-Carlo simulation 

Methods from literature: 

 Lower tail asymptote 

 blf to lower tail 

 BR method 

 ZD method  

   



 

  

45 

 

Figure 3-3 The cdf of the sum of lognormals with different variances.  

 

 

 

Figure 3-4 The cdf of the sum of lognormals with different means. 
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Methods from literature: 
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3.1.4 Upper Tail 

Since the distribution in (2.24), (2.25) is a finite constant multiple of a LN, and Lemma 2 says 

that if a function is not the blf at a given tail of another function, then the ratio at that tail of those 

two functions must diverge. Consequently, the SLN distribution has blf 






 −
Φ

U

Ux

σ

µln
at +∞.  

3.2 Potential Functions for Approximating the SLN Distribution 

Having examined the existing methods for estimating the SLN distribution in Chapter 2, and in 

light of the results on the tail behaviours of the SLN distribution from Section 3.1, we now show 

that all the known parametric methods are inadequate in the sense that they necessarily diverge 

from the true SLN distribution in the tails. We then show how we can construct functions that do 

respect the tail constraints presented in Sections 3.1.3 and 3.1.4. 

3.2.1 Inadequacy of Existing Functions in the Tails 

Our simulation results suggest that the existing methods for finding the SLN distribution are not 

accurate in the far tails. The SLN distribution is shown to have a blf in the upper tail, and 

probably in the lower tail also. In this section, we prove that recent available methods all use 

distribution functions that cannot have a blf at either tail (except perhaps in the trivial LN case). 

Consequently, all these methods must inevitably give tail values that have infinite relative error.                       

We examine four distributions that have recently been proposed as approximations to the SLN. 

For each of these we show that they cannot possibly give a good approximation at the tails. We 

do this formally by showing for all four methods that for the proposed cdf ( ) 0, ≥xxFXX , for 

any µσ ,0> , the result of the transformation ( ) ( )xFxFT XXXX

~
: a  cannot have 

σ

µ−x
as an 

asymptote at ±∞=l , except in some trivial cases when ( )xFXX is LN.  
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We also show that only some of the proposed functions have the LN distribution as a special 

case, which should be a characteristic of an SLN approximation.  

We use the constant 10ln1.0=λ to convert from decibel units. 

3.2.1.1 Log-Shifted Gamma Function: Le-Ngoc – Lam (LL) 

This approximating cdf has three parameters ( )δβα ,,  [27]: 

( )
0,0,,,

ln1
)( >>>








−

Γ
= αβα

β

δ

λβ
γ

α
δλ

ex
x

xFLL ,                       (3.15) 

where ( ) ∫
−−=

x t dttex
0

1, ααγ is the (lower) incomplete gamma function, and ( )αΓ is the gamma 

function. 

( )
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γ
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~
)(: 1
a .                    (3.16)                           

The function is not even defined for arbitrarily low values. 

In the upper tail, we use an approximation of the incomplete gamma function [56]: 

              ( ) ( ) ( )( )11 1~, −−−
∞→

+−Γ xOexx x
x

ααγα ,                                        (3.17)                           

and an approximation to the inverse standard normal cdf [57]: 

               ( ) ( )( )xxx
x

2ln2ln2~
0

1 −−−Φ
→

− π .                                         (3.18)                            

Then:  
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                     (3.19)                           

Hence, the LL distribution does not have a blf at either tail. 

3.2.1.2 Three-Parameter Function: Beaulieu – Rajwani (BR) 

This approximating cdf has three parameters ( )210 ,, aaa  [30]: 
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x

a
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Then:     
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x
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2

10 lim)(
~
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Hence, the BR distribution does not have a blf at either tail. 

In [29] it is mentioned that this form does not include the LN distribution as a special case. We 

can, however, obtain convergence of ( ) x
x

xFBR ∀






 −
Φ→

σ

µln
:  

Let us consider σµ, as constants, such that: 

                             
2121

01 1,
aaaa

aa == − σµ .                                                        (3.23)                           

Then: 
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Using an alternative definition of the natural logarithm:         

                       0,
1

limln
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≥
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=
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we obtain: 
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Thus, in the limiting case: 

             ( ) σµσ −==→
−
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1

212 ,,0 aaaaa ,                                                (3.27)                           

the BR distribution is LN. 

3.2.1.3 Three-Parameter Function: Zhao – Ding (ZD) 

This approximating cdf has three parameters ( )210 ,, ccc  [29]: 
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Hence, the ZD distribution does not have a blf at either tail, except in the LN case 02 =c . 
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3.2.1.4 Pearson Type IV Function: Zhang – Song (ZS) 

The proposed distribution for the SLN in dB is Pearson type IV, which has four 

parameters ( )ν,,, dmu  [28]. Consequently, the pdf of the SLN in linear scale has distribution: 
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                                           (3.31)                           

and k is the constant chosen so that the pdf be valid and is found by numerical integration for each 

particular case. It would seem that the cdf is not readily available in closed form. However, we 

can still study its tail behaviour: 
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Again, using the result (3.18): 
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                              (3.34)                           

A similar analysis applies for the upper tail.  

Hence, the ZS distribution does not have a blf at either tail.  
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3.2.2 Potential Function Candidates 

If the existing methods use cdf’s that cannot behave properly in the tails, what then would 

functions that do look like? We give here a collection of three functions that verify at least some 

of the tail requirements given in Sections 3.1.3.2 and 2.2.2.  

3.2.2.1 Power Lognormal 

A PLN cdf has general form: 
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 It has pdf: 
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 It has blf 
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By lemma 2, since the limit is finite (non-zero), the function is indeed the blf. This completes 

the proof. 

The lower tail poses more of a problem, because it does not have a blf unless t = 1.  

Proof: 

Consider 
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Using the following approximation:  
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We use the tail approximation (3.18) from [57]:  
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Now if 





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µxln
is the blf at 0, then the following equation must hold: 
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(3.42) 

This has no solutions, for any constants A, B, C, unless t = 1. This proves that the PLN cdf does 

not have a blf at –∞. However the lower tail does have a limiting slope: 
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We are thus interested in the PLN distribution because it has a blf in the upper tail, and at least 

a limiting slope in the lower tail. Also, [22] suggested that the SLN distribution could be written 

as the sum of products of LN distributions. A PLN distribution is a particular case of this, which 

makes it an interesting candidate. 

3.2.2.2 A Four-Parameter Function 

Since we have seen that the SLN has blf‘s at both tails, it would be interesting to create a function 

that also has the same blf‘s at both tails. To do this, we first construct a function r(x), such that: 
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1. r(x) is analytically smooth. 

2. ( ) 0lim =
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. 

3. ( ) kxxr
x

=−
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lim . 

One such function is: 

( ) ( )xk eekxr += 1ln,                                                             (3.44) 

Now, in order to construct an approximation to the SLN cdf, we construct the following four-

parameter (4P) function: 
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which has tail behaviour: 
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is our proposed function 4P for approximating SLN. It has blf ( )( )dxca lnln −−Φ  at +∞, and 

blf ( )bxa lnln −Φ  at –∞. 

3.3 Obtaining the Parameters of the Approximating Functions 

3.3.1 Power Lognormal Distribution 

We wish to fit the PLN cdf to that of the SLN as well as possible. We know the blf of both the 

upper and lower tail of the SLN, and we can also find its moments analytically, whereas the PLN 
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distribution has three free parameters only. We choose to match the slopes of both tails first, 

because an error in the slope of the tail asymptote will become infinitely more significant than an 

error in the offset as we approach the limit. We also found that matching the first moment of the 

PLN cdf with that of the SLN was a best-effort method to get a good curve match. It is fortunate 

that we do not have to solve for all three parameters simultaneously, but rather we first find s, 

then, using s, find t, finally we find m using a numerical integral involving s and t. 

3.3.1.1 Matching the Tail Slopes 

We first find the value of s. The upper tail slope is given by the blf at +∞ (see Sections 3.1.4 and 

(2.21)) and is matched with the blf at +∞ of the PLN, given in Section 3.2.2.1 : 

i
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Us σσ max==  .                                                     (3.48) 

From the value of s we can find t. The lower tail slope is given by the blf at –∞ (3.9) and is 

matched with (3.43): 
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and t = N if and only if all variances are equal.  

3.3.1.2 Moment-Matching 

The moments of the of the PLN distribution with pdf (3.36) are: 
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where the integral Λ needs to be calculated numerically as a function of s and t found in Section 

3.3.1.1. This is essentially the same expression as found in [58], where the PLN distribution is 

defined slightly differently. Notice that the parameter m comes out of the integral, which allows 

us to solve for m, using the first moment: 
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ii ,lnln,lnln
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2
1

Λ−=Λ−= ∑
=

+ σµ
                       (3.51) 

Although our method requires numerical integration at this point, it still remains much simpler 

than other numerical methods, for the following reasons: 

1. The integration needs only be performed once, not iteratively for all summands as in SY 

[37] or LL [27]. 

2. The integral is very well-behaved and can be calculated directly using a Riemann sum, 

unlike some of the numerical methods used in other SLN methods [35]. 

We calculate the integral by summing it over the interval [-25, 25] with step 0.01.  

We can partially verify our method since we do have a closed-form expression for the moments 

of the PLN distribution when t = 2: 
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Now make the change of variables: 
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We verify this by comparing with numerical values in Table 3-2, where we see that the Riemann 

sum and the theoretical values coincide perfectly. However, we were not able to do a separation 

of variables for t higher than 2, so the general closed-form expression for the moments of a PLN 

distribution is to our knowledge unknown.   

sn  [ ] 22

2

1

2
20,2

nsn e
sn

mtXE 







Φ===  Numerical ( )2,snΛ  

1.38155 4.34051634070834 4.34051634070832 

2.76310 88.66140823458991 88.66140823458983 

5.52620 8559626.655008020 8559626.655008011 

11.0524 6.711355855174830·10
26

 6.711355855174811·10
26

 

22.1048 2.536010695502967·10
106

 2.531281918731208·10
106

 

Table 3-2 Analytical and numerical calculations of moments of the PLN 
distribution when the power is t = 2, with differences underlined.  
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3.3.2 Four-Parameter Function 

Based on the blf’s given in Section 3.2.2.2, the system of equations for matching asymptotes is: 
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This is directly solvable: 
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where the parameters are given by equations (2.21), (2.22), (3.9), and (3.12). After substitutions, 

we obtain the following closed-form expression in terms of the parameters of the summands: 
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3.3.3 Evaluation of Closed-Form Methods against Simulations 

In this section, we evaluate the performance of the two SLN methods we developed against all 

other known closed-form methods. The known closed-form methods are:  

1. Moment-Matching by the FW method using (2.16)–(2.19). We only consider matching 

the first and second moment, as these give the best results overall [40].  

2. The lower bound expression in (2.26), which is an upper bound to the cdf.  

3. The upper bound expression in (2.28), which is a lower bound to the cdf.  

4. The AG method given by (2.30), (2.33). 

We also plot our two new methods: PLN and 4P. While our PLN method is not strictly closed-

form, the numerical integration required is minimal (and there is hope that the numerical integral 

in (3.50) can some day be found in closed form, at least for integer t). We run Monte-Carlo 
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simulations to validate all these methods. We have chosen four cases, described in Table 3-3. 

The results are plotted on LN paper in Figures 3-5 – 3-8.  

 Figure N µi (natural units) σi (dB) 

3-5 6 0 12 

3-6 30 0 6 

3-7 12 
0, 1, 2, 3, 4, 5 

6, 7, 8, 9, 10, 11 
8 

3-8 36 

5, 5, 5, 5, 5, 5, 

4, 4, 4, 4, 4, 4, 

3, 3, 3, 3, 3, 3,  

2, 2, 2, 2, 2, 2, 

1, 1, 1, 1, 1, 1, 

0, 0, 0, 0, 0, 0 

12, 12, 12, 12, 12, 12, 

11, 11, 11, 11, 11, 11, 

10, 10, 10, 10, 10, 10, 

9, 9, 9, 9, 9, 9, 

8, 8, 8, 8, 8, 8, 

7, 7, 7, 7, 7, 7 

Table 3-3 Simulation parameters for sums of lognormals. 

 

From the simulation results, we make the following observations:  

1. The FW method performs well in approximating the upper tail. 

2. The true SLN cdf is sandwiched by the two bounds (2.26) and (2.28).  

3. The AG method gives a rather loose bound, as predicted in Section 2.2.3.2. 

4. Our PLN method tends to perform better than all other methods, particularly in the 

complicated case of Figure 3-8. In particular, it performs better than the upper and lower 

bounds, which are also of the form of a product of N LN cdf’s.  

5. Our 4P method does not give a very close match to the real SLN cdf, particularly in the 

body. However, with additional degrees of freedom, we believe that we can make the 

curve move in the body so as to fit the entire curve well. Also, we conjecture that the 4P 

cdf is an upper bound to the SLN cdf. 

In light of these observations, we choose both the FW method and our PLN method as 

candidates to approximate the interference distribution. The FW method is commonly used in 

similar interference analysis work [9], [13], [16], and is thus a good benchmark for 

comparison. Both methods are simple to implement, as will be seen in Chapter 4.  
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Figure 3-5 The cdf of the sum of 6 i.i.d. lognormals, and closed-form methods. 

 

 

Figure 3-6 The cdf of the sum of 30 i.i.d. lognormals, and closed-form methods. 
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Figure 3-7 The cdf of the sum of 12 lognormals with different means, and closed-
form methods. 

 

 

Figure 3-8 The cdf of the sum of 36 lognormals with different means and 

variances, and closed-form methods. 
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Chapter 4 

Statistical Analysis of Total Interference Power 

In cellular communications, the purpose of the mathematical problem of the SLN is to find the 

distribution of the total interference power I experienced by the DMU. We would like to do this 

without simulations, preferably with as little numerical methods as possible, ideally in simple 

closed form. We will use two different methods to find this distribution: one is the well-known 

FW moment-matching method [26], which is the simplest one and is entirely closed form. We 

found that no other closed-from method really existed that we could use with good results, which 

is the reason for our work in chapter 3. The second method we use is the PLN approximation, 

where we apply the method developed in Section 3.3.1 to the cellular interference problem.  

In this chapter, we first show that the interference Ij coming from one cell can be well-modelled 

by a Bernoulli Lognormal (BLN) RV. The sum of BLN is a more difficult problem, so we need to 

modify our SLN methods slightly. For both methods, we devise an exact method that is a bit 

long, as well as handy approximations that turn out to be good and can be essentially calculated 

with a scientific calculator and the Tables provided in this chapter. In order to give credibility to 

our results we verify our solutions by Monte-Carlo simulations, which is sometimes lacking in 

literature [1], [3]. We find that our methods tend to predict the distribution well in most cases, but 

not always, clearly indicating that more work needs to be done in the SLN problem. We believe 

that a better method can be found by pursuing the direction of Sections 3.2.2 and 3.3, which looks 

promising in that both tails could be fitted using closed-form equations. 

4.1 Simulation Algorithm 

Figures 4-2 and 4-3 give a flowchart of the algorithm that simulates interference in a cellular 

system according to the model given above. We used this algorithm to create our simulated 
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curves. It is necessary to generate MU positions (both DMU and IMU) according to a spatially 

uniform distribution within a hexagonal cell of unit side. Also the positions of all the IFS’s are 

needed. We can represent these as complex numbers, and then distances can be calculated as 

magnitudes of differences of positions. Figure 4-1 gives an example of a layout with normalised 

distances and mapped onto a complex plane. 

 

 

 

 

 

 

Figure 4-1 Normalised MU and FS positions in a complex plane. 
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Figure 4-2 Algorithm for simulating interference in cellular systems. 
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Figure 4-3 Algorithm to calculate Ii. 
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4.2 Distribution of the Interference Power from One Interferer 

We first want to see what is the (approximate) distribution of the individual terms Ij.  

4.2.1 Separating the Pathloss from all Other Factors 

An important insight is that the pathloss is independent of shadowing, fading, activity, and in the 

DL, of transmit power due to PC. We can rewrite (1.1) as:  

∑
=

=⇒=
N

i
iiiiiii QRIPQ

1

2αχζ .                                              (4.1)                          

The case of UL – PC requires a slight modification, as the transmit power and pathloss both 

depend simultaneously on the IMU position. Hence we can essentially separate the geometry of 

the problem from all other considerations, and can tabulate coefficients that are a function only of 

the location of the cell and the pathloss exponent. The coefficients are found by numerical 

integration, and here is the beauty of the method, need not be recalculated ever again, and do not 

change with other system parameters. This is the approach proposed in [3]. We found in literature 

[1], [6], [7] that what is often attempted is to integrate the pathloss distribution together with 

shadowing, fading, etc., but we feel this is “reinventing the wheel” at each time, if we only want 

the moments of the resulting RV. It is much more convenient to be able to treat the geometry of 

the problem separately, tabulate it, and then work on the problem at hand without going into any 

layout considerations. This is a core idea of this chapter, and leads naturally to our goal of 

obtaining simple, closed-form solutions to the interference distribution. 

This separation of geometry is also important because all other factors: shadowing, fading, 

transmit power and activity are i.i.d. across the cells, whereas the pathlosses are both statistically 

different, and also, in DL, correlated. For all these reasons, we believe that the separation is a 

judicious one. 



 

  

67 

4.2.2 Statistical Moments of the Inverse Pathloss 

The moments of the individual inverse pathlosses need to be calculated by numerical integration, 

though analytical approximations exist [3], [5], [10]: 

( ) [ ] ∫∫
∈

−

−+−==
0),(

22

33

2 )()(
Cyx

n

ii
n
ii dxdyyyxxREn

β

βκ .                           (4.2)                          

Here C0 is the cell under consideration, enclosed by a unit hexagon centered at the origin, and (xi, 

yi) are the coordinates of IFS i. Figure 4-1 illustrates a possible layout. We tabulate these values 

for all cells in a traditional three-tier cellular layout (Figure 4-4). We see in the Figure that there 

are five different classes of cells, where cells in the same class are located in the same manner 

with respect to the cell under consideration C0. Thus we need to calculate κ coefficients for only 

five different cells (Tables 4-1 and 4-2). 

 

 

Figure 4-4 Three tiers of cells with five different cell positions (classes A-E). 
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β Class A Class B Class C Class D Class E 

3 0.2798 0.02609 0.04130 0.007384 0.01088 

3.2 0.2645 0.02058 0.03365 0.005336 0.008072 

3.4 0.2508 0.01624 0.02745 0.003858 0.005993 

3.5 0.2446 0.01443 0.02480 0.003281 0.005165 

3.6 0.2387 0.01283 0.02242 0.002790 0.004452 

3.8 0.2279 0.01014 0.01832 0.002018 0.003308 

4 0.2184 0.008023 0.01499 0.001461 0.002459 

4.2 0.2099 0.006351 0.01227 0.001057 0.001829 

4.4 0.2024 0.005031 0.01006 0.0007655 0.001361 

4.5 0.1990 0.004479 0.009108 0.0006515 0.001174 

4.6 0.1958 0.003988 0.008250 0.0005545 0.001013 

4.8 0.1900 0.003164 0.006774 0.0004018 0.0007540 

5 0.1849 0.002512 0.005567 0.0002912 0.0005617 

Table 4-1 ( )βκ i  function tabulated for all cell classes and pathloss exponents. 

 

β Class A Class B Class C Class D Class E 

3 0.1680 0.0007999 0.002113 0.00005849 0.0001296 

3.2 0.1645 0.0005084 0.001443 0.00003085 0.00007224 

3.4 0.1624 0.0003240 0.0009882 0.00001629 0.00004035 

3.5 0.1618 0.0002590 0.0008187 0.00001184 0.00003017 

3.6 0.1616 0.0002070 0.0006788 0.000008608 0.00002257 

3.8 0.1620 0.0001325 0.0004676 0.000004555 0.00001264 

4 0.1634 0.00008508 0.0003230 0.000002413 0.000007090 

4.2 0.1659 0.00005473 0.0002237 0.000001280 0.000003982 

4.4 0.1693 0.00003529 0.0001553 0.0000006796 0.000002240 

4.5 0.1714 0.00002836 0.0001295 0.0000004954 0.000001681 

4.6 0.1737 0.00002280 0.0001081 0.0000003612 0.000001262 

4.8 0.1790 0.00001476 0.00007536 0.0000001922 0.0000007116 

5 0.1853 0.000009576 0.00005267 0.0000001024 0.0000004019 

Table 4-2 ( )βκ 2i  function tabulated for all cell classes and pathloss exponents. 
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4.2.3 Statistical Moments of all Other Factors 

Since the components of Qi are independent, and all Qi are i.i.d., we may define the B-coefficients 

as follows: 

            [ ] [ ] [ ] [ ] [ ] iPEEEEQEB n
i

n
i

n
i

n
i

n
in ∀== ,2 χαζ  .                                    (4.3)                          

If there is no PC: iPi ∀= ,1  . 

With PC, the power transmitted will be proportional to the pathloss between the IMU i and its 

FS. The position of the IMU has uniform distribution over its cell area Ci. Now the cell area is a 

regular hexagon of unit side, which it is conventional to approximate by a circle of radius ρ ≤ 1. 

We define the mean pathloss between an IMU i and its own IFS to be Li: 
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In [1], [3], ρ is assumed 1. We found, through numerical integration, that ρ = 0.915 gives a 

good approximation for the first two moments and use this value in our analysis. A value of 

9094.023 4

3

≅π is used in [5] and [10]. 

The transmit power will also be affected by LN shadowing, for which the PC mechanism will 

attempt to compensate. We model this by a LN variable with statistics ),0( 22
eσσ + , as done in [1]. 

Finally, with PC, the moments of the transmit power are: 
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Consequently:  
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We normalise the fading power such that the power mean [ ] 12 =iE α . Then the second moment 

of the power is known [59]: 

[ ] ( ) 214 12
−−+−= KE iα .                                              (4.8)                           

Note that when there is no fading: [ ] .1, 4 =∞= iEK α For Rayleigh fading, 

[ ] 20 4 =⇒= iEK α . We then obtain: 
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We can write, for all cases except UL – PC, that the pathloss is independent of all other factors, 

which leads to:                          
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However in the case of UL-PC, Ri and Qi are not independent, and a modified method needs to be 

developed.  
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β Class A Class B Class C Class D Class E 

3 0.2799 0.02609 0.04130 0.007384 0.01088 

3.2 0.2645 0.02058 0.03365 0.005336 0.008072 

3.4 0.2508 0.01624 0.02745 0.003858 0.005993 

3.5 0.2446 0.01443 0.02480 0.003281 0.005165 

3.6 0.2387 0.01283 0.02242 0.002790 0.004452 

3.8 0.2279 0.01014 0.01832 0.002018 0.003308 

4 0.2184 0.008023 0.01499 0.001461 0.002459 

4.2 0.2099 0.006351 0.01227 0.001057 0.001829 

4.4 0.2024 0.005031 0.01006 0.0007655 0.001361 

4.5 0.1990 0.004479 0.009108 0.0006515 0.001174 

4.6 0.1958 0.003988 0.008250 0.0005545 0.001013 

4.8 0.1900 0.003164 0.006774 0.0004018 0.000754 

5 0.1849 0.002512 0.005567 0.0002912 0.0005617 

Table 4-3 ( )βκ i

~  function tabulated for all cell classes and pathloss exponents. 

 

β Class A Class B Class C Class D Class E 

3 0.1680 0.0007999 0.002113 0.00005849 0.0001296 

3.2 0.1645 0.0005084 0.001443 0.00003085 0.00007224 

3.4 0.1624 0.0003240 0.0009882 0.00001629 0.00004035 

3.5 0.1618 0.0002589 0.0008187 0.00001184 0.00003017 

3.6 0.1616 0.0002070 0.0006788 0.000008608 0.00002257 

3.8 0.1620 0.0001325 0.0004676 0.000004555 0.00001264 

4 0.1634 0.00008508 0.0003230 0.000002413 0.00000709 

4.2 0.1659 0.00005473 0.0002237 0.00000128 0.000003982 

4.4 0.1693 0.00003529 0.0001553 0.0000006796 0.00000224 

4.5 0.1714 0.00002836 0.0001295 0.0000004954 0.000001681 

4.6 0.1737 0.00002280 0.0001081 0.0000003612 0.000001262 

4.8 0.1790 0.00001476 0.00007536 0.0000001922 0.0000007116 

5 0.1853 0.000009576 0.00005267 0.0000001024 0.0000004019 

Table 4-4 ( )βκ 2~
i  function tabulated for all cell classes and pathloss exponents.  



 

  

72 

4.2.4 The Special Case of Uplink with Power Control 

In the UL – PC case, the pathloss between the IMU and the FS of cell C0 and the pathloss 

between the IMU and its own FS are two correlated RV’s. We modify our method as follows: 
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Here the integral is performed in the same manner as (4.2). These values are tabulated in Tables 

4-3 and 4-4. We also define:                      
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Then the moments can be expressed as:                
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4.2.5 Bernoulli Lognormal Approximation to Single Interferer Power Distribution  

The signal power coming from a single interferer, Ij, can be modeled approximately by a BLN 

RV, with cdf: 
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4.2.5.1 Support in Literature 

We model the interference from one user as a product of a LN shadowing component, a fading 

(Rayleigh, Rician or none) component, a pathloss component that assumes some spatial 

distribution of the MU. Also, if there is PC, the transmit power is not constant, but follows a 

distribution that is LN (compensating for shadowing and also because of LN PC error), multiplied 

by a quantity proportional to the pathloss (so as to compensate for it) between a randomly located 

IMU and its FS. The product of all these is approximated as a LN RV. Furthermore, user activity 

is modelled as Bernoulli, thus the interference power from a given interferer is modelled as BLN. 

This is the same approximation as in [1].   

4.2.5.2 Theoretical Basis 

It is not accidental that the distribution of the product of many RV’s approaches a LN 

distribution, particularly if some of the terms are already LN, with high variance. First of all, the 

product of LN RV’s is also LN. Secondly, by virtue of the Central Limit Theorem for products, 

the (properly normalised) product of many RV’s with square-integrable pdf’s will approach a LN 

RV in distribution [60]. The Bernoulli RV does not satisfy the condition and thus cannot be 

absorbed in the LN approximation. Indeed, multiplying any number of Bernoulli RV’s can only 

result in another Bernoulli RV. The Central Limit Theorem for products works quite well in our 

case: though only a few RV’s are multiplied, there are already among them LN RV’s with high 

variance: the shadowing (6-12 dB) and, if there is PC, another shadowing factor due to the power 

compensation. Thus we expect the approximation to be good (and get better, with higher 

shadowing).  
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4.2.5.3 Fitting the Distribution by Moment-Matching 

The moments of Ij can be matched with those of the approximating distribution Fi(x): 
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Inverting (4.19), we obtain: 
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4.2.5.4 Validation through Simulation 

We simulate the distribution of the interference coming from one nearby interferer (class A), as 

well as from a distant interferer (class D) and compare the results with the theoretical LN 

distributions with parameters given by (4.20), (4.21). Note that we set p = 1, since the pdf of a 

RV multiplied by a Bernoulli RV is just the scaled original pdf with additional mass at zero, and 

there is no need to simulate this. Also, when there is no PC, both UL and DL interference are the 

same for one user, and thus the simulated results apply equally to both cases.  

The simulations are done according to the parameters in Table 4-5, while σe = 1dB ≈ 0.23. The 

results are plotted on Figures 4-5 to 4-10. We observe an excellent match in the higher values of 
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the distributions, which can be expected, since moment-matching should give a good match to 

the upper tail [43], but the lower tails tend to diverge in most cases. The lower tail is well-

matched only when there is no fading, and the interfering cell is far, meaning that the pathloss 

will not vary overmuch, and the power is essentially LN (Figure 4-8). The results are not 

encouraging in the lower tail. However, we will see in subsequent sections that although this 

affects the results of the problem of many interferers, the error in the lower tail does not 

necessarily accumulate, and may be in fact be quite small. 

 

Figure 4-5 4-6 4-7 

β 3 4 3.5 

σ [dB] 6 9 12 6 9 12 6 9 12 

K 0 ∞ 10 

Cell Class A 

Link UL/DL DL UL 

PC No Yes Yes 

ai -2.002 -3.884 -3.567 

bi 1.837 2.400 3.017 2.312 3.181 4.099 2.290 3.165 4.086 

Figure 4-8 4-9 4-10 

β 3.5 3 4 

σ [dB] 6 9 12 6 9 12 6 9 12 

K ∞ 10 0 

Cell Class D 

Link UL/DL DL UL 

PC No Yes Yes 

ai -5.767 -6.430 -8.685 

bi 1.416 2.095 2.780 2.069 3.009 3.967 2.218 3.113 4.046 

Table 4-5 Simulation parameters for single interferer power.  
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Figure 4-5 Single nearby interferer, Rayleigh fading, without power control. 

 

 

 

Figure 4-6 Single nearby interferer, no fading, downlink with power control.  
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Figure 4-7 Single nearby interferer, Rician fading, uplink with power control. 

 

 

 

Figure 4-8 Single distant interferer, no fading, without power control. 
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Figure 4-9 Single distant interferer, Rician fading, downlink with power control.  

 

 

 

Figure 4-10 Single distant interferer, Rayleigh fading, uplink with power control. 
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4.3 Statistical Moments of Total Interference Power 

Although the moments (of natural order) do not entirely characterise a distribution [43], they 

nevertheless offer much useful information about it. In this section, we present both an exact 

expression for the first two moments of the total interference power I, as well as good 

approximations, which hold under the assumption that the shadowing variance is large enough, 

which we find to be the case in realistic scenarios (6 – 12 dB). 

4.3.1 First Moment 

4.3.1.1 Uplink without Power Control, and Downlink 

Let us define An coefficients, which are a function of the cellular layout and the propagation 

constant, as follows: 
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In the DL, the DMU receives interference from all FS’s. The power transmitted by these is 

independent of the position of other users in the interfering cells. Similarly, in the UL – no PC 

case, the transmit power of each IMU is independent of its position. We thus conclude that each 

pathloss is independent of all other factors, and we may write: 
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4.3.1.2 Uplink with Power Control 

The method needs to be modified slightly for the UL – PC case. We define: 
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Then:                     
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4.3.2 Second Moment 

4.3.2.1 Uplink without Power Control  
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In the UL, the pathlosses are independent, hence: 
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4.3.2.2 Uplink with Power Control 

Analogically, we can find the moment in UL-PC: 
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4.3.2.3 Downlink 

Define: 
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In the DL, the distances between the DMU and the IFS’s are not independent and ADL cannot be 

separated into a sum of terms, but must be integrated for the entire geometry as follows: 
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where xi, yi and C0 are the same as in (4.2). Then: 
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4.3.3 A Simple Approximation to Moments 

We found in our numerical examples that only the first term in the second moment expressions is 

significant, and that the following approximation is usually exact to several digits: 

[ ] PCDL kkBAIE ∀∀≅ ,22
2                                             (4.32)                          

We conjecture that, in general,  

[ ] PCDLnn
n kknBAIE ∀∀=≅ ,...3,2,1                                 (4.33)                          

We believe the reason for this is that since Bn is dominated by a LN RV factor with high 

variance, which has moments of the order of 
2ne , therefore 1−>>> nn BB . If write the 

multinomial expansion of (4.33), we will find that there will be one term containing Bn , which is 

the one given by the equation, which will dominate. 
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Notice that the expressions for the moments are then identical for UL and DL, which is 

suggested by [47]. 

4.4 Modeling the Total Interference Power as Bernoulli Lognormal 

We approximate I by a LN RV of parameters (aI, bI
2
) multiplied by an independent Bernoulli RV 

with parameter pχ, giving a BLN distribution:  

0),1(
ln

)( >−+






 −
Φ≅ xpp

b

ax
xF

I

I
I χχ ,                                   (4.34)                          

 [ ] N
pIPp )1(10 −−=≠=χ .                                               (4.35)                     

4.4.1 Arguments for the Choice of Distribution 

We have, according to the FW method, chosen to model a sum of (approximately) LN RV’s by 

another LN RV. It is not self-evident that a linear combination of LN RV’s with random weights 

(namely the Bernoulli RV’s χi), will again be LN. Nevertheless, in [1] this assumption is made. 

We can argue that for any realisation of the vector χi, we have a sum of ∑
=

N

i
i

1

χ interferers, which is 

itself approximately LN. The resulting pdf is then the weighed sum of the pdf’s for each 

realisation of the vector χi, with the weights being the probability associated with each realisation. 

This is called a mixture of LN distributions; it is not known whether it is approximately LN. 

However we do know that because the individual distributions are smooth (LN), their sum will 

also be smooth, so a LN approximation to their sum is not inconceivable. We notice, however, 

that if the probability of activity p is low, there is a chance of there being absolutely no 

interference if all χi = 0. This creates a discontinuity in the cdf of I, which modifies the LN 



 

  

83 

distribution into a BLN one in (4.34). In most cases, for many interferers and moderate to high 

p, we have 1≈χp  and the model becomes LN as in [1]. 

4.4.2 Moment-Matching  

We match the moments of the interference with those of the approximating distribution: 
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Inverting (4.36), we obtain: 
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4.4.3 Simple Approximations to the Distribution Parameters 

Applying the approximation (4.32) to equations (4.37) and (4.38), we obtain simple closed-form 

equations that are applicable to all cases: 
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For the UL – PC case, this approximation simply treats Rj and Lj as independent, but with the 

same marginal distributions. We notice that the expressions are identical for UL and DL. A 
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similar result was obtained in [47]. This is not entirely surprising, since the interfering power 

from each individual cell has identical distribution in UL and DL. Only in the DL case, the 

pathlosses Rj are correlated. However, since these are further multiplied by i.i.d. LN RV’s with 

high variance, the correlation between the individual powers becomes very small. In other words, 

because every path suffers from independent shadowing with large variance, this effectively 

“drowns out” the correlation between the pathlosses and makes them very nearly independent. 

Also, in the UL – PC case, the independent shadowing terms make the correlation between Rj and 

Lj insignificant.              

4.5 Modeling the Total Interference Power as Bernoulli Power Lognormal 

We approximate I by a PLN RV of parameters (mI, sI
2
, tI) multiplied by an independent Bernoulli 

RV with the same parameter pχ as given by (4.35), resulting in a Bernoulli Power Lognormal 

(BPLN) distribution: 
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4.5.1 Arguments for the Choice of Distribution 

Following the same reasoning as in Section 4.4.1, we modify the PLN approximation to the SLN 

by multiplying it by the same Bernoulli RV, resulting in the discontinuous model (4.41). 

4.5.2 Matching the Upper Tail Slope 

We have seen in Section 3.3.1.1 that we can match the slope of the upper tail (on LN paper) of 

the SLN and the PLN distributions, by taking the slope of the component with the highest mean 

from among the components of the highest variance. A few numerical examples can be used to 

verify that interference from the nearest cells has not only the highest mean power in dB (which 
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is natural), but also the highest dB spread. This is expected since the distance from a point in 

cell C0 to a point in a faraway cell cannot vary overmuch for different points in the cells. The 

variability is much stronger for nearby cells. 

In order to match the upper tail slope, we find the cdf of the interference coming from one of 

the nearest cells, given that the user activity is constant (p = 1), since the result is only valid for a 

sum of LN RV’s, and not of BLN RV’s. For p < 1, we argue that a BLN cdf is just a scaled 

version of a corresponding LN cdf in the upper tail, and thus, by Lemma 2, these have the same 

blf, since their ratio is finite in the tail. 

4.5.2.1 Uplink without Power Control, and Downlink 

We first define the convenient intermediary quantity: 
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We call C1 a nearest cell to C0, and we can find the logarithmic variance of the interference 

component coming from this nearest cell by applying (4.21) to (3.48): 

( ) ( ) [ ] [ ]1,0,ln22ln 11
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1
2 ≠+−== PCDLII kkzbs βκβκ  .                       (4.43)       

4.5.2.2 Uplink with Power Control 

Analogically, for UL – PC: 
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4.5.3 Matching the Lower Tail Slope 

4.5.3.1 A Simple Approximation for All Cases         

If all components are i.i.d., the PLN approximation to the SLN uses N as its power parameter ,as 

in [44]. Even if the components have different distribution, we find that this choice of parameter 

gives a good fit to the lower tail slope. However, if the individual components are multiplied by 

Bernoulli RV’s with parameter p, then there are, on average, only pN interferers, which is the idea 

in [3]. We can thus write: 

pNtpNt II ≥≈ , .                                                  (4.46) 

We proceed to show in the next section that this approximation is good.                        

4.5.3.2 Uplink without Power Control, and Downlink 

A more exact approach to finding the power parameter of the PLN is to use (3.49), which equates 

the power parameter with ∑
=

N

i ib
b

1
2

2
1

1
. By applying (4.21) and multiplying by p, as was done in 

(4.46), we obtain: 
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where 
2

Is is given by (4.43).  

We rewrite (4.47) as  
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and we observe, from numerical calculations, that: 

( ) ( ) ( ) ( ) Iii zi <<−≤−∀ βκβκβκβκ 11 ln22lnln22ln: .                      (4.49) 

Applying (4.49) to (4.48), we obtain the approximation in (4.46). 

4.5.3.3 Uplink with Power Control 

Likewise, for the UL – PC case, we have: 
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where 
2

Is is given by (4.45). 

4.5.4 Moment-Matching  

Having matched the slopes at both tails, we have only one more degree of freedom. We match the 

first moment of the PLN approximation with that of the interference, given by (4.25). 

4.5.4.1 Uplink without Power Control, and Downlink 

Matching the moments gives:  
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where, the Λ function is given by (3.50). We proceed as in Section 3.3.1.2 to find mI:                   
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4.5.4.2 Uplink with Power Control 

Likewise, for UL – PC: 
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4.6 Comparison of Simulation, BLN and BPLN Methods 

4.6.1 Cellular Layouts and their Coefficients 

Tables 4-6 to 4-10 have the geometry coefficients tabulated against β for five different cellular 

layouts: a single tier of nearest interferers (1T), three tiers of interferers in a reuse 1 cellular 

network (3T), a reuse 3 cellular network (R3), a reuse 7 cellular network (R7), and a random 

layout (RD) to test the robustness of our method. Only the ADL coefficients are really new 

information, and need to be integrated as per (4.30). All other coefficients can be found from 

Tables 4-1 to 4-4 by summing over the individual cells using (4.22) and (4.24).   
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β  
1A  2A  DLA  

1A
~

 2A
~

 

3 1.679 1.008 2.978 0.6042 0.3169 

3.2 1.587 0.9868 2.701 0.5548 0.3107 

3.4 1.505 0.9743 2.474 0.5130 0.3079 

3.5 1.467 0.9710 2.377 0.4945 0.3076 

3.6 1.432 0.9695 2.289 0.4775 0.3079 

3.8 1.368 0.9718 2.138 0.4473 0.3105 

4 1.310 0.9805 2.016 0.4215 0.3153 

4.2 1.260 0.9953 1.920 0.3994 0.3224 

4.4 1.215 1.016 1.845 0.3805 0.3314 

4.5 1.194 1.028 1.815 0.3721 0.3367 

4.6 1.175 1.042 1.789 0.3643 0.3426 

4.8 1.140 1.074 1.749 0.3504 0.3557 

5 1.109 1.112 1.725 0.3386 0.3709 

β  
1A  2A  DLA  

1A
~

 2A
~

 

3 2.258 1.027 5.280 0.7874 0.3205 

3.2 2.041 0.9995 4.370 0.6915 0.3130 

3.4 1.862 0.9827 3.697 0.6155 0.3093 

3.5 1.785 0.9779 3.427 0.5835 0.3087 

3.6 1.714 0.9752 3.194 0.5548 0.3089 

3.8 1.590 0.9756 2.814 0.5057 0.3111 

4 1.487 0.9830 2.526 0.4659 0.3157 

4.2 1.400 0.9970 2.307 0.4333 0.3226 

4.4 1.326 1.017 2.142 0.4065 0.3316 

4.5 1.294 1.029 2.076 0.3949 0.3369 

4.6 1.264 1.043 2.018 0.3843 0.3427 

4.8 1.211 1.075 1.928 0.3659 0.3558 

5 1.166 1.112 1.865 0.3506 0.3710 

Table 4-6 Geometry parameters for various cellular layouts. 
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β  
1A  2A  DLA  

1A
~

 2A
~

 

3 0.2921 0.01303 0.08559 0.09301 0.002510 

3.2 0.2339 0.008843 0.05497 0.07097 0.001626 

3.4 0.1879 0.006027 0.03549 0.05441 0.001062 

3.5 0.1685 0.004983 0.02857 0.04773 0.0008605 

3.6 0.1512 0.004124 0.02303 0.04191 0.0006983 

3.8 0.1220 0.002833 0.01502 0.03243 0.0004621 

4 0.09868 0.001952 0.009844 0.02519 0.0003075 

4.2 0.07997 0.001350 0.006480 0.01965 0.0002057 

4.4 0.06494 0.0009358 0.004284 0.01539 0.0001382 

4.5 0.05856 0.0007799 0.003489 0.01363 0.0001134 

4.6 0.05283 0.0006505 0.002844 0.01209 0.00009318 

4.8 0.04305 0.0004533 0.001895 0.009531 0.00006308 

5 0.03515 0.0003166 0.001268 0.007537 0.00004284 

β  
1A  2A  DLA  

1A
~

 2A
~

 

3 0.06525 0.0007766 0.004260 0.02032 0.0001320 

3.2 0.04843 0.0004330 0.002347 0.01430 0.00006918 

3.4 0.03595 0.0002417 0.001294 0.01009 0.00003643 

3.5 0.03099 0.0001807 0.0009614 0.008480 0.00002648 

3.6 0.02671 0.0001352 0.0007142 0.007132 0.00001927 

3.8 0.01984 0.00007568 0.0003945 0.005053 0.00001024 

4 0.01475 0.00004243 0.0002181 0.003587 0.000005467 

4.2 0.01097 0.00002382 0.0001207 0.002551 0.000002930 

4.4 0.008161 0.00001339 0.00006682 0.001818 0.000001576 

4.5 0.007040 0.00001005 0.00004974 0.001536 0.000001157 

4.6 0.006074 0.000007539 0.00003703 0.001298 0.0000008505 

4.8 0.004522 0.000004249 0.00002054 0.0009281 0.0000004606 

5 0.003368 0.000002397 0.00001141 0.0006648 0.0000002502 

Table 4-6 (continued) 
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β  
1A  2A  DLA  

1A
~

 2A
~

 

3 1.017 0.5087 1.196 0.3578 0.1593 

3.2 0.9300 0.4964 1.043 0.3183 0.1559 

3.4 0.8582 0.4891 0.9308 0.2867 0.1543 

3.5 0.8268 0.4870 0.8862 0.2732 0.1540 

3.6 0.7981 0.4860 0.8479 0.2611 0.1542 

3.8 0.7476 0.4867 0.7871 0.2403 0.1554 

4 0.7049 0.4908 0.7433 0.2231 0.1578 

4.2 0.6686 0.4980 0.7127 0.2090 0.1612 

4.4 0.6378 0.5082 0.6926 0.1973 0.1658 

4.5 0.6241 0.5143 0.6860 0.1921 0.1684 

4.6 0.6114 0.5212 0.6813 0.1875 0.1713 

4.8 0.5888 0.5371 0.6773 0.1792 0.1779 

5 0.5695 0.5559 0.6796 0.1724 0.1855 

Table 4-6 (continued) 

 

4.6.2 Simulated and Analytical Parameters and Graphs  

We run simulations according to the algorithm in Figures 4-2 and 4-3. The input parameters are 

given in Table 4-7 while σe = 1dB ≈ 0.23. Figures 4-11 to 4-19 show the results of the 

simulations, as well as the analytical approximations. 

1. The exact BLN method uses (4.27), (4.28), or (4.31) in (4.37) and (4.38) to obtain the 

exact LN parameters aI and bI. 

2. The approximate BLN method uses (4.39) and (4.40) to obtain approximate values of 

these parameters. 

3. Both the exact and approximate BPLN methods use (4.42) and (4.43), or (4.44) and 

(4.45) to find the first parameter sI. 
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4. The approximate BPLN method uses (4.46) to find tI. 

5. The exact BPLN method uses (4.42) and (4.47), or (4.44) and (4.50) to find tI. 

6. Both the exact and approximate methods use (4.52) or (4.54) to find mI, where the 

integral ( )II ts ,Λ  is calculated numerically as per (3.50). 

 

Figure 4-11 4-12 4-13 

β 4 4 3 

Σ [dB] 12 12 6 9 12 

K 0 0 0 

p 0.01 0.1 1 1 1 

Layout 3T 1T 3T 1T 

Link DL DL UL 

PC No Yes No 

pχ 0.304 0.977 1 1 1 

aI = -4.665 -2.965 0.455 -1.542 -1.293 0.624 0.680 0.686 

aI ≈ -4.665 -2.965 0.455 -1.542 -1.293 0.686 0.686 0.686 

bI = 3.308 3.132 2.744 4.007 3.976 1.306 1.995 2.703 

bI ≈ 3.308 3.132 2.744 3.962 3.931 1.258 1.992 2.703 

mI = NA -4.183 -4.026 -4.224 -5.915 -1.666 -1.837 -1.937 

mI ≈ NA -4.092 -3.942 -4.224 -5.866 -1.666 -1.837 -1.937 

sI NA 3.094 4.225 1.837 2.400 3.017 

tI = NA 3.960 39.60 6 37.83 6 

tI ≈ NA 3.6 36 6 36 6 

 Table 4-7 Simulation and analytical parameters for BLN and BPLN methods. 
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Figure 4-14 4-15 4-16 

β 3.5 4 4 

σ [dB] 10 12 12 

K 0 0 0 10 ∞ 

p 1 0.02 0.1 0.5 1 1 

Layout R7 R3 1T 

Link UL DL DL 

PC No Yes Yes 

pχ 1 0.215 0.718 0.99976 1 1 

aI =   -2.991 -7.171 -6.563 -4.646 -3.607 -1.542   -1.276   -1.196 

aI ≈   -2.986 -7.171 -6.563 -4.646 -3.607 -1.542   -1.276   -1.196 

bI =    2.082 4.168 4.120 3.961 3.873 4.007    3.940    3.919 

bI ≈    2.080 4.126 4.076 3.916 3.827 3.962    3.894    3.874 

mI =   -5.525 NA -6.752 -7.076 -7.068 -4.224   -3.956   -3.876 

mI ≈   -5.525 NA -6.744 -7.068 -7.061 -4.224   -3.956   -3.876 

sI    2.473 NA 4.119 4.225    4.161    4.142 

tI = 6 NA 1.209 6.043 12.09 6 

tI ≈ 6 NA 1.2 6 12 6 

Table 4-7 (continued)  
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Figure 4-17 4-18 4-19 

β 3 4 3.5 4 

σ [dB] 12 6 8 12 

K ∞ 0 0 5 

p 1 0.02 0.1 0.5 1 1 

Layout 1T R3 RD 

Link UL UL DL 

PC Yes Yes PC 

pχ 1 0.215 0.718 0.99975 1 1 

aI = -0.394 -1.438 -6.431 -5.822 -3.906 -2.867 -2.224 

aI ≈ -0.373 -1.542 -6.404 -5.795 -3.879 -2.839 -2.224 

bI = 3.891 2.253 2.983 2.914 2.686 2.554 4.022 

bI ≈ 3.806 2.061 2.895 2.824 2.588 2.450 3.978 

mI = -3.073 -4.007 NA -6.041 -6.300 -6.244 -5.517 

mI ≈ -3.073 -4.007 NA -6.024 -6.284 -6.228 -5.469 

sI 4.115 2.621 NA 2.922 2.922 2.922 4.174 

tI = 6 NA 1.221 6.107 12.21 14.70 

tI ≈ 6 NA 1.2 6 12 14 

Table 4-7 (continued)  
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Figure 4-11 Interference in three-tier cellular network with variable activity in the 

downlink without power control.
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Figure 4-12 Comparison of interference from one and three tiers in the downlink 
with power control. 
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Figure 4-13 Effect of varying the shadowing parameter on interference from first 
tier in the uplink without power control. 

 

L
E

G
E

N
D

 
 

M
o
n

te
-C

a
rl

o
 S

im
u
la

ti
o

n
 

 
E

x
a

c
t 

  
  
  

  
B

L
N

 M
e

th
o
d
 

 
A

p
p
ro

x
. 

 
 E

x
a

c
t 

  
  
  

  
B

P
L

N
 M

e
th

o
d
 

 
A

p
p
ro

x
. 

  



  
 

9
8
 

  F
ig

u
re

 4
-1

4
 In

te
rfe

re
n

c
e

 in
 a

 re
u

s
e
 7

 c
e

llu
la

r n
e

tw
o

rk
 in

 th
e
 u

p
lin

k
 w

ith
o

u
t p

o
w

e
r 

c
o

n
tro

l.

LEGEND 

 Monte-Carlo Simulation 

 Exact         
BLN Method 

 Approx. 
  

Exact         
BPLN Method 

 Approx. 

 

 



 

  

99 

 

 

Figure 4-15 Interference in reuse 3 cellular network with variable activity level in 

the downlink with power control. 
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Figure 4-16 Interference from first tier with Rayleigh, Rician and no fading in the 

downlink with power control. 
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Figure 4-17 Interference from first tier while varying propagation exponent, 

shadowing and fading in the uplink with power control. 
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Figure 4-18 Interference in reuse 3 cellular network with variable activity level in 

the uplink with power control. 
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4.6.3 Discussion on Observed Results 

Based on Figures 4-11 – 4-19, we are able to come to several important conclusions: 

1. In most cases, the difference between the approximate (green) and the corresponding 

exact (blue) curves are negligible compared with the error to the simulated curve. This 

leads us to the conclusion that the approximations that we have made are very good. Since 

they are significantly simpler than the exact forms, this is a very valuable finding. We 

note however, in Figures 4-17 and 4-18, where we considered UL – PC, that the exact 

BLN curves perform much better in the upper tail than their approximate counterparts. 

This is because, in the approximate expression, we assumed Rj and Lj to be independent. 

We conclude that this independence assumption should not be made, and that the 

modified method for the UL – PC case is the proper way to proceed. 

2. For all cases where there is full activity (p = 1), we observe that the BPLN outperforms 

the BLN method, particularly in the lower tail. This is to be expected: moment-matching 

tends to match the higher values of the distribution [43], but the lower tail cannot be 

simultaneously matched, because the SLN cdf bends on LN paper, whereas the BLN 

method cannot. However, since the BPLN was designed to match the slope of the lower 

tail of the SLN cdf, we observe that this indeed happens. When the BPLN does not match 

the lower tail well, it nevertheless runs parallel to it. We would need more degrees of 

freedom in the approximating cdf to always match the tail, not only in slope, but also in 

offset. 

3. For low activity ( 1.0≤p ), we observe that the BLN method performs very well, while 

the BPLN method does not fit the lower tail properly. In the case when 1<pN , the BPLN 

curve is not even defined. Incidentally, notice that in the lower tail, the probability does 
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not go to 0, but tapers off to some value. This value is ( ) χpIP −== 10 . We can 

observe that multiplying our LN and PLN models by a Bernoulli RV was a judicious 

move. 

4. The conclusion is to use the BPLN method for p close to 1, and use the BLN method for p 

for values around 0.1 and lower. For moderate values of p, the problem remains open, as 

neither method works well in the lower tail. It would seem that in this case more work is 

needed, analysing the problem of a sum of Bernoulli-times-lognormal RV’s separately 

from the SLN problem.  In the mean time, it would seem that the BLN and BPLN 

methods give two bounds for the lower tail. Perhaps a weighed average of the two 

approximating cdf’s, with weights that are functions of p, would give good results. 

5. In general, leaving p aside, the method works well for a wide variety of shadowing, fading 

and propagation constants, in both UL and DL, with and without PC. It works for many 

practical cellular layout scenarios, and seems to perform better for regular layouts than 

irregular (Figure 4-19) ones. It is not clear why this is the case.  

6. Observing Figures 4-16 and 4-17, we see that the performance in the lower tail degrades 

as the fading model becomes more Rayleigh (K → 0). This could be anticipated from the 

results in Section 4.2.5.4, where we found that fading causes the SLN cdf to bend 

significantly in the lower tail. However, we are pleased that the effect does not seem to be 

cumulative when we add several such RV. In fact, even with the unpromising results for 

one interferer, the approximation to the sum of multiple interferers’ powers is quite good. 

In conclusion, for low loading we suggest the BLN model, and for p = 1, the BPLN model. 

Notice that the BPLN model dramatically outperforms the classical moment-matching approach 

for constant activity and is perhaps the best known quasi-closed-form solution to the problem.  
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Chapter 5 

Conclusion and Future Work 

We conclude with recalling the contributions that were made in this thesis, and propose several 

ideas for improving our method, and applying it to more complicated problems. 

5.1 Achievements of This Thesis 

While we did not meet all the ambitious requirements that we set up for ourselves in Section 

1.1.3, we were nevertheless able to develop a set of quite simple equations that approximate the 

SLN distribution and the interference distribution with better precision than other known methods 

of comparable complexity. 

5.1.1 Tails of Sum of Independent Lognormals 

We showed that the lower tail of the SLN distribution in the independent case can be 

approximated by a LN distribution with parameters given by closed-form expressions. To our 

knowledge, there has to date been no analytical study of the lower tail. We defined the best 

lognormal fit in order to formally study whether the SLN cdf has LN tails, and also whether 

proposed approximating cdf’s have this property. We propose the blf to be a design criterion for 

future approximating cdf’s. This will ensure that the approximation remains good in the far tails, 

and also that moment-matching can be used.  

5.1.2 Simple Expressions for Moments of Total Interference Power 

We gave exact closed-form expressions for the first two statistical moments of the total 

interference power in a cellular system, not only for UL, but also for the correlated DL case. 

These expressions contain geometrical coefficients that have been tabulated against the 
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propagation constant and can be used directly in our expressions. We also showed that the 

expression for the second moment can be significantly simplified without loss of precision.  

5.1.3 Approximate Interference Distributions: Two Methods      

We have found that applying the FW method to the interference problem using a BLN resulted in 

simple closed-form expressions and gave excellent results for low probabilities of user activity 

(p). For fully loaded systems with continuous interference (p = 1), we have found that using a 

PLN function to approximate the interference distribution also gave good results, particularly in 

the lower tail, which has often been neglected. 

5.2 Ideas for Continuation of this Work 

While working on the material presented in this thesis, we have encountered many other ideas 

that follow the same general line of reasoning, and that could potentially give an even better 

solution to the problems of the SLN and interference distributions. We also show that our 

approach can be modified to solve for a more detailed interference model without altering the 

fundamentals of our method. 

Time did not permit us to follow all these ideas, so we only give a sketch of them here, with the 

hope that we, or someone else, will develop them more fully. 

5.2.1 Improving the SLN and Interference Approximations 

We have developed two methods for analysing the interference distribution: a moment-matching 

method using a BLN distribution, and a novel method using a BPLN distribution. We found that 

the second method performs very well when p = 1, i.e., the distribution is PLN. The fit in the 

upper tail and body is always excellent, but tends to somewhat diverge in the lower tail. There are 

a few reasons for this:  
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1. The distribution of the interference Ii coming from just one cell is not quite well 

approximated in the lower tail, as seen in Figures 4-5 – 4-10. 

2. The PLN distribution does not have a blf in the lower tail, while the SLN distribution 

does. Only the slopes are matched in the lower tail, as can be seen in Figures 4-11 – 4-19.  

3. The lower tail was calculated based on the assumption that all summands are 

independent. However, in the DL, the individual interference components are slightly 

correlated.   

The second reason could be remedied by developing a better SLN method, one that matches both 

tails’ blf, while also fitting the body. We have proposed such a method in Sections 3.2.2.2 and 

3.3.2. However the initial results show a very poor match in the body of the distribution in 

Figures 3-5 – 3-8. We believe that by introducing additional free parameters to the cdf it would be 

possible to make the curve fit in the body while retaining the tail properties. The additional 

parameters could be solved by moment-matching. The moments of the SLN are known in closed 

form. However, the moments of the new approximating distribution will probably need to be 

found by numerical integration. However, this integration can probably be performed simply by 

using a Riemann sum on the transformed integral:  

[ ] ( ) ( ) ( )∫∫
+∞

∞−

+
+∞

== dxefedxxfxXE xnxnn 1

0
.                                     (5.1)                                    

Since ( )xf is approximately LN in each tail, ( )xef  will be approximately Gaussian in each tail, 

i.e., it will decay as 
2xe−

, and the integral can be truncated at moderate values in both limits. 
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5.2.2 Correlated Shadowing 

We have assumed that all wireless paths suffer from independent shadowing. However, the 

shadowing paths are in fact correlated, with correlation coefficients depending on distance and 

angular separation [61]. We will briefly show how our moment-matching method can be 

expanded to include the correlated shadowing case.  

We begin with a set of correlated LN RV’s { }N

iiY
1=
 where { }N

iiY
1

ln
=

 form a set of jointly 

Gaussian RV’s. Then we may then write:  


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M ,                                                   (5.2) 

where M is a matrix and{ }N

iiZ
1=
 are i.i.d. standard Gaussian RV’s. The first moment of 

∑
=

=
N

i
iYX

1

is not affected by the correlation and can be found from (2.17). The second moment 

can be calculated according to (2.18), where the correlation coefficient 0, ≠jiρ .  

Now let us examine how we can incorporate this into our analysis of the interference moments. 

For simplicity, let us consider a system with two interferers, no fast fading (K = ∞), constant 

activity (p = 1), and no PC (Pi = 1). This can be modeled by a simplified version of (1.1): 

2211 ζζ RRI += .                                                              (5.3)                        

The second moment can then be calculated as  
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                                  (5.4)                        

Notice that, in this case, the matrix term M12 = M21 is itself a RV, correlated with R1 and R2, 

while M11 = M22 is related to the shadowing variance, and Z12 is an independent standard 

Gaussian RV. 

Now in the case of a sum of correlated LN RV’s, the behaviour in the upper tail will be the 

same as in the independent case [21], and so will the first moment. It is in the body and lower tail 

that there might be a substantial difference.  

5.2.3 More Realistic User Distribution 

We have assumed in this work that the MU connects to the FS that is physically nearest. This is 

not always a realistic assumption, as in most cellular systems the MU connects to the FS of which 

it receives the strongest long-term power. In this case, while the distribution of the location of the 

MU’s remains spatially uniform, the distribution of the location of an MU (conditioned upon 

being) connected to a particular FS is no longer uniform within that cell’s area. Because of this, 

the distribution functions of Ri and Li are significantly different [62], and should be modified in 

our analysis. It is important to note that, in that case, both the pathloss and the shadowing 

combine together to decide to which FS an MU will connect, and the problem becomes more 

challenging because the distributions of Ri and Li are a function of the shadowing variance σ. 
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5.2.4 Calculating the SIR, SINR and Outage Probability 

Our analysis has not included noise. This is because we have considered flat-fading systems, 

which use narrowband channels (OFDMA, FH-SS). Narrowband systems are generally more 

affected by interference than wideband systems [2]. Much of our analysis has focused on 

studying the lower tail of the interference cdf. In fact, this lower tail would be affected by adding 

a noise term. One could say that the analysis of the lower tail of the cdf is then of little interest. 

However, the amount of noise added will vary from system to system, and it is not evident how 

much of the lower tail is really needed. This is why a good knowledge of the lower tail is still 

valuable. The calculation of the Signal-to-Interference Ratio (SIR) or Signal-to-Interference-and-

Noise Ratio (SINR) is a problem in itself: 

1. In the case of DL, no PC, the signal pathloss affecting signal strength will be correlated 

with the interference because the position of the MU affects both signal and interference 

powers. New geometrical coefficients need to be devised.  

2. We can model the signal strength as LN, due to the shadowing that the signal suffers, and 

the other effects (fading, pathloss) can be incorporated into this LN RV similarly to what 

was done in Section 4.1. 

3. If the interference is modeled as a LN as in Section 4.4, the ratio of two LN RV’s is 

simply a LN RV with log-variances added and log-means subtracted. The Bernoulli RV 

does not affect this calculation.  

4. If the interference is modeled as a PLN as in section 4.5, the ratio of a LN and a PLN RV 

is not known. The integral involved in calculating the cdf of that ratio is: 
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where A and B are two constants. It is almost identical to the integral (3.50), which gives the 

moments of the PLN distribution. This makes the integral even more important to solve. 

The outage probability in a system is simply found by calculating the probability that the SIR 

or SINR is above a certain threshold, predetermined by the modulation and coding scheme. The 

SIR/SINR is studied in [1], [3], [7]–[9], [12], [16], [59], [63].   

5.2.5 Application to Fixed Relay Networks 

We consider a two-hop fixed relaying scenario [2]. We define an augmented cell as the 

combination of a central sub-cell containing a BS and its surrounding six sub-cells containing 

RS’s. The six RS’s each have a 

good orthogonal wireless link with 

their BS. There is no 

communication between 

augmented cells, and we can 

assume that the interference from 

all sub-cells within the augmented 

cell has been adequately managed 

[2] and is negligible, while all 

other sub-cells are considered as 

interferers (see Figure 5-1). 

Figure 5-1 Interfering cells (in gray) in a two-hop fixed relay network.  
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5.2.5.1 Irregular Geometry 

As a first approximation to the problem, we can describe the set of interfering sub-cells as having 

the layout described by Figure 5-1, with geometry parameters given in Table 5-1. 

β  
1A  2A  DLA  

1A
~

 2A
~

 

3 1.310 0.5184 2.044 0.4506 0.1611 

3.2 1.160 0.5027 1.678 0.3874 0.1570 

3.4 1.039 0.4933 1.417 0.3384 0.1550 

3.5 0.9868 0.4905 1.316 0.3180 0.1546 

3.6 0.9400 0.4888 1.230 0.3000 0.1546 

3.8 0.8596 0.4886 1.093 0.2697 0.1557 

4 0.7935 0.4921 0.9932 0.2455 0.1580 

4.2 0.7389 0.4989 0.9208 0.2260 0.1614 

4.4 0.6937 0.5088 0.8688 0.2103 0.1658 

4.5 0.6739 0.5148 0.8490 0.2036 0.1685 

4.6 0.6559 0.5216 0.8327 0.1975 0.1714 

4.8 0.6244 0.5374 0.8091 0.1870 0.1779 

5 0.598 0.5561 0.7957 0.1784 0.1855 

Table 5-1 Geometry parameters for three tiers of sub-cells in a two-hop fixed 
relay network. 

5.2.5.2 Lower Probability of Activity per Sub-cell 

It can be argued that the probability of activity within any sub-cell will be substantially lower 

than 1. Indeed, [2] defines loading for such a network to be 1 when there is one user per channel 

per augmented cell. This corresponds to p ≈ 0.14. A more aggressive reuse scheme can be used, 

where each channel is used once per sub-cell, which corresponds to a loading of 7 and p = 1.  

In the approach proposed in this section, we have assumed that there is no interference coming 

from within the augmented cell. This corresponds to a scenario where the loading is 1 or less, and 
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is only approximately true for higher loading. Thus we will be primarily interested in values 

of p in the range [0, 0.14], where our methods perform well, as will be seen in the following 

section. 

5.2.5.3 Some Simulation Results 

We simulate the interference in the fixed relay network in the same way as we did in Section 4.6, 

except that the layout is different. The simulation parameters are summarized in Table 5-2, and 

the results are shown in Figure 5-2. 

Figure 5-2 

β 4 

σ [dB] 12 

K 0 

p 0.035 0.14 0.5 1 

Layout 3-Tier Two-Hop Relay 

Link DL 

PC Yes (σe = 1dB) 

pχ 0.6566 0.9892 1–9.3·10
-10 

1 

aI = -6.601 -5.136 -3.243 -2.203 

aI ≈ -6.601 -5.136 -3.243 -2.203 

bI = 4.394 4.281 4.131 4.046 

bI ≈ 4.353 4.239 4.088 4.002 

mI = -5.976 -6.38098 -6.38056 -6.369 

mI ≈ -5.921 -6.32710 -6.32711 -6.316 

sI 4.225 

tI = 1.108 4.434 15.83 31.67 

tI ≈ 1.05 4.2 15 30 

Table 5-2 Simulation and analytical parameters for a two-hop fixed relay network.  
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5.2.6 Evolution of Interference in Time 

Throughout this work, we have investigated what is the distribution of the total interference 

power at any given instant. However, in order to get useful knowledge about such performance 

statistics as word or packet error rates, quality of service, etc., it is important to understand how 

the total interference power evolves in time, which would require studying the interference as a 

random process. This has already been done in various ways in literature [11]–[13]. We hope to 

expand our method to include the evolution of interference in time, so as to obtain very precise 

long-term performance statistics.  

5.2.7 CDMA Systems 

It would be interesting to apply our method to broadband CDMA networks; however there are 

several necessary considerations: 

1. The channel is no longer flat-fading. 

2. The number of users in each cell is no longer one, but can be quite large. This has at least 

two important consequences: 

3. The number of summands in the SLN method needs to be large. Large values of N have 

not typically been analysed. We are only aware of the LL method proving robust for as 

much as 1000 summands (Figure 6 in [27]). Incidentally, our PLN method does not 

perform very well for N = 1000 (we do not show the simulations here). 

4. The correlation between shadowing paths needs to be studied. In the UL, many users will 

be located within the same narrow angular sector, which implies high shadowing 

correlation [61]. The independence assumption will no longer be acceptable.  
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